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Abstract

The recent advances in deep learning (DL) have
been accelerated by access to large-scale data and
compute. These large-scale resources have been used
to train progressively larger models which are re-
source intensive in terms of compute, data, energy,
and carbon emissions. These costs are becoming a
new type of entry barrier to researchers and prac-
titioners with limited access to resources at such
scale, particularly in the Global South. In this work,
we take a comprehensive look at the landscape of
existing DL models for medical image analysis tasks
and demonstrate their usefulness in settings where
resources are limited. To account for the resource
consumption of DL models, we introduce a novel
measure to estimate the performance per resource
unit, which we call the PePR

1
score. Using a di-

verse family of 131 unique DL architectures (span-
ning 1M to 130M trainable parameters) and three
medical image datasets, we capture trends about
the performance-resource trade-offs. In applications
like medical image analysis, we argue that small-
scale, specialized models are better than striving
for large-scale models. Furthermore, we show that
using existing pretrained models that are fine-tuned
on new data can significantly reduce the compu-
tational resources and data required compared to
training models from scratch. We hope this work
will encourage the community to focus on improving
AI equity by developing methods and models with
smaller resource footprints.

2

1 Introduction

The question of material costs of technology, even
in light of their usefulness, should not be ignored [1].
This is also true for technologies such as deep learn-
ing (DL) that is reliant on large-scale data and com-
pute, resulting in increasing energy consumption and
corresponding carbon emissions [2]. These growing
resource costs can hamper their environmental and
social sustainability. [3, 4].
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1
Pronounced pepper.

2
Source code: https://github.com/saintslab/PePR.
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Figure 1. Number of publications per capita in different
regions of the world for 2013 and 2022 on the topic
broadly seen as “Artificial Intelligence”. A large gap
continues to persist in regions from the Global South
compared to other well-performing regions, primarily in
the Global North . Data source: OECD.ai

Considerations towards improving the environ-
mental impact of DL are garnering attention across
different application domains. This has resulted in
calls for action broadly, and also within the medical
image analysis community, to improve the resource
efficiency of DL models [5, 6] and to report the
energy and carbon costs [7]. Another important im-
plication of the growing resource costs of DL is the
risk of disenfranchising practitioners with limited ac-
cess to resources. This is captured in Figure 1 which
shows the number of publications (per capita) within

DL across the world for 2013 and 2022
3
. Several

regions in the world categorised as Global South are
continuing to lag behind in research in DL [8]. While
there are also multiple other structural reasons for
this trend, the increasing resource costs of perform-

3
The data for the visualisation in Figure 1 was curated

by querying for the number of research publications per
country on the topic of “Artificial Intelligence” in Ope-
nAlex.org. The population data per country was queried
from data.WorldBank.org. Regional aggregation was per-
formed using OECD standards and further refined into the
ten regions. Curated data will be provided along with the
source code.
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ing research within DL can become a new form of
entry barrier that can aggravate this disparity [9].

In light of these observations, this work argues for
focusing on small-scale DL in the era of large-scale
DL. We hypothesize that the current situation with
the increasing resource consumption is due to the sin-
gular focus on task-specific performance metrics that
are not grounded in material costs. We also argue
that access is a prerequisite to improving equity in
DL and in use of these methods in healthcare. These
arguments are supported by a comprehensive analy-
sis of performance and resource costs of DL-based
computer vision models. We study the properties of
131 models ranging from 1M to 130M trainable pa-
rameters, on three medical image classification tasks
to capture interesting trends. We provide qualita-
tive evidence for the usefulness of using pretrained
models in resource-constrained regimes. Finally, we
present a novel composite measure of performance
and resource consumption. We call this the perfor-
mance per resource unit (PePR) score. Using the
PePR-score we characterise the behaviour of small-
scale and large-scale DL models. We demonstrate
that in resource-constrained regimes, small-scale DL
models yield a better trade-off between performance
and resource consumption.

Related Work: Pareto optimisation of perfor-
mance and resource constraints has been primarily
investigated within the context of neural architec-
ture search (NAS) [10]. More recently, methods
have been proposed to explore models using specific
resource constraints such as energy consumption [11,
12] or carbon footprint [13]. The work in [11] pro-
poses a resource-aware performance metric similar
to our contribution in this work which, however, is
concerned with non DL models. Within applica-
tion domains such as medical image analysis, there
has been little emphasis on the joint optimisation
of performance and energy consumption [14]. The
question of equitable AI within healthcare has been
posed in works like [15] primarily from the context of
fairness and not from resource/access perspectives.

2 PePR-score

In this work, we assume a DL model to be an entity
that consumes resources such as data, energy, time,
or CO2eq. budget as input and provides some mea-
surable predictive performance on downstream tasks
of interest. In contrast to conventional performance
metrics that are not grounded in material costs, we
envision a score that can take the resource costs
into account. To this end, we introduce the notion
of performance per resource unit (PePR), denoted
as PePR ∶ [0, 1] × [0, 1] → R, which relates (nor-
malised) performance P ∈ [0, 1] of a model with

the resources consumed and defined as

PePR (R,P ) = P

1 +R
. (1)

In this definition, R is the resource cost nor-
malised to lie in [0, 1], or explicitly R =

(Rabs −Rmin)/(Rmax −Rmin) for some absolute re-
source cost Rabs and some Rmin, Rmax fixed across
models within an experiment.

4

The salient features of the PePR-score that make
it useful as an alternative objective that takes re-
source costs into account are as follows:

1. Performance-dependent sensitivity: From
the plot of the PePR isoclines (see Figure 2-a)), it
is clear that PePR is insensitive to resource con-
sumption for models with low performance. For
models with high performance, PePR attributes
almost identical weight to performance and to
resource consumption.

2. PePR-score for a single model: PePR score
is a relative measure of performance-resource con-
sumption trade-off. In instances where a single
model is considered, it is the same as performance.
This is due to the fact that Rmin = Rmax ⟹

R = 0 and PePR(0, P ) = P .

3. Comparing two models: Consider the case
where only two models are compared with respec-
tive absolute resource consumptions Rabs,0, Rabs,1

and test performances P0, P1. If Rabs,0 < Rabs,1,
then the normalized resource costs are R0 =

0, R1 = 1 because Rmin = R0, Rmax = R1. Thus,
PePR(R0, P0) = P0 and PePR(R1, P1) = P1/2.

4. PePR-score of random guessing: Consider
a binary classification task with no class imbal-
ance. In this setting, the performance of random
guessing should be about P = 0.5. As the R = 0
for this “model”, the PePR-score is the same as
performance.

Depending on what resource costs are used, differ-
ent variations of the PePR-score can be derived. For
instance, if energy consumption is used as the cost,
then R = E resulting in the PePR-E score. Simi-
larly, one can derive the PePR-C (CO2eq.), PePR-
D (data), PePR-M (memory), or PePR-T (Time)
scores. Idealised PePR-E scores are plotted in Fig-
ure 2-a) which captures the trade-off between perfor-
mance and resource consumption. Models with low
resource consumption and high performance would
gravitate towards the upper left corner where the
PePR score approaches unity.
We also note that in cases where performance is

deemed to be more important than resource con-
sumption, PePR score can be adjusted to reflect

4
Standard scaling might not always be appropriate. Out-

liers may have to be considered, and in other instances
Rmin, Rmax might depend on the experimental set-up.
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Figure 2. (a) Idealized PePR-E profile. (b) Performance curve for ESE-VoVNet
∗
[16]. The orange point marks

P
∗
ePRc, beyond which the performance curve enters the region of diminishing returns. (c) Number of trainable

parameters and energy consumption for the 131 models, demonstrating a large variability in model scale. The
vertical red line demarcates the median point for number of trainable parameters.

this. For instance, one can employ PePR(R,P ;α) =
α ⋅ P/(α +R) with a scaling factor α ≥ 1. Setting
a large α value, say α = 100, would prioritise per-
formance and disregard the effect of the resource
consumption. As an example, consider the PePR
score for the most resource intensive model that also
achieves the best performance (i.e., P = 1.0, R =

1.0). According to the definition in Eq. (1), the
PePR score is PePR(R = 1, P = 1;α = 1) = 0.5. In-
creasing the emphasis on performance using α = 100
gives PePR(R = 1, P = 1;α = 100) = 0.99, basically
ignoring the resource costs, if the application war-
rants this. Adjusting α offers a spectrum of trade-
offs between performance and resource costs. In
this work, we are focussed on operating in resource
constrained regimes, and are mainly interested in
the setting α = 1.

Performance curve: For a function f represent-
ing a performance curve mapping resource costs to
performance (e.g., if the resource is update steps
or training data set size, it represents a rescaled
learning curve), we define a PePR curve:

PePRc(R; f) = PePR(R, f(R)), (2)

where in cases of ties the smallest value is picked.
Furthermore, in order to be able to compare models
based on their performance curves, we define a scalar
quantity P

∗
ePRc(f) by

P
∗
ePRc(f) = max

R
PePRc(R; f).

To get some intuition on the PePR score, we can
rewrite (2) as the integral of its derivative to obtain
the integral representation

PePRc(R; f) = f(0)+∫
R

0

f
′(r)

1 + r
dr−∫

R

0

f(r)
(1 + r)2 dr.

Here, f
′
is the derivative of f with respect to re-

source consumption, which can be interpreted as how
much of a performance increase the model is able to

get per resource consumed. First, note the presence
of the weighting factors 1/(1 + r) and 1/(1 + r)2,
which express that the score puts a higher weight
on the performance of the model in low-resource
regimes (small r).

Second, we can see that the score emphasizes
performance per resource consumed (first integral
with f

′
) and de-emphasizes absolute performance

(second integral with f). Since all integrals are
positive, the PePR score is always greater or equal
to the performance of the model at zero resource
consumption.

Since f(0) ≤ f(r), r ≤ 1, if we assume f to be
increasing, we also have that PePR increases in in-
tervals where f

′
> 1 and decreases in intervals where

f
′
< f(0)/2.5 This captures the idea that the max-

ima of the PePR curve lie at points of diminishing
returns as captured by f

′
, which is also visualized

in Figure 2-b).

3 Data & Experiments

To demonstrate the usefulness of the PePR-score, we
curated a large collection of diverse, neural network
architectures and experiment on multiple datasets.

Space of models: The model space used in this
work consists of 131 neural network architectures spe-
cialised for image classification. The exact number
of 131 architectures was obtained after seeking suf-
ficiently diverse models which were also pretrained
on the same benchmark dataset.

We used the Pytorch Image Models (timm) model
zoo to access models pretrained on ImageNet-1k re-
sulting in 131 models spanning 1M to 131M trainable
parameters. We randomly sub-sampled the avail-
able models in Pytorch Image Models library [17],
which during our experiments had about 700 models.

5
Because of the bound for the second integrand in (2):

f(0)
2

≤
f(r)
1+r

≤ 1
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Figure 3. a) Violin plot showing the influence of fine-tuning the pretrained models for ten epochs versus training
the models from scratch for ten epochs for all 131 models. b) Violin plot showing the influence on test performance
of fine-tuning all models on 100% and 10% of training data, across all three datasets. (c) Test performance
P ∈ [0, 1] averaged over three datasets for each of the 131 models, fine-tuned for 10 epochs, against the number of
trainable parameters on log10 scale. (d) PePR-E score for the 131 models averaged over the three datasets.

We chose as many unique architectures as possible
that were all pre-trained on the same ImageNet
dataset. This resulted in the 131 models used in our
work, covering CNNs, vision transformers, hybrid
models, and efficient architectures.

We categorise these models along two dimensions
i) CNN or Other depending on if the architecture is
a generic CNN primarily consisting of convolutional
layers, residual connections, and other standard op-
erators. This implies transformer-based models [18],
for instance, are marked Other ii) Efficient or Not
Efficient if the descriptions in the corresponding
publications discuss any key contributions for im-
proving some aspect of efficiency. Given these cat-
egorisations, we end up with a split of 80 and 51
for CNN, Other, respectively, and 31 and 100 for
Efficient, Not Efficient, respectively. The me-
dian number of parameters is 24.6M. We further
classify the models in the lower half to be small-
scale and the upper half into large-scale for simplicity.
The model space is illustrated in Figure 2-c) and
additional details are provided for each model in
Table A.1.

Datasets: Experiments in this work are performed
on three medical image classification datasets:
Derma, LIDC, Pneumonia. Derma and Pneumo-
nia datasets are derived from the MedMNIST+
benchmark [22] and LIDC is derived from the
LIDC-IDRI dataset [28]. Images in all three
datasets are of 256 × 256 pixel resolution with
intensities rescaled to [0, 1]. All three datasets
are split into train/valid/test splits: Derma
(7,007/1,003/2,005), LIDC (9,057/3,019/3,020), and
Pneumonia (4,708/524/624). Derma consists of
seven target classes whereas the other two datasets
contain binary labels.

Experimental design: All models were imple-
mented in Pytorch, trained or fine-tuned for 10

epochs with a learning rate of 5×10
−4

using a batch
size of 32 on an Nvidia RTX3090 GPU worksta-
tion with 24 GB memory. Statistical significance is
measured by t-tests. We considered training or fine-
tuning of 10 epochs to reduce the compute resources
used in this work. We expand on this choice in Sec. 4.
The training of models in this work was estimated
to use 58.2 kWh of electricity contributing to 3.7
kg of CO2eq. This is equivalent to about 36 km
travelled by car as measured by Carbontracker [35].

Experiments and Results: We performed three
main experiments with our large collection of mod-
els: i) Study the influence of pretraining on test
performance ii) Evaluate the role of number of train-
ing points iii) Compute PePR-E score and compare
the trade-off between test performance and energy
consumption as the cost. Results from all three
experiments are summarized in Figure 3.

We had access to pretrained weights for all 131
models, which made it possible to investigate the
influence of using pretraining when resources are con-
strained. We either fine-tune or train-from-scratch
all models for 10 epochs. In Figure 3-a), across
the board, we notice that using pretrained models
are significantly better compared to training mod-
els from scratch for the same number of epochs
(p < 0.001).

Another resource that can be lacking, on top of
compute/energy, is the amount of training data. We
study this by only using 10% of the training data,
for each of the three datasets, and reporting the
average test performance per model in Figure 3-b).
Even though there is a significant test performance
difference (p < 0.001) when only using 10% of the
data compared to using 100% of the data, it could
be still useful in making some preliminary choices.

The overall test performance averaged across the
three datasets is plotted against the number of pa-

4



Table 1. Results across all the experiments comparing the resources such as GPU memory usage in gigabyte:
M(GB), energy consumption during 10 epochs of training in watt-hour: E(Wh), training time for 10 epochs in
second: T(s), test performance and the PePR-E score. In addition, the number of trainable parameters are also
reported in million: ∣W∣(M). For the Derma dataset, results with no pretraining are also reported: DermaNPT.
Architectures that appear more than once across the four experiments are highlighted with

∗
.

Dataset Model Efficient ∣W∣(M) M(GB) ↓ E(Wh) ↓ T(s) ↓ Test P↑ PePR-E↑

DermaNPT

ESE-VoVNet
∗
[16] ✓ 6.5 3.8 20.4 12.9 0.7651 0.7070

ResNet-18
∗
[19] ✗ 11.7 1.7 17.0 10.6 0.7480 0.7014

ResNet-34
∗
[19] ✗ 21.8 2.3 23.5 14.9 0.7617 0.6973

CrossVIT [20] ✓ 8.6 2.3 23.2 14.5 0.7550 0.6921
ConvNext [21] ✗ 3.7 1.6 18.5 11.9 0.7273 0.6781

HaloNet-50 [18] ✗ 22.7 7.3 47.7 29.9 0.7712 0.6498

Derma[22]

Ghostnet [23] ✓ 5.2 2.0 17.4 11.4 0.8579 0.8026
ESE-VoVNet

∗
[16] ✓ 6.5 3.8 20.4 12.9 0.8634 0.7992

FBNet [24] ✓ 5.6 3.1 18.5 11.9 0.8528 0.7950
MobileNetV2

∗
[25] ✓ 2.0 2.2 10.7 7.3 0.8251 0.7916

MNASNet100[26] ✓ 4.4 2.3 15.2 10.0 0.8362 0.7889

EdgeNext [27] ✓ 18.5 4.8 50.6 32.6 0.8659 0.7221

LIDC [28]

MNASNet100[26] ✓ 4.4 2.4 18.6 11.7 0.6732 0.6376
ResNet-18

∗
[19] ✗ 11.7 1.7 20.4 12.5 0.6689 0.6303

ResNet-14 [19] ✗ 10.1 2.5 22.3 13.7 0.6709 0.6289
ResNet-34

∗
[19] ✗ 21.8 2.3 21.7 20.2 0.6868 0.6273

ResNet-26 [19] ✗ 16.0 3.4 31.0 19.5 0.6818 0.6240

DPN-107 [29] ✗ 86.9 16.3 228.0 138.9 0.6955 0.4133

Pneum.[22]

DLA-460 [30] ✗ 1.3 2.5 8.8 5.8 0.9539 0.9053
HardcoreNAS[31] ✓ 5.3 2.3 8.5 5.6 0.9523 0.9050
MobileNetV2

∗
[25] ✓ 2.0 2.2 5.6 4.0 0.9178 0.8874

MobileVitV2 [32] ✓ 1.4 3.1 8.6 5.6 0.9293 0.8828
SEMNASNet [33] ✓ 2.9 2.8 8.4 5.5 0.9276 0.8821

PNASNet [34] ✗ 86.1 22.7 105.9 64.8 0.9605 0.5830

rameters, along with architecture classes, in Fig-
ure 3-c). There was no significant group difference
in test performance between small- and large-scale
models. Similarly, there was no significant differ-
ence between models that are Efficient and Not

Efficient, or between CNN and Other.

Finally, in Figure 3-d) we visualise the PePR-
E score for all the models, which uses the energy
consumption for fine-tuning for 10 epochs as the
resource, which is then normalised within each ex-
periment (dataset). The first striking observation is
that the PePR-E scores for the larger models reduce,
whereas for the smaller models there is no difference
relative to other small-scale models. This is expected
behaviour as PePR score is performance per resource
unit, and models that consume more resources rela-
tive to other models will get a lower PePR score. We
observed a significant difference in median PePR-E
scores between small and large models for all three
datasets, with the group of small models having a
higher median PePR-E score (p < 0.001), shown in
Figure A.1. We did not consistently observe any
other significant difference across datasets in test
performance or PePR-E score when stratifying by
model type (CNN vs. Other) or between Efficient

and Not Efficient models. Results for the top five
models sorted based on their PePR-E score for each
dataset along with their test performance, number
of parameters, memory consumption, absolute en-
ergy consumption, training time for 10 epochs, are
reported in Table 1. We also report the best per-

forming model when only test performance is used
as the criterion for comparison.

4 Discussion & Conclusion

Our experiments reported in Figure 3 and Table 1 re-
veal interesting trends about the interplay between
test performance and resource consumption. We
consider all models below the median number of
parameters (24.6M) to be small-scale, and above
as large-scale models, visualised demarcated using
the gray-shaded regions in all relevant figures. We
noticed no significant difference in performance be-
tween the small-scale and large-scale models in the
regime where they were fine-tuned with pretrained
weights for 10 epochs. This captures the problem
with focusing only on test performance, as it could
easily yield large-scale models even when small-scale
models could be adequate. However, when using
the PePR-E score, we see a significant performance
difference with the small-scale models achieving a
higher PePR-score (p < 0.05). This emphasises
the usefulness of taking resource costs into account,
which can be easily done using any variations of the
PePR score.

Energy, or other resource, consumption awareness
can also be incorporated using multi-objective opti-
misation [12]. PePR score can be thought of as one
way to access the solutions on the Pareto front with
an emphasis on low-resource footprint. This is cap-
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Figure 4. a) Test accuracy against normalized energy used for training on Derma dataset. Points correspond to
combinations of model and training epoch. Orange points lie on the Pareto frontier. Background shaded according
to PePR-e score. b) Validation performance and the corresponding PePR-M scores for all models trained until
convergence on ImageNet dataset using the publicly available data from [17]. PePR score shows that smaller
models achieve a better performance and resource trade-off.

tured in Figure 4 which overlays the Pareto set (in
orange) and all other models over the PePR scores.
The knee point of this Pareto front is pointing to-
wards maximising PePR-E score (brighter regions).

PePR score is a composite metric that offers a
trade-off between performance and resource con-
sumption. It can be used instead of multi-objective
optimisation of the two objectives separately. As
shown in our experiments, PePR score can be used
to compare models that use different extents of re-
sources. Current reporting in deep learning for im-
age analysis focus on performance metrics like accu-
racy while disregarding the resources expended [7].
Furthermore, PePR can be used to choose the best
model under a known resource constraint, such as
maximum memory or energy consumption allowed.
The key experiments reported consider energy

consumption as the main resource in the PePR-E
score. Additional metrics (PePR-M for memory,
PePR-C for carbon emissions, PePR-T for training
time) reported in the Figure A.2 show the versatil-
ity of the PePR score. We can envision a general
PePR score which can consider all resources into
account by weighting them differently. For example,
using PePR =

P
1+∑i wiRi

with ∑i wi = 1, where the

different weights can be adjusted depending on the
application.

Limitations: We used a training or fine-tuning
budget of 10 epochs in this work to reduce the com-
pute resources used. This can be a limitation, as
different models learn at different rates. To show
that our experimental results are not artifacts of
this choice, we looked at the performance of models
that have been trained to convergence on ImageNet
(which formed the basis of pre-training) using the
public dataset from [17]. We performed a similar
analysis of validation set performance of the con-
verged models, The PePR-M scores are shown in
Figure 4-b), and they show similar trends as our

experiments in Figures 3 and A.2.

The PePR score itself is agnostic to the down-
stream task. In this study, the experiments focussed
on medical image classification, which may limit the
generalisability of the results. While the findings
were consistent across the considered data sets, ex-
panding the study to other tasks (segmentation) and
domains (non-image) in future work might provide
further insights.

Conclusions: Using a large collection of DL mod-
els we have shown that using pre-trained models
yields significant gains in performance, and should
always be considered. We have also shown that
when resource consumption is taken into account,
small-scale DL models offer a better trade-off than
large-scale models. Specifically, the performance
achieved per unit of resource consumption for small-
scale models in low-resource regimes is higher. We
proposed the PePR score that offers an inbuilt trade-
off between resource consumption and performance.
The score penalises models with diminishing returns
for a given increase in resource consumption.

Questions around how best to improve equity in
research and healthcare are neither easy nor straight-
forward, go far beyond the ways in which we use
specific types of DL, and cannot be fixed through
technological solutionism [36]. Nevertheless, using
small-scale DL can help mitigate certain types of
inequities by reducing some of the barriers that are
currently in place for researchers and practitioners
with limited access to resources. Small-scale DL
can be developed and run on end-point consumer
hardware which is more pervasive than specialised
datacenters with high performance computing in
many parts of the world. With this work, we sin-
cerely hope that by focusing on reducing the resource
costs of DL to improve access the larger question of
equity in DL for healthcare will be grappled with
by the community.
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A Additional Results
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Figure A.1. Median PePR-e score for small models (≤ 24.6M parameters) and large models (> 24.6M parameters).
All differences are significant (p < 0.05).
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Figure A.2. PePR-C, PePR-M, and PePR-T scores that account for carbon emissions, GPU memory consumption
and training time, respectively.
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Table A.1. Model space used in this work described using their instance name in TIMM, number of trainable
parameters, and their classifications. Models can be accessed from https://huggingface.co/models?library=timm

Small-scale Large-scale
Model # param. Type Efficient Model # param. Type Efficient

dla46x c 1.1 CNN ✗ res2next50 24.7 CNN ✗
dla46 c 1.3 CNN ✗ resnext50d 32x4d 25.0 CNN ✗
mobilevitv2 050 1.4 Other ✓ res2net50 14w 8s 25.1 CNN ✗
mobilenetv2 050 2.0 CNN ✓ resnetv2 50 25.5 CNN ✗
semnasnet 075 2.9 Other ✓ resnetblur50 25.6 CNN ✗
pvt v2 b0 3.7 Other ✓ resnetaa50 25.6 CNN ✗
convnext atto 3.7 CNN ✗ ecaresnet50t 25.6 Other ✓
mnasnet 100 4.4 Other ✓ ecaresnet50d 25.6 Other ✓
spnasnet 100 4.4 Other ✓ gcresnet50t 25.9 Other ✗
ghostnet 100 5.2 CNN ✓ dla102x 26.3 CNN ✗
hardcorenas a 5.3 Other ✓ xception41p 26.9 CNN ✗
efficientnet b0 5.3 CNN ✓ xception41 27.0 CNN ✗
fbnetc 100 5.6 CNN ✓ gluon seresnext50 32x4d 27.6 CNN ✗
mobilevit s 5.6 Other ✓ cspdarknet53 27.6 Other ✓
tinynet a 6.2 CNN ✓ legacy seresnet50 28.1 CNN ✗
ese vovnet19b dw 6.5 CNN ✓ repvgg a2 28.2 CNN ✓
densenet121 8.0 CNN ✗ convnext tiny hnf 28.6 CNN ✗
densenetblur121d 8.0 CNN ✗ densenet161 28.7 CNN ✗
crossvit 9 240 8.6 Other ✓ ecaresnetlight 30.2 Other ✗
fbnetv3 b 8.6 CNN ✓ selecsls60 30.7 CNN ✗
resnet14t 10.1 CNN ✗ gernet l 31.1 CNN ✓
seresnext26ts 10.4 Other ✗ selecsls42b 32.5 CNN ✗
gcresnext26ts 10.5 Other ✗ selecsls60b 32.8 CNN ✗
eca botnext26ts 256 10.6 Other ✗ dla102 33.3 CNN ✗
bat resnext26ts 10.7 Other ✗ resnetrs50 35.7 CNN ✗
lambda resnet26rpt 256 11.0 Other ✗ resnet51q 35.7 CNN ✗
resnet18d 11.7 CNN ✗ darknetaa53 36.0 CNN ✗
halonet26t 12.5 Other ✗ resnet61q 36.8 CNN ✗
botnet26t 256 12.5 Other ✗ dpn92 37.7 CNN ✗
dpn68 12.6 CNN ✗ xception65p 39.8 CNN ✗
dpn68b 12.6 CNN ✗ gluon xception65 39.9 CNN ✗
gc efficientnetv2 rw t 13.7 Other ✓ dla102x2 41.3 CNN ✗
sehalonet33ts 13.7 Other ✗ xception71 42.3 CNN ✗
sebotnet33ts 256 13.7 Other ✗ twins pcpvt base 43.8 Other ✗
densenet169 14.1 CNN ✗ gluon resnext101 32x4d 44.2 CNN ✗
maxvit nano rw 256 15.5 Other ✗ ecaresnet101d 44.6 Other ✓
gcresnext50ts 15.7 Other ✗ res2net101 26w 4s 45.2 CNN ✗
dla34 15.7 CNN ✗ cs3edgenet x 47.8 Other ✓
ecaresnet26t 16.0 Other ✓ gluon seresnext101 32x4d 49.0 CNN ✗
resnet26d 16.0 CNN ✗ cs3se edgenet x 50.7 Other ✓
maxxvit rmlp nano rw 256 16.8 Other ✗ efficientnetv2 rw m 53.2 CNN ✓
seresnext26t 32x4d 16.8 Other ✗ dla169 53.4 CNN ✗
seresnext26d 32x4d 16.8 Other ✗ sequencer2d l 54.3 Other ✗
dla60x 17.4 CNN ✗ poolformer m36 56.2 Other ✗
resnet32ts 18.0 CNN ✗ gluon resnet152 v1b 60.2 CNN ✗
edgenext base 18.5 Other ✓ resnet152d 60.2 CNN ✗
eca resnet33ts 19.7 Other ✓ dpn98 61.6 CNN ✗
seresnet33ts 19.8 Other ✗ resnetrs101 63.6 CNN ✗
gcresnet33ts 19.9 Other ✗ resnet200d 64.7 CNN ✗
densenet201 20.0 CNN ✗ seresnet152d 66.8 Other ✗
cspresnext50 20.6 CNN ✗ wide resnet50 2 68.9 CNN ✗
regnetv 040 20.6 CNN ✗ dm nfnet f0 71.5 CNN ✗
convmixer 768 32 21.1 CNN ✗ dpn131 79.3 CNN ✗
cs3darknet focus l 21.2 CNN ✗ pnasnet5large 86.1 Other ✗
hrnet w18 21.3 CNN ✗ resnetrs152 86.6 CNN ✗
cspresnet50 21.6 Other ✓ dpn107 86.9 CNN ✗
gluon resnet34 v1b 21.8 CNN ✗ swinv2 base window8 256 87.9 Other ✗
resnet34d 21.8 CNN ✗ nasnetalarge 88.8 Other ✗
cs3sedarknet l 21.9 Other ✓ resnetrs200 93.2 CNN ✗
dla60 22.0 CNN ✗ seresnext101d 32x8d 93.6 Other ✗
lamhalobotnet50ts 256 22.6 Other ✗ seresnextaa101d 32x8d 93.6 Other ✗
halo2botnet50ts 256 22.6 Other ✗ ecaresnet269d 102.1 Other ✓
halonet50ts 22.7 Other ✗ legacy senet154 115.1 CNN ✗
adv inception v3 23.8 CNN ✗ resnetrs270 129.9 CNN ✗
gluon inception v3 23.8 CNN ✗ vgg11 132.9 CNN ✗

vgg13 133.0 CNN ✗
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