
Fine-Tuning Large Language Models with
User-Level Differential Privacy

Zachary Charles 1 Arun Ganesh 1 Ryan McKenna 1 H. Brendan McMahan 1 Nicole Mitchell 1

Krishna Pillutla 2 Keith Rush 1

Abstract

We investigate practical and scalable algorithms
for training large language models (LLMs) with
user-level differential privacy (ULDP). We study
variants of DP-SGD that use example-level sam-
pling (ELS) and user-level sampling (ULS). We
derive a novel ULDP accountant that computes
provably tight privacy guarantees for ELS, and
use it to show that while ELS outperforms ULS in
specific settings, ULS performs better when users
have diverse collections of examples. We validate
our findings in realistic LLM fine-tuning tasks un-
der fixed compute budgets. Our results show that
ULS is significantly better when (1) strong privacy
guarantees are required, or (2) the compute budget
is large. Our focus on LLM-compatible training
algorithms allows us to scale to models with hun-
dreds of millions of parameters and datasets with
hundreds of thousands of users.

1. Introduction
Fully realizing the promise of large language models
(LLMs) in a variety of domains may require fine-tuning
on domain-specific data (Scao & Rush, 2021; Lester et al.,
2021; Bhatia et al., 2023). In-domain data of users can be
highly sensitive (Chen et al., 2019; Xi et al., 2023; Xu et al.,
2023b), and without safeguards, using such data comes with
major privacy risks, especially since LLMs can memorize
and leak their training data (Carlini et al., 2021; 2023).

Differential privacy (DP) (Dwork et al., 2006) can mitigate
such privacy risks: it gives rigorous guarantees on privacy
leakage that can eliminate data leakage from LLMs (Carlini
et al., 2019). DP is often used to protect individual exam-
ples (example-level DP). However, when training on user

*Equal contribution 1Google Research 2IIT Madras,
Chennai India. Correspondence to: Zachary Charles
<zachcharles@google.com>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

data, each user may contribute multiple correlated exam-
ples. Thus, example-level DP can fail to protect user-level
privacy (Song & Shmatikov, 2019; Kandpal et al., 2023).
We therefore study practical approaches to training LLMs
with user-level DP (ULDP).

Many prior works on learning with ULDP are theoreti-
cal (Levy et al., 2021; Bassily & Sun, 2023; Ghazi et al.,
2023a; Asi & Liu, 2024), and rely on subroutines such as
outlier removal. Scaling such algorithms to LLM training
across clusters of accelerators remains challenging. Em-
pirical work on ULDP has largely focused on federated
learning (McMahan et al., 2018; Wei et al., 2021; Xu et al.,
2023b) for training small models on edge devices. By con-
trast, developing efficient ULDP training methods for LLMs
requires vastly different system considerations.

Setting. We focus on two scalable variants of DP-
SGD: DP-SGD-ELS (ELS), which applies DP-SGD with
example-level sampling and gradient clipping to pooled
user data (with each user contributing at most GELS); and
DP-SGD-ULS (ULS), which applies DP-SGD to user-level
gradients averaged over GULS examples per sampled user.
Following LLM scaling law principles (Kaplan et al., 2020),
we compare these methods under fixed compute budgets.

Contributions. We provide theoretical insights into LLM
training with ULDP. We develop a novel, provably tight DP
accountant for ELS under ULDP, significantly outperform-
ing generic reductions. We show that while ELS may be
better in specific cases, ULS excels when user gradients are
diverse. We validate our findings through extensive experi-
ments, including a mean estimation task and realistic LLM
fine-tuning tasks. Our focus on scalable algorithms allows
us to train models with hundreds of millions of parameters
on datasets with hundreds of thousands of users.

2. Algorithms and Privacy Accounting
To define (ε, δ)-DP, we use the hockey-stick divergence Hα

between distributions P,Q and its symmetrization Hsym
α :

Hα(P,Q) := maxS{P (S)− αQ(S)},

Hsym
α (P,Q) = max{Hα(P,Q), Hα(Q,P)}.

1

Fine-Tuning Large Language Models with User-Level Differential Privacy

Algorithm 1 DP-SGD-ELS
Additional Inputs: group size GELS,

noise multiplier σELS, example sampling probability p
Dsub = ∅ {Limit user contributions}
for each user u ∈ [N] do

Sample Su ⊆ Du of size |Su| ≤ GELS
Dsub = Dsub t Su

end for
B = p|Dsub| {Expected batch size}
for t = 0, 1, . . . , T − 1 do
. Include each example w.p. p
Sample a batch of examples St ⊆ Dsub
. Clip & noise per-example gradients
gtsum =

∑
z∈St clip(∇f(θt, z), C)

gt = 1
B

(
gtsum +N (0, C2σ2

ELSId)
)

θt+1 = θt − ηgt
end for

Algorithm 2 DP-SGD-ULS
Additional Inputs: group size GULS,

noise multiplier σULS, user sampling probability q
M = qN {Expected user cohort size}

for t = 0, 1, . . . , T − 1 do
. Include each user w.p. q
Sample users U t ⊆ [N]

for each user u ∈ U t do
Sample Dt

u ⊆ Du of size |Dt
u| ≤ GULS

gtu = 1
|Dtu|

∑
z∈Dtu

∇f(θt, z)
end for
. Clip & noise per-user gradients
gtsum =

∑
u∈Ut clip(g

t
u, C)

gt = 1
M

(
gtsum +N (0, C2σ2

ULSId)
)

θt+1 = θt − ηgt
end for

LetM be a randomized algorithm that takes in a dataset
D and returns a distributionM(D). We sayM satisfies
(ε, δ)-DP under an adjacency relation “∼” if

supD∼D′ H
sym
eε (M(D),M(D′)) ≤ δ. (1)

We study user-partitioned datasets. Let U be a set of users.
Each u ∈ U is associated to a non-empty, finite multiset
Du. A user-partitioned dataset is a tuple (D,U) where
U ⊆ U , |U | < ∞, and D = tu∈UDu is the multiset sum
of the user datasets. We define (D,U) ∼user (D′, U ′) if
U ′ = U ∪ {u} or U ′ = U\{u} for some u. We say thatM
satisfies (ε, δ)-ULDP ifM satisfies (1) w.r.t. ∼user.

Algorithms. We obtain ULDP guarantees with two general-
izations of DP-SGD. The first, DP-SGD with example-level
sampling (DP-SGD-ELS, abbreviated ELS) forms a sub-
dataset Dsub to which each user contributes at most GELS
examples and applies DP-SGD to Dsub, with example-level
sampling and gradient clipping. The second, DP-SGD with
user-level sampling (DP-SGD-ULS, abbreviated ULS), ap-
plies DP-SGD to user-level gradients averaged over GULS
examples per sampled user, We present ELS and ULS in
Algorithms 1 and 2. They share an initial model θ0, loss
function f(θ, z), user-level dataset D = tNu=1Du, learn-
ing rate η, clip norm C, and number of steps T . While
we present an SGD model update in both, any first-order
optimization technique can be applied.

ULDP accountants. Prior state-of-the-art accounting for
Algorithm 1 uses black-box user-to-example reductions
based on group privacy (Vadhan, 2017). As a result, prior
work (e.g. Levy et al., 2021) suggests that Algorithm 1
is worse than Algorithm 2 as its formal ε grows quickly
with GELS. We instead tailor the reduction to DP-SGD.
By leveraging the Mixture-of-Gaussians (MoG) mecha-

nism (Choquette-Choo et al., 2023), we derive the optimal
ULDP accounting for ELS.
Theorem 1 (Informal version of Thm. 3). ∀ε ≥ 0, Alg. 1
satisfies (ε, δ(ε))-ULDP with

δ(ε) = Hsym
eε (N (0, σ2

ELS)
⊗T ,N (B, σ2

ELS)
⊗T) , (2)

where B = Binom(GELS, p) and P⊗T denotes the product
of a distribution P with itself T times. For any δ′ < δ(ε),
there is a setting where Alg. 1 does not satisfy (ε, δ′)-ULDP.

The δ(ε) function is easily computable using open-source
DP accounting libraries (see Appendix B.1). We use this
in Fig. 1 to compare the ε computed by Theorem 1 to the ε
given by black-box reductions. Our accountant gives near-
linear scaling of ε in GELS where generic user-to-example
reductions give exponential scaling.

2 4 6 8 10
Group Size (GELS)

50

100

150

200

250

Ep
sil

on

Noise Multiplier = 0.5

2 4 6 8 10
Group Size (GELS)

0

50

100

150

200

250

300
Noise Multiplier = 1.0

2 4 6 8 10
Group Size (GELS)

5

10

15

Noise Multiplier = 2.0

Accountant
MoG (Ours)
Black-box

Figure 1: Upper bound on ε for ELS using our Mixture-
of-Gaussians (MoG) accountant and prior state-of-the-art
black-box accounting (Vadhan, 2017). We set T = 2000,
p = 10−2, δ = 10−6, and vary σELS and GELS. The black-
box accountant diverged for GELS sufficiently large.

Since Alg. 2 applies a straightforward subsampled Gaussian
mechanism, its formal privacy guarantees are well under-
stood and easy to compute (e.g. Koskela et al., 2021). To
directly compare ELS and ULS, we will use the following
result, which follows from Theorem 1 by setting GELS = 1.

2

Fine-Tuning Large Language Models with User-Level Differential Privacy

Theorem 2. ∀ε ≥ 0, Alg. 2 satisfies (ε, δ(ε))-ULDP with

δ(ε) = Hsym
eε (N (0, σ2

ULS)
⊗T ,N (Ber(q), σ2

ULS)
⊗T), (3)

where Ber is Bernoulli. For any δ′ < δ(ε), there is a setting
where Alg. 2 does not satisfy (ε, δ′) ULDP.

Compute budgets. Algs. 1 and 2 vary greatly in how they
process data. Motivated by work on LLM scaling laws (Ka-
plan et al., 2020; Hoffmann et al., 2022), we focus on their
performance under fixed compute budgets. For simplicity,
we assume computation cost equals the number of gradi-
ent computations. We do not consider gradient averaging,
clipping, and noise generation, or communication. The ex-
pected per-iteration compute of ELS is its expected batch
size B, while that of ULS equals GULSM , where M = qN
is the expected user cohort size (see Algorithm 2).

3. Comparing Noise Variances
We now compare ELS and ULS under Lipschitz losses via
their noise variance per example gradient. For DP-SGD, this
quantity empirically correlates with learning utility (Pono-
mareva et al., 2023). Consider Algs. 1 and 2 on a dataset
D = tNu=1Du, where each user has |Du| = K examples.
To meet a compute budget of B gradients per iteration, we
let p = B/GELSN for ELS and q = M/N = B/GULSN for
ULS. We analyze the impact of the group sizes GELS, GULS.

Suppose the loss f(·, z) is Lipschitz for each z. Let
LELS, LULS be the smallest constants such that for all θ,
maxz∈D ‖∇f(θ, z)‖2 ≤ LELS and

max
u∈[N]

max
S⊂Du,|S|=GULS

∥∥∥∥∥ 1
GULS

∑
z∈S
∇f(θ, z)

∥∥∥∥∥
2

≤ LULS. (4)

LELS and LULS bound the norms of the per-example and
per-user gradients1, and LULS ≤ LELS by the triangle in-
equality. For simplicity of analysis, we set the clip norm C
to LELS and LULS for ELS and ULS respectively, so the clip
operation in both is a no-op.

In this setting, ELS and ULS produce gradient estimates of
the form g + ζ where g is (in expectation) an average over
B example gradients, and ζ is Gaussian satisfying:

ζELS ∼ N
(
0, (σELSLELS/B)

2
Id

)
, (5)

ζULS ∼ N
(
0, (σULSLULS/M)

2
Id

)
. (6)

The noise multipliers σELS, σULS are determined by fixing a
ULDP guarantee (ε, δ) and using Thms 1 and 2. Comparing
the noise variances var(ζELS) and var(ζULS),

var(ζELS) ≤ var(ζULS) ⇐⇒ LELSσELS
LULSσELS

≤ GULS. (7)

1LELS and LULS are data-dependent. It is common (albeit non-
private) practice to tune the clip norm on the dataset. The problem
of privately choosing clip norms is beyond the scope of this work.

While (7) is not entirely predictive of the relative perfor-
mance of ELS and ULS (since they sample data differently),
it is a useful way to compare them. The ratio of LELS/LULS
is related to gradient diversity (Yin et al., 2018). In general,
(7) shows that when LELS/LULS is large, ULS adds noise
with smaller variance. To illustrate this, we plot var(ζELS)
and var(ζULS) in Fig. 2, fixing K = 32, T = 1000, and
N = 1024. ULS has smaller variance when LELS < LULS
and either ε is small, or the compute budget B is large.
Appendix C contains details and more results.

25 27 29

Compute Budget

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Va
ria

nc
e

 = 1

25 27 29

Compute Budget

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 = 16

Algorithm
ELS
ULS, LULS = LELS

ULS, LULS = LELS

GULS

Figure 2: Noise variance of ELS and ULS. For ULS, we fix
the cohort size M and vary GULS. We compare settings in
which LULS = LELS (no user gradient diversity), and one in
which LULS = LELS/

√
GULS (maximal gradient diversity).

We now let GELS = GULS = K (the maximum user-dataset
size). This represents the setting in which example/user
sampling are maximally different. We conjecture that when
LELS = LULS, var(ζELS) ≤ var(ζULS). This is worst-case
for ULS, as all gradients within a user point in the same
direction. This conjecture is empirically supported by Fig-
ure 2 by comparing variance at the largest compute budget
for ELS and ULS with LELS = LULS.
Conjecture 1. Let GULS = GELS = K, and p = q. For all
ε, δ, T, p, and K, σELS ≤ KσULS.

While this conjecture is challenging to prove for (ε, δ)-DP,
we show a weaker version of the conjecture holds for “one-
sided” α-RDP where α is an integer. Recall that for α >
1, the α-Rényi divergence between distributions P,Q is
defined by Rα(P,Q) = (1/α−1) logEx∼Q [(P (x)/Q(x))

α
].

Lemma 1. Let PK(σ) = N (Binom(K, p), σ2) and
Q(σ) = N (0, σ2). For integers α > 1, K ≥ 1:

Rα
(
PK(Kσ), Q(Kσ)

)
≤ Rα

(
P1(σ), Q(σ)

)
.

The RHS is approximately the Rényi-DP parameter of one
iteration of ULS with noise multiplier σ and the LHS is
the Rényi-DP parameter of one iteration of ELS with noise
multiplier Kσ. We give the proof in Appendix D.

Mean estimation task. We corroborate our findings above
on a synthetic mean estimation task in Appendix E. Al-
though the loss is not globally Lipschitz, we see similar
findings to that of the above: ULS performs significantly
better than ULS in settings with high user gradient diversity,
especially when ε is small or the compute budget is large.

3

Fine-Tuning Large Language Models with User-Level Differential Privacy

4. Language Model Results
We validate our findings above, especially the improvement
of ULS over ELS when ε is small or the compute budget is
large, on realistic LLM fine-tuning tasks. Our results sug-
gest that for LLM fine-tuning, users often have high gradient
diversity, and that this often leads ULS to outperform ELS.

Experimental setup. We fine-tune a 350 million parame-
ter decoder-only transformer model on two datasets: Stack
Overflow and CC-News. The former has over 300,000 users,
while the latter has nearly 10,000. We pre-train our model
on C4. In order to minimize information leakage between
pre-training and fine-tuning, we use near-duplicate detec-
tion (Lee et al., 2022) and URL filtering to minimizer dataset
overlap. We pre-train on this de-duplicated version of C4.
We pre-train and fine-tune using Adafactor (Shazeer & Stern,
2018), and use varying compute budgets and privacy levels
ε. See Appendix F for details.

Selecting group sizes. GELS, GULS can be crucial for opti-
mal performance of ELS and ULS. In Appendix H and I,
we give empirically validated heuristics for choosing them.
We show that letting GELS be the median user dataset size
works well across tasks. While GULS is more complicated,
we show that GULS can be selected by estimating LULS in
(4). We can estimate the variance reduction by increasing
GULS by using (6) and choose the right value for a compute
budget. See Appendix I for details. We use these heuristics
to set GELS, GULS in the sequel.

Privacy-utility-compute trade-offs. We now apply ELS
and ULS for a variety of compute budgets and ε values,
using the heuristics above to select GELS, GULS. We fine-
tune on Stack Overflow and CC-News, and compute the
test loss on the final iterate. In Figures 3 and 4, we plot
privacy-loss trade-offs for three distinct compute budgets.

20 21 22 23 24 25 26

Privacy Level
3.30

3.35

3.40

3.45

3.50

Lo
ss

Compute Budget = 1024

20 21 22 23 24 25 26

Privacy Level

Compute Budget = 4096

20 21 22 23 24 25 26

Privacy Level

Compute Budget = 16384

Algorithm
ELS
ULS

Figure 3: Privacy-loss trade-offs on Stack Overflow, for
varying compute budgets.

20 21 22 23 24 25

Privacy Level

2.94

2.96

2.98

Lo
ss

Compute Budget = 1024

20 21 22 23 24 25

Privacy Level

Compute Budget = 4096

20 21 22 23 24 25

Privacy Level

Compute Budget = 16384

Algorithm
ELS
ULS

Figure 4: Privacy-loss trade-offs on CC-News, for varying
compute budgets.

For Stack Overflow, ULS performs at least as well as ELS
in all settings. The improvement is largest for small ε and
large compute budgets. For CC-News, ELS outperforms
ULS in some settings, especially when the compute budget
is small or ε is small. For both datasets, ULS improves
more with increased compute budgets: if we fix a privacy
level ε, the loss for ULS drops more significantly as the
compute budget increases than for ELS. We demonstrate
this in greater detail in Appendix J.1.

Impact of dataset size. We investigate, for a fixed compute
budget, how ELS and ULS compare as we vary the number
of users. To test this, we use CC-News. We fix all other
factors, but vary the number of users only in the privacy
accounting. We perform the same experiments, but instead
assume there are 1×, 10×, and 100× more users in the
dataset in the accounting. The results for ε = 4 are in
Figure 5. Throughout, the loss of ULS decreases more as
compute budget increases, but the loss of ELS decreases
more as the number of users increases.

210 212 214

Compute Budget

2.96

2.98

3.00

3.02

3.04

Lo
ss

Number of Users = 7417

210 212 214

Compute Budget

Number of Users = 74170

210 212 214

Compute Budget

Number of Users = 741700

Algorithm
ELS
ULS

Figure 5: Compute versus loss on CC-News, as the number
of users in the privacy accounting varies.

Model personalization. In some settings, we may wish to
personalize the model after fine-tuning on user data. We
measure the ability of the fine-tuned models to personalize
to downstream user data. We find that both algorithms seem
to benefit comparably from personalization, which does not
change the general trade-offs discussed above. For details
and results, see Appendix J.2.

5. Discussion
Our work highlights two general findings. First, by intro-
ducing tight group-level accounting, we can make ELS a
practical method for ULDP that is scalable to LLM set-
tings and serves as a useful baseline. Second, despite this
accounting improvement, ULS often outperforms ELS in
practical LLM fine-tuning. While we are able to scale ULS
to models with hundreds of millions of parameters, ULS
uses user-level sampling that is distinct from most LLM
training algorithms. Future work is needed to determine
which algorithms best balance scalability and performance
when training with formal ULDP guarantees.

4

Fine-Tuning Large Language Models with User-Level Differential Privacy

References
Paxml. https://github.com/google/paxml. Ac-

cessed: 2024-05-20.

Praxis. https://github.com/google/praxis.
Accessed: 2024-05-20.

Adnan, M., Kalra, S., Cresswell, J. C., Taylor, G. W., and
Tizhoosh, H. R. Federated learning and differential pri-
vacy for medical image analysis. Scientific reports, 12(1):
1953, 2022.

Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S.,
and McMahan, B. cpSGD: Communication-efficient
and differentially-private distributed SGD. NeurIPS, 31,
2018.

Amin, K., Kulesza, A., Munoz, A., and Vassilvtiskii, S.
Bounding User Contributions: A Bias-Variance Trade-off
in Differential Privacy. In ICML, pp. 263–271. PMLR,
2019.

Asi, H. and Liu, D. User-level Differentially Private Stochas-
tic Convex Optimization: Efficient Algorithms with Op-
timal Rates. In International Conference on Artificial
Intelligence and Statistics, pp. 4240–4248. PMLR, 2024.

Authors, T. T. F. TensorFlow Federated Stack Overflow
dataset, 2019. URL https://www.tensorflow.
org/federated/api_docs/python/tff/
simulation/datasets/stackoverflow/
load_data.

Bassily, R. and Sun, Z. User-level Private Stochastic Convex
Optimization with Optimal Rates. In International Con-
ference on Machine Learning, pp. 1838–1851. PMLR,
2023.

Bhatia, K., Narayan, A., De Sa, C. M., and Ré, C. Tart:
A plug-and-play transformer module for task-agnostic
reasoning. Advances in Neural Information Processing
Systems, 36:9751–9788, 2023.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D.
The Secret Sharer: Evaluating and Testing Unintended
Memorization in Neural Networks. In USENIX Security,
pp. 267–284, 2019.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neural
language models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=TatRHT_1cK.

Charles, Z., Mitchell, N., Pillutla, K., Reneer, M., and Gar-
rett, Z. Towards federated foundation models: Scalable
dataset pipelines for group-structured learning. Advances
in Neural Information Processing Systems, 36, 2023.

Chen, M., Zhang, Z., Wang, T., Backes, M., and Zhang,
Y. FACE-AUDITOR: Data auditing in facial recogni-
tion systems. In 32nd USENIX Security Symposium
(USENIX Security 23), pp. 7195–7212, Anaheim,
CA, August 2023. USENIX Association. ISBN 978-
1-939133-37-3. URL https://www.usenix.
org/conference/usenixsecurity23/
presentation/chen-min.

Chen, M. X., Lee, B. N., Bansal, G., Cao, Y., Zhang, S., Lu,
J., Tsay, J., Wang, Y., Dai, A. M., Chen, Z., et al. Gmail
Smart Compose: Real-Time Assisted Writing. In KDD,
pp. 2287–2295, 2019.

Choquette-Choo, C. A., Ganesh, A., Steinke, T., and
Thakurta, A. G. Privacy amplification for matrix mecha-
nisms. In The Twelfth International Conference on Learn-
ing Representations, 2023.

Choquette-Choo, C. A., Ganesh, A., Steinke, T., and
Thakurta, A. G. Privacy amplification for matrix mech-
anisms. In The Twelfth International Conference on
Learning Representations, 2024. URL https://
openreview.net/forum?id=xUzWmFdglP.

Cummings, R., Feldman, V., McMillan, A., and Talwar,
K. Mean Estimation with User-level Privacy under Data
Heterogeneity. NeurIPS, 35:29139–29151, 2022.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle, B. Un-
locking high-accuracy differentially private image classi-
fication through scale. arXiv preprint arXiv:2204.13650,
2022.

Dong, W., Luo, Q., and Yi, K. Continual Observation under
User-level Differential Privacy. In IEEE Symposium on
Security and Privacy, pp. 2190–2207. IEEE, 2023.

Doroshenko, V., Ghazi, B., Kamath, P., Kumar, R., and
Manurangsi, P. Connect the dots: Tighter discrete ap-
proximations of privacy loss distributions. Proceedings
on Privacy Enhancing Technologies, 2022:552–570, 10
2022. doi: 10.56553/popets-2022-0122.

DP Team. Google’s differential privacy libraries.,
2022. https://github.com/google/
differential-privacy.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating Noise to Sensitivity in Private Data Analysis.
In Proc. of the Third Conf. on Theory of Cryptography
(TCC), pp. 265–284, 2006.

5

https://github.com/google/paxml
https://github.com/google/praxis
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-min
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-min
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-min
https://openreview.net/forum?id=xUzWmFdglP
https://openreview.net/forum?id=xUzWmFdglP
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy

Fine-Tuning Large Language Models with User-Level Differential Privacy

Epasto, A., Mahdian, M., Mao, J., Mirrokni, V., and Ren, L.
Smoothly Bounding User Contributions in Differential
Privacy. NeurIPS, 33:13999–14010, 2020.

Fang, J. and Yi, K. Privacy Amplification by Sampling
under User-level Differential Privacy. Proceedings of the
ACM on Management of Data, 2(1):1–26, 2024.

George, A. J., Ramesh, L., Singh, A. V., and Tyagi, H.
Continual Mean Estimation Under User-Level Privacy.
IEEE Journal on Selected Areas in Information Theory,
2024.

Geyer, R. C., Klein, T., and Nabi, M. Differentially private
federated learning: A client level perspective. arXiv
preprint arXiv:1712.07557, 2017.

Ghazi, B., Kamath, P., Kumar, R., Manurangsi, P., Meka,
R., and Zhang, C. User-Level Differential Privacy With
Few Examples Per User. Advances in Neural Information
Processing Systems, 36, 2023a.

Ghazi, B., Kamath, P., Kumar, R., Manurangsi, P., Meka,
R., and Zhang, C. On User-level Private Convex Opti-
mization. In ICML, pp. 11283–11299. PMLR, 2023b.

Girgis, A. M., Data, D., and Diggavi, S. Distributed User-
Level Private Mean Estimation. In IEEE International
Symposium on Information Theory, pp. 2196–2201. IEEE,
2022.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Huang, R., Zhang, H., Melis, L., Shen, M., Hejazinia, M.,
and Yang, J. Federated Linear Contextual Bandits with
User-level Differential Privacy. In ICML, pp. 14060–
14095, 2023.

Kairouz, P., Mcmahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and Private (Deep) Learning
Without Sampling or Shuffling. In ICML, volume 139,
pp. 5213–5225, 2021.

Kandpal, N., Pillutla, K., Oprea, A., Kairouz, P., Choquette-
Choo, C. A., and Xu, Z. User inference attacks on
large language models. arXiv preprint arXiv:2310.09266,
2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kapp, A., Nuñez von Voigt, S., Mihaljević, H., and
Tschorsch, F. Towards mobility reports with user-level
privacy. Journal of Location Based Services, 17(2):95–
121, 2023.

Kato, F., Xiong, L., Takagi, S., Cao, Y., and Yoshikawa, M.
ULDP-FL: Federated learning with across silo user-level
differential privacy. arXiv preprint arXiv:2308.12210,
2023.

Koskela, A., Jalko, J., Prediger, L., and Honkela, A. Tight
differential privacy for discrete-valued mechanisms and
for the subsampled gaussian mechanism using FFT. In
Banerjee, A. and Fukumizu, K. (eds.), 24th Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), Proceedings of Machine Learning Research,
United States, 2021. Microtome Publishing. 24th Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS) ; Conference date: 13-04-2021 Through 15-
04-2021.

Kurakin, A., Ponomareva, N., Syed, U., MacDermed,
L., and Terzis, A. Harnessing large-language mod-
els to generate private synthetic text. arXiv preprint
arXiv:2306.01684, 2023.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 8424–
8445, 2022.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient 384 prompt tuning. arXiv
preprint arXiv:2104.08691, 282, 2021.

Levy, D., Sun, Z., Amin, K., Kale, S., Kulesza, A., Mohri,
M., and Suresh, A. T. Learning with User-Level privacy.
Advances in Neural Information Processing Systems, 34:
12466–12479, 2021.

Li, G., Rezaei, S., and Liu, X. User-Level Membership
Inference Attack against Metric Embedding Learning.
In ICLR 2022 Workshop on PAIR2Struct: Privacy, Ac-
countability, Interpretability, Robustness, Reasoning on
Structured Data, 2022.

Li, J., Khodak, M., Caldas, S., and Talwalkar, A. Differ-
entially private meta-learning. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rJgqMRVYvr.

Liu, Y., Suresh, A. T., Yu, F. X. X., Kumar, S., and Riley, M.
Learning discrete distributions: user vs item-level privacy.
NeurIPS, 33:20965–20976, 2020.

6

https://openreview.net/forum?id=rJgqMRVYvr
https://openreview.net/forum?id=rJgqMRVYvr

Fine-Tuning Large Language Models with User-Level Differential Privacy

Liu, Y., Suresh, A. T., Zhu, W., Kairouz, P., and Gruteser,
M. Algorithms for bounding contribution for histogram
estimation under user-level privacy. In ICML, pp. 21969–
21996, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=BJ0hF1Z0b.

Miao, Y., Xue, M., Chen, C., Pan, L., Zhang, J., Zhao, B.
Z. H., Kaafar, D., and Xiang, Y. The Audio Auditor: User-
Level Membership Inference in Internet of Things Voice
Services. In Privacy Enhancing Technologies Symposium
(PETS), 2021.

Narayanan, S., Mirrokni, V., and Esfandiari, H. Tight and
Robust Private Mean Estimation with Few Users. In
ICML, pp. 16383–16412, 2022.

Pelikan, M., Azam, S. S., Feldman, V., Silovsky, J., Talwar,
K., Likhomanenko, T., et al. Federated learning with
differential privacy for end-to-end speech recognition.
arXiv preprint arXiv:2310.00098, 2023.

Ponomareva, N., Hazimeh, H., Kurakin, A., Xu, Z., Denison,
C., McMahan, H. B., Vassilvitskii, S., Chien, S., and
Thakurta, A. G. How to DP-fy ML: A Practical Guide to
Machine Learning with Differential Privacy. Journal of
Artificial Intelligence Research, 77:1113–1201, July 2023.
ISSN 1076-9757. doi: 10.1613/jair.1.14649. URL http:
//dx.doi.org/10.1613/jair.1.14649.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rush, K., Charles, Z., and Garrett, Z. FAX: Scalable and
differentiable federated primitives in jax. arXiv preprint
arXiv:2403.07128, 2024.

Scao, T. L. and Rush, A. M. How many data points is a
prompt worth? arXiv preprint arXiv:2103.08493, 2021.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-
ference on Machine Learning, pp. 4596–4604. PMLR,
2018.

Song, C. and Shmatikov, V. Auditing data provenance
in text-generation models. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019.

Song, M., Wang, Z., Zhang, Z., Song, Y., Wang, Q., Ren, J.,
and Qi, H. Analyzing User-Level Privacy Attack Against
Federated Learning. IEEE Journal on Selected Areas in
Communications, 38(10):2430–2444, 2020.

Vadhan, S. The complexity of differential privacy. Tutorials
on the Foundations of Cryptography: Dedicated to Oded
Goldreich, pp. 347–450, 2017.

Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., and
Qi, H. Beyond Inferring Class Representatives: User-
Level Privacy Leakage From Federated Learning. In
IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pp. 2512–2520, 2019.

Wei, K., Li, J., Ding, M., Ma, C., Su, H., Zhang, B., and
Poor, H. V. User-Level Privacy-Preserving Federated
Learning: Analysis and Performance Optimization. IEEE
Transactions on Mobile Computing, 21(9):3388–3401,
2021.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., et al. The rise and
potential of large language model based agents: A survey.
arXiv preprint arXiv:2309.07864, 2023.

Xu, Z., Collins, M., Wang, Y., Panait, L., Oh, S., Augenstein,
S., Liu, T., Schroff, F., and McMahan, H. B. Learning to
generate image embeddings with user-level differential
privacy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7969–
7980, 2023a.

Xu, Z., Zhang, Y., Andrew, G., Choquette, C., Kairouz,
P., Mcmahan, B., Rosenstock, J., and Zhang, Y. Feder-
ated learning of gboard language models with differential
privacy. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 5:
Industry Track), pp. 629–639, 2023b.

Yin, D., Pananjady, A., Lam, M., Papailiopoulos, D., Ram-
chandran, K., and Bartlett, P. Gradient diversity: a key
ingredient for scalable distributed learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1998–2007. PMLR, 2018.

Zhou, X. and Bassily, R. Task-level Differentially Private
Meta Learning. In NeurIPS, 2022.

Zhu, Y., Dong, J., and Wang, Y.-X. Optimal accounting of
differential privacy via characteristic function. In Camps-
Valls, G., Ruiz, F. J. R., and Valera, I. (eds.), Proceedings

7

https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=BJ0hF1Z0b
http://dx.doi.org/10.1613/jair.1.14649
http://dx.doi.org/10.1613/jair.1.14649

Fine-Tuning Large Language Models with User-Level Differential Privacy

of The 25th International Conference on Artificial In-
telligence and Statistics, volume 151 of Proceedings of
Machine Learning Research, pp. 4782–4817. PMLR, 28–
30 Mar 2022. URL https://proceedings.mlr.
press/v151/zhu22c.html.

8

https://proceedings.mlr.press/v151/zhu22c.html
https://proceedings.mlr.press/v151/zhu22c.html

Fine-Tuning Large Language Models with User-Level Differential Privacy

A. Detailed Related Work
A.1. Theoretical Advances in User-Level DP

Here, we survey the existing theoretical work on user-level DP (ULDP) in various settings.

Reductions to example-level DP. Ghazi et al. (2023b;a) give ULDP bounds by running example-level DP algorithms on
subsets of data where the algorithm is stable to deletions ((Ghazi et al., 2023b) only handles output perturbation while (Ghazi
et al., 2023a) can handle any arbitrary algorithm). This involves a brute-force-search for a stable subset of the data (together
with a propose-test-release loop), which can be super-polynomial in the number of examples, and is thus computationally
intractable. We note that the ULDP bounds of (Ghazi et al., 2023a) rely on generic group privacy reductions (Vadhan, 2017).
In contrast, we give tight accounting for deriving ULDP guarantees from example-level DP guarantees in the specific setting
of DP-SGD-ELS, enabling us to scale this method to practical LLM settings.

We also note that prior works (Amin et al., 2019; Epasto et al., 2020) have also reduced learning with ULDP to the
example-level DP setting where each example is associated with a weight, and the weights are computed to maximize the
final utility. On the other hand, we fix a number GELS of examples per user globally and randomly select GELS samples; this
can be viewed as assigning a binary per-example weights. It is unclear how to adapt the analytical approaches of (Amin
et al., 2019; Epasto et al., 2020) to LLMs as we do not have access to utility bounds.

Approaches based on clipping user-level gradient. Several prior approaches rely on bounding user contributions by
clipping user-level gradients and combining them with (different choices of) robust mean estimation algorithms (Levy et al.,
2021; Bassily & Sun, 2023; Asi & Liu, 2024; De et al., 2022). This line of work aims for better rates of convergence under
the weaker assumptions. On the other hand, we empirically evaluate practical algorithms derived from these approaches by
using user-level gradient clipping but replacing the inefficient robust aggregation approaches with a simple unweighted
average (which is efficiently implementable on hardware accelerators).

Simpler theoretical settings. Related work also considers ULDP in stylized problems such as learning discrete distributions
(Liu et al., 2020) and histograms (Liu et al., 2023). Mean estimation under ULDP was also considered in (Girgis et al.,
2022; Narayanan et al., 2022; Cummings et al., 2022). This subroutine was also the key building block of the theoretical
works (Levy et al., 2021; Bassily & Sun, 2023; Asi & Liu, 2024) in their learning bounds under ULDP. Continual mean
estimation (George et al., 2024) and continual observation (Dong et al., 2023) have also been considered under ULDP.

Other related work. Fang & Yi (2024) give an approach to privacy amplification from sampling users in a graph structure.

A.2. Federated Learning and User-Level DP

As we noted in the main paper, empirical advances in ULDP have been driven primarily by research in federated learning,
starting with (Geyer et al., 2017; McMahan et al., 2018; Agarwal et al., 2018; Kato et al., 2023). Specifically, McMahan
et al. (2018) propose DP-FedSGD (resp. DP-FedAvg) which clips user-level gradients (resp. pseudo-gradients generated
by multiple local gradient steps). Note that DP-FedSGD coincides with DP-SGD-ULS that we analyze. This user-level
gradient clipping approach can be generalized beyond DP-SGD to algorithms that add noise that is correlated across
iterations (Kairouz et al., 2021); these algorithms have been deployed in industrial systems to provide formal ULDP
guarantees (Xu et al., 2023b).

Kato et al. (2023) give ULDP algorithms in a cross-silo federated learning setting. Here, a user’s data might be split
across multiple data silos and each silo might contain multiple datapoints from a single user. Their approach combines
DP-SGD-ELS with FedAvg, where they use generic group privacy reductions to promote example-level DP guarantees to
the user-level.

Several follow-up works have leveraged algorithms similar to DP-SGD-ULS in other settings such as contextual ban-
dits (Huang et al., 2023), meta-learning (Li et al., 2020; Zhou & Bassily, 2022), and embedding learning (Xu et al., 2023a)
as well as applications such as medical image analysis (Adnan et al., 2022), speech recognition (Pelikan et al., 2023) and
releasing mobility reports (i.e. aggregate location statistics) (Kapp et al., 2023).

A.3. User-level Privacy Attacks

The work on ULDP is motivated in part due to the various privacy attacks conducted at the user level. For instance, an
adversary might be able to infer whether a user’s data was used to train a model (Song & Shmatikov, 2019), even if the

9

Fine-Tuning Large Language Models with User-Level Differential Privacy

adversary does not have access to the exact training samples of the user (Kandpal et al., 2023). Further, (Kandpal et al.,
2023) demonstrate that example-level DP is not effective in mitigating such user inference attacks, especially at low false
positive rates.

Such attacks have been designed not only for LLMs (Kandpal et al., 2023) but also for embedding learning for vision (Li
et al., 2022), speech recognition for IoT devices (Miao et al., 2021), facial recognition systems (Chen et al., 2023). In
federated learning, Wang et al. (2019) and Song et al. (2020) study the risk to user-level privacy from a malicious server.
ULDP provides formal upper bounds on the success rates of all such user-level privacy attacks and the algorithms we study
are broadly applicable in all of these settings.

B. Tight Accounting for DP-SGD-ELS
Notation. Given a distribution P over a space A and n ∈ Z>0, let P⊗n denote the product distribution on An.

Main Result. In this section, we show the following tight accounting statement for Algorithm 1:
Theorem 3. LetMf be T iterations of DP-SGD-ELS using noise multiplier σ, loss function f , group size GELS = K, and
Poisson sampling with probability p. That is,Mf (D) is the distribution of models (θ1, θ2, . . . θT) produced by applying
DP-SGD-ELS to a dataset D. Let D and D′ be two datasets such that D′ = D tA where |A| ≤ K. Then for all ε:

Hsym
eε (Mf (D),Mf (D

′)) ≤ Hsym
eε (N (0, σ2)⊗T ,N (Binom(K, p), σ2)⊗T).

Furthermore, this is tight, i.e. there exists a loss function f and datasets D,D′ such that:

Hsym
eε (Mf (D),Mf (D

′)) = Hsym
eε (N (0, σ2)⊗T ,N (Binom(K, p), σ2)⊗T).

Since we cap the number of examples any user can contribute to the dataset in Alg. 1, this implies Theorem 1. To prove this,
we use the following lemma from (Choquette-Choo et al., 2024), derived using an analysis based on Mixture-of-Gaussians
mechanisms:
Lemma 2 (Lemma 4.5 of (Choquette-Choo et al., 2024)). Let x be a random variable on Rd, and x be a random variable
on R such that ‖x‖2 is stochastically dominated by x (that is, there is a coupling of x and x such that under this coupling,
‖x‖2 ≤ x with probability 1). Then for all ε > 0:

Heε(N (0, σ2Id),N (x, σ2Id)) ≤ Heε(N (0, σ2),N (x, σ2)),

Heε(N (x, σ2Id),N (0, σ2Id)) ≤ Heε(N (x, σ2),N (0, σ2)).

We will also use the following “quasi-convexity” property of DP:
Lemma 3. Let w1, w2, . . . , wn ≥ 0 be probabilities summing to 1. Given distributions {Pi}, {Qi}, let P =

∑
i wiPi and

Q =
∑
i wiQi. Then for any α ≥ 0:

Hα(P,Q) ≤ max
i
Hα(Pi, Qi).

Proof. We have:

Hα(P,Q) =

∫
max{P (x)− αQ(x), 0}dx =

∫
max{

∑
i

wi(Pi(x)− αQi(x)), 0}dx

(∗1)
≤
∫ ∑

i

wimax{Pi(x)− αQi(x), 0}dx =
∑
i

wi

∫
max{Pi(x)− αQi(x), 0}dx

=
∑
i

wiHα(Pi, Qi)
(∗2)
≤ max

i
Hα(Pi, Qi).

10

Fine-Tuning Large Language Models with User-Level Differential Privacy

(∗1) is the observation that max{a + c, b + d} ≤ max{a, b} + max{c, d} i.e. “the max of sums is less than the sum of
maxes” and (∗2) holds because the wi are non-negative and sum to 1.

Finally, we will use the following observation about bijections and hockey-stick divergences:

Observation 1. Let f be any bijection, and for distribution X let f(X) denote the distribution given by f(x), x ∼ X . Then
for any P,Q, ε:

Hsym
eε (P,Q) = Hsym

eε (f(P), f(Q)).

Proof. This follows by applying the post-processing property of DP, which says for any function g

Hsym
eε (P,Q) ≥ Hsym

eε (g(P), g(Q)).

The observation follows by applying the post-processing property to f and f−1.

Proof of Theorem 3. Since (θ1, θ2, . . . , θT)↔ (θ1−θ0, θ2−θ1, . . . , θT −θT−1) is a bijection (we treat the initialization θ0

as public), we can assume through the proof that DP-SGD-ELS instead outputs the tuple (θ1−θ0, θ2−θ1, . . . , θT −θT−1).
For simplicity of presentation, we will assume f is C-Lipschitz and thus that clip is a no-op.

The tightness of this results follows from considering a one-dimensional 1-Lipschitz loss function f such that that for
all z ∈ D, f(θ, z) = 0 and for all z ∈ A, f(θ, z) = −θ. Letting η = 1, the distribution of each θt − θt−1 is exactly
x ∼ N (0, σ2) for D and x ∼ N (Binom(K, p), σ2) for D′.

For the upper bound, we will show

Heε(Mf (D),Mf (D
′)) ≤ Heε(N (0, σ2)⊗T ,N (Binom(K, p), σ2)⊗T).

The analogous bound on Heε(Mf (D
′),Mf (D)) (and thus the desired bound on Hsym

eε (Mf (D),Mf (D
′))) follows by

Lemma 28 of (Zhu et al., 2022).

By adaptive composition of privacy loss distributions (see e.g. Theorem 2.4 of (Doroshenko et al., 2022)), it suffices to show
given any fixed θt, if P,Q are the distribution of θt+1 − θt conditioned on θt using D and D′ respectively, then for all ε we
have:

Heε(P,Q) ≤ Heε(N (0, σ2),N (Binom(K, p), σ2)).

Recall that St+1 is the set of examples sampled in iteration t, and let PS , QS denote the distributions of P,Q respectively
conditioned on the event St+1 ∩D = S. The distribution of St+1 ∩D is the same for D and D′, so by Lemma 3 for all ε:

Heε(P,Q) ≤ max
S

Heε(PS , QS),

hence it suffices to show for any fixed S and all ε:

max
S

Heε(PS , QS) ≤ Heε(N (0, σ2),N (Binom(K, p), σ2)).

Now let P ′S = −p+η
∑
z∈S ∇f(θ

t,z)

ηC where p ∼ PS . We define Q′S analogously. The correspondence

p↔ −
p+ η

∑
z∈S ∇f(θt, z)
ηC

is a bijection on Rd, so Heε(PS , QS) = Heε(P
′
S , Q

′
S). We can exactly write the distributions of P ′S , Q

′
S :

11

Fine-Tuning Large Language Models with User-Level Differential Privacy

P ′S = N (0, σ2Id), Q
′
S = N

(∑
z∈St+1∩A

∇f(θt, z)
C

, σ2Id

)
.

By triangle inequality and C-Lipschitzness of f ,
∥∥∥∑z∈St+1∩A

∇f(θt,z)
C

∥∥∥
2
≤ |St+1 ∩ A|. Furthermore, |St+1 ∩ A| is

distributed according to Binom(|A|, p), and so
∥∥∥∑z∈St+1∩A

∇f(θt,z)
C

∥∥∥
2

is stochastically dominated by Binom(K, p). By
Lemma 2 we now have for all ε:

Heε(P
′
S , Q

′
S) ≤ Heε(N (0, σ2),N (Binom(K, p), σ2)),

which completes the proof.

B.1. Implementation in dp_accounting

B.1.1. COMPUTING ε AND δ

The following code snippet using the dp_accounting library (DP Team, 2022) and scipy methods can be used to
compute ε as a function of δ (or vice-versa) for DP-SGD-ELS (Algorithm 1) according to Theorem 1, for a given number
of steps T , example sampling probability p, noise multiplier σELS = σ, and group size GELS = K:

def get_group_level_event(T, p, sigma, K):
sensitivities = range(K+1)
probs = [scipy.stats.binom.pmf(x, K, p) for x in sensitivities]
single_round_event = dp_accounting.dp_event.MixtureOfGaussiansDpEvent(

sigma, sensitivities, probs
)
dp_sgd_event = dp_accounting.dp_event.SelfComposedDpEvent(

single_round_event, T
)
return dp_sgd_event

event = get_group_level_event(T, p, sigma, K)
accountant = dp_accounting.pld.PLDAccountant()
accountant.compose(dp_sgd_event)

Compute epsilon given delta
print(accountant.get_epsilon(delta))

Compute delta given epsilon
print(accountant.get_delta(epsilon))

B.1.2. COMPUTING σELS

To figure out the minimum σELS needed to achieve a target (ε, δ)-DP guarantee for DP-SGD-ELS (Algorithm 1), we can
use dp_accounting’s calibrate_dp_mechanism:

def get_group_level_sigma(T, p, epsilon, delta, K)
sigma_to_event = lambda sigma: get_group_level_event(T, p, sigma, K)
return dp_accounting.calibrate_dp_mechanism(

dp_accounting.pld.PLDAccountant,
sigma_to_event,
epsilon,
delta

)

12

Fine-Tuning Large Language Models with User-Level Differential Privacy

C. Comparing Variances of ELS and ULS
Recall that in the setting of Section 3, the stochastic gradients produced by ELS and ULS in an iteration t are respectively
given by

gtELS =
1

B

∑
z∈St
∇f(θt, z) + ζtELS, ζtELS ∼ N

(
0,

(
σELSLELS

B

)2

Id

)
,

gtULS =
1

B

∑
u∈Ut

∑
z∈Du

∇f(θt, z) + ζtULS, ζtULS ∼ N

(
0,

(
σULSLULS

M

)2

Id

)
,

where B denotes the per-iterate (expected) compute budget of both methods, and M is the (expected) cohort size of ULS.
Further recall that in this setting, there are N users, each of which have K examples.

For any specific instatiation of this setting, we can use the DP accounting tools from Appendix B to explicitly compute
var(ζtELS) and var(ζtULS).

We do so in the following setting. We fix N = 1024 users, each with K = 32 examples. We set GELS = 32 (though the
choice here has almost no impact on the noise variance). We vary the cohort size M , and set GULS = B/M to normalize
compute between ELS and ULS. We fix T = 1000, δ = 10−6 and vary ε in the desired (ε, δ)-DP guarantee, and compute
the corresponding noise multipliers σELS, σULS via DP accountants.

To compute variance, the only remaining relevant quantities are LELS and LULS. We fix LELS = 10, and vary LULS.
Intuitively, the ratio of these two tells us how diverse the gradients across a user are. We consider two settings. In the first,
the GULS gradients across a user in ULS are minimally diverse, so that LELS = LULS for all group sizes GULS. In the second,
the gradients are maximally diverse, so that

LULS =
LELS√
GULS

.

This setting occurs, for example, if all GULS gradients computed at each user for ULS are orthogonal with length LELS. For
varying B,M and ε, we then compare three variances: the variance of ζtELS, and the variance of ζtULS for each setting of
LULS.

The results are given in Fig. 6. While the results vary across settings, we see a few robust findings. First, when LULS = LELS,
the variance of ELS is lower in nearly all settings. When LULS = LELS/

√
GULS, the variance of ULS is often (but not

always) lower than that of ELS. We see that ULS especially tends to incur lower variance when either (1) ε is small or (2)
when the compute budget is sufficiently large.

13

Fine-Tuning Large Language Models with User-Level Differential Privacy

0 10 20 30
1

2

3

4

5

6

7

Va
ria

nc
e

M = 1 | = 1

0 10 20 30

1

2

3

4

5

M = 1 | = 4

0 10 20 30

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M = 1 | = 16

0 10 20 30

0.5

1.0

1.5

2.0

M = 1 | = 64

0 50 100

0.5

1.0

1.5

2.0

Va
ria

nc
e

M = 4 | = 1

0 50 100

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M = 4 | = 4

0 50 100

0.2

0.4

0.6

0.8

1.0

M = 4 | = 16

0 50 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M = 4 | = 64

0 200 400
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Va
ria

nc
e

M = 16 | = 1

0 200 400
0.1

0.2

0.3

0.4

0.5

0.6
M = 16 | = 4

0 200 400
0.05

0.10

0.15

0.20

0.25

0.30

0.35

M = 16 | = 16

0 200 400

0.05

0.10

0.15

0.20

M = 16 | = 64

0 500 1000 1500 2000
0.2

0.4

0.6

0.8

1.0

1.2

Va
ria

nc
e

M = 64 | = 1

0 500 1000 1500 2000

0.10

0.15

0.20

0.25

0.30

0.35

0.40
M = 64 | = 4

0 500 1000 1500 2000

0.04

0.06

0.08

0.10

0.12

0.14

0.16
M = 64 | = 16

0 500 1000 1500 2000

0.02

0.04

0.06

0.08

M = 64 | = 64

0 2000 4000 6000 8000
Compute Budget

0.2

0.4

0.6

0.8

1.0

1.2

Va
ria

nc
e

M = 256 | = 1

0 2000 4000 6000 8000
Compute Budget

0.10

0.15

0.20

0.25

0.30

0.35

M = 256 | = 4

0 2000 4000 6000 8000
Compute Budget

0.02

0.04

0.06

0.08

0.10

0.12
M = 256 | = 16

0 2000 4000 6000 8000
Compute Budget

0.01

0.02

0.03

0.04

0.05
M = 256 | = 64

Algorithm
ELS
ULS, LULS = LELS

ULS, LULS = LELS

GULS

Figure 6: Noise variance of ELS and ULS, for varying compute budget B, cohort size M and privacy level ε. For ULS, we fix the cohort
size M and vary GULS. We compare two settings, one in which LULS = LELS, and one in which LULS = LELS/

√
GULS. Throughout, we

fix N = 1024 users, each with K = 32 examples, GELS = 32, T = 1000, δ = 10−6, and LELS = 10.

14

Fine-Tuning Large Language Models with User-Level Differential Privacy

D. Proof of Lemma 1
Proof. Let BK,p(c) = Pr[Binom(K, p) = c]. By linearity of expectation, we have

exp((α− 1)Rα(PK(Kσ), Q(Kσ)))

= Ex∼N (0,K2σ2)

 ∑
c∈{0,1,...,K}

BK,p(c) · exp
(
2cx− c2

2K2σ2

)α
= Ex∼N (0,K2σ2)

 ∑
c1,c2,...,cα∈{0,1,...,K}

(∏
i

BK,p(ci)

)
· exp

(
2(
∑
i ci)x−

∑
i c

2
i

2K2σ2

)
=

∑
c1,c2,...,cα∈{0,1,...,K}

(∏
i

BK,p(ci)

)
· Ex∼N (0,K2σ2)

[
exp

(
2(
∑
i ci)x−

∑
i c

2
i

2K2σ2

)]

=
∑

c1,c2,...,cα∈{0,1,...,K}

(∏
i

BK,p(ci)

)
· exp

(
(
∑
i ci)

2 −
∑
i c

2
i

2K2σ2

)

This last step follows from the fact that for a, ν ∈ R and y ∼ N (0, ν2), Ey[eay/ν
2

] = ea
2/2ν2

. For ci ∼ Binom(K, p),
we define random variables {ci,j |j ∈ {0, 1, . . . ,K}, ci,j ∼ Ber(p)}, and can write ci =

∑
j∈{0,1,...,K} ci,j . Let C =

(c1,1, . . . , cα,K) ∼ Ber(p)αK . Then we have:

∑
c1,c2,...,cα∈{0,1,...,K}

(∏
i

BK,p(ci)

)
· exp

(
(
∑
i ci)

2 −
∑
i c

2
i

2K2σ2

)

= EC

[
exp

(
(
∑
i,j ci,j)

2 −
∑
i(
∑
j ci,j)

2

2K2σ2

)]

= EC
[
exp

(∑
i6=i′,j,j′ ci,jci′,j′

2K2σ2

)]
= EC

[
exp

(
E
j1,j2,...jα

u.a.r.∼ {0,1,...,K}[
∑
i 6=i′ ci,jici′,ji′]

2σ2

)]

(by Jensen’s inequality) ≤ EC
[
E
j1,j2,...jα

u.a.r.∼ {0,1,...,K}

[
exp

(∑
i6=i′ ci,jici′,ji′

2σ2

)]]
(by the law of total expectation) = Ec1,...,cα∼Ber(p)

[
exp

(∑
i6=i′ cici′

2σ2

)]
= exp((α− 1)Rα(P1(σ), Q(σ))).

15

Fine-Tuning Large Language Models with User-Level Differential Privacy

E. Synthetic Example: Mean Estimation
To better understand the behavior of ELS and ULS, we evaluate them on a mean estimation task with a square distance loss.
By focusing on this simple setting, we can thoroughly explore the factors that influence their relative performance, including
dataset characteristics, compute budget, privacy budget, and algorithm hyperparameters. In contrast to Section 3, the loss is
not Lipschitz.

We first sample a population mean µ = N (0, Id), for d = 32. For each of N = 256 users, we sample a user mean
µu = N (µ, σ2

1Id), and user data {xu,j ∼ N (µu, σ
2
2Id)}Kj=1 where K = 16. We refer to σ2 as the “within-user variance”.

Our goal is to estimate µ under (ε, δ)-DP using ELS or ULS. To normalize compute, we set the cohort size M in ULS as
M = B/GULS. We fix T = 256, δ = 10−6 and σ1 = 1. We use default values of ε = 1, a per-iterate compute budget of 64,
and σ2 = 1, but vary each separately to study how they affect the performance of ELS and ULS. While we vary GULS in all
experiments, we find use GELS = K throughout (as it uniformly gives the best performance for ELS). For each experiment
setting, we sweep over learning rate and clip norm, and report the results for the best setting across 128 random trials.

We visualize our results in Fig. 7. We find that ULS with GULS = 1 is comparable to if not better than ELS across all settings.
We also see that ULS benefits from larger values of GULS when one of the following occurs: σ2 (the within-user variance)
is large, the compute budget (dictated by the batch size B) is large, or when ε is small. In these regimes, ULS improves
significantly on ELS. We note that the notion that larger values of GULS can improve performance of ULS is corroborated
theoretically for Lipschitz losses in Section 3.

2 4 2 2 20 22 24 26

Epsilon

10 3

10 2

10 1

Lo
ss Algorithm

ELS
ULS(G=1)
ULS(G=2)
ULS(G=4)
ULS(G=8)
ULS(G=16)

(a) Varying ε.

21 22 23 24 25 26 27 28

Compute Budget

0.01

0.02

0.03

0.04

0.05

Lo
ss

Algorithm
ELS
ULS(G=1)
ULS(G=2)
ULS(G=4)
ULS(G=8)
ULS(G=16)

(b) Varying compute budget.

2 4 2 2 20 22 24

Within-User Variance

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

Algorithm
ELS
ULS(G=1)
ULS(G=2)
ULS(G=4)
ULS(G=8)
ULS(G=16)

(c) Varying within-user variance.

Figure 7: Performance of ELS and ULS on a synthetic mean estimation task with (a) varying ε, (b) varying compute budget, and (c)
varying within-user variance σ2.

F. Language Model Experimental Setup
While Section 3 exhibits conditions under which ULS outperforms ELS for ULDP training, it is unclear whether this
translates into benefits in realistic language model tasks. To investigate this, we apply both to language model fine-tuning,
across a variety of privacy and compute budgets.

Model. We use a 350 million parameter decoder-only transformer model, with a WordPiece tokenizer, implemented in
Praxis (pra). We use a sequence length of 128, and train via a causal language modeling loss (i.e., next token prediction with
cross-entropy loss).

Datasets. For fine-tuning, we use the Stack Overflow and CC-News datasets. Stack Overflow consists of questions and
answers from the eponymous social media site, and is directly partitioned into users (Authors, 2019). The train split has
135,818,730 examples partitioned across 342,477 users. CC-News consists of English language articles on the web. We
partition it according to the base domain of each article’s URL. This results in 708,241 examples partitioned across 8,759
users.

For pre-training, we use a modified version of the C4 dataset (Raffel et al., 2020). Because LLMs can memorize training
data (Carlini et al., 2021), we attempt to minimize privacy leakage between C4 and the fine-tuning datasets. We use a
filtering scheme based on (Kurakin et al., 2023). First, we use the NearDup method (Lee et al., 2022) to identify and remove
approximate duplicates between C4 and the fine-tuning datasets. Second, we filter the URLs in what remains, removing
all examples associated to stackoverflow.com or URLs contained in CC-News. We refer to the result as C4--. For

16

Fine-Tuning Large Language Models with User-Level Differential Privacy

details, see Appendix G.

Training. We perform non-private pre-training of our transformer model on the C4-- dataset. We train for 400,000 steps,
using a batch size of 512. We use the Adafactor optimizer (Shazeer & Stern, 2018) with a cosine learning rate decay schedule.
We tune the learning rate tuned based on C4 validation set performance. For fine-tuning, we use a dataset-dependent number
of steps: 10,000 for Stack Overflow, and 2000 for CC-News. For both ELS and ULS, we use Adafactor with a constant
learning rate to perform model updates. We tune the learning rate and clip norm throughout. To decouple the two, we use
the normalized clipping scheme proposed by De et al. (2022).

DP accounting and sampling. We vary ε and set δ = n−1.1, where n is the number of examples in the dataset2. For
Algorithm 1, n = |Dsub|, while for Algorithm 2, n = |D|. We compute the noise multiplier assuming amplification via
sub-sampling (at the example level for ELS, and at the user level for ULS). For efficiency reasons, in practice we sample by
shuffling. For Algorithm 1, we shuffle the dataset Dsub and sample batches of a fixed size B in shuffled order. For Algorithm
2, we shuffle the set of users and sample user cohorts of a fixed size M in shuffled order.

Software and compute resources. We define our model in Praxis (pra). For ELS, we use tf.data pipelines to create
and iterate over datasets, and implement Algorithm 1 in JAX. For ULS, we use Dataset Grouper (Charles et al., 2023) to
create and efficiently iterate over users in our datasets. ULS is implemented as a parallelized compute process in FAX (Rush
et al., 2024), enabling linear scaling with respect to compute resources. All experiments were run in PAX (pax). We used
TPU v3 pod slices, in 4× 4, 8× 8, and 16× 16 topologies for our small, medium, and large compute budget experiments.

G. Datasets
We use two user-partitioned datasets, Stack Overflow and CC-News, for fine-tuning and evaluation. The Stack Overflow
dataset (Authors, 2019), consists of questions and answers from stackoverflow.com, and is naturally partitioned by
user on the platform. The dataset contains three splits: train (examples before 2018-01-01 UTC), test (examples after
2018-01-01 UTC) and validation (examples from held-out users across time). For our experiments, we use the train split
for fine-tuning and the test split for evaluation. Fig. 8 depicts the distribution of user dataset size in the train split. Stack
Overflow evaluation metrics reported throughout the main paper are measured on the full test split. In Appendix J.2, we
also include an ablation on model personalization using Stack Overflow test. Personalization is done by using half of each
test user’s examples for further fine-tuning and evaluating each personalized model on the reserved half of each test user’s
examples.

CC-News consists of English-language articles on the web, a subset of the Colossal Clean Crawled Corpus (C4) dataset. For
CC-News, we leverage Dataset Grouper to obtain user-level partitioning by base domain of each article’s URL (Charles
et al., 2023). We reserve a portion of each user’s data in CC-News for evaluation and train on the remainder. In order to do
so, we remove all users with only a single example. Eval user datasets are then formed by taking the first 10% of the data of
each user, but only up to a maximum of 32 examples. The remaining 90% of user data is allocated for training. Fig. 8 shows
the distribution of examples per user in the CC-News training dataset, after the held-out portion of examples are removed.
Dataset statistics for Stack Overflow and CC-News are reported in Table 1.

Table 1: User-level statistics for the train and test splits of Stack Overflow and CC-News.

Dataset Split Dataset-level Statistics User-level Statistics (# examples / user)

Examples # Users Min Median Max

Stack Overflow Train 135.8 M 342.5 K 1 183 194.2 K

Test 16.6 M 204.1 K 1 43.2 K 29

CC-News Train 661.6 K 7.4 K 1 16 24.4 K

Test 45.3 K 7.4 K 1 2 32

To create a pre-training dataset with minimal privacy leakage, we start with the C4 dataset (Raffel et al., 2020) and apply

2For CC-News accounting, we make the assumption that there are 10× more users than are actually present in the dataset, due to the
smaller number of users. We revisit this choice later on.

17

stackoverflow.com

Fine-Tuning Large Language Models with User-Level Differential Privacy

100 101 102 103 104 105

Examples per Client
0

10000

20000

30000

40000

50000

60000

Co
un

t

100 101 102 103 104

Examples per Client
0

200

400

600

800

1000

Co
un

t

Figure 8: Histograms of user dataset sizes for the training splits of Stack Overflow (left) and CC-News (right).

de-duplication techniques. First, we apply the approximate duplicate detection method NearDup proposed by Lee et al.
(2022) to filter out near-duplicates between C4 and the union of Stack Overflow and CC-News. To further remove potential
overlap, we filter out all examples associated with stackoverflow.com or any URL in CC-News. This yields the C4--
dataset, which we use for pre-training. Statistics of example counts at each stage of the filtering pipeline are reported in
Table 2.

Table 2: Example counts from each stage of the pipeline to filter C4 and produce C4--.

Dataset Split # Examples # Ex, de-duplicated # Ex, de-duplicated and URL-filtered

C4 Train 364.6 M 345.6 M 325.9 M

H. Configuring DP-SGD-ELS
In Algorithm 1, GELS governs an important trade-off. Smaller values mean that ELS trains on a small fraction of the dataset,
while larger values means that users with more examples are potentially over-represented in sampling. To understand this,
we fine-tune on both datasets using ELS, for varying compute budget and group size. The results for Stack Overflow and
CC-News are given in Figures 9 and 10. While behavior for boundary values can be quite complicated and dependent on ε,
setting GELS to the median dataset size works well throughout.

22 25 28 211 214

Group Size (GELS)

3.3

3.4

3.5

3.6

3.7

Lo
ss

Median dataset size

102

103

104

105

Co
m

pu
te

 B
ud

ge
t

(a) ε = 1.

22 25 28 211 214

Group Size (GELS)

3.3

3.4

3.5

3.6

3.7

Lo
ss

Median dataset size

102

103

104

105

Co
m

pu
te

 B
ud

ge
t

(b) ε = 4.

22 25 28 211 214

Group Size (GELS)

3.3

3.4

3.5

3.6

3.7

Lo
ss

Median dataset size

102

103

104

105

Co
m

pu
te

 B
ud

ge
t

(c) ε = 16.

Figure 9: Loss of ELS on Stack Overflow for varying ε and GELS. The median user dataset size is plotted vertically.

I. Configuring DP-SGD-ULS
In Section 4 we discussed the problem of how to set the group size parameter GULS for ULS. We expand on our discussion,
and give a heuristic for selecting GULS for a given compute budget. Recall that in Section 3, we showed that the variance
of the additive noise in Algorithm 2, which we denote vULS, satisfies vULS ∝ LULSσULS, where ∝ denotes proportionality,
LULS is the maximum per-user gradient norm, and σULS is the noise multiplier. We use vULS as a proxy for downstream
performance.

18

Fine-Tuning Large Language Models with User-Level Differential Privacy

22 25 28 211 214

Group Size (GELS)
2.90

2.95

3.00

3.05

3.10

Lo
ss

Median dataset size

102

103

104

105

Co
m

pu
te

 B
ud

ge
t

(a) ε = 1.

22 25 28 211 214

Group Size (GELS)
2.90

2.95

3.00

3.05

3.10

Lo
ss

Median dataset size

102

103

104

105

Co
m

pu
te

 B
ud

ge
t

(b) ε = 4.

22 25 28 211 214

Group Size (GELS)
2.90

2.95

3.00

3.05

3.10

Lo
ss

Median dataset size

102

103

104

105

Co
m

pu
te

 B
ud

ge
t

(c) ε = 16.

Figure 10: Loss of ELS on CC-News for varying ε and GELS. The median user dataset size is plotted vertically.

As discussed in Section 3, the quantity LULS is a function of GULS, which we denote LULS(GULS). To see this, note that
each user-level gradient is an average over (at most) GULS example gradients. If, for example, every user has completely
orthonormal example gradients, then LULS(GULS) = 1/

√
GULS. The exact dependence of LULS on GULS is data-dependent,

but can be estimated as a function of GULS by computing the norm of user-level gradients across the dataset. We do this as
follows. We first sample some set U of users. For each user u ∈ U , we randomly select a subset of its dataset of size (at
most) GULS. For each such user, we then compute

ρu =

∥∥∥∥∥ 1

|Du|
∑
z∈Du

∇f(θ, z)

∥∥∥∥∥
where θ is the pre-trained model. Let ψ be some statistical estimator on sets of nonnegative real numbers. We can then
approximate

LULS(GULS) ≈ ψ({qu|u ∈ U}). (8)

As we discuss in Section 4, we let ψ denote the median, rather than a maximum suggested by (4).

The noise multiplier σULS is independent of GULS, but depends on the sampling probability q in Algorithm 2. In settings
with a fixed cohort size M , this means that σ is a function of M , which we denote σULS(M). We can compute this function
via (3) using DP accounting libraries.

Fixing all other parameters of interest (including the desired privacy level (ε, δ)), the variance vULS of the noise added in
ULS effectively satisfies the following:

vULS(GULS,M) ∝ LULS(GULS)σULS(M). (9)

Now, say we have a desire compute budget B. To configure ULS, we must select a group size GULS and cohort size M such
that GULSM = B. By (9), we would like to solve:

min
GULSM=B

LULS(GULS)σULS(M) (10)

While we can compute L(GULS) and σULS(M) at individual points, directly optimizing (10) is challenging. Therefore,
we consider a conceptually simpler problem: Suppose we are given some GULS and M , such that GULSM = B. If we
instead wanted to utilize a compute budget of B′ = 2B, should we use the operating point G′ULS = 2GULS,M

′ =M or the
operating point G′ULS = GULS,M

′ = 2M? This can be answered by computing the following quantities:

τG =
LULS(2GULS)

LULS(GULS)
, τM =

σULS(2M)

σULS(M)
. (11)

Intuitively, these represent how much we shrink the objective in (10) by doubling GULS or M , respectively. If τG < τM ,
then we should double GULS, and otherwise we should double M . We formalize this iterative strategy in Algorithm 3, and
refer to it as the “Estimate-and-Double” algorithm.

19

Fine-Tuning Large Language Models with User-Level Differential Privacy

Algorithm 3 Configuring DP-SGD-ULS via “Estimate-and-Double”

Inputs: Initial group size G0
ULS and cohort size M0, desired compute budget B.

GULS ← G0
ULS,M ←M0.

Estimate LULS(GULS) via (8), compute σ(M) via (3).
while GULSM < B do

Estimate LULS(GULS) via (8), compute σ(M) via (3).
τG ← LULS(2GULS)

LULS(GULS)
, τM ← σ(2M)

σ(M) .
if τG < τM then
GULS ← 2GULS

else
M ← 2M

end if
end while

I.1. Validating Algorithm 3

To determine the efficacy of Algorithm 3, we compute the loss of ULS when fine-tuning on Stack Overflow and CC-News,
for a variety of group sizes GULS and cohort sizes M . We vary these over:

GULS ∈ {20, 21, . . . , 28}, M ∈ {25, 26, . . . , 212}, ε ∈ {1, 4, 16, 64}. (12)

The results for Stack Overflow are given in Fig. 11. We note that the anti-diagonals of the heatmaps represent a fixed
compute budget. Using this information, we can now see how close the strategy in Algorithm 3 compares to the optimal
setting of GULS and M for a given compute budget (over the aforementioned powers of 2 we sweep over). Note that
specifically, we initialize with G0

ULS = 1,M0 = 32.

To get a better sense of this, we compute, for compute budgets B ∈ {25, 26, . . . , 220}, the difference in loss between the
optimal setting of GULS and M , and the following strategies:

• Greedy Local Oracle: GivenGULS,M , this strategy has access to an oracle that can compute the fine-tuning loss when
setting G′ULS = 2GULS,M

′ =M , and when setting G′ULS = GULS,M
′ = 2M . It then doubles whichever parameter

results in a lower loss. Note that while this is not computationally tractable, it serves as a useful lower bound on the
effectiveness of any local strategy.

• Estimate-and-Double: This is the strategy described by Algorithm 3, starting withG0
ULS = 20,M0 = 25. We estimate

LULS(GULS) by sampling 128 users at random.

• Random: Given a compute budget B, this selects a random GULS,M from (12) such that GULSM = B.

• Max Cohort: This picks GULS,M from (12) with a maximum value of M such that GULSM = B.

• Max Group Size: This picks GULS,M from (12) with a maximum value of GULS such that GULSM = B.

The results are given in Figures 12 and 13. Note that suboptimality here refers to the difference in loss between
DP-SGD-ULS, when configured using one of the strategies above, versus when it is configured optimally. We see
that Algorithm 3 does well across compute budgets and ε, for both datasets, and performs as well as the oracle strategy for
most compute budgets.

20

Fine-Tuning Large Language Models with User-Level Differential Privacy

32 64 12
8

25
6

51
2

10
24

20
48

40
96

Cohort Size (M)

1
2
4
8

16
32
64

128
256

Gr
ou

p
Si

ze
 (G

U
LS

)

Loss Heatmap for =1

3.30

3.35

3.40

3.45

3.50

3.55

32 64 12
8

25
6

51
2

10
24

20
48

40
96

Cohort Size (M)

1
2
4
8

16
32
64

128
256

Gr
ou

p
Si

ze
 (G

U
LS

)

Loss Heatmap for =4

3.3

3.4

3.5

32 64 12
8

25
6

51
2

10
24

20
48

40
96

Cohort Size (M)

1
2
4
8

16
32
64

128
256

Gr
ou

p
Si

ze
 (G

U
LS

)

Loss Heatmap for =16

3.2

3.3

3.4

3.5

32 64 12
8

25
6

51
2

10
24

20
48

40
96

Cohort Size (M)

1
2
4
8

16
32
64

128
256

Gr
ou

p
Si

ze
 (G

U
LS

)

Loss Heatmap for =64

3.2

3.3

3.4

Figure 11: Loss heatmaps of ULS on Stack Overflow for varying group size GULS, cohort size M , and ε. Optimal settings of
M and GULS for each compute budget are highlighted in black.

21

Fine-Tuning Large Language Models with User-Level Differential Privacy

26 28 210 212 214 216 218 220

Compute Budget

0.00

0.02

0.04

0.06

0.08

0.10
Su

bo
pt

im
al

ity
Strategy

Greedy Local Oracle
Estimate-and-Double
Max Cohort
Max Group Size
Random

Figure 12: Sub-optimality (in terms of loss) for various strategies used to configure GULS,M in DP-SGD-ULS on Stack
Overflow, for varying compute budgets. Results are averaged across ε ∈ {1, 4, 16, 64}, and opaque areas represent the
standard deviation.

26 28 210 212 214 216 218 220

Compute Budget

0.00

0.01

0.02

0.03

0.04

0.05

Su
bo

pt
im

al
ity

Strategy
Greedy Local Oracle
Estimate-and-Double
Max Cohort
Max Group Size
Random

Figure 13: Sub-optimality (in terms of loss) for various strategies used to configureGULS,M in DP-SGD-ULS on CC-News,
for varying compute budgets. Results are averaged across ε ∈ {1, 4, 16, 64}, and opaque areas represent the standard
deviation.

22

Fine-Tuning Large Language Models with User-Level Differential Privacy

J. Additional Experimental Results
J.1. Compute-Loss Tradeoffs

210 212 214

Compute Budget
3.30

3.35

3.40

3.45

3.50

Lo
ss

 = 1

210 212 214

Compute Budget

 = 4

210 212 214

Compute Budget

 = 16

Algorithm
ELS
ULS

Figure 14: Compute-loss trade-offs on Stack Overflow, for varying privacy levels ε.

210 212 214

Compute Budget

2.94

2.95

2.96

2.97

2.98

2.99

Lo
ss

 = 1

210 212 214

Compute Budget

 = 4

210 212 214

Compute Budget

 = 16

Algorithm
ELS
ULS

Figure 15: Compute-loss trade-offs on CC-News, for varying privacy levels ε.

In Figures 14 and 15, we present the same information as in Figures 3 and 4 in Section 4, but we instead consider the
privacy-compute trade-offs for varying privacy levels ε. We find that ULS is more capable of improving its performance
with increased compute budgets. In light of our analysis above, this makes intuitive sense: ELS can only use increased
compute budgets to reduce its noise multiplier σ, which has diminishing returns. However, ULS can allocate increased
compute budgets to reduce its clip norm C and its noise multiplier σ, trading them off as benefits saturate. We see the same
effect in Fig. 2.

J.2. Personalizing Fine-Tuned Models

We take models trained via ELS and ULS, and further personalize them to user data. In general, we are interested in whether
the two algorithms exhibit different personalization behavior. A priori, this is plausible, as algorithms that operate at a
user-level (including FedAvg (McMahan et al., 2017)) can often exhibit improved personalization performance, even on
LLM training tasks (Charles et al., 2023).

To test this, we take our fine-tuned models, and further personalize them on each individual test user’s dataset. We compare
models fine-tuned via ELS and ULS on the Stack Overflow dataset, and evaluate their personalization ability on the test
users, comparing their performance with and without personalization. We do so by taking the Stack Overflow ELS and ULS
checkpoints, and further fine-tuning on individual test user datasets. We perform four local epochs of SGD, with a tuned
learning rate, on half of each test users’ examples. We then evaluate the personalized models on the reserved half of each
test users’ examples. We record the performance of each model, with and without personalization, on the reserved half of
the test users’ examples. The results are in Figure 16.

We see that for both algorithms, personalization seems to incur a uniform reduction in loss. However, the gap between using
and not using personalization seems to be roughly the same for both model checkpoints.Personalization does not seem to

23

Fine-Tuning Large Language Models with User-Level Differential Privacy

21 23 25

Privacy Level

3.25

3.30

3.35

3.40

3.45

3.50

Lo
ss

Compute Budget = 1024

21 23 25

Privacy Level

Compute Budget = 4096

21 23 25

Privacy Level

Compute Budget = 16384

Algorithm
ELS
ULS

Personalization
True
False

Figure 16: Privacy-loss trade-offs on Stack Overflow, for varying compute budgets, with and without personalization. We
present the average loss across all test users on their held-out data.

change the fundamental shape of the trade-off curves. In particular, ULS with personalization seems to outperform or match
ELS for the same privacy levels and compute budgets as without personalization.

24

