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ABSTRACT

Cancer survival prediction using computational pathology has emerged as a cru-
cial tool for diagnosis and treatment planning. Current approaches primarily rely
on Whole Slide Images (WSIs) and genomic data, but face significant challenges
in capturing the logical relationships between visual features and survival out-
comes with limited supervision. While pathology reports could potentially serve
as a semantic bridge between WSIs and survival time, existing methods over-
look the inherent hierarchical relationships between textual descriptions and visual
features, where pathology terms represent more abstract concepts and individual
terms may correspond to multiple image regions. To address these challenges,
we propose HyperSurv, a novel framework that leverages hyperbolic geometry
to model the hierarchical relationships between WSIs and pathology reports. Our
key insight is that hyperbolic space naturally captures both the entailment structure
between generic report concepts and specific visual features, as well as the one-
to-many relationships between pathology terms and image regions. HyperSurv
enforces these relationships through hyperbolic cones while identifying survival-
relevant features via attention pooling. Extensive experiments on four TCGA
cancer datasets demonstrate that our approach achieves state-of-the-art survival
prediction performance by effectively modeling these multi-modal hierarchical
relationships.

1 INTRODUCTION

Survival prediction plays a crucial role in clinical practice for evaluating mortality risks and treat-
ment outcomes. While Whole Slide Images (WSIs) provide fine-grained biopsy morphology, ge-
nomic data offers complementary molecular profiles essential for comprehensive survival prediction.
In addition, the integration of these modalities is capable of revealing unique biomarkers (Chen et al.,
2021; Xu & Chen, 2023; Xiong et al., 2024a), enabling more informed clinical decisions.

The primary challenge in this task lies in the complex logic chain between WSIs and survival out-
comes. Prognosis is typically a complex process of logical deduction incorporating factors such
as tumor grading, cancer subtyping, staging, and genetic mutation analysis to estimate the survival
time (Bi et al., 2019). Given the gigapixel dimensions of WSIs, WSI-related tasks are often for-
mulated under Multiple Instance Learning (MIL) (Lu et al., 2021; Shao et al., 2021; Zhang et al.,
2022; Xiong et al., 2023), treating WSIs as bags of instances. Within MIL, the models have to detect
discriminative features in an unsupervised manner, which is even harder in this scenario due to the
sophisticated logical chain connecting histopathology to survival outcomes.

Pathology reports offer a promising solution by providing structured descriptions of histological
features and their clinical significance, serving as a semantic bridge between WSIs and survival
outcomes and potentially mitigating the complex logical gaps between WSIs and survival time that
exist in end-to-end MIL training. To effectively integrate pathology reports with WSIs and genomic
data, we propose Tri-Mixture of Multimodal Experts (Tri-MoME), extending MoME (Xiong et al.,
2024a) to handle three modalities. Unlike MoME’s alternating approach, Tri-MoME processes all
modalities concurrently, producing fused representations in a single pass, enhancing efficiency and
allowing for a more comprehensive integration of complementary information from all modalities.

Beyond the integration of these three modalities, another significant challenge emerges: intricate
visual-semantic hierarchy between WSIs and pathology reports. WSIs provide granular features,
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Figure 1: Hyperbolic embedding of lung cancer pathological terminologies and pathological images
(left) and geometric representation of our proposed loss function (right).

while pathology reports encapsulate more high-level and generic information that describes the fea-
ture morphology. This results in a scenario where the same content is represented by different distri-
butions across the two modalities without hierarchy, posing significant challenges for the model to
learn. As illustrated in the left part of Fig. 1, “Large-cell Adenocarcinoma” entails multiple patches
within WSIs, and a single terminology like “Visceral Pleural Invasion” requires the integration of
multiple images to fully represent the concept. The examples in Fig. 1 also showcase that the text is
more generic concepts than image, which has been demonstrated in recent studies (Desai et al., 2023;
Ramasinghe et al., 2024). Euclidean space proves inadequate for capturing the visual-semantic hi-
erarchy between image and text, necessitating more suitable representational frameworks (Nickel &
Kiela, 2017; 2018; Ganea et al., 2018b; Chen et al., 2022b; Peng et al., 2021; Desai et al., 2023).

To precisely capture the visual-semantic hierarchy, we propose the HyperSurv framework, a novel
method with Tri-MoME being its backbone and enforcing geometric constraints on text and image
features within hyperbolic space. The inherent exponential growth of hyperbolic space naturally
accommodates hierarchical structures: images, being more specific, are positioned at the periphery,
while terminologies, representing more generic concepts, are situated closer to the origin. Mean-
while, entailment relationships can be effectively expressed using hyperbolic cones (Ganea et al.,
2018b), enabling the enforcement of a partial order, “text entails images” (Desai et al., 2023).

As shown on the right side of Fig. 1, we introduce two constraints, Feature-pooled Entailment
Constraint (FEC) and Text Genericity Constraint (TGC). The FEC enforces the entailment by po-
sitioning every survival-relevant image within the hyperbolic cone of at least one survival-relevant
word. To ensure the accuracy of this constraint on survival-relevant features, we employ an attention
pooling module, which calculates survival-relevance scores based on the input features, and selects
features with the highest scores. The TGC enforces the generic-specific hierarchy by drawing text
vectors closer to the origin while maintaining the original positions of image vectors. Together, our
approach significantly enhances the ability of the model to capture the visual-semantic hierarchy.

The contributions of this paper can be summarized as follows:

1. We pioneer the integration of pathology reports, as a visual-semantic bridge, into survival
prediction, that could potentially bridge potential logic gaps in end-to-end MIL training.

2. We propose HyperSurv for survival prediction, leveraging hyperbolic geometry to capture
the visual-semantic hierarchy across WSIs and pathology reports in terms of loss functions.

3. We validate our approach on four TCGA datasets (BLCA, UCEC, LUAD, and BRCA),
demonstrating superior performance in survival prediction across diverse cancer types.
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2 RELATED WORK

2.1 UNIMODAL SURVIVAL PREDICTION

The previous works bifurcates into two categories: genomic-based and WSI-based approaches.

In WSI-based methods, due to the prohibitive size of WSIs, MIL is employed. This technique
involves segmenting WSIs into “bags” of patches, which are then processed using a non-trainable,
pre-trained image encoder such as (He et al., 2016), ViT (Dosovitskiy et al., 2021), CTransPath
(Wang et al., 2021a), UNI (Chen et al., 2024), CONCH (Lu et al., 2024), and GPFM (Ma et al.,
2024). The extracted features from these encoders are subsequently utilized for prediction. There are
two predominant strategies for deriving final outcomes in MIL: instance-level and embedding-level
approaches. Instance-level methods (Hou et al., 2016; Campanella et al., 2019; Kanavati & Tsuneki,
2021) involve generating predictions for each instance initially and then aggregating these results.
Conversely, embedding-level approaches (Ilse et al., 2018; Lu et al., 2021; Li et al., 2021; Shao
et al., 2021; Zhang et al., 2022; Xiong et al., 2023; 2024b) focus on generating a comprehensive bag
feature representation before final predictions. Evidence suggests that embedding-level approaches
generally outperform instance-level methods (Wang et al., 2018).

In genomic-based approaches, genomic data is typically formatted as 1 × 1 tabular representations
of gene expressions. Given the straightforward nature of this data structure, various neural network
architectures are employed for feature extraction. These include MultiLayer Perceptron (MLP),
Self-Normalizing Neural Networks (SNNs) (Klambauer et al., 2017), and Transformers (Vaswani
et al., 2017). These models effectively interpret the genomic data, facilitating subsequent analysis.

2.2 MULTIMODAL SURVIVAL PREDICTION

While unimodal methods have shown impressive results in survival prediction, clinical practice often
involves multiple data sources, such as WSIs and genomics. Multimodal methods can be categorized
into tensor-based and attention-based methods. Tensor-based methods utilize tensor operations
to integrate information across modalities, employing techniques like concatenation (Mobadersany
et al., 2018), Kroncecker product (Wang et al., 2021b), and bilinear pooling (Li et al., 2022). These
methods generally have fewer parameters (or no parameters) and may exhibit suboptimal perfor-
mance compared to the attention-based ones. In contrast, the prevailing attention-based methods,
which include frameworks such as MCAT (Chen et al., 2021), HMCAT (Li et al., 2023), MOT-
CAT (Xu & Chen, 2023), CMTA (Zhou & Chen, 2023), MoME (Xiong et al., 2024a) and SurvPath
(Jaume et al., 2024), possess much more parameters. This allows them to more effectively model
correlations between modalities, potentially leading to enhanced performance in survival survival.

2.3 MULTIMODAL LEARNING IN HYPERBOLIC SPACE

Recent studies (Krioukov et al., 2010; Nickel & Kiela, 2018) have demonstrated that hyperbolic
space is particularly suitable for data exhibiting hierarchical structures. Several research has utilized
hyperbolic geometry in multimodal learning, showcasing their superiority in capturing the inherent
hierarchical structure of image-text data (Desai et al., 2023; Ramasinghe et al., 2024; Ibrahimi et al.,
2024; Mandica et al., 2024). However, these studies primarily focus on natural image-text datasets,
overlooking the unique characteristics of survival data, which lack ground-truth annotations for
paired WSI patches and pathology terminologies. Zhang et al. (2023) conducted multimodal fu-
sion in hyperbolic space for mild cognitive impairment while ignoring the relationship between
the hierarchy of the crossed domains. In short, the utilization of hyperbolic geometry to facilitate
multimodal survival prediction remains underexplored and merits further investigation.

3 PRELIMINARIES

3.1 DATA PRE-PROCESSING AND FEATURE EXTRACTION

WSI. Under MIL, WSIs are cropped into patches, and then encoded into feature bags with pre-
trained vision models (Ilse et al., 2018; Shao et al., 2021; Xiong et al., 2023). The resulting repre-
sentation is P ∈ RnP ×dP , where nP is the number of patches and dP is the feature dimension.
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Genomics. Each dimension of the genomic data represents a gene expression level. Following pre-
vious works (Chen et al., 2021; Xu & Chen, 2023; Zhou & Chen, 2023; Xiong et al., 2024a), we
group genes into six functional groups that are relevant to cancer progression: Tumor Suppression,
Oncogenesis, Protein Kinases, Cellular Differentiation, Transcription, and Cytokines and Growth.
To unify the dimensions of variably-sized groups, we project vectors from each group to the same di-
mension through a Self-normalizing Neural Network (SNN) (Klambauer et al., 2017). The resulting
vectors are stacked as a matrix G ∈ RnG×dG , where nG = 6 is the number of groups.

Pathology Report. We pre-process pathology reports using Qwen2 (Yang et al., 2024a), one of the
Large Language Models (LLMs), such as GPT4 (Achiam et al., 2023), Llama 3 (Dubey et al., 2024),
to extract the survival-relevant texts. The refined text is then embedded using BioClinicalBERT
(Alsentzer et al., 2019), yielding a matrix T ∈ RnT ×dT , where nT is the report length.

A final linear transformation is applied to map all features to a uniform dimension d. Consequently,
the dimensions of the matrices are standardized to P ∈ RnP ×d,G ∈ RnG×d, and T ∈ RnT ×d.

3.2 HYPERBOLIC GEOMETRY OF LORENTZ MODEL

Hyperbolic geometry is a Riemannian manifold with a constant negative sectional curvature (Nickel
& Kiela, 2017; 2018; Ganea et al., 2018a; Peng et al., 2021; Yang et al., 2024b). Among the various
mathematical representations of hyperbolic space, the Lorentz manifold, also known as the hyper-
boloid model, emerged as a prominent one in the machine learning community (Chen et al., 2022b;
Sun et al., 2021; Yang et al., 2022) due to its superior stability in numerical optimization processes.
Definition 1 (Lorentzian Inner Product). The inner product ⟨x,y⟩L for x,y ∈ Rd+1 is given by,

⟨x,y⟩L = −x0y0 +

d∑
i=1

xiyi. (1)

Definition 2 (Lorentz Manifold). A d-dimensional Lorentz manifold Ld with a negative curvature
of −1 can be defined as the Riemannian manifold

(
Hd, gℓ

)
, where,

Hd =
{
x ∈ Rd+1 : ⟨x,x⟩L = −1, x0 > 0

}
, gℓ = diag([−1, 1, . . . , 1]). (2)

Definition 3 (Lorenzian Distance). For two points x,y ∈ Ld, the Lorenzian distance is defined as,

dL(x,y) = arcosh(−⟨x,y⟩L). (3)

For computational efficiency, a widely adopted approach in mapping vectors between Euclidean
space and hyperbolic space (Nickel & Kiela, 2017; 2018) is to designate the origin of the Lorentz
manifold, oL = (1, 0, 0, ..., 0) ∈ Ld, as the reference point, facilitating simplified expressions for
the exponential maps (expo : Rd+1 → Ld) and logarithmic maps (logo : Ld → Rd+1) as follows,

expo (v) = expo ([0,v]) =

(
cosh (∥v∥2) , sinh (∥v∥2)

v

∥v||2

)
, (4)

logo(x
L) = dL(o

L,xL)
xL + ⟨oL,xL⟩LoL

∥xL + ⟨oL,xL⟩LoL∥L
, (5)

where [, ] denotes concatenation. For clarity, ·L denotes hyperbolic space features, while Euclidean
embeddings are without superscripts. It is noteworthy that the first dimension of the vectors in the
tangent space of the origin is 0 (Sun et al., 2021). Therefore, they will be dropped after logo(·L).

3.3 SURVIVAL PREDICTION FORMULATION

We estimate the survival probability at time t, rather than predicting the exact death time (Chen et al.,
2021). This approach accommodates right-censored clinical data as the incomplete patient follow-
ups are inevitable. Let T be the time until death, the hazard function h(t|P ,G,T ), describing the
instantaneous death rate at time t conditional on survival up to that time, can be expressed as,

h(t|P ,G,T ) = lim
∆t→0

Pr(t ≤ T < t+∆t|T ≥ t, (P ,G,T ))

∆t
, (6)
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where Pr(·) denotes probability. The survival function, S(t|P ,G,T ), indicating the probability of
surviving beyond time t, is derived from the hazard function, which can be expressed as,

S(t|P ,G,T ) = exp

(
−
∫ t

0

h(u|P ,G,T )du

)
. (7)

This formulation is the exponential form of the survival function. To apply this framework, we
employ the Negative Log-Likelihood (NLL) loss (Chen et al., 2021). Let δ denote the event indicator
(δ = 0 if the event occurred, δ = 1 if the data is right-censored), and α denote a weighting factor
balancing censored and uncensored loss components. Our survival loss function Ls is given by,

Ls = (1− δ)
(
logS(t|P ,G,T ) + log h(t|P ,G,T )

)
+ δ (1− α) logS(t+ 1|P ,G,T ). (8)

4 METHODOLOGY

HyperSurv consists of four layers of Tri-MoME and two constraints in hyperbolic space, namely
FEC and TGC. Given the absence of a tri-modal backbone for survival prediction, we first adapt
MoME to Tri-MoME, then introduce these two hyperbolic constraints.

4.1 TRI-MOME

Tri-MoME Architecture. While MoME (Xiong et al., 2024a) alternately encodes and fuses each
modality, this method becomes inefficient as the number of modalities increases, particularly with
the resource-intensive Transformer backbone. To this end, we propose Tri-MoME to simultaneously
encode and fuse all three modalities. We encode all modalities four times, resulting in four Tri-
MoME layers. Let i denote the number of encoding iterations; the Tri-MoME layer is given by,

P (i+1),G(i+1),T (i+1) = Tri-MoME(P (i),G(i),T (i)). (9)

Same as MoME (Xue & Marculescu, 2023; Xiong et al., 2024a), only one expert is activated from
the following experts in each layer, unlike the traditional MoEs (Masoudnia & Ebrahimpour, 2014).
Readers interested in more details are referred to the original paper of MoME (Xiong et al., 2024a).

Gating Network. The gating network has been revised to accept inputs from three modalities and
output the logits for the selection of experts. Mathematically, the logits are obtained through,

logits = W ·
(
g(P (i))+g(G(i))+g(T (i))

)
; g(P (i)) = mean

(
GELU(RMSP (WPP (i)))

)
, (10)

where W and WP are two learnable matrices, g(·) is the aggregation function which takes a matrix
as input and outputs a vector representing that matrix, g(T ) and g(G) are defined analogously to
g(P ), GELU(·) is the Gaussian Error Linear Units (GELUs) (Hendrycks & Gimpel, 2016), and
RMS·(·) is the Root Mean Square (RMS) layer normalization layers (Zhang & Sennrich, 2019).

TransFusion. Given the input (P (i),G(i),T (i)), the pathology image component P (i+1) of the
TransFusion (TF) expert output is defined as,

P (i+1) = TFP (P (i),G(i),T (i)) = SA([P (i),G(i),T (i)])[: nP , :], (11)

where SA(·) denotes the Self-Attention (Vaswani et al., 2017). The genomic component G(i+1) and
the pathology report component T (i+1) are derived similarly, with appropriate slicing operations.

SNNFusion. The SNNFusion (SNF) expert utilizes three SNNs, denoted as S·(·), and the pathol-
ogy image component P (i+1) of the SNF expert output can be expressed as as,

P (i+1) = SNFP (P (i),G(i),T (i)),

= SP (RMSP (P (i))) + mean(SG(RMSG(G(i)))) + mean(ST (RMST (T
(i)))).

(12)

SkipFusion. The SkipFusion (SF) expert serves as a pass-through layer, activated when the gating
network determines that the current embedding is adequate. The SF expert is defined as,

(P (i+1),G(i+1),T (i+1)) = SF(P (i),G(i),T (i)) = (P (i),G(i),T (i)). (13)

For clarity and consistency throughout the remainder of this paper, we will denote matrices for WSI,
genomics, and texts after encoded by Tri-MoMEs as P , G, and T , respectively.
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Figure 2: Illustration of HyperSurv (left) and its constituent Tri-MoME layer (right). The Tri-MoME
layer comprises two parts: the gating network (bottom right) and the expert pool (top right).

4.2 HYPERBOLIC CONSTRAINTS

While the Tri-MoME effectively processes three modalities in Euclidean space, it faces challenges
in capturing the visual-semantic hierarchy between pathology reports and WSIs, as illustrated in
Fig. 1, due to the inherent deficiencies of Euclidean space. Specifically, we have identified two key
characteristics that previous works often ignore: 1) one terminology can entail multiple pathology
images, and 2) text usually conveys more generic information than image. To address this challenge,
we propose FEC and TGC in Lorentz space to capture this hierarchy, as it provides an effective
framework for representing this hierarchy, and we will detail these two constraints in this section.

4.2.1 FEATURE-POOLED ENTAILMENT CONSTRAINT

In hyperbolic space, if one concept entails another concept, the vector representing the former is
positioned within the hyperbolic cone defined by the latter (Ganea et al., 2018b; Desai et al., 2023).
Following this rationale, in our case, if a pathological word entails a specific image feature, the
image vector should be situated within the hyperbolic cone defined by the pathological word vector.

Unlike previous works (Desai et al., 2023; Ramasinghe et al., 2024) utilizing ground truth image-
text pair, pathology terms and WSI patches exhibit a complex, non-one-to-one association lacking
ground truth due to extraneous elements and labor-intensive annotation. To tackle this unique chal-
lenge, we propose a feature-pooled entailment loss function. Firstly, we apply attention pooling
modules to both text and image features, aiming to identify the survival-relevant features from each
modality. By focusing on these survival-relevant features, we ensure that extraneous ones are not
involved in this loss and the impact of irrelevant features is effectively eliminated. Mathematically,
we express the pooled text matrix, representing the survival-relevant text matrix T L

pooled as follows,

T L
pooled = expo(T [i, :]), i = argsort(TAT )[: kt] ∈ Rkt , (14)

where argsort(·)[: kt] returns the indices of the top-kt highest values, kt is the number of output
features for text modality after pooling, and AT ∈ Rd×1 is a learnable matrix that assigns attention
scores to each instance. P L

pooled is obtained through the same procedure and kp is defined similarly.

Subsequently, we evaluate whether each survival-relevant image falls within the hyperbolic cone
defined by any text vector. When this relationship is not satisfied, we impose our loss function, which
is derived from the angular discrepancy between the vectors. More precisely, for each survival-
relevant image row vector pL ∈ Ld from P L

pooled, we calculate the angular difference between pL

6
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and every row of T L
pooled, retrieving the text row vector tL with the smallest difference. Our approach

then compares two angular measurements: the aperture angle defined by tL and the exterior angle
between tL and pL. This comparison serves as the foundation for our loss, which is given by,

ℓe(t
L,pL) = max

((
π − angle(tL,pL)

)
− aper(tL), 0

)
, aper(tL) = arcsin

(
2β

∥tL∥

)
,

(
π − angle(tL,pL)

)
= arccos

(
p0 + t0⟨tL,pL⟩L

∥tL∥
√

(⟨tL,pL⟩L)2 − 1

)
,

(15)

where t0 and p0 are the 0-th dimension of tL and pL, respectively, β = 0.1 sets the boundary
condition near the origin. The first term is the exterior angle of ∠Otp, representing the angle
between tL and pL, and the second term is the angle of the aperture of the text cone. If the exterior
angle is smaller than the angle of the aperture, the image falls within the cone; therefore, we will not
punish the model. Otherwise, a loss is calculated through the difference between these two angles.
Building upon Eq. (15), we compute the loss for each row vector in P L

pooled. The overall FEC loss
function Le is then derived as the mean of these individual angular losses as follows,

Le(T
L
pooled,P

L
pooled) =

1

kp

kp∑
i=1

ℓe

(
argmin
tL∈T L

pooled

(
π − angle(tL,P L

pooled[i, :])
)
,P L

pooled[i, :]

)
. (16)

Given the heavy computational costs required for mapping vectors into hyperbolic space, we only
apply this geometric constraint to the final embeddings of the text and images (Desai et al., 2023).

4.2.2 TEXT GENERICITY CONSTRAINT

Pathology reports often encapsulate more generic information than WSIs. This is because a pathol-
ogy report typically provides an overview of relevant information in WSIs. Previous research has
demonstrated that individual images contain more localized and specific information but overall
less semantic content compared to individual words (Desai et al., 2023; Ramasinghe et al., 2024).
These studies also indicated the efficacy of hyperbolic embeddings in visual-language-related tasks,
highlighting their ability when representing complex hierarchies.

To this end, we propose leveraging the Lorentz model to effectively capture this relationship between
pathology reports and WSIs, as in hyperbolic space, vectors representing generic concepts are posi-
tioned closer to the origin, while more specific entities are situated farther away. This property can
naturally accommodate the hierarchical structures between pathology reports and WSIs.

Specifically, we first project the encoded representations from Euclidean space onto hyperbolic
space. Within the hyperbolic space, we position the text representations closer to the origin while
maintaining the original positions of the image embeddings. Formally, for every text representation
in a pathology report t ∈ Rd in Euclidean space, we project it to tL ∈ Ld in the Lorentz model using
the projection function defined in Eq. (4). Subsequently, based on the distance metric in Eq. (3), we
apply the loss function Lt to every hyperbolic embedding of text representation, which is given by,

Lt =
1

nT

∑
t∈T

dL(t
L,oL) =

1

nT

∑
t∈T

arcosh(−⟨expo(t),oL⟩L). (17)

We constrain solely pathology report embeddings for two key factors. Firstly, while images predom-
inantly contain specific information, they occasionally can represent generic concepts, rendering it
inappropriate to adjust their position relative to the origin. Secondly, imposing distance constraints
on images would complicate the model, as controlling the image-text distances is challenging and
could potentially obscure the core concept. By focusing on text embeddings, we maintain a clear
representation of the hierarchy without introducing unnecessary complexity.

Combining all loss functions from Eqs. (8), (16) and (17), we can obtain our final loss function as,

L = Ls + γLe + λLt, (18)

where γ and λ are coefficients which balance these loss functions. Specifically, γ adjusts the impact
of the FEC loss, while λ controls the influence of the TGC loss. These coefficients allow us to
fine-tune the trade-off between different aspects of the performance of our model.

7
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Table 1: Comparative C-index performance across multiple methods on four TCGA datasets. The
highest C-index scores per dataset are underlined in red, with the second-highest scores italicized
in blue. “Mod.” indicates modalities utilized: “G” for genomic data, “P” for WSIs, and “T” for
pathology reports. The rightmost column presents the averaged performance across all datasets.

Methods Mod. Datasets OverallBLCA UCEC LUAD BRCA
SNN G 0.618±0.022 0.679±0.040 0.611±0.047 0.624±0.060 0.633
SNNTrans G 0.659±0.032 0.656±0.038 0.638±0.022 0.647±0.063 0.650
AttnMIL P 0.599±0.048 0.658±0.036 0.620±0.061 0.609±0.065 0.622
CLAM-S P 0.559±0.034 0.644±0.061 0.594±0.063 0.573±0.044 0.593
CLAM-M P 0.565±0.027 0.609±0.082 0.582±0.072 0.578±0.032 0.584
TransMIL P 0.575±0.034 0.655±0.046 0.642±0.046 0.666±0.029 0.635
DTFDMIL P 0.546±0.021 0.656±0.045 0.585±0.066 0.609±0.059 0.599
MCAT G+P 0.672±0.032 0.649±0.043 0.659±0.027 0.659±0.031 0.660
GPDBN G+P 0.636±0.014 0.682±0.050 0.632±0.059 0.660±0.040 0.653
Porpoise G+P 0.636±0.024 0.692±0.048 0.647±0.031 0.621±0.054 0.649
HFBSurv G+P 0.640±0.040 0.699±0.025 0.639±0.027 0.653±0.032 0.658
MOTCAT G+P 0.682±0.023 0.671±0.053 0.673±0.040 0.671±0.021 0.674
CMTA G+P 0.672±0.038 0.691±0.066 0.676±0.037 0.659±0.013 0.675
MoME G+P 0.686±0.041 0.706±0.038 0.691±0.040 0.656±0.047 0.685
CGM G+P 0.686±0.025 0.703±0.048 0.696±0.023 0.684±0.034 0.691
Ours G+P+T 0.701±0.041 0.757±0.040 0.688±0.046 0.691±0.042 0.709

5 EXPERIMENTS AND RESULTS

5.1 DATASETS

We use the publicly available data from The Cancer Genome Atlas (TCGA) project1, which provides
WSIs, genomic data, pathology reports, and survival time. Our study utilizes four datasets from this
project: 373 samples of Bladder Urothelial CArcinoma (TCGA-BLCA), 480 samples of Uterine
Corpus Endometrial Carcinoma (TCGA-UCEC), 453 samples of LUng ADenocarcinoma (TCGA-
LUAD), and 956 samples from BReast Invasive CArcinoma (TCGA-BRCA). Pathology reports are
pre-processed (Kefeli & Tatonetti, 2024) and cleaned and refined using Qwen2 (Yang et al., 2024a).
However, not all samples include pathology reports, and the availability is 78.3% for BLCA, 88.9%
for UCEC, 83.1% for LUAD, and 87.6% for BRCA.

5.2 IMPLEMENTATION DETAILS

5.2.1 TRAINING SETTINGS

We evaluate our method against a range of existing approaches, including both unimodal and multi-
modal ones. The comparative methods include: SNN (Klambauer et al., 2017), SNNTrans (Klam-
bauer et al., 2017; Vaswani et al., 2017), AttnMIL (Ilse et al., 2018), CLAM (Lu et al., 2021), Trans-
MIL (Shao et al., 2021), DTFD-MIL (Zhang et al., 2022), MCAT (Chen et al., 2021), GPDBN (Wang
et al., 2021b), Porpoise (Chen et al., 2022a), HFBSurv (Li et al., 2022), MOTCAT (Xu & Chen,
2023), CMTA (Zhou & Chen, 2023), MoME (Xiong et al., 2024a), and CGM (Zhou et al., 2024).
We employ the Concordance index (C-index), which holistically assesses the discriminative power
and predictive accuracy of a model. Five-fold cross-validation is used to evaluate the performance
of models. Each model is trained for 20 epochs, and the performance on each validation fold is
recorded. We report the means and standard deviations of the C-index for each method.

5.2.2 HYPER-PARAMETERS

Our experimental configuration employs the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 2×10−4 and weight decay of 1×10−5, following (Xu & Chen, 2023). WSIs are segmented

1https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Table 2: Ablation study results comparing C-index performance across different model configura-
tions and datasets. The first column indicates which components are removed from the full model.
Lt and Le represent specific loss components in the model.

Variants Mod. Datasets OverallBLCA UCEC LUAD BRCA
Ours G+P+T 0.701±0.041 0.757±0.040 0.688±0.046 0.691±0.042 0.709
−Lt G+P+T 0.687±0.024 0.743±0.057 0.685±0.031 0.687±0.024 0.701
−Le G+P+T 0.686±0.026 0.747±0.049 0.670±0.028 0.661±0.015 0.691
−Le −Lt G+P+T 0.693±0.039 0.739±0.045 0.685±0.032 0.675±0.052 0.698
−Le −Lt G+P 0.674±0.054 0.738±0.030 0.681±0.032 0.663±0.054 0.689
−Le −Lt G+T 0.678±0.046 0.701±0.078 0.678±0.031 0.659±0.062 0.679

Table 3: Comparative C-index results across different model configurations on four TCGA datasets.
Results are presented for various combinations of kt and kp values, respectively.

Variants Datasets OverallBLCA UCEC LUAD BRCA
kt = 8, kp = 16 0.670±0.033 0.717±0.043 0.672±0.038 0.685±0.029 0.686
kt = 8, kp = 32 0.701±0.041 0.757±0.040 0.688±0.046 0.691±0.042 0.709
kt = 8, kp = 64 0.692±0.018 0.736±0.036 0.681±0.057 0.673±0.042 0.696
kt = 16, kp = 16 0.687±0.023 0.718±0.039 0.663±0.035 0.687±0.024 0.689
kt = 16, kp = 32 0.680±0.037 0.727±0.027 0.693±0.026 0.675±0.014 0.694
kt = 16, kp = 64 0.693±0.012 0.745±0.076 0.681±0.034 0.680±0.031 0.700

into patches of 224×224 pixels at 20× magnification, with features extracted via CTransPath (Wang
et al., 2021a). Input dimensions for each modality are set to dp = dt = 768 and dg = 512, with
a hidden dimension of d = 512. We employ the micro-batch technique (Xu & Chen, 2023) with a
batch size of 4,096 and set the number of encoding iterations to m = 4. Loss function coefficients
are set to α = 0 for censored/uncensored balance, and γ = λ = 0.5 for the final loss. The number
of attention pooling output features are set to kt = 8 for pathology reports and kp = 32 for WSIs.

5.3 COMPARISON RESULTS

The results of all comparison methods are presented in Table 1. Our method consistently outper-
forms existing approaches, demonstrating substantial improvements on BLCA, UCEC, and BRCA
datasets with C-index increases of 1.5%, 5.1%, and 0.7% respectively, compared to the previous
best performing methods. Our method maintains competitive performance, even though it is slightly
worse (0.8%) than CGM on the LUAD dataset. Notably, our approach achieves the highest overall
performance with a C-index of 0.709, indicating a 1.8% improvement over the second best method,
CGM (0.691). This consistent superior performance across diverse cancer types suggests the ro-
bustness of our approach. Among multimodal methods, recent approaches like MoME and CGM
already show strong performance. However, the incorporation of pathology report data provides
a significant advantage, suggesting that pathology reports indeed contribute meaningful predictive
power to the model. Overall, the comparison results demonstrate the effectiveness of incorporating
pathology reports as the third modality and the efficacy of our proposed method.

5.4 ABLATION STUDIES ON LOSS FUNCTIONS

We conduct experiments to validate the effectiveness of each component. The results are presented
in Table 2. Our full model (G+P+T) achieves the best overall performance (0.709). Removing the
TGC loss Lt slightly decreases performance (0.701), while ablating the FEC loss Le leads to a
more significant drop (0.691). This suggests that both losses contribute to the model’s effectiveness,
and Le plays a particularly crucial role. Interestingly, removing both Le and Lt while retaining all
modalities (0.698), which is a model purely in Euclidean space, outperforms the model with only Le

removed, indicating a complex interaction between these loss components, which might need further
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Figure 3: Kaplan-Meier curves of our HyperSurv on the four cancer datasets.

investigation in the future work. The variant without Le, Lt, and the text modality (T) shows an even
worse overall performance (0.689), further underscoring the importance of pathology report as a new
modality. Moreover, substituting WSIs with pathology reports, which are considered summaries of
WSIs, results in further performance degradation (0.679). This demonstrates the irreplaceable role
of WSIs in survival prediction, attributable to their provision of fine-grained, localized features.
These results demonstrate the effectiveness of our full model, the significant contributions of both
loss components, and the pathology report modality.

5.5 SENSITIVITY ANALYSIS ON NUMBER OF POOLED FEATURES

We conduct sensitivity analyses to assess the impact of varying the number of attention pooling
features for pathology reports (kt) and WSIs (kp) on model performance. Table 3 shows C-index
results for different kt and kp values across four TCGA datasets. The configuration kt = 8, kp =
32 achieved the best overall performance (C-index: 0.709) and outperformed others in three out
of four datasets (BLCA, UCEC, and BRCA). This suggests an optimal balance between features
extracted from pathology reports and WSIs. Increasing kp to 64 while maintaining kt = 8 led to
a slight performance decrease (0.696), indicating that excessive WSI features may introduce noise.
Similarly, increasing kt to 16 did not improve overall performance, regardless of kp, suggesting
that 8 features from pathology reports sufficiently capture survival-relevant information. Notably,
the best-performing configuration for LUAD (kt = 16, kp = 32) differed from the overall best,
highlighting potential cancer-specific tuning needs. However, the marginal difference (0.693 vs.
0.688) supports the robustness of the kt = 8, kp = 32 configuration across cancer types. These
results underscore the importance of balancing attention pooling features from different modalities.

5.6 KAPLAN–MEIER ANALYSIS

To further validate the differentiability of the model, we conduct a Kaplan–Meier analysis. Patients
are stratified into low-risk and high-risk groups based on whether their risk values exceeded the mean
risk value of the entire cohort. We then visualize the survival events for all patients in Fig. 3, and
perform a log-rank test to assess the statistical significance of the difference between the low-risk and
high-risk cohorts. Conventionally, a p-value less than 0.05 is considered statistically significant. As
evident from Fig. 3, our method successfully stratified patients into two groups with high statistical
significance, demonstrating the robust differentiability of our method.

6 CONCLUSION

In this paper, we introduced a novel approach to survival prediction in pathology by incorporating
pathology reports and enforcing geometric constraints for pathology reports and WSIs in hyperbolic
space. The integration mitigates the complex logical gaps inherent in end-to-end model training from
WSIs to survival outcomes. To accommodate the inherent hierarchy between pathology reports and
WSIs, we leveraged hyperbolic space, specifically the Lorentz manifold, to overcome the limitations
of Euclidean space. Our method enforces the partial order relationship as the entailment between
pathology reports and WSIs, and positions text representations closer to the origin to represent more
generic concepts. Extensive experiments across multiple datasets demonstrated that our proposed
method consistently outperforms previous approaches. These results provide strong evidence for the
effectiveness of textual modality and validate the efficacy of our hyperbolic geometric framework.

10
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