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Abstract

Few-shot segmentation (FSS) aims to segment novel ob-
jects in a given query image with only a few annotated
support images. However, most previous best-performing
methods, whether prototypical learning methods or affinity
learning methods, neglect to alleviate false matches caused
by their own pixel-level correlation. In this work, we rethink
how to mitigate the false matches from the perspective of
representative reference features (referred to as buoys), and
propose a novel adaptive buoys correlation (ABC) network
to rectify direct pairwise pixel-level correlation, including a
buoys mining module and an adaptive correlation module.
The proposed ABC enjoys several merits. First, to learn
the buoys well without any correspondence supervision, we
customize the buoys mining module according to the three
characteristics of representativeness, task awareness and re-
silience. Second, the proposed adaptive correlation module
is responsible for further endowing buoy-correlation-based
pixel matching with an adaptive ability. Extensive experimen-
tal results with two different backbones on two challenging
benchmarks demonstrate that our ABC, as a general plu-
gin, achieves consistent improvements over several leading
methods on both 1-shot and 5-shot settings.

1. Introduction
Semantic segmentation has achieved conspicuous

achievements attributed to the recent advances in deep neural
network [20]. However, its data-driven nature makes it heav-
ily dependent on massive pixel-level training data, which is
labor-intensive and time-consuming to collect. To imitate
the human learning habits which can recognize new classes
with only a glance, few-shot segmentation [25] (FSS) has
attracted increasing interest in recent years, which aims at
segmenting novel objects in the given query image with a
few annotated support images.

In previous literature, superior prototypical learning meth-
ods [15, 28, 37] and affinity learning methods [11, 26, 30, 40]
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Figure 1. The motivation of our proposed method. False matches
tend to occur in the pixel-level correlation due to large intra-class
variations. We introduce a series of representative features (buoys)
as references and calculate the buoys-level correlation to suppress
false matches.

are almost all equipped with pixel-level correlation. In spe-
cific, for prototypical learning methods, pixel-level correla-
tion is implicitly endowed with the expectation to generate
the foreground prior mask [28] for guiding the query pixel
classification. For affinity learning methods, pixel-level cor-
relation directly serves to aggregate support information and
convey it to the query image [40].

Despite their promising results, these methods neglect
the fact that there may exist cluttered background and inher-
ent large intra-class variations between support and query
images. In this case, directly employing pairwise pixel cor-
relation may lead to considerable false matches. To make
matters worse, the negative impact is inevitably amplified
by inbuilt low-data regimes of FSS, leading to sub-optimal
results. As shown in Fig. 1 (a), due to the significant pose
difference of the object plane in the support-query image
pair, p2 in the query image located in the plane hatch is erro-
neously closer to p3 situated on the ground than counterpart
p1 in the support image. Therefore, it is highly desirable
to rectify these false matches caused by the direct pairwise
pixel-level correlation.

In this paper, we aim to mitigate the false matches in
previous FSS methods from the perspective of representative
reference features (referred to as buoys). Specifically, we
design a novel Adaptive Buoys Correlation (ABC) network
that can be applied as a generic plugin, including a buoy
mining module and an adaptive correlation module to rec-
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tify direct pairwise pixel-level correlation for robust FSS.
The main idea is, for each pixel from the support or query
image, we can obtain the buoy-level correlation (i.e., a like-
lihood vector) by comparing this pixel with a set of buoys.
In essence, the buoy-level correlation reflects the consensus
among representative buoys with a broader receptive field,
thus it encodes the relative semantic comparability of the
buoys that can be relied upon. Intuitively, each pair of true
pixel correlation (e.g., the p1-p2 pair in Fig. 1 (b)) derived
from the query and support images should be not only vi-
sually similar to each other (i.e., high pairwise pixel-level
correlation), but also similar to any other buoys (i.e., simi-
lar buoy-level correlation pair). Based on this correlation
consistency in ABC, false matches caused by similar vision
but dissimilar buoy correlations will be suppressed (e.g.,
the point p3-p2 pair in Fig. 1 (b)), ensuring that true pixel
correlations enjoy higher weights to safely extract support
information.

However, it is non-trivial to learn the buoys well without
any correspondence supervision for training. In the buoys
mining module (BMM), we carefully design this module
customized for the following three characteristics. (1) Rep-
resentativeness. Intuitively, the buoys should have the ability
to represent the diverse semantic clues from both support and
query pixels with a broader semantic contrast descriptive.
In other words, the matching between support-query pixels
based on buoy-level correlation should preserve as much
critical information as possible in the correspondence based
on pixel-level correlation. In specific, we take advantage
of Singular Value Decomposition (SVD) in pursuit of con-
trollable information decay. Besides, a representation decay
loss is devised to prevent the degradation of buoys. (2) Task
awareness. Since tasks are randomly sampled during FSS
training, each individual task consists of unique categories
with large distribution differences. Therefore, to enable the
buoys to perceive the current task and generalize to novel
classes well, we employ the cross-aggregation mechanism to
flexibly adjust buoys to meet the expectations of any tasks,
even the tasks with unseen classes. (3) Resilience. Consider-
ing the large gap between support and query images caused
by large intra-class variations and cluttered background, it
is necessary for buoys to bridge this gap and become more
referable. In specific, we prepend the self-aggregation mech-
anism to amend buoys by reconciling the intrinsic resilience
between support and query images.

Moreover, we observe that not all buoys are profitable
when calculating pixel pair matching based on buoy-level
correlation, and comprehensive consideration of the relation-
ships between helpful buoys with potential intersections can
assist in the final matching score. In the adaptive corre-
lation module (ACM), we endow buoy-correlation-based
pixel matching with an adaptive ability, which can flexibly
assign less weight to irrelevant buoys conditioned to dif-

ferent pixel pairs and focus on the structural similarity of
related buoys. In specific, given the corresponding buoy
pair for each pixel pair as the initial marginal distribution of
the optimal transport(OT) algorithm, we can attain the opti-
mal transport plan which can be regarded as the structural
buoy contribution adaptive to the current pixel pair, and the
corresponding OT distance is adopted for scoring matches.

In this work, our contributions can be concluded as fol-
lows: (1) We propose an Adaptive Buoys Correlation (ABC)
network to rectify the widely used pairwise pixel correla-
tion in FSS. To the best of our knowledge, this is the first
work to mitigate the false matches in FSS methods, from
the perspective of representative reference features (buoys).
(2) We introduce two novel modules, namely Buoys Mining
Module (BMM) and Adaptive Correlation Module (ACM),
for representative buoys construction and adaptive matching
respectively. They can cooperate well to achieve effective
false match suppression. (3) Extensive experimental results
with two different backbones on two challenging bench-
marks demonstrate that our ABC, as a general plugin mod-
ule, achieves consistent improvements over several leading
methods on both 1-shot and 5-shot settings.

2. Related Work
In this section, we briefly overview several lines of re-

search in semantic segmentation, few-shot segmentation.
Semantic Segmentation. Semantic Segmentation is a

fundamental computer vision task that aims to achieve pixel-
level classification of the given images on predefined cate-
gories. Benefitting from the advantages of the DNN [21],
remarkable progress has been achieved in the past decade.
Based on the Fully Convolutional Network(FCN) [20], many
remarkable modules designs have been proposed, such as
feature pyramid modules [13,16,44], context absorbing mod-
ules [8, 12, 23] and dilated convolution modules [2, 3]. In ad-
dition to CNN-based models, many researchers have turned
their attention to transformer-based semantic segmentation
models [4, 27, 34, 43]. Though achieving promising results,
these methods cannot generalize to novel classes in the low-
data regime. This paper tackles the semantic segmentation
problem in a few-shot setting.

Few-Shot Segmentation. Few-shot segmentation [25]
aims to perform pixel-wise classification on images of pre-
viously unseen categories with only a handful of labeled
images available. Owing to the scarcity of annotated sam-
ples, fully mining category information from support im-
ages is crucial for FSS tasks. Mainstream FSS methods
can be roughly divided into two categories according to the
paradigm to excavate support information: prototypical fea-
ture learning methods and affinity learning methods. For the
former, most methods [15,19,32,36,37,39,42] condense the
masked support features into a single or multiple prototypes
for feature comparison or aggregation. For example, SG-
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One [42] exploits cosine similarity to compare the prototype
obtained by mask average pooling with the query features
for segmentation results. However, relying only on heavily
compressed prototypes will inevitably lead to information
loss, resulting in degraded segmentation performance. While
for the affinity learning methods [11, 30, 35, 38, 40], fine-
grained pairwise relationships between support and query
features are further considered to retain the details. For
instance, CyCTR [40] introduces the cycle-consistent atten-
tion mechanism to selectively aggregate support features.
Shi et al. [26] exploit the attention weight between support
and query features to conduct additive aggregation of sup-
port masks. Though achieving promising results, pixel-level
correlation tends to suffer from false matches caused by
intro-class variations and cluttered backgrounds.

Pixel-level Correlation in FSS. Pixel-level correlation
is a powerful manner of extracting fine-grained support in-
formation and is thus widely applied in FSS methods. Ac-
cording to recent top-performing researches, the following
two paradigms are the most frequently employed. (1) Prior
Mask Guidance (PMG) is first proposed by [28] and widely
adopted in numerous subsequent methods [14, 15, 32, 33, 37,
40] due to its simplicity and effectiveness. To be concrete,
PMG calculates the maximum one-to-one correlation re-
sponses between the high-level support foreground features
and query features to tell the probability of query pixels be-
longing to the foreground. (2)Multi-head Attention (MHA)
is receiving increasing interest in visual tasks since the ad-
vent of ViT [6] and DETR [1]. In terms of FSS, MHA is also
exploited to transport the support information to facilitate
the query segmentation [18, 26, 40, 41]. As described before,
Non-ignorable false matches usually occur in pixel-level cor-
relation. In this paper, we propose to mitigate false matches
by introducing a series of reliable buoys. We deploy our ap-
proach on three models with PMG [28] or MHA [26,40] and
obtain significant performance gains with a slight increase
in the number of parameters.

3. Method

3.1. Problem Formulation

The aim of FSS is to perform segmentation on novel
classes with only a handful of densely-labeled samples. Fol-
lowing previous works, we adopt the widely used episodic
meta-training paradigm. Specifically, given the training set
Dtrain and the testing set Dtest that are disjoint in the tar-
get categories(Ctrain ∩ Ctest = ∅), a set of subtasks are
sampled from the Dtrain to train the model. Each subtask
contains a support set S = {(IkS ,Mk

S)}Kk=1 and a query set
Q = {(IQ,MQ)}, where the I and M denote the RGB im-
age and the corresponding ground-truth. During training,
the model learns to predict on the IQ conditioned on the S
under the supervision of MQ. For testing, the trained model

is evaluated with the tasks sampled from the Dtest.

3.2. Overview

As illustrated in Fig. 2, the proposed ABCNet mainly
includes two components, i.e., the buoys mining module
(BMM) and the adaptive correlation module (ACM). BMM
is responsible for constructing buoys with representativeness,
task awareness and resilience through SVD-based initializa-
tion, cross-aggregation and self-aggregation, respectively.
The ACM module further enables the well-constructed buoys
to adaptively score the support-query matches via the spe-
cially designed OT distance. The ultimate goal of our method
is to suppress the false matches in the original correlation
matrix W:

W = Sim(FQ,FS), (1)

where the FQ ∈ Rhw×c and FS ∈ Rhw×c are the re-
shaped query and support features extracted from shared
ImageNet [24] pretrained backbones, respectively. Here the
h, w and c mean the spatial size and the channel size of the
features. Note that FQ and FS can be high-level or middle-
level features depending on baseline methods, and the Sim
denotes the pixel-wise similarity measurement such as co-
sine similarity or attention weights in MHA. The details are
as follows.

3.3. Buoys Mining Module

It is non-trivial to construct buoys that are well-tailored
for corresponding tasks. The buoys mining process can be
divided into three procedures, i.e., SVD-based initialization,
cross-aggregation and self-attention which endow the buoys
with representativeness, task awareness and resilience, re-
spectively.

SVD-based Initialization. In order to enable buoys
to represent the diverse semantic clues from both support
and query pixels, we resort to Singular Value Decomposi-
tion(SVD) to implement principal component analysis on the
basis of original pixel wise matching matrix W ∈ Rhw×hw

in both the support and the query dimensions. Specifically,
we decompose the original correlation matrix W via SVD
and only keep the largest K singular values:

W
SV D

======
Top−K

UΣVT , (2)

where U ∈ Rhw×K , Σ ∈ RK×K , VT ∈ RK×hw. Since
the singular value decreases rapidly, it is enough to keep
the largest first few singular values for retaining correlation
information. For the left singular matrix U ∈ Rhw×K after
SVD decomposition, it can be seen as K orthogonal bases
in the space of query feature number, and then we explicitly
map the query features FQ in the form of linear transfor-
mation (multiplied with the orthogonal bases) to attain the
initial buoys. The same procedure is conducted for buoy
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are two submodules in the BMM, i.e., the cross-aggregation module
and the cross-aggregation module. The former is responsible for
absorbing task-aware context and the latter is used for reducing the
gap between the support and the query features.

initialization in support features. Specifically,

FT
bq = FT

QU, FT
bs = FT

SV, (3)

the resulting features Fbq ∈ RK×C and Fbs ∈ RK×C are
the combination of the original features which retain the most
of the information included in the W. In this way, the well-
initialized buoys not only enable controllable information
decay but also speed up the convergence of the training
process. In order to further prevent buoys from degradation,
we propose a representation decay loss in form of:

Lossrd = ∥WR −W∥F , (4)

where the WR is buoys-correlation based matching matrix
in Sec. 3.4. The effect of this loss is analyzed in the Sec. 4.

Cross-aggregation Mechanism. Task-specific contex-
tual information not only enables the buoys to perceive the

current task but also endows the buoy with resistance to noisy
pixels. To achieve task awareness, we introduce the cross-
aggregation mechanism to condense the task-specific infor-
mation into corresponding buoys. As illustrated in Fig. 3,
given the initial buoys features Fb⋆ = [b1,⋆,b2,⋆, ..., ,bK,⋆]
(bi,⋆ ∈ R1×C indicates the i-th buoy feature), the support
and query features F⋆ = [f1,⋆, f2,⋆, ..., , fhw,⋆] (fj,⋆ ∈ R1×C

indicates the image feature of the j-th spatial position). Note
that we denote the corner mark as ⋆ and ⋆ ∈ {S,Q} for
brevity. As done in [1], we obtain the queries (Q⋆, we de-
note as qry to distinguish it from the query image) arise
from buoys features Fb⋆ and keys (K⋆) from support or
query features F⋆ for calculating aggregation weights, and
values (V⋆) from F⋆ for feature aggregation, in concrete:

Qi,⋆ = bi,⋆W
Q
⋆ , Kj,⋆ = fj,⋆W

K
⋆ , Vj,⋆ = fj,⋆W

V
⋆ , (5)

among which, WQ
⋆ ∈ RC×Ck, WK

⋆ ∈ RC×Ck,WV
⋆ ∈

RC×Cv are linear projections. For the i-th qry Qi⋆, we
calculate the attention weights via dot-product between Qi⋆

and all other keys:

si,j =
exp (βi,j)∑hw
j=1 exp (βi,j)

, βi,j =
Qi,⋆K

T
j,⋆√

dk
, (6)

where
√
dk is a scaling factor. The context-aware buoys

features are further obtained via the weighted sum over all
values:

b̂i,⋆ =

hw∑
j=1

si,jVj⋆, (7)

The Eq. (6) and Eq. (7) are implemented with the multi-
head paradigm following the standard operation [29]. Then
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a feed-forward network (FFN) is further applied to ob-
tain the support-related F̂bS = [b̂1,s, b̂2,s, ..., , b̂K,s] and
query-related buoys F̂bQ = [b̂1,q, b̂2,q, ..., , b̂K,q], which
contain abundant corresponding contextual information in-
corporated.

Self-aggregation Mechanism. The obtained F̂bS and
F̂bQ in Eq. (7) are respectively originated from the support
and query features, which usually exist significant informa-
tion gap due to large intra-class variations and cluttered back-
ground. To bridge this gap, we propose the self-aggregation
mechanism to further absorb the full task contextual infor-
mation, especially to capture the co-occurring target object.
Specifically, we first concatenate the F̂bs and F̂bq in the
dimension of number:

F̂B = Concatenate(F̂bs, F̂bq), (8)

then two multi-head self-attention layers are implemented
on the concatenated buoys F̂B ∈ R2K×c, for the sake of
brevity, we omit the element ordinal index in the formula,
formally:

QB = F̂BW
Q
B , KB = F̂BW

K
B , VB = F̂BW

V
B ,

(9)
where the linear projections WQ

B ∈ RC×Ck, WK
B ∈

RC×Ck,WV
B ∈ RC×Cv. Then the attention weight matrix

S ∈ R2K×2K is calculated with the scaled dot-product to
selectively aggregate the beneficial values:

F̄B = SQKVB = Softmax(
QBK

T
B√

dk1
)VB . (10)

Like in Eq. (7), a FFN is further applied. In this way,
buoys are amended by absorbing complementary informa-
tion. Through the above three procedures, the buoys that
have excellent esthesia of the current task can be well estab-
lished.

3.4. Adaptive Correlation Module

With the attendance of buoys from BMM as references, it
is intuitive to measure the similarity of buoy-level correlation
via dot product or L2 distance. We argue that these solutions
are suboptimal as they separately and equally consider the
association between different pixel features and different
buoys. But not all buoys are profitable when comparing
the similarity of buoy-level correlation of a specific pair
of pixels. We declare that the association between pixel
features and buoys, as well as the association between buoys
and buoys, should be taken into account when measuring
buoy-based similarity. To achieve that, as shown in Fig. 4,
we employ the optimal transport (OT) algorithm with a
specially designed cost matrix to calculate the matching
based on buoys-level correlation more comprehensively. The
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Figure 4. Illustration of the adaptive correlation module(ACM),
which endows buoys-correlation-based pixel matching with an
adaptive ability via optimal transport (OT) algorithm.

OT algorithm aims to find the minimum transmission cost
between probability distributions on the given cost matrix,
which can be solved elegantly by the Sinkhorn algorithm
with linear programming [5]. In our solution, the cost matrix
is defined as (1 − SBB), where the SBB ∈ RK×K is the
similarity matrix between the buoys(for brevity we take the
K as the number of all buoys from BMM). The transport
plan is denoted as T ∈ RK×K and the optimization function
is as follows:

min
T∈T

Tr
(
TT(1− SBB)

)
+ ϵH(T), (11)

where the H(T) = −
∑

ij Tij logTij measures the entropy
regularization and the ϵ is the weight for the entropy term
that controls the smoothness of the mapping. The trans-
mission matrix needs to satisfy the following distribution
constraints:

T =
{
T ∈ RK×K

+ | T1 = µ,TT1 = ν
}
, (12)

where the µ ∈ RK and ν ∈ RK represent the similarity
distribution of the i-th support feature fi,S and j-th query
feature fj,Q on the buoys, respectively. The optimal trans-
portation matrix T∗

i,j can be obtained effectively via several
sinkhorn iterations, then the final OT-based similarity is cal-
culated as:

WR(i, j) = T∗
i,j ⊙ SBB . (13)

The cost matrix subtly injects the structural information
inherent in buoys into the calculation of matching weights,
and the constraint of pixel-specific marginal distribution
adaptively makes irrelevant buoys assigned less weight.

4. Experiments
4.1. Dataset and Evaluation Metric

Dataset. We evaluate the proposed ABCNet on two
widely used FSS datasets, namely PASCAL-5i [25] and
COCO-20i. Among them, PASCAL-5i is built based on
PASCAL VOC 2012 dataset [7] with extra annotations from
SBD [9]. The 20 semantic categories are divided into 4 splits
for cross-validation as done in OSLSM [25]. COCO-20i is
a larger dataset built from MSCOCO [17]. As done in [22],
all 80 categories are separated into 4 splits, 3 of them are
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Table 1. Performance on Pascal-5i [7] in terms of mIoU and FBIoU for 1-shot and 5-shot segmentation. The best mean results are shown in
bold. The combination of the proposed ABCNet consistently improves the results.

Method backbone
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 mIoU FBIoU Fold-0 Fold-1 Fold-2 Fold-3 mIoU FBIoU
PFENet[TPAMI2020] [28]

ResNet50

61.7 69.5 55.4 56.3 60.7 73.3 63.1 70.7 55.8 57.9 61.9 73.9
PFENet w/ ABCNet 62.5 70.8 57.2 58.1 62.2(↑1.5) 74.1(↑0.8) 64.7 73.0 57.1 59.5 63.6(↑1.7) 74.2(↑0.3)
CyCTR[NIPS2021] [40] 67.8 72.8 58.0 58.0 64.2 − 71.1 73.2 60.5 57.5 65.6 −
CyCTR w/ ABCNet 67.8 74.3 59.2 59.4 65.2(↑1.0) 73.8(↑−−) 72.6 74.4 61.3 59.0 66.8(↑1.2) 76.2(↑−−)

DCAMA[ECCV2022] [26] 67.5 72.3 59.6 59.0 64.6 75.7 70.5 73.9 63.7 65.8 68.5 79.5
DCAMA w/ ABCNet 68.8 73.4 62.3 59.5 66.0(↑1.4) 76.0(↑0.3) 71.7 74.2 65.4 67 69.6(↑1.1) 80.0(↑0.5)
PFENet[TPAMI2020] [28]

ResNet101

60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5
PFENet w/ ABCNet 62.7 70.0 55.1 57.5 61.3(↑1.2) 73.7(↑0.8) 63.4 71.8 56.4 57.7 62.3(↑0.9) 74.0(↑0.5)
CyCTR[NIPS2021] [40] 69.3 72.7 56.5 58.6 64.3 72.9 73.5 74.0 58.6 60.2 66.6 75.0
CyCTR w/ ABCNet 71.2 73.0 57.9 60.2 65.6(↑1.3) 74.6(↑1.7) 74.2 73.0 60.2 62.1 67.4(↑0.8) 76.6(↑1.6)
DCAMA[ECCV2022] [26] 65.4 71.4 63.2 58.3 64.6 77.6 70.7 73.7 66.8 61.9 68.3 80.8
DCAMA w/ ABCNet 65.3 72.9 65.0 59.3 65.6(↑1.0) 78.5(↑0.9) 71.4 75.0 68.2 63.1 69.4(↑1.1) 80.8(↑0.0)

Table 2. Performance on COCO-20i [17] in terms of mIoU and FBIoU for 1-shot and 5-shot segmentation. The best mean results are shown
in bold. The combination of the proposed ABCNet consistently improves the results.

Method backbone
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 mIoU FBIoU Fold-0 Fold-1 Fold-2 Fold-3 mIoU FBIoU
PFENet[TPAMI2020] [28]

ResNet101
34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9

PFENet w/ ABCNet 36.5 35.7 34.7 31.4 34.6(↑2.2) 59.2(↑0.6) 40.1 40.1 39.0 35.9 38.8(↑1.4) 62.8(↑0.9)
CyCTR[NIPS2021] [40]

ResNet50

38.9 43.0 39.6 40.3 40.5 − 41.1 48.9 45.2 47.0 45.6 −
CyCTR w/ ABCNet 40.7 45.9 41.6 40.6 42.2(↑1.8) 66.7(↑−−) 43.2 50.8 45.8 47.1 46.7(↑1.1) 62.8(↑−−)

DCAMA[ECCV2022] [26] 41.9 45.1 44.4 41.7 43.3 69.5 45.9 50.5 50.7 46.0 48.3 71.7
DCAMA w/ ABCNet 42.3 46.2 46.0 42.0 44.1(↑0.8) 69.9(↑0.4) 45.5 51.7 52.6 46.4 49.1(↑0.8) 72.7(↑1.0)

BMM
ACM mIOU

RD-loss Cross Self

63.0
✓ 64.1
✓ ✓ 64.9

✓ ✓ ✓ 65.3
✓ ✓ ✓ ✓ 66.0

Table 3. Ablation studies of the pro-
posed BMM and ACM modules.

Init mIoU

Rand 64.3
Top-k 65.2

Learnable 65.4
SVD 66.0

Table 4. Ablation studies
on different approaches for
buoys initialization.

used for training and the rest one for testing. We randomly
sample 1000 episodes for evaluation.

Evaluation Metric. Following previous works [28, 31,
38, 42], two evaluation metrics, i.e., mean intersection-over-
union (mIoU) and foreground-background intersection-over-
union (FBIoU) are adopted as our evaluation metrics for
experiments. As mIou reflects the average results over all
classes thus we mainly focus on the performance on the
mIoU.

4.2. Implementation Details

Our proposed ABCNet can be easily implanted to amount
of existing FSS models, and we mainly evaluate the effec-
tiveness of our model on three baselines: PFENet [28],
CyCTR [40] and DCAMA [26]. To be concrete, in
DCAMA [26] and CyCTR [40], we adopt the proposed
method to improve the pixel-wise cross-attention modules,
while in PFENet [28], ABCNet is exploited to ameliorate
the prior mask guidance (PMG). We use the middle-level
features from the ImageNet [24] pretrained ResNet50 and

ResNet101 [10] backbones as done in the original correla-
tion module when using CyCTR [40] as our baseline. Dif-
ferent from that implementation, ABCNet is intergraded
into the high-level support-query interaction when taking
PFENet [28] and DCAMA [26] as the baseline.

All training settings are the same as the baseline methods,
please refer to the Supplementary Material for more details.
Two attention layers are adopted in our self-aggregation and
cross-aggregation modules and the channel size in both of
them is 512. The ϵ is set to be 0.1 and we limit the max
iteration number to 3 which is sufficient to obtain good
performance. The weight of representation decay loss λrd is
set to be 0.1. All experiments are run on four NVIDIA Tesla
V100 GPUs.

4.3. Results and Analysis

Quantitative results. Tabs. 1 and 2 present the perfor-
mance comparison with and without ABCNet on three base-
line methods and two benchmarks. It can be found that our
ABCNet can consistently boost the performance of all three
baseline methods with a considerable margin under all set-
tings. Specifically, as shown in Tab. 1 on the ResNet-50,
our approach improves PFENet by 1.5 and 1.7 mIoU on
1-shot and 5-shot, respectively. It shows that our ABCNet
can significantly improve the quality of prior masks thus bet-
ter guiding the query pixel classification. Besides, ABCNet
brings CyCTR the performance gain of 1.0 & 1.2 mIoU and
brings DCAMA the gain of 1.4 & 1.1 mIoU, respectively. It
demonstrates that our ABCNet can ameliorate the pair-wise
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Figure 5. Qualitative comparison with the baseline. Results with
ABCNet can achieve more accurate segmentation

correlation in these methods thus obtaining better support
information aggregation. In addition, on the deeper ResNet-
101 backbone, all three methods also can achieve nearly 1%
improvement. As for the more complex dataset COCO-20i,
the 1-shot and 5-shot results of models with the assistance
of ABCNet respectively surpass the baselines. The perfor-
mance boost is even more pronounced which proves the
applicability of our method in complex scenarios. Please
refer to Tab. 2 for details.

Qualitative results. To further analyze and understand
the proposed method, We visualize a series of segmenta-
tion results on the most challenging split of PASCAL-5i, as
shown in Fig. 5. It can be noticed that the baseline model is
prone to incorrectly segmenting the background or is unable
to activate the whole object. We deem the main reason is that
the false matches in the pair-wise pixel-level correlation lead
to erroneous support information transfer, which interferes
with the classification of query pixels. While the model with
ABCNet generates more accurate prediction masks, which
demonstrates the effectiveness of the proposed approach.

4.4. Ablation Study

A series of ablation studies are conducted to investigate
the impact of our proposed ABCNet thoroughly. We mainly
implement our experiments on PASCAL-5i, the baseline
method is DCAMA [26] and ResNet-50 is used as the back-
bone. All results are average mIoU across 4 splits unless
otherwise specified.

Ablation study on BMM. Diagnostic experiments are
conducted progressively to demonstrate the effectiveness of
each submodule in the BMM as shown in Tab. 3. Note that
the first line is the result of our ablation baseline, where we
directly compare the buoys-level correlation via dot product,
and the buoys are initialized by SVD. We can observe that
the baseline performs worse than the original DCAMA. We
deem the reason is that the buoys correlation based on the
buoys not tailored for the current task is not beneficial or
even damaging to the matching process. The introduction of
the cross-aggregation module achieves a significant perfor-
mance lift compared with the baseline, i.e., 1.1% mIoU. The

improvements can be mainly ascribed to the abundant task-
specific contextual information absorbed during the process
of cross-attention. By further integrating the self-aggregation
module, we observe a performance advance of 0.8% mIoU.
We attribute this performance gain to the amended buoys via
the self-aggregation module, which takes into consideration
both the support and query information thus bridging the gap
caused by large intra-class variance. Finally, when the repre-
sentation decay loss (RD-loss) is adopted, the performance
improves by 0.4% mIoU. This proves that the additional
RD-loss can effectively prevent buoy degradation, thereby
avoiding excessive deviation of the buoy correlation. In fact,
the sum of the squares of the singular values after singular
value decomposition (SVD) can be regarded as the energy
of the matrix (i.e., the representative information contained
in the original correlation matrix), which is equivalent to
its squared Frobenius norm. Therefore, the RD-loss could
prevent information loss to guarantee the diversity of buoys.

Ablation study on ACM. As shown in Tab. 3, in the
absence of ACM, the performance of the model is 0.7%
worse than the complete ABCNet. This is because the dot
product considers the similarity of each buoy individually
and equally, ignoring the association between the buoys and
pixels and the structural information inherent in the buoys. In
contrast, the proposed ACM takes both aspects into account
adaptively through a specially designed OT algorithm. In
cooperation with well-established buoys, the ACM module
can effectively suppress false matches on the premise of
ensuring correct ones.

Ablation study on SVD-based initialization. To explore
the effectiveness of different ways to initialize the buoys, we
compare the performance of several intuitive initialization
methods as shown in Tab. 4. Among these methods, Rand is
conducted by randomly selecting k pixel features as buoys
from the support and query features, respectively. In Top-
k, the cumulative affinities based on the original similarity
matrix are calculated on both support and query dimension,
and only the top-k entries are kept as the buoys. Learnable
means that all 2k buoys are randomly initialized but trainable
and shared across tasks. Our SVD-based consistently outper-
forms these schemes by a considerable margin credited to
the characteristics of SVD. Compared with other methods,
SVD-based buoy initialization can better reduce information
decay on the premise of keeping the same number of buoys.

Hyperparameter Evaluations. Quantitative experiments
are conducted to clearly find a suitable number of buoys k.
As shown in Fig. 7 (b), the performance continues to grow
until k = 24 and then begins to decline if k keeps increasing.
We deem the main reason is too few buoys cannot represent
diverse semantic information, while too many buoys will
produce undesirable redundancy. We then explore how λrd

affects our model learning. It can be observed from Fig. 7
(c) that our model achieves much better performance when
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Figure 6. Visualization of pixel correspondence. The red arrows
indicate the false matches occur in the model without ABCNet.
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Figure 7. (a) Visualization of prior masks with and without ABC-
Net. (b) Hyperparameter experiments on the number of buoys (K).
(c) Hyperparameter experiments on the weight of representative
decay loss (λrd). Note that the hyperparameter experiments are
conducted using the DCAMA on the most challenging split-2 of
Pascal-5i with ResNet-101 as the backbone.

λrd = 0.1.

4.5. Visualizations

Visualization of the Prior Masks. We visualize the prior
masks originated from PFENet with and without ABCNet
to evaluate the effect of the proposed method. As shown
in Fig. 7(a), it can be observed that the prior masks from the
baseline model cannot clearly indicate the target region as
numerous false matches arise. While thanks to the adaptive
suppression capability of ABCNet, the support background
pixels are less likely to match with foreground ones in the
query. The resulting prior masks are capable of indicating
the location of the target more accurately so as to guide the
classification of query pixels better.

Visualization of the Pixel-level Correspondence. To
more intuitively demonstrate the noise suppression ability
of our method, we visualize the pixel-wise correspondences
using the models with and without our ABCNet, respec-
tively. As shown in Fig. 6, we highlight the five most similar
pixels of a foreground query pixel in the corresponding sup-
port image. We observe that in the absence of ABCNet,
pixel features with distinct semantics sometimes share a
high similarity, and these ambiguous support pixel features
tend to transfer information to the query with a larger weight.
Different from that, the top five pixels tend to line in the fore-
ground of support images when we integrate the ABCNet
into the baseline. This is in line with the core intention of
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Figure 8. Visualization of activation regions of different buoys. As
we can see, different buoys focus on diverse areas. This is because
abundant semantic clues are retained in buoys thanks to BMM.

ABCNet,i.e., filtering out as many false matches as possible.

Visualization of Constructed Buoys. We further visual-
ize the activation area of different buoys. As shown in Fig. 8,
where we randomly select 5 from 64 buoys activation maps
in different tasks. We can observe that diverse semantic
regions are highlighted by different buoys. Another observa-
tion is that the key semantic clues in the current task scene
can be well captured. For example, in the first-row of Fig. 8,
important scene components such as human, bicycle, car,
ground and roof are activated by various buoys. It should be
noted that in some cases, different buoys focus on similar
semantic regions as in the last two columns in Fig. 8, which
further justifies the necessity of considering the structural
similarity between related buoys in our proposed ACM.

5. Conclusion
In this paper, we propose to mitigate the false matches

encountered in the pixel-level correlation modules in FSS
by introducing a series of representative reference buoys.
We design a novel plug-and-play ABCNet which includes a
Buoys Mining Module (BMM) and an Adaptive Correlation
Module (ACM). BMM is responsible for constructing multi-
ple buoys that are tailored for specific tasks and ACM aims
to conduct adaptive matching via the optimal transport algo-
rithm. We conduct extensive experiments on three baseline
methods and achieve consistent performance gains on two
benchmarks in both 1-shot and 5-shot settings.
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