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Abstract. A large number of absolute pose algorithms have been pre-
sented in the literature. Common performance criteria are computational
complexity, geometric optimality, global optimality, structural degenera-
cies, and the number of solutions. The ability to handle minimal sets of
correspondences, resulting solution multiplicity, and generalized cameras
are further desirable properties. This paper presents the first PnP solu-
tion that unifies all the above desirable properties within a single algo-
rithm. We compare our result to state-of-the-art minimal, non-minimal,
central, and non-central PnP algorithms, and demonstrate universal ap-
plicability, competitive noise resilience, and superior computational effi-
ciency. Our algorithm is called Unified PnP (UPnP).
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1 Introduction

The Perspective-n-Point (PnP) algorithm is a fundamental problem in geometric
computer vision. Given a certain number of correspondences between 3D world
points and 2D image measurements, the problem consists of fitting the absolute
position and orientation of the camera to the measurement data. Our contribu-
tion is a PnP solution that unifies most desirable properties within one and the
same algorithm. We call our method Unified PnP (UPnP), and the benefits are
summarized as follows:

– Universal applicability : UPnP is applicable to both central and non-central
camera systems (i.e. generalized cameras). In contrast, existing methods are
often designed exclusively for the central case (e.g. [6], [17]).

– Optimality : Similarly to [16], we employ the object space error. However, we
do not rely on convex relaxation techniques, which is why our solution is
theoretically guaranteed to return a geometrical optimum. Likewise, UPnP
is guaranteed to find the global optimum.

– Linear complexity : Similarly to many recent works (e.g. [11]), our algorithm
solves the PnP problem with O(n) (linear) complexity in the number of
points. From a practical point of view, the O(n)-complexity argument is
stronger than simple algebraic linearity of the solution. Despite of returning
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comparable results to [16] in terms of noise resilience, our method does not
employ any iterative parts and therefore turns out to be faster by about
two orders of magnitude.

– Completeness: The proposed solution is complete in the sense of return-
ing multiple solutions. It therefore supports the minimal case, as well as
other possible ambiguous-pose situations [15]. Moreover—in contrast to re-
cent works such as [6] and [17]—our algorithm still does not return any
spurious solutions. The returned number of solutions is precisely equal to
the maximum number of solutions in the minimal case. Similarly to [17], we
furthermore exploit 2-fold symmetry in the space of quaternions in order to
avoid solution duplicates.

– Homogeneity : We parametrize rotations in terms of unit-quaternions—a non-
minimal parametrization of rotations that is free of singularities and leads
to homogeneous accuracy.

UPnP unifies all listed properties. It is inspired by several recent works,
and—using first-order optimality conditions—solves the problem by a closed-
form computation of all stationary points of the sum of squared object space
errors. The conceptual innovations lie in the avoidance of a Lagrangian formu-
lation, a geometrically consistent application of the Gröbner basis methodol-
ogy, and a general technique to circumvent 2-fold symmetry in quaternion-based
parametrizations.

The paper is structured as follows: The related work is presented in the follow-
ing subsection. Section 2 then outlines the core theoretical contributions behind
our approach. Section 3 finally contains a detailed comparison to existing algo-
rithms, show-casing state-of-the-art noise resilience at superior computational
efficiency.

1.1 Related work

While an exhaustive review of the vast literature on the PnP problem goes be-
yond the extend of this introduction, we nonetheless note that—after more than
170 years of related research—still new solutions with interesting properties keep
being discovered. The most recent advancement in the minimal case—the P3P
problem—was presented in 2011 [9]. The P3P problem uses 3 correspondences
and returns at most 4 solutions. One of the major recent achievements in the
PnP case then consists of proving that the problem can be solved accurately in
linear time with respect to the number of correspondences. The first solution
to provide accurate results under linear complexity is EPnP [11] (2009). This
algorithm is computationally efficient, however depends on a special variant with
only 3 control points in the planar case, minimizes only an algebraic error, and
fails in situations of solution multiplicity (i.e., in situations of pose-ambiguity
such as for instance the minimal case). The first O(n)-successor that succeeds
in all these criteria was presented in 2011 and is called DLS [6]. It performs
measurement data compression in linear time and then computes all stationary
points of the sum of squared object-space errors in closed-form, using polynomial
resultant techniques. It achieves a least-squares geometric error in linear time,
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Table 1. Comparison of properties of various O(n) PnP algorithms. Note, however,
that [16] contains an iterative convex relaxation part, which means that the effective
computational complexity of SOS is in fact unbounded (hence the brackets).

EPnP DLS OPnP SOS GPnP UPnP

reference [11] [6] [17] [16] [8] this
year 2009 2011 2013 2008 2013 2014
central cameras X X X X X
non-central cameras X X X
geometric optimality X X X
linear complexity X X X (X) X X
multiple solutions X X X
singularity-free rotation param. X X X X X

however employs a singularity-affected rotation matrix parametrization [2]. The
most recent contribution in O(n)-complexity PnP solvers is then given by the
OPnP algorithm [17] (2013), which essentially replaces the Cayley parametriza-
tion by the singularity-free non-unit quaternion parametrization, thus leading
to improved accuracy. They also exploit 2-fold symmetry in the solver, thus
avoiding the duality of quaternion solutions. Although they achieve very good
accuracy, we still note that—from a theoretical point of view—their algorithm
again falls back to an algebraic error.

An interesting fact is that—while searching for all stationary points—the
DLS and OPnP algorithms find 27 and 40 solutions, respectively. In other words,
despite of using more than the minimum amount of information, those algorithms
return far more solutions than a minimal solver. It is true that many of the
stationary points can be neglected because they are either complex or local
maxima/saddle points, but still the computation at least intermediately reaches
a seemingly too high level of complexity.

More recently, people have also started to consider the generalized PnP prob-
lem, which consists of estimating the position of a non-central or generalized
camera given correspondences between arbitrary non-central rays in the camera
frame and points in the world frame. [3], [14], and [8] present minimal solvers for
the generalized PnP problem, proving that 3 correspondences are still enough
and that the maximum number of possible solutions corresponds to 8. Regarding
the generalized PnP problem, there has been less progress to date. [5] presents
the first linear complexity solution, however minimizes only an algebraic error.
It fails in situations of multiple solutions (e.g. the minimal case), and depends
on a special variant for the planar case. The linear complexity solution presented
in [16] (SOS) minimizes a geometric error, however again fails in the mentioned
special cases, and depends on a computationally intensive, iterative convex re-
laxation technique. Yet another algebraic O(n) solution to the generalized PnP
problem has been discovered in 2013 [8] (GPnP), and essentially consists of a
generalization of the EPnP algorithm to the non-central case. It thus comes with
similar drawbacks.

Table 1 shows a summary of all relevant algorithms and their properties,
including the proposed UPnP algorithm.
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2 Theory

We now proceed to the theoretical part of our method. We start by recalling
the geometry of the absolute pose problem in the generalized case, which covers
the classical perspective situation as well. We then derive a cost-function in the
space of quaternions reflecting the geometrical error as a function of absolute
orientation. All local minima are found by a closed-form computation of all sta-
tionary points. This is achieved by computing a Gröbner basis over the first-order
optimality conditions and the quaternion unit-norm constraint. We also present
an alternative unit-norm constraint allowing us to exploit 2-fold symmetry in
quaternion-space, thus reducing the number of solutions by a factor of two. We
finally obtain an ideal number of solutions, and also introduce an easy way to
verify second-order optimality and polish the final result.

2.1 Geometry of the absolute pose problem

Fig. 1. Point measurements of a generalized
camera.

Let pi ∈ R3 describe a point in
the world frame, R ∈ SO3 the
rotation from the world frame to
the camera frame, and t ∈ R3

the position of the world origin
seen from the camera frame. The
measurements of pi in the cam-
era frame are given by non-central
rays expressed by αifi +vi, where
vi ∈ R3 represents a point on the
ray, fi ∈ R3 the normalized direc-
tion vector of the ray, and αi the
depth. The situation is explained
in Figure 1. The non-central pro-
jection equation results to

αifi + vi = Rpi + t, i = 1, . . . , n. (1)

R, t, and αi are the parameters to be computed from the inputs fi, vi, and pi.
In case the generalized camera is given by a multi-camera system, the vi’s are
simply the positions of the respective camera centers inside the main common
frame. In this case, some fi’s may obviously have the same v for reflecting the
non-centrality of their measurement. For a central camera, vi = 0, i = 1, . . . n.

Let I be the 3× 3 identity matrix. We can stack all constraints intof1 −I

. . .
...

fn −I



α1

...
αn

t

 =

R
. . .

R


p1

...
pn

−
v1

...
vm

⇔ Ax = Wb−w. (2)
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2.2 Derivation of the objective function

The derivation of the objective function is based on the work of [6]:

– We start by applying block-wise matrix inversion to eliminate the unknown
translation and point depths from the projection equations. (Result 1)

– The obtained expressions are then transformed into a residual that notably
corresponds to the object-space error. (Definition 1)

– Factorization of the rotation matrix in the sum of squared object space errors
then results in a fourth-order energy function of the quaternion variables.
The measurement data inside this expression is compressed in form of linear-
complexity summation terms. (Results 2 & 3)

We now proceed to the details of this derivation.
Result 1 : x appears linearly in (2) and can be eliminated by

x = (ATA)−1AT (Wb−w) =

[
U
V

]
(Wb−w). (3)

The pseudo-inverse of A is hence partitioned such that the depth parameters

are a function of U =
[
uT
1 . . .uT

n

]T
, and the translation is a function of V.

Back-substitution results in the rotation-only projection equation[
uT
i (Wb−w)

]
fi + vi = Rpi + V(Wb−w). (4)

Proof: The symbolic solution of x is mainly based on [6]. The derivation of
the symbolic form of U and V is based on a) ‖fi‖ = 1, b) the Schur-complement,
and c) block-wise matrix inversion. It results in

V3×3n = [V1, ...,Vn], with

Vi = H[fif
T
i − I] ∈ R3×3 i = 1, ..., n, and (5)

H3×3 =

(
nI−

n∑
i=1

fif
T
i

)−1
(6)

Un×3n =

fT1 . . .
fTn

+

f
T
1

...
fTn

V =

u
T
1

...
uT
n

 , with

uT
i = [uT

i1, . . . ,u
T
in]1×3n, i = 1, ..., n, and

uT
ij = fTi δ(i, j) + fTi Vj ∈ R1×3, i, j = 1, ..., n. (7)

uT
i represents row i of U, and uT

ij represents the 1 × 3 element of U in row

i and column 3j. We obtain αi = uT
i (Wb − w) and t = V(Wb − w), and

back-substitution in (1) yields the rotation-only constraint (4).1 �
1 It is worth noting here that the DLS mechanism is the only one to solve for the

linear elements (i.e. depth and translation) in a homogeneous way. While this might
be irrelevant for the central case, where we can assume that the z-coordinate in the
camera frame is bigger than 1, there is no guarantee on any coordinate in the gener-
alized camera situation. In the non-central case, the presented resolution therefore
has better accuracy than the ones in [11] and [17].
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Definition 1: The residual of an estimate for R is the object space error

ηi =
[
uT
i (Wb−w)

]
fi + vi −Rpi −V(Wb−w)

=

n∑
j=1

uT
ijRpjfi −

n∑
j=1

VjRpj −Rpi −
n∑

j=1

uT
ijvjfi +

n∑
j=1

Vjvj + vi. (8)

Result 2: The residual vector of a correspondence can be expressed as ηi =
Ais + βi, where the elements of s are quadratic functions of the quaternion
variables, and Ai and βi depend on the measurements only, and can be computed
with linear complexity in the number of correspondences.

Proof: By substituting (7) in (8) and resolving the summations over terms
including δ(i, j), we arrive at

ηi =fTi Rpifi −Rpi + fTi

[
n∑

j=1

VjRpj

]
fi −

n∑
j=1

VjRpj − fTi vifi + vi − fTi J fi + J ,

(9)

where J =
∑n

j=1 Vjvj does not depend on any unknowns or i anymore, so it
can be computed ahead with linear complexity (just like H). All elements that
do not depend on R can be summarized in

βi = −(fTi vifi − vi + fTi J fi − J ) = −(fif
T
i − I)(vi + J ) ∈ R3. (10)

We then adopt the singularity-free unit-quaternion parametrization q =
[q0, q1, q2, q3]T such that q20 + q21 + q21 + q23 = 1. R in function of q is given by

R =

q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

 . (11)

Rpi is a 3-vector of polynomials, each one having quadratic monomials in the
quaternion parameters. Grouping those monomials in

s = [q20 , q
2
1 , q

2
2 , q

2
3 , q0q1, q0q2, q0q3, q1q2, q1q3, q2q3]T ∈ R10, (12)

we obtain Rpi = Φ(pi)3×10s, where Φ is given by

Φ(pi) =

pix pix −pix −pix 0 2piz −2piy 2piy 2piz 0
piy −piy piy −piy −2piz 0 2pix 2pix 0 2piz
piz −piz −piz piz 2piy −2pix 0 0 2pix 2piy

 . (13)

Using (13) and (10) in (9) results in

ηi =fTi Φ(pi)sfi − Φ(pi)s + fTi

[
n∑

j=1

VjΦ(pj)

]
sfi −

[
n∑

j=1

VjΦ(pj)

]
s + βi, (14)

and defining G =
∑n

j=1 VjΦ(pj)—another linear complexity term that can be
computed ahead—we finally obtain
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ηi =fTi Φ(pi)sfi − Φ(pi)s + fTi Gsfi − Gs + βi

=
[
(fif

T
i − I)(Φ(pi) + G)

]
s + βi = Ais + βi.� (15)

Result 3: The squared scalar residual for the i-th measurement is given by

εi = ηTi ηi = s̃T
[
AT

i Ai AT
i βi

βT
i Ai β

T
i βi

]
s̃, (16)

where s̃ =
[
sT 1

]T
. This notably corresponds to the squared object-space error

(i.e. the squared spatial orthogonal distance between point and ray)2. The total
error over all measurements finally results in

E =
∑
i

εi = s̃T

{∑
i

[
AT

i Ai AT
i βi

βT
i Ai β

T
i βi

]}
s̃ = s̃TMs̃. (17)

Since each Ai and βi can be computed in O(1) (assuming that H, J , and G are
computed ahead), M is computed in O(n). We call this error the compressed
generalized object space error.

Proof : By induction. �

2.3 Universal, closed-form least-squares solution

The energy E is always positive, and its minimization corresponds to solving the
generalized PnP problem with minimal geometric error. Following the concept
presented in [6], the first-order optimality conditions constitute a system of poly-
nomial equations that allows us to compute all stationary points in closed-form
and constant time. They are given by the 4 equations

∂E

∂qj
= 2s̃TM · ∂s̃

∂qj
= 0, j = 0, . . . , 3. (18)

It is easy to recognize that (17) reduces to the central formulation presented in
[6] in case vi = 0 ∀i ∈ {1, . . . , n}. Moreover, since all elements of s are quadratic
in qi, any k · q0, k ∈ R represents a valid solution to the problem if q0 is also
a solution. We avoid this infinity of solutions in the central case by adding the
unit-norm constraint qTq− 1 = 0. The solutions are finally computed using the
Gröbner basis approach.

Our solver leads to 16 solutions only, which is substantially less than the
81 solutions reported in [17] (without considering 2-fold symmetry for the mo-
ment), and less than the 27 solutions reported in [6] despite of using a quaternion
parametrization. The reason lies in the way we search for the Gröbner basis.
Readers familiar with the procedure might recall that the Gröbner basis method

2 The object-space error corresponds to the moment distance and has proven to per-
form very well for pose estimation. Good alternatives are given by angular (geodesic)
distance, and the reprojection error. The latter one, however, does not make sense in
the generalized camera situation, which does not bare a planar projective subspace.
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requires to first solve the problem in a finite prime field, where exact zero cancel-
lations are taking place3. Zp—the field of integers modulo a large prime number
p—is a popular choice. The typical way consists of drawing random values in Zp

for the coefficients of all polynomials, and then proceeding to the Gröbner basis
derivation. This might work in any situation where the polynomial coefficients
are independent. In the present problem, however, this is not the case, and we
can reduce the size of the Gröbner basis by chosing coefficients that inherently
reflect the geometry of the problem. This requires to setup the entire random
problem in Zp, which is done as follows:

– Chose random values in Zp for q, t, vi, and pi.
– Derive the rotation matrix R and the measurement vectors fi.
– Derive the coefficients of the polynomials by applying Section 2.2 in Zp.

Beware that—by chosing random values in Zp—neither q ∈ Z4
p nor fi ∈ Z3

p

fulfill the unit-norm constraint unless we apply the square root in Zp. As an al-
ternative, we simply derive R from q using the non-unit quaternion parametriza-
tion, and apply a modified version of the symbolic block-wise inversion of (ATA)
that accepts non-unit-norm fi (presented in the supplemental material). Note
that these changes only concern the derivation of the random coefficients before
computing the Gröbner basis, we constantly use the unit-quaternion parametriza-
tion in the objective system of equations.

The norm constraint on the quaternion is not needed in the non-central case.
A wrong quaternion-scale only scales the point cloud, and it seems intuitive that
non-central measurements are no longer invariant with respect to such changes.
Interestingly, including the same set of equations than in the central case (i.e.
including the norm constraint) still in combination with properly posed problems
in Zp again reduces the number of solutions from 81 to 16. As can be observed,
the reduction from 81 to 16 solutions is caused by different modifications in
the central and the non-central case. While this might be just a coincidence
given by analogies in the corresponding algebraic varieties, it requires a deeper
investigation going beyond the scope of this paper.

In conclusion, we generate a solver from a properly-posed generalized P3P
problem in Zp as outlined above. We use first-order optimality conditions and the
unit-norm constraint, and the obtained compact generalized P3P solver works
for all scenarios, including P3P, PnP, and generalized PnP. We use our own
Gröbner basis solver generator, which follows the idea presented in [10].

2.4 Comparison to a Lagrangian formulation

The reader might ask why we did not chose a Lagrangian formulation with unit-
norm constraint. We verified by experimentation that, in both the central and
the non-central case, the number of solutions falls back to 80—even if chosing
geometrically consistent coefficients. This is natural, since the Lagrangian for-
mulation eventually computes the projections orthogonal to the level lines of all
80 stationary points onto the unit sphere in the space of quaternions.

3 For details about the Gröbner basis method, the reader is referred to [4] and [10].
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Our formulation is better than the Lagrangian one. In the unconstrained
central case, the infinitly many solutions of ∂E

∂qj
= 0 lie on one-dimensional

varieties that correspond to radial lines intersecting with the origin. Constrained
solutions are obtained by intersecting those varieties with the unit-norm sphere.
It is intuitively clear that the gradient of the norm constraint and the gradient of
(17) are orthogonal in the intersection points, which means that the Lagrangian
multipliers have to be zero for any correct solution. In the non-central case, we
again exploit the speciality of our optimization problem that the constraints
appear to be fulfilled exactly by 16 of our 81 stationary points. This is clear
from the fact that the number of solutions reduces from 81 to 16 if adding the
unit-norm constraint. With ∂E

∂qj
= 0, the partial derivatives of the Lagrangian

by the quaternion variables therefore result in λqj = 0, where λ represents the
Lagrangian multiplier. Since all quaternion variables can never be simultaneously
zero, this implies that λ = 0.

We proved that λ ideally has to be zero, and thus that the Lagrangian for-
mulation implicitly transitions to ours. Instead of computing the projection of
a large variety (i.e. all stationary points), we provide a closed-form solution for
a smaller variety (i.e. those 16 stationary points that idealy fulfill the norm
constraint exactly). Moreover, our formulation leads to a substantially easier
elimination template as well as a 5 times smaller action matrix (note that the
theoretical complexity of an Eigen decomposition is O(n3), which means that in
our case the action matrix decomposition is up to 125 times faster).

2.5 Elimination of two-fold symmetry

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.5

1

Fig. 2. The squared norm constraint in 2D.

Similar to [17], we employ the tech-
nique outlined in [1] to eliminate dou-
ble roots in our polynomial equation
system. The general idea consists of
using only monomials with even total
degree in order to create new equa-
tions in the Macaulay matrix. The
pre-condition however consists of hav-
ing monomials with either only even
or only uneven total degrees in the
initial equations. We do not yet fulfill
this condition because the first-order
optimality conditions only contain un-
even total degrees, while the norm constraint contains only even ones. The con-
dition is met by applying a small trick. We consider the squared unit-norm
constraint (qTq − 1)2 = 0 depicted for 2D in Figure 2 instead of the standard
unit-norm constraint. It can be observed that this function is stationary at q = 0
and when the norm constraint is fulfilled. Adding all first-order derivatives of the
squared norm constraint therefore results in the following system of 8 third-order



10 L. Kneip, H. Li, and Y. Seo

equations which contains only uneven total degrees in the monomials{
s̃TM · ∂s̃

∂qj
= 0, j = 0, . . . , 3

(qTq− 1)qj = 0, j = 0, . . . , 3
. (19)

Since there is one additional solution now (q = 0), the size of the action
matrix for this system becomes 17× 17. Applying the technique for eliminating
2-fold symmetry however reduces the number of solutions to 8. The size of our
final elimination template shrinks to 141 × 149, which is substantially smaller
than all elimination templates mentioned in [17]. The action matrix has a size
of 8 × 8 only, leading to very efficient Eigenvector decomposition. The result is
a drastic reduction in execution time of geometric error minimizers. Moreover,
we note that the number of solutions now elegantly agrees with the maximum
number of solutions for the generalized P3P problem.

2.6 Second-order optimality and root polishing

The above method only computes complex stationary points of (17). Disam-
biguation is done by checking the energy E. Besides, one can easily solve the
chirality ambiguity by checking the sign of the resulting depth parameters. How-
ever, there exist further sanity checks that do not depend on the number of cor-
respondences. For instance, the magnitude of the imaginary part of each Eigen-
value from the Action matrix decomposition should be very small. In order to
also verify second-order optimality, we apply another small trick. Let R0(q0) be
a solution of (17). We can easily compensate for this rotation by replacing all pi

by R0pi, and recomputing M. The stationary point now lies at identity rotation.
The well-conditioned 3D subspace of rotations around q0 = [1 0 0 0]T is now en-
tered by simply switching to the Cayley rotation parametrization c = [c1 c2 c3]T .
s as a function of the Cayley parameters is given by

s =
1

1 + c21 + c22 + c23
[1, c21, c

2
2, c

2
3, c1, c2, c3, c1c2, c1c3, c2c3]T ∈ R10. (20)

It is almost trivial and very efficient to compute the 3 × 1 Jacobian JE and
the 3 × 3 Hessian HE of (17) around c = 0. This allows to easily verify the
presence of a local minimum by checking for positive-definitness of HE |c=0,
as well as perform a single Newton step for root pollishing which is given by
δc = −(HE |c=0)−1 · JE |c=0. More information is provided in the supplemental
material.

3 Experimental evaluation

In this section, we compare UPnP to both central and non-central state-of-
the-art PnP solvers using simulation experiments. We reuse the experimental
evaluation toolbox from [17], and only extend it by an additional algorithm for
the non-central case, plus the proposed UPnP algorithm. We start by looking
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at the central case, and include experiments on regular, planar, near-singular,
and minimal situations. Near-singular configurations are defined as world point
distributions with low variance. We then show a comparative study for the non-
central case, again including both the n-point and the minimal situation. We
conclude the section by evaluating the computational efficiency. Due to space
limitations, we constrain our results to the rotation errors only. However, the
conclusions wouldn’t change if we would instead evaluate the translational error.
The absolute rotation error between the ground truth rotation Rtrue and the
estimated rotation R is given by εrot = maxk∈{1,2,3} cos−1(rTk,truerk), where
rk,true and rk are the k-th column of Rtrue and R, respectively. This error metric
might not be standard, but we use it in order to remain consistent with [17].

3.1 The central case

In the central case, we create random experiments by assuming a virtual per-
spective camera with focal length 800, and add different levels of Gaussian noise
to the measurements in the image plane. Up to 20 random world points are
then generated with varying distribution depending on the type of experiment.
In the normal case, the points are distributed such that they lie in the range
[−2, 2]× [−2, 2]× [4, 8] in the camera frame, and then transformed into the world
frame by assuming a random transformation. In the planar case, they are picked
in the range [−2, 2] × [−2, 2] in the plane z = 0 in the world frame, and then
transformed into the camera frame using a random transformation. In the quasi-
singular case, they are again defined in the camera frame with a distribution of
[1, 2]× [1, 2]× [4, 8].

The comparison algorithms in the central case are the exact same algorithms
than the ones used in [17]. They are given by EPnP+GN (or EPnP in the planar
case) [11], RPnP [12], DLS [6] (plus its non-degenerate version DLS+++), SDP
[16], LHM [13] (plus the planar variant SP+LHM), and OPnP itself [17]. We
name the SDP algorithm here in agreement with [17], but note however that the
original, more accurate name of this method is SOS. As indicated in Figures 3
and 4, our algorithm leads to state-of-the-art noise resilience in all situations.
Figure 4 also shows a comparison to [9], proving that the minimal case is still
accurately solved.

The careful reader might notice that we plot only the median error in the
minimal, planar, and quasi-singular cases. The reason is that the universal ap-
plicability and the superior computational efficiency naturally lead to reduced
robustness in special situations. As clearly underlined by the low median errors,
the solver is however able to generally find a good solution in any special situa-
tion too. Failures are easily pruned when all sanity checks are enabled. For the
present experiments, however, we configured UPnP to always return at least one
solution.

3.2 The non-central case

In the non-central case, we assume a multi-camera system with 4 virtual spherical
cameras with focal length 800, and add noise in the tangential plane of each
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Fig. 3. Comparison of various central state-of-the-art PnP solvers w.r.t. varying point
numbers (1st row, noise level=2 pixels) and varying noise levels (2nd row, n=10) in
case of normal 3D points.
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Fig. 4. Comparison of various central state-of-the-art PnP solvers w.r.t. varying point
numbers (1st row, noise level=2 pixels) and varying noise levels (2nd row, n=10) in
the case of planar (1st column) and near singular (2nd column) point configurations.
The last figure indicates a comparison to the state-of-the-art minimal solver.
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Fig. 5. Comparison of various noncentral state-of-the-art PnP solvers w.r.t. varying
point numbers (1st row, noise level=2 pixels) and varying noise levels (2nd row, n=10)
in case of normal 3D points. The last figure indicates a comparison to a minimal solver.

measurement. The points are now always defined in the world frame, and the
camera to world transformation is picked such that the distance between the
camera and the world origin does not exceed 2. The world points are picked
such that they have an average distance between 4 and 8 from the world frame
origin, and are evenly distributed in all directions.

We compare our algorithm against SDP [16] and GPnP [8]. SDP (i.e. SOS)
is the only alternative algorithm that is also applicable to both the central and
the non-central case. As indicated in Figure 5, UPnP maintains state-of-the-art
noise resilience in the non-central case too, slightly outperforming SDP. The
figure also shows a comparison to the minimal solver of [8], proving that the
minimal case is still accurately solved.

3.3 Computational efficiency

Figure 6 illustrates the computational efficiency, highlighting the clear advantage
of our method. For 100 points, our method outperforms OPnP by a factor of 10,
and SDP—the only general alternative that can handle both the central and the
non-central case—by a factor of 150. We have to emphasize that the core part
of our algorithm is implemented in a mex-file. Some algorithms, such as EPnP,
have a more efficient pendant in C++ too, but we sticked here to a baseline
implementation. All experiments have been executed on an Intel Core 2 Duo
with 2.8 GHz.

Note: Our algorithm is publically available within the open-source library
OpenGV[7], and all results can easily be reproduced.
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Fig. 6. The first plot shows a comparison of the computational efficiency of all algo-
rithms. The second plot shows a zoomed-in version to clarify the comparison between
the most efficient algorithms. Despite the fact that UPnP is geometrically optimal and
completely general, the computational efficiency stays among the fastest ones. The last
figure shows an image that is augmented by the contours of a box after recomputing
the pose of the camera from SIFT feature correspondences to a reference image with
known point depths.

3.4 Results on real data

We again repeat the experiments from [17], and recompute the pose of the camera
in front of a box from matched SIFT feature correspondences. An augmented
image with the contours of the box is indicated in Figure 6, showing the similarly
visually pleasing results.

4 Conclusion

The scientific relevance of the presented material is given by the fact that we
provide for the first time a completely general and highly computationally ef-
ficient solution to one of the most fundamental problems in geometric vision.
We present a non-iterative minimization of a geometric error in linear time, and
are able to handle the minimal, non-minimal, central, and non-central cases, as
well as any special situations in which multiple solutions can appear. With an
execution time of only a couple of ms for hundreds of points, we outperform
the state-of-the art generalized geometric error minimizer by about two orders
of magnitude, while having improved noise resilience. Besides our generalized
formulation, the conceptual cornerstones of our method that lead to a reduced
number of solutions are a geometrically consistent application of the Gröbner
basis method, as well as the avoidance of Lagrangian multipliers in the special
case of optimization problems that are known to fulfill the constraints exactly
in the noise-free case. We furthermore provide an alternative to L2-norm con-
straints with only uneven terms, which potentially eases the general exploitation
of p-fold symmetries in polynomial solvers.
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