
Independent Mechanism Analysis
and the Manifold Hypothesis

Shubhangi Ghosh 1,∗ Luigi Gresele 2 Julius von Kügelgen 2,3

Michel Besserve 2 Bernhard Schölkopf 2

1 Columbia University, USA
2 Max Planck Institute for Intelligent Systems, Tübingen, Germany

3 University of Cambridge, United Kingdom
shubhangi.ghosh@columbia.edu

{luigi.gresele,jvk,besserve,bs}@tue.mpg.de

Abstract

Independent Mechanism Analysis (IMA) seeks to address non-identifiability in non-
linear Independent Component Analysis (ICA) by assuming that the Jacobian of the
mixing function has orthogonal columns. As typical in ICA, previous work focused
on the case with an equal number of latent components and observed mixtures.
Here, we extend IMA to settings with a larger number of mixtures that reside on
a manifold embedded in a higher-dimensional space—in line with the manifold hy-
pothesis in representation learning. For this setting, we show that IMA still circum-
vents several non-identifiability issues, suggesting that it can also be a beneficial
principle for higher-dimensional observations when the manifold hypothesis holds.
Further, we prove that the IMA principle is approximately satisfied with high proba-
bility (increasing with the number of observed mixtures) when the directions along
which the latent components influence the observations are chosen independently
at random. This provides a new and rigorous statistical interpretation of IMA.

1 Introduction

Nonlinear Independent Component Analysis (ICA) provides a principled approach to representation
learning (Gresele et al., 2020; Hyvärinen and Morioka, 2016; Khemakhem et al., 2020). It postulates
that the observed variables are nonlinear mixtures of independent latent components, and focuses
on whether it is possible to reconstruct the latent components from the mixtures—formalized through
the notion of identifiability. When the mixing is nonlinear, the model is provably non-identifiable
without additional assumptions (Hyvärinen and Pajunen, 1999), i.e., the latent variables cannot
be recovered. Independent Mechanism Analysis (IMA; Gresele et al., 2021) seeks to address this
problem by restricting the class of considered mixing functions. Specifically, IMA postulates that
the columns of the Jacobian of the mixing function, which describe how each latent component
influences the observed mixtures, are orthogonal. This can be viewed as encoding a non-statistical
notion of independence among these influences which is inspired by the principle of Independent
Causal Mechanisms (ICM) (Janzing and Schölkopf, 2010; Peters et al., 2017).

While identifiability of IMA remains an open question, Gresele et al. (2021) showed that IMA can
circumvent certain non-identifiability issues arising in nonlinear ICA by ruling out well-known coun-
terexamples or spurious solutions (Darmois, 1951; Hyvärinen and Pajunen, 1999; Locatello et al.,
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2019). Buchholz et al. (2022) then proved that IMA is, in fact, locally identifiable. Further, Reizinger
et al. (2022) showed that IMA may also provide a way to explain the empirical success of Variational
Autoencoders (VAEs; Kingma and Welling, 2014) in disentangled representation learning. However,
all the aforementioned works on IMA consider a setting with an equal number of latent components
and observed mixtures, the one most typically studied in ICA (Hyvärinen et al., 2001, 2023).2 As a re-
sult, they do not directly apply to cases in which the observed data is high-dimensional and the latents
low-dimensional, as is often the case in representation learning—e.g., for images or biomedical data.

In this work, we address this shortcoming of previous theory and generalize IMA to higher-
dimensional observations. In particular, we adopt the manifold hypothesis (Becker and Hinton,
1992; Bengio et al., 2013; Vincent and Bengio, 2002) which posits that many high-dimensional
data sets that occur in the real world actually lie along low-dimensional manifolds inside that high-
dimensional space (Cayton, 2005; Fefferman et al., 2016).3 In this spirit, we extend the analysis
of IMA to the setting in which observations lie on a low-dimensional Riemannian manifold, with
dimension equal to that of the latent space, embedded in a higher-dimensional observation space.

We show that IMA still helps circumvent non-identifiability issues in this scenario, in the sense that
it rules out several kinds of spurious solutions when the generative model satisfies the manifold
hypothesis. This suggests that IMA may also be useful for more realistic representation learning
settings involving dimensionality reduction. This insight is consistent with work by Cunningham et al.
(2022) which also provides empirical evidence illustrating the benefits of an orthogonality constraint
akin to IMA for unsupervised representation learning with dimensionality reduction—albeit from a
different perspective than the one based on nonlinear ICA and identifiability which we adopt here.

According to Gresele et al. (2021), IMA can intuitively be interpreted as “Nature choosing the direc-
tion of the influence of each source component in the observation space independently and from an
isotropic prior”. Based on the manifold hypothesis, we provide a quantitative argument that formalizes
this statement: when the observations lie on a low-dimensional manifold in the higher-dimensional
ambient space, we show that the IMA principle is approximately satisfied with high probability if
the influence directions are sampled independently and isotropically in the high-dimensional space,
with increasing probability as its dimensionality grows. The argument is based on a concentration
inequality—Levy’s Lemma (see, e.g., Janzing et al., 2010, Lemma 1)—and relies on a construction
which generates smoothened piecewise-affine functions. These functions also play an important role in
the theoretical analysis of deep neural networks (e.g., Montúfar et al., 2014). Our work thus shows that,
under the manifold hypothesis, the IMA principle can be considered the consequence of a genericity
assumption on the data generating process (Besserve et al., 2018; Freeman, 1994; Janzing et al., 2010).

Structure and Main Contributions:

• § 2 briefly reviews independent component analysis and Independent Mechanism Analysis (IMA).
• In § 3, we introduce an extension of the IMA principle under the manifold hypothesis.
• In § 4 we then show that certain common counterexamples to identifiability are ruled out by our

extension of IMA to manifolds.
• In § 5, we show that, when the manifold hypothesis holds, the IMA principle follows from a

genericity assumption on the data-generating process.

2 Background

Independent Comonent Analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001) assumes a data-
generating process where observed mixtures x ∈ Rd are generated by a smooth and invertible mixing
function f : Rd → Rd belonging to a function class F , which takes as input a vector s ∈ Rd sampled
from a distribution with independent components, i.e.,

x = f(s), s ∼ p(s) =

d∏
i=1

pi(si) . (1)

2For linear ICA, identifiability has also been established for the case of more mixtures than sources (Eriksson
and Koivunen, 2004). For nonlinear ICA, Khemakhem et al. (2020) extended existing identifiability results
relying on additional supervision in the form of an auxiliary variable (Gresele et al., 2020; Hälvä and Hyvarinen,
2020; Hyvarinen and Morioka, 2016, 2017; Hyvarinen et al., 2019) to the high-dimensional observation setting.

3In this work, we mostly assume that observations lie exactly on a low-dimensional manifold, not close to it.
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Can we recover the independent components based only on the observed mixtures? Unfortunately,
when f is nonlinear, the model is non-identifiable without additional constraints (Darmois, 1951;
Hyvärinen and Pajunen, 1999)—i.e., the independent components cannot be unambiguously recovered
from the observed mixtures. This can be shown through suitable spurious solutions, which transform
the mixtures x into independent components which may themselves be mixtures of the true ones.
Definition 2.1 (Darmois construction (Darmois, 1951; Hyvärinen and Pajunen, 1999)). The Darmois
construction gD : Rd → (0, 1)d transforms a given distribution to the uniform distribution by
recursively applying the conditional Cumulative Distribution Function (CDF) transform,

gD
i (x1:i) =

∫ xi

−∞
p(x′

i|x1:i−1)dx
′
i . (2)

Definition 2.2 (Rotated-Gaussian measure preserving Automorphism (MPA) (Khemakhem et al.,
2020; Locatello et al., 2019)). The rotated-Gaussian MPA transforms a given density into a Gaussian
density by the CDF-transform, applies as orthonormal rotation, and inverts the preceding transfor-
mation. Let Fs(s) and Φ(z) denote the CDFs of the latent source distribution and the multivariate
Gaussian distribution respectively. For an orthogonal matrix, R ∈ O(d), the “rotated-Gaussian”
MPA aR(ps) is defined as,

aR(ps) = F−1
s ◦Φ ◦R ◦Φ−1 ◦ Fs . (3)

Towards the goal of achieving identifiability, Independent Mechanism Analysis (IMA) (Gresele
et al., 2021) constraints the mixing function class F . IMA postulates that the influence directions of
individual latent sources in the mixing process, given by ∂f

∂si
, are orthogonal—i.e.,

log |Jf (s)| =
d∑

i=1

log

∥∥∥∥ ∂f

∂si
(s)

∥∥∥∥ . (4)

While identifiability of IMA is still an open question, it provably rules out both the Darmois construc-
tion and the rotated-Gaussian MPA (Gresele et al., 2021); empirically, IMA allows recovery of the
ground truth sources when the data-generating process satisfies the IMA principle (Gresele et al.,
2021), as well as under mild model misspecification (Sliwa et al., 2022). Moreover, IMA was proved
to be locally identifiable (Buchholz et al., 2022).

3 IMA under the Manifold Hypothesis

In the following, we revisit the generative process in (1) as follows: the observed mixtures lie on
a d-dimensional Riemannian manifold (a smooth manifold with a d-dimensional tangent space),
X ⊆ Rm,m ≥ d, which is embedded in the m-dimensional Euclidean space. The mixing function
f : Rd → X is a diffeomorphism4 from the latent space to the observation manifold: the observations
therefore lie on a low-dimensional manifold within the high-dimensional ambient space, in line with
the manifold hypothesis (Becker and Hinton, 1992; Bengio et al., 2013; Vincent and Bengio, 2002). To
study IMA in this setting, the main definitions in (Gresele et al., 2021) need to be adapted, since they
were originally tailored to the setting where latent and observation spaces have the same dimension.

We start by extending the IMA principle (Gresele et al., 2021, Principle 4.1). We say that when the
manifold hypothesis holds, the IMA principle implies the following equality:

d∑
i=1

log
∥∥∥∥ ∂f

∂si
(s)

∥∥∥∥ =
1

2
log
∣∣J⊤

f (s)Jf (s)
∣∣ ∀ s ∈ Rd, (5)

where Jf (s) is the Jacobian of f at s. Equation (5) therefore states that the area element on the

Riemannian manifold X at x = f(s), given by
√∣∣J⊤

f (s)Jf (s)
∣∣, equals the product of the norms of

the influences ∥ ∂f
∂si
∥ that span that element. It is therefore an orthogonality condition, similar to the

one expressed in eq. (4) for m = d: note however that eq. (5) is meaningful for any m ≥ d.

Based on (5), we redefine the local IMA contrast (Gresele et al., 2021, Def. 4.2), which quantifies the
violation of the IMA principle at a given point x = f(s), and state two of its useful properties.

4A diffeomorphism is an invertible function between two manifolds such that both the function and its inverse
are continuously differentiable.
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Definition 3.1 (Local IMA contrast). The local IMA contrast, cIMA(f , s), of f at point s, is defined as

cIMA(f , s) =

d∑
i=1

log

∥∥∥∥ ∂f

∂si
(s)

∥∥∥∥− 1

2
log
∣∣J⊤

f (s)Jf (s)
∣∣ . (6)

Proposition 3.2. The local IMA contrast satisfies the following properties:

(i) cIMA(f , s) ≥ 0 with equality iff. all columns ∂f
∂ui

(s) of Jf (s) are orthogonal.

(ii) cIMA(f , s) is invariant to left multiplication of Jf (s) by an orthogonal matrix and to right
multiplication by permutation and diagonal matrices.

Property (i) is a geometric condition: given the vectors that span a parallelepiped, the largest volume
is obtained when the spanning vectors are orthogonal. Property (ii) states that permutation and
rescaling of the latent factors, or any orthonormal basis transformation applied to the columns of the
Jacobian Jf (s), do not affect the value of cIMA. Next, we redefine the global IMA contrast (Gresele
et al., 2021, Def. 4.5).
Definition 3.3 (Global IMA contrast). The global IMA contrast, CIMA, is defined as the expected
value of the local IMA contrast with respect to the source distribution, ps.

CIMA(f , ps) = Es∼ps [cIMA(f , s)] =

∫
cIMA(f , s)ps(s)ds. (7)

Proposition 3.4. The global IMA contrast (CIMA(f , ps) satisfies:

1. CIMA(f , ps) ≥ 0 with equality iff. Jf (s) has orthogonal columns almost surely wrt ps.

2. CIMA(f , ps) = CIMA(f̃ , ps̃) for any f̃ = f ◦ h−1 ◦P−1 and s̃ = Ph(s) where P ∈ Rd×d is
a permutation matrix and h(s) = (h1(s1), h2(s2), ..., hd(sd)) is an invertible element-wise
function.

Property (i) states that CIMA can be used to verify whether the IMA condition holds almost surely with
respect to the latent distribution, ps. Property (ii) states that the IMA constrast for high-dimensional
observations is blind to permutation and element-wise transformation of the sources.

4 Ruling out “spurious solutions” under the Manifold Hypothesis

Measure preserving automorphisms (MPAs) applied in the latent space can be used to construct
spurious solutions, by composition with the true mixing function (Xi and Bloem-Reddy, 2023).
Below, we show that the global IMA contrast defined above rules out spurious solutions based on
different MPAs. All proofs of the results in this section can be found in App. A.

Gaussian-rotated MPA, Defn. 2.2. We prove that IMA rules out the MPA in Defn. 2.2 for the case
in which the mixing function is a conformal5 (angle-preserving) map—a special case of the IMA
function class which, for the m = d case, was proved to be identifiable in (Buchholz et al., 2022).
Theorem 4.1. Consider (f , ps) such that CIMA(f , ps) = 0, and moreover f : Rd → X is a conformal
map. Given R ∈ O(n), assume additionally that ∃ at least one non-Gaussian si whose associated
canonical basis vector ei is not transformed by R−1 = R⊤ into another canonical basis vector ej .
Then, CIMA(f ◦ aR(ps), ps) > 0.

Measure preserving automorphism based on the Darmois construction The Darmois construc-
tion (Defn. 2.1) does not directly yield a spurious solution when the dimension of the observed space
does not match one of the latent space.6 Instead, we construct a spurious solution by applying the
Darmois construction to an orthonormal rotation of the latent distribution. We show that the IMA
contrast defined in our work can distinguish between such a counterexample and the ground truth (up
to tolerable ambiguities like permutation and element-wise transformations).

5For a formal definition of a conformal map, refer to App. A
6This is because the CDF transform cannot define a map between a distribution on a higher-dimensional

ambient space (observations) to the uniform distribution on a lower-dimensional space (latent sources).
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Theorem 4.2. Let (f , ps) ∈MIMA where f : Rd → X is a bijective map and the sources s are such
that at most one factor si is Gaussian. Further, we assume that f is a conformal map. Consider an
orthonormal transformation O ∈ Rd×d applied on s, x̃ = Os ∈ Rd. We further consider that the
orthonormal transfomation given by O is not trivial, i.e. it does not correspond to a permutation
or an element-wise scaling. The observations x ∈ X and the transformed variables x̃ have a
bijective relationship. Then any Darmois solution (f̃D, pu) based on applying gD to x̃ satisfies
CIMA(f̃

D, pu) > 0. Here, f̃D = f ◦ O⊤ ◦ gD−1. Thus a solution satisfying CIMA(f , ps) can be
distinguished from (f̃D, pu) based on the contrast CIMA.

Thm. 4.1 and Thm. 4.2 therefore suggest that IMA may be beneficial for identifiable representation
learning even when the manifold hypothesis holds, extending previous findings for m = d.

5 Genericity of IMA under the Manifold Hypothesis

In this section, we provide a formal interpretation and justification of IMA as the consequence of a
genericity assumption—i.e., that the IMA principle is typically satisfied when “Nature [chooses] the
direction of the influence of each source component in the observation space independently” (Gresele
et al., 2021). We do so by defining a process to sample mixing functions from a lower-dimensional
source space to a higher-dimensional observation space, and show that the IMA principle in equa-
tion (5) is typically approximately satisfied if the influences are sampled independently from an
isotropic prior. While this may not be the only way to sample mixing functions which are typically
close to the IMA function class, our proposed construction provides the first rigorous statistical
argument that justifies the non-statistical notion of independence expressed in (5).

We construct mixing functions f : Rd → Rm with m ≫ d such that, locally, the Jacobian of f
has columns Jf ,i(s) := Jf (s)[:, i] that are sampled independently and isotropically, i.e., from a
spherically invariant distribution pr over Rm:

Jf ,1(s),Jf ,2(s), . . . ,Jf ,d(s)
i.i.d∼ pr .

The i-th column of the Jacobian, Jf ,i(s), represents the influence of the i-th source on the observations:
this sampling procedure formalizes the intuition that every source influences the mixtures indepen-
dently. We then proceed to show that typical samples from this process satisfy the IMA principle with
high probability. Note that orthogonality of the Jacobian columns is not enforced from the outset:
rather, it emerges as a property typically (approximately) satisfied by samples from this process.

In § 5.1, we prove an upper bound on the global IMA contrast CIMA(f , ps), satisfied with high
probability by linear maps. Next, in § 5.2, we show how to generate nonlinear maps with locally
independent influences, and prove a bound for CIMA(f , ps) of maps sampled from this procedure. For
detailed proofs and additional technical details on the results in this section, see App. B.

5.1 Bound on the local IMA contrast

Theorem 5.1. Consider linear maps, f(s) = Js, where the columns of J ∈ Rm×d are sampled from

a spherically symmetric distribution pr over Rm; J1,J2, ...,Jd
i.i.d∼ pr. For such maps, the IMA

contrast satisfies for m≫ d and δ > 0:

Pr [CIMA(f , ps) ≤ δ] ≥ 1−min

{
1, exp

(
2 log d− κ(m− 1)

δ2

d2

)}
.

This theorem is based on a concentration result for isotropic priors given by Levy’s lemma (Janzing
et al., 2010, Lemma 1). Levy’s lemma shows that a smooth function of an isotropically sampled
direction concentrated around its mean with probability growing exponentially in the dimension
of the sample space. We observe that in our sampling process, each sampled influence direction is
orthogonal to the other sampled directions in expectation, i.e. the pairwise inner products of the
sampled directions is equal to zero in expectation. We employ Levy’s lemma to derive a concentration
result on the inner products to obtain the result in Thm. 5.1.
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5.2 Bound on the global IMA contrast

We now describe a sampling procedure, and derive bounds for CIMA(f , ps), for non-linear maps
f : Rd → Rm,m ≫ d. We retain the principle that locally the columns of the Jacobian of f are
sampled from a spherically invariant distribution. Our procedure therefore samples piece-wise linear
functions. We restrict the latent domain to be bounded, in particular the d-dimensional unit cube,
[0, 1]d, and consider a grid-like partition on the same. On each grid unit, we sample a linear function
by the previously described sampling process in § 5.1.

5.2.1 Defining non-linear functions as composition of affine functions

Definition 5.2. On the source domain s ∈ [0, 1]d, define an axis-aligned square grid partition, with
width δ ∈ R; the number of grid parts along a dimension, k ∈ [d] is therefore equal to p = ⌈ 1δ ⌉+1.7

Consider matrices J(1),J(2), ...,J(p) ∈ Rm×d with columns sampled from a spherically symmetric
distribution, pr; J

(i)
1 ,J

(i)
2 , ...,J

(i)
d

i.i.d∼ pr∀i ∈ [p]. The sampled function, f : [0, 1]d → Rm, is
specified as as a sum of coordinate-wise functions f(s) =

∑d
k=1 fk(sk), where

fk(sk) :=

p∑
t=1

(J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ)1sk∈((t−1)δ,tδ] . (8)

Observe that the Jacobian of the sampled function, Jf (s), has independent and isotropic Jaco-
bian columns almost everywhere by construction; therefore we expect that the local IMA contrast,
cIMA(f , s) is small almost everywhere. To derive a bound on the global IMA contrast, CIMA(f , ps),
we require the Jacobian, Jf (s), to be defined everywhere—i.e., f should be continuous, injective and
smooth. We briefly explain that the resulting f is indeed continuous and injective, see App. B for
details. We then consider a smooth approximation of the sampled function.

Continuity of sampled functions. Note that coordinate-wise functions, fk : [0, 1] → Rm, k ∈
[d]; f(s) =

∑d
k=1 fk(sk) are piece-wise linear and continuous by definition. The sampled function

f is therefore continuous as it is a sum of continuous functions.

Injectivity of sampled functions. We show that the subspaces spanned by the images of coordinate-
wise functions fi : [0, 1] → Rm of f are linearly independent, said to be in direct sum, and that
the coordinate-wise functions are injective. We then show that the injectivity of coordinate-wise
functions that are in direct sum entails the injectivity of f(s) =

∑d
k=1 fk(sk).

Smooth approximation of sampled functions. We discuss a smooth approximation to the sampled
functions from Defn. 5.2 by means of a sinusoidal approximation to the step function.

Definition 5.3 (Smooth step function). We define the smooth step function as 1̃ϵ : R→ R as

1̃ϵ(s) =


0 , s ≤ −ϵ ,
1
2 sin

(
πs
2ϵ

)
+ 1

2 , −ϵ < s ≤ ϵ ,

1 , s > ϵ .

Definition 5.4 (Smooth approximation to grid-wise linear functions). We define the smooth approxi-
mation of f : [0, 1]d → Rm as f̃ϵ(s) =

∑d
k=1 f̃ϵ,k(sk) for 0 < ϵ≪ δ where

f̃ϵ,k(sk) :=

p∑
t=1

(
J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ

)
.(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ))

We show that f̃ϵ(s) obtained in Defn. 5.4 is continuous and injective. For a detailed exposition on this
section, refer to App. B.

Theorem 5.5 (Properties of smoothened functions). Functions f̃ϵ : [0, 1]d → Rm defined in Defn. 5.4
are continuously differentiable in Rd, in addition to being continuous and injective, are continuously
differentiable for 0 < ϵ≪ δ arbitrarily small.

7⌈.⌉ is the ceiling function.
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We can now prove the following bound on the global IMA contrast CIMA(f , ps) for the class of
nonlinear functions specified in Defn. 5.4.

Theorem 5.6. Consider the map f̃ϵ : [0, 1]
d → Rm sampled randomly from the procedure 5.4. Then

the map f̃ϵ : Rd → Rm for 0 < ϵ ≪ δ and any finite probability density ps defined over [0, 1]d

satisfies the following bound on the global IMA contrast CIMA(f̃ϵ, ps) for m≫ d and δ > 0:

Pr
[
CIMA(f̃ϵ, ps) ≤ δ

]
≥ 1−min

{
1, exp

(
2 log d− κ(m− 1)

δ2

d2

)}
Thm. 5.6 shows that for smooth piecewise-linear functions f̃ϵ : [0, 1]d → Rm sampled according
to Defn. 5.4, the IMA principle (eq. (5)) is typically approximately satisfied: i.e., the probability of
the columns of Jf̃ϵ

(s) being close to orthogonal increases as the dimension of the observation space
grows. We achieve this result by using the previously derived bound on the IMA contrast for linear
functions (Thm. 5.1), and applying it locally on the interior of the grid. We then show that the local
IMA contrast, cIMA(f , s), is finite on the grid boundary and can be neglected since the volume of the
boundary is small.

Thm. 5.6 thus enables us to view the IMA principle as the consequence of a genericity assumption for
the sampling process in Defn. 5.4. This is because the functions sampled in accordance with Defn. 5.4
do not satisfy the IMA principle by construction: instead, it is the typical draws from the sampling
procedure that approximately satisfy the principle when the observation space is high-dimensional.

6 Conclusion

We extended IMA theory under the manifold hypothesis, revisiting the definitions from previous
works, and show that IMA provably circumvents non-identifiability issues even in this setting.
Our results pave the way for an application of IMA to realistic representation learning involving
dimensionality reduction. We also showed that the IMA principle can be seen as the consequence of
a genericity assumption when the manifold hypothesis holds: this clarifies the interpretation of IMA.
In particular, when the latent data-generating factors influence the observed mixture independently,
the orthogonality condition given by IMA typically holds.
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APPENDIX

Overview

• Appendix A provides proofs of technical results in Section 3.

• Appendix B provides a detailed exposition on Section 5.

A Proof of technical results in Section 3

A.1 Preliminaries

We provide some preliminary definitions that we refer to in the main text and the remainder of the
Appendix.

Definition A.1 (Diffeomorphism, Chapter 1 (Milnor and Weaver, 1997)). A diffeomorphism is an
invertible function, f , which maps one differentiable manifold onto another such that both the function
and its inverse are smooth.

Definition A.2 (Spherically symmetric distribution). A distribution pr on the m-dimensional
Lebesgue measure is said to be spherically symmetric if ∀x ∈ Rm,x

pr∼ Ox, where O ∈ Rm×m is
an orthonormal matrix.

A.2 Properties of the local IMA contrast under the Manifold Hypothesis

Proposition 3.2. The local IMA contrast satisfies the following properties:

(i) cIMA(f , s) ≥ 0 with equality iff. all columns ∂f
∂ui

(s) of Jf (s) are orthogonal.

(ii) cIMA(f , s) is invariant to left multiplication of Jf (s) by an orthogonal matrix and to right
multiplication by permutation and diagonal matrices.

Proof.

(i) cIMA(f , s) =
1
2D

l
KL(J

⊤
f (s)Jf (s)) ≥ 0 with equality iff. J⊤

f (s)Jf (s) is a diagonal matrix.
J⊤
f (s)Jf (s) is diagonal iff. the columns of Jf (s),

∂f
∂ui

(s) are orthogonal.

Thus, we have shown that cIMA(f , s) ≥ 0 with equality iff all columns ∂f
∂ui

(s) of Jf (s) are
orthogonal.
Remark: To show that Dl

KL(J
⊤
f (s)Jf (s)) ≥ 0, Hadamard’s determinant inequality is

used in a different form than in (Gresele et al., 2021). In particular, for positive definite
matrices, in our case W = J⊤

f (s)Jf (s), the determinant is upper-bounded by the product
of its diagonal entries.

|det(W)| ≤
d∏

i=1

wii (9)

with equality iff. W is diagonal. This is obtained by considering the Cholesky decomposition
of W = NN⊤ which uniquely exists for any real positive definite matrix, where N ∈ Rd×d

|det(W)| = |det(N)|2 ≤
d∏

i=1

∥ni∥2 =

d∏
i=1

wii

where ni are the columns of N. Equality holds iff. the columns of N are orthogonal i.e. W
is diagonal.
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(ii) Invariance to left multiplication by orthogonal matrix
W = Jf (s) ∈ Rm×d, O ∈ Rm×m is an orthogonal matrix. W̃ = OW.

1

2
Dl

KL(W̃
⊤W̃) =

1

2
Dl

KL(W
⊤O⊤OW)

=
1

2
Dl

KL(W
⊤ImW)

=
1

2
Dl

KL(W
⊤W)

This corresponds to a change of basis in the observation space.

Invariance to right multiplication by a permutation matrix
Let W̃ = WP where P ∈ Rd×d is a permutation matrix. Then W̃ is just W with
permuted columns. Clearly, the sum of log-column-norms does not change with the order
of the summands. Further, log|W̃⊤W̃| = log|P⊤W⊤WP| = log|P⊤|+ log|W⊤W|+
log|P| = log|W⊤W| because the absolute value of the determinant of the permutation
matrix is one.

Invariance to right multiplication by a diagonal matrix
Let W̃ = WD where D ∈ Rd×d is a diagonal matrix.
For the first term, we know that the columns of W̃ are scaled versions of the columns of
W, i.e. w̃i = wi, ∥w̃i∥ = |di|∥wi∥. For the second term, we use the decomposition of the
determinant:

log |W̃⊤W̃| = log |D⊤W⊤WD|
= 2 log |D|+ log |W⊤W|

= log |W⊤W|+ 2

d∑
i=1

log |di|

Taken together, we obtain:
d∑

i=1

log ∥w̃i∥ −
1

2
log |W̃⊤W̃| =

d∑
i=1

log |di|∥wi∥ −
1

2

(
log |W⊤W|+ 2

d∑
i=1

log |di|

)

=

d∑
i=1

log ∥wi∥+
d∑

i=1

log |di| −
1

2
log |W⊤W|

−
d∑

i=1

log |di|

=

d∑
i=1

log ∥wi∥ −
1

2
log |W⊤W|

A.3 Properties of the global IMA contrast under the Manifold Hypothesis

Proposition 3.4. The global IMA contrast (CIMA(f , ps) satisfies:

1. CIMA(f , ps) ≥ 0 with equality iff. Jf (s) has orthogonal columns almost surely wrt ps.

2. CIMA(f , ps) = CIMA(f̃ , ps̃) for any f̃ = f ◦ h−1 ◦P−1 and s̃ = Ph(s) where P ∈ Rd×d is
a permutation matrix and h(s) = (h1(s1), h2(s2), ..., hd(sd)) is an invertible element-wise
function.

In (Gresele et al., 2021), for property (i) Jf (s) can be expressed as O(s)D(s) where O(s),D(s) are
orthogonal and diagonal matrices respectively in the condition for equality. This is no longer possible
in the case for high dimensional observations because the Jacobian Jf (s) is no longer a square matrix.
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Proof.

(i) From property (i) of Proposition 4.4, we know that cIMA(f , s) ≥ 0. Hence, CIMA(f , ps) ≥ 0
follows as a direct consequence of integrating the non-negative quantity cIMA(f , s) ≥ 0.

Equality is attained iff. cIMA(f , s) = 0 almost surely wrt ps which holds when Jf (s) has
orthogonal columns almost surely wrt ps.

(ii) f̃ = f ◦ h−1 ◦ P−1 and s̃ = Ph(s) where P ∈ Rd×d is a permutation matrix and
h(s) = (h1(s1), h2(s2), ..., hd(sd)) is an invertible element-wise function. Consider

CIMA(f̃ , ps̃) =

∫
cIMA(f̃ , s̃)ps̃(̃s)ds̃ =

∫
cIMA(f̃ , s̃)ps(s)ds (10)

where for the second equality we have used ps̃(̃s)ds̃ = ps(s)ds since P ◦ h is an invertible
transformation. It thus suffices to show that

cIMA(f̃ , s̃) = cIMA(f , s) (11)

at any point s̃ = P ◦ h(s). To show this we write

Jf̃ (̃s) = Jf◦h−1◦P−1(Ph(s))

= Jf◦h−1(P−1 ◦Ph(s))JP−1(Ph(s))

= Jf◦h−1(h(s))JP−1(Ph(s))

= Jf (h
−1 ◦ h(s))Jh−1(h(s))JP−1(Ph(s))

= Jf (s)D(s)P−1

where we have used the chain rule for differentiability, Jh−1(h(s)) is a diagonal matrix
D(s) and JP−1 = P−1 for any s. Note that P−1 is also a permutation matrix.

The equality in (11) follows from applying (ii) from Proposition 4.4. Substituting (11) into
(10), we finally obtain

CIMA(f̃ ,ps̃) = CIMA(f ,ps)

A.4 Ruling out “spurious solutions" under the manifold hypothesis

“Spurious solutions" to nonlinear ICA on an observation manifold are constructed by composing
conformal maps – a subclass of the IMA function class – with measure preserving automorphisms on
the latent space. We define conformal maps between Riemannian manifolds below, and comment on
the Jacobian of conformal maps.

Definition A.3 (Conformal map between Riemannian manifolds (Ishii, 1957; Stepanov and Tsyganok,
2017)). A diffeomorphism f : (M,g) → (M̄, ḡ) between two Riemannian manifolds, M and M̄,
equipped with the Riemannian metric tensors, g and ḡ, is called conformal if it preserves the angles
between any pair curves. In this case, the metric tensors g and ḡ are related as ḡ = e2σg for some
scalar function σ ∈ C2M.

We make an observation on conformal maps from the d-dimensional Euclidean space to a d-
dimensional Riemannian manifold living in a higher m-dimensional Euclidean space (m ≥ d).
In overview, this observation derives from the definition of conformal maps on manifolds A.3 that
the columns of the Jacobian Jf (s) are equal in norm for all values in the domain of f , here s ∈ Rd,
which is equivalent to the condition that J⊤

f (s)Jf (s) is a scalar multiple of the identity matrix.

In our scenario, we consider a map between the Riemannian manifolds, M ≡ Rd to M̄ ≡ X ⊂ Rm,
where m≫ d. Note that the d-dimensional Euclidean space is also a Riemannian manifold.

The tangent space of M ≡ Rd is set of the canonical basis vectors, e1, e2, ..., ed at all points in Rd.
Hence, the metric tensor associated with M ≡ Rd is the identity matrix g ≡ Id at all points in Rd.
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The metric tensor associated with the Riemannian manifold, M̄ ≡ X is written as ḡ ≡ J⊤
f (s)Jf (s)

at the point f(s) ∈ X , where s ∈ Rd upon which the bijective map f : Rd → X acts.

For the map, f to be conformal A.3, we require that ḡ = e2σg for some scalar function σ ∈ C2M.
This is equivalent to the condition that J⊤

f (s)Jf (s) = t(s)Id, where t : Rd → R+ is a positive scalar
function. This is further equivalent to Jf (s) having orthogonal columns with the same norm.

We define λ(s) =
√

t(s) as the conformal factor (equal to the norm of the column vectors of Jf (s)).

Rotated-Gaussian measure preserving automorphism We now present the theorem which shows
that the IMA contrast rules out rotated-Gaussian measure preserving automorphism solutions.
Theorem 4.1. Consider (f , ps) such that CIMA(f , ps) = 0, and moreover f : Rd → X is a conformal
map. Given R ∈ O(n), assume additionally that ∃ at least one non-Gaussian si whose associated
canonical basis vector ei is not transformed by R−1 = R⊤ into another canonical basis vector ej .
Then, CIMA(f ◦ aR(ps), ps) > 0.

Proof. Recall the definition

aR(ps) = f−1
s ◦ Φ ◦R ◦ Φ−1 ◦ fs

For notational convenience, we denote σ = Φ−1 ◦ fs and write
aR(ps) = σ−1 ◦R ◦ σ

Note that since both fs and Φ are element-wise transformations so is σ.

First by using property (ii) of Prop. 3.4 (invariance of CIMA to element-wise transformations), we
obtain

CIMA(f ◦ aR(ps), ps) = CIMA(f ◦ σ−1 ◦R ◦ σ, ps) = CIMA(f ◦ σ−1 ◦R, pz)

with z = σ(s) such that pz is an isotropic Gaussian distribution.

Suppose for a contradiction that CIMA(f ◦ σ−1 ◦R, pz) = 0.

According to property (i) of Prop. 3.4, this entails that the matrix

Jf◦σ−1◦R(z)⊤Jf◦σ−1◦R(z) = R⊤Jσ−1(z)⊤Jf (σ
−1(z))⊤Jf (σ

−1(z))Jσ−1(z)R (12)
is diagonal almost surely w.r.t pz. Moreover, smoothness of ps and f implies the matrix expression
of 12 is a continuous function of z. Thus Jf◦σ−1◦R(z)⊤Jf◦σ−1◦R(z) needs to be diagonal for all
z ∈ Rd.

Since f is a conformal map,
Jf (σ

−1(z))⊤Jf (σ
−1(z))

is diagonal. Moreover, since σ is an element-wise transformation, Jσ−1(z)⊤ and Jσ−1(z) are also
diagonal. Taken together, this implies that

Jσ−1(z)⊤Jf (σ
−1(z))⊤Jf (σ

−1(z))Jσ−1(z) (13)

is diagonal (i.e. 12 is of the form R⊤D(z)R for some diagonal matrix D(z)).

Without loss of generality, we assume the first dimension s1 of s is non-Gaussian and satisfies the
assumptions relative to R (axis not invariant nor sent to another canonical axis).

Now, since both the Gaussian CDF Φ and the CDF fs are smooth (the latter by the assumption that ps
is a smooth density), σ is a smooth function and thus has continuous partial derivatives.

By continuity of the partial derivative and the non-Gaussianity of s1, the first diagonal element ∂σ−1
1

∂z1

of Jσ−1 must be strictly monotonic in a neighborhood of some z01 .

On the other hand, our assumptions related to R entail that there are at least two non-vanishing
coefficients in the first row of R. Let us call i ̸= j such pairs of coordinates, i.e. r1i ̸= 0 and r1j ̸= 0.

Now consider the off-diagonal term (i, j) of Jf◦σ−1◦R(z)⊤Jf◦σ−1◦R(z) which we assumed must be
0. Since the term in 13 is diagonal, this off-diagonal term is given by

n∑
k=1

(
∂σ−1

k

dzk
(zk)

)2 ∥∥∥∥ ∂f

dsk
◦ σ−1(z)

∥∥∥∥2 rkirkj = n∑
k=1

(
∂σ−1

k

dzk
(zk)

)2

λ(σ−1(z))2rkirkj = 0
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By definition of conformal map between Riemannian manifolds A.3, the square of the conformal
factor is a strictly positive function.

λ(σ−1(z))2 > 0∀z
Thus, for all z we must have

n∑
k=1

(
∂σ−1

k

dzk
(zk)

)2

rkirkj = 0 (14)

Now consider the first term
(

∂σ−1
1

dz1
(z1)

)2
r1ir1j in the sum.

Recall that r1ir1j ̸= 0, and that ∂σ−1
1

dz1
(z1) is strictly monotonic on a neighborhood of z01 .

As a consequence,
(

∂σ−1
1

dz1
(z1)

)2
r1ir1j is also strictly monotonic with respect to z1 on a neighborhood

of z01 (where the other variables (z2, z3, ..., zn) are left constant), while the other terms in 14 are left
constant because σ is an element-wise transformation.

This leads to a contradiction as 14 (which should be satisfied for all z) cannot constantly stay zero as
z1 varies within the neighborhood of z01 .

Hence, our assumption that CIMA(f ◦ σ−1 ◦R, pz) = 0 cannot hold.

We conclude that CIMA(f ◦ σ−1 ◦R, pz) > 0.

Measure preserving automorphism based on the Darmois construction
Following are helper lemmata to prove Theorem 4.2, which rules out a counterexample based on the
Darmois construction.
Lemma A.4. Jacobian of the Darmois construction, gD(x), in Definition 2.1 is lower triangular.

Proof. On applying the recursive Darmois construction, we obtain latent variables z = gD(x) ∼
Unif([0, 1]d). The Darmois construction is invertible since the (conditional) cumulative distribution
function is injective. Consider the inverse of the Darmois construction, fD such that X = fD(z).
We observe from 2.1 that x1 is related to all the coordinates of z = (z1, z2, ..., zd), z2 is related to
Z≥2 = (z2, z3, ..., zd) and so on. Hence, we take note of the observation that the Jacobian of fD is
lower-triangular.

Lemma A.5. Consider a matrix Ã = AO, where Ã ∈ Rn×d,A ∈ Rn×d,O ∈ Rd×d. A is a tall
matrix which has orthogonal columns with unit norm i.e. A⊤A = Id, and O is an orthonormal
matrix. Then, Ã has orthogonal columns with unit norm i.e. Ã⊤Ã = Id.

Proof.

Ã⊤Ã = (AO)⊤(AO)

= O⊤A⊤AO

= O⊤O = Id

Lemma A.6. Consider a matrix, Ã = AT, where A ∈ Rn×d,T ∈ Rd×d. A has orthogonal
columns with unit norm i.e. A⊤A = Id, and T is a lower-triangular matrix. Ã has orthogonal
columns iff. T is diagonal.

Proof. T is diagonal. =⇒ Ã has orthogonal columns.

Ã⊤Ã = (AT)⊤(AT)

= T⊤A⊤AT

= T⊤T = T2
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Ã⊤Ã is a diagonal matrix, hence Ã has orthogonal columns. Ã has orthogonal columns. =⇒ T
is diagonal.

We know that D = Ã⊤Ã is diagonal, by definition of orthogonality of the columns of Ã.

D = Ã⊤Ã = TTA⊤AT

= T⊤T

Consider the determinant of D, |D|, and the determinant of T⊤T, |T⊤T|. |D| =
∏d

i=1 Dii =∏d
i=1 ∥Ti∥2. Also, |T⊤T| = |T|2 =

∏d
i=1 T

2
ii, since the determinant of a triangular matrix is the

product of its diagonal elements.

D = T⊤T, |D| = |T⊤T|
d∏

i=1

∥Ti∥2 =

d∏
i=1

T 2
ii

=⇒ T is diagonal.

Lemma A.7. A smooth function f : Rd → Rd whose Jacobian is diagonal everywhere is an
element-wise function, f(s) = (f1(s1), f2(s2), ..., fd(sd)).

Proof. Let f be a smooth function with a diagonal Jacobian everywhere.

Consider the function fi(s) for any i ∈ 1, 2, ..., d. Suppose for a contradiction that fi depends on
sj for some j ̸= i. Then there must be at least one point s∗ such that ∂fi

sj
(s∗) ̸= 0. However, this

contradicts the assumption that Jf is diagonal everywhere (since ∂fi
sj

is an off-diagonal element for
i ̸= j ). Hence, fi can only depend on si for all i. i.e. f is an element-wise function.

Theorem 4.2. Let (f , ps) ∈MIMA where f : Rd → X is a bijective map and the sources s are such
that at most one factor si is Gaussian. Further, we assume that f is a conformal map. Consider an
orthonormal transformation O ∈ Rd×d applied on s, x̃ = Os ∈ Rd. We further consider that the
orthonormal transfomation given by O is not trivial, i.e. it does not correspond to a permutation
or an element-wise scaling. The observations x ∈ X and the transformed variables x̃ have a
bijective relationship. Then any Darmois solution (f̃D, pu) based on applying gD to x̃ satisfies
CIMA(f̃

D, pu) > 0. Here, f̃D = f ◦ O⊤ ◦ gD−1. Thus a solution satisfying CIMA(f , ps) can be
distinguished from (f̃D, pu) based on the contrast CIMA.

Proof. The theorem follows the following bijective maps:

x ∈ X ←→
(i)

s ∈ Rd ←−→
(ii)

x̃ ∈ Rd ←−→
(iii)

s̃ ∈ Rd

The bijective maps are described as follows:

(i) x = f(s), s = f−1(x)

(ii) x̃ = Os,O ∈ Rd×d

(iii) s̃ = gD(x̃) by the Darmois construction 2.1

s̃ is mixed with respect to s since gD ̸= O⊤ as the Jacobians cannot match, JgD ̸= JO⊤ unless
gD is an element-wise transformation. JgD is a triangular matrix by A.4, and JO⊤ = O⊤ is an
orthonormal matrix.

We want to check if the solution, (f̃D, pu) satisfies IMA, i.e. CIMA(f̃
D, pu) = 0. This is satisfied if

Jf̃D (s̃) has orthogonal columns almost surely.
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Jf̃D (s̃) = Jf◦O◦gD−1(s̃)

= Jf (O ◦ gD−1
(s̃))JO(gD−1

(s̃))JgD−1(s̃)

= Jf (O ◦ gD−1
(s̃))OJgD−1(s̃)

Consider A = Jf (O ◦ gD−1
(s̃)),T = JgD−1(s̃). Since f is a conformal map, A has orthogonal

columns with the same norm. Without loss of generality, we consider that the norm of the columns of
A is one. T is a lower triangular matrix by A.4.

Jf̃D (s̃) = AOT

= ÃT Ã has orthogonal columns with unit norm by A.5

For Jf̃D (s̃) to have orthogonal columns, T is diagonal (by A.6).

Thus, for CIMA(f̃
D, pu) = 0, T has to be almost surely diagonal w.r.t ps̃.

Consider an off-diagonal element of T = JgD−1(s̃) =
∂gD−1

i

s̃j
for i ̸= j, and because continuous

functions which are zero almost everywhere must be zero everywhere, we conclude that ∂gD−1
i

s̃j
= 0

everywhere for i ̸= j, i.e. the Jacobian JgD−1(s̃) is diagonal everywhere.

Hence, we conclude from Lemma A.7 that gD−1 must be an element-wise function, gD−1
(s̃) =

(gD
−1
1 (s̃1), g

D−1
2 (s̃2), ..., g

D−1
d (s̃d)).

Since s̃ has independent components by construction, it follows that x̃i = (gD
−1
i (s̃i) and x̃j =

(gD
−1
j (s̃j) are independent for any i ̸= j. This implies that O is a trivial matrix, i.e. a permutation or

element-wise scaling. This is a contradiction to our theorem assumption.

We conclude that JgD−1(s̃) cannot be diagonal almost everwhere, and hence, CIMA(f̃
D, pu) > 0.

Thus a solution satisfying CIMA(f , ps) can be distinguished from (f̃D, pu) based on the contrast CIMA.

B Genericity of IMA under the manifold hypothesis

In this section, we provide a detailed exposition of the genericity arugument for IMA under the
manifold hypothesis, presented in Section 5 of the main text.

B.1 Levy’s Lemma

Genericity claims typically rely on high-dimensional concentration results (Janzing and Schölkopf,
2010; Janzing et al., 2010). In our work, we heavily use Levy’s lemma, which is concentration result
on smooth functions of vectors sampled from spherically symmetric priors around their mean.
Lemma B.1 (Lévy’s Lemma (Janzing et al., 2010)). Let g: Um → R be a L-Lipschitz continuous
function on the m-dimensional sphere. If a point u on Dm is randomly chosen according to an
O(m)-invariant prior, it satisfies

|g(u)− ḡ| ≤ ϵ

with probability at least 1− exp(−κ(m− 1)ϵ2/L2) for some constant κ where ḡ can be interpreted
as the median or average of g(u).

B.2 Bound on the local IMA contrast

Following are helper lemmata for proving Theorem 5.1, which presents a high probability upper
bound on the local IMA contrast, cIMA(f , s), on functions, f : Rd → Rm, sampled according to a
statistical process which tries to emulate the IMA princicple, see section 5.1 in the main text.
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Lemma B.2. Consider a random matrix V ∈ Rm×d with columns v1,v2, ...vd
i.i.d∼ pr where pr is a

finite spherically symmetric distribution (A.2) on the Lebesgue measure over Rm. Then v1,v2, ...,vd

are non-zero linearly independent with probability 1.

Proof. We prove the statement by induction. v ∼ pr ̸= 0 with probability 1 since the probability
mass of pr at v = 0 is infinitesimally small. By the induction hypothesis, v1,v2, ...,vk

i.i.d∼ pr are
linearly independent, i.e. they span a k-dimensional subspace in Rm, Dk. Consider vk+1 ∼ pr.
The probability that vk+1 ∈ Dk is infinitesimally small. In fact, pr is finite at all points and the
volume of a k-dimensional linear subspace with respect to the Lebesgue measure defined on Rm

is infinitesimally small. Thus, the vectors v1,v2, ...,vk,vk+1 are linearly independent and span
a (k + 1)-dimensional linear subspace in Rm. Hence, we conclude that if v1,v2, ...vd

i.i.d∼ pr,
v1,v2, ...,vd are linearly independent with probability 1.

Lemma B.3 (Spherically invariant distributions (lodzimierz Bryc, 1995)). Suppose X is an m-
dimensional random vector with spherically symmetric distribution. Then, X = RU, where the
random variable U ∼ Unif(Um) is uniformly distributed on the unit sphere Um ⊂ Rm, R ≜ ∥X∥ ≥
0 is real valued, and random variables (R,U) are statistically independent.
Lemma B.4. Consider Wi,Wj ∼ Unif(Um) where Um is the unit sphere in Rm. Then,
⟨Wi,Wj⟩ ≜ ⟨wi,Wj⟩ for any wi ∈ Um where ≜ represents being congruent in distribution.

Proof. First we show that ⟨wi,Wj⟩ has the same distribution for all wi ∈ Um i.e. ⟨wi,Wj⟩ ∼
pd ∀wi ∈ Um.

For any orthonormal matrix O ∈ Rm×m,

⟨wi,Wj⟩ ≜ ⟨wi,OWj⟩ Wj ∼ Unif(Um) which is a spherical invariant distribution
∼=
〈
O⊤wi,Wj

〉
Since any wi,wk ∈ Um are related through an orthonormal transformation, ⟨wi,Wj⟩ ∼ pd ∀wi ∈
Um.

To show ⟨Wi,Wj⟩ ∼= ⟨wi,Wj⟩ for any wi ∈ Um:

P(⟨Wi,Wj⟩ = c) =

∫
wi

P(⟨Wi = wi,Wj⟩ = c)P(Wi = wi)dwi

= P(⟨wi,Wj⟩ = c)

∫
wi

P(Wi = wi)dwi for any wi ∈ Um

By ⟨wi,Wj⟩ ∼ pd ∀wi ∈ Um

= P(⟨wi,Wj⟩ = c)

Hence, ⟨Wi,Wj⟩ ≜ ⟨wi,Wj⟩ for any wi ∈ Um.

Lemma B.5 (Lower bounds on determinants of matrices, Corollary 3 in (Brent et al., 2014)). If
A = I−E ∈ Rn×n, |Eij | ≤ ϵ for 1 ≤ i, j ≤ n,Eii = 0 for 1 ≤ i ≤ n, and (n− 1)ϵ ≤ 1, then

|A| ≥ (1− (n− 1)ϵ)(1 + ϵ)n−1

and the inequality is sharp. A non-sharp lower bound is as follows:

|A| ≥ 1− nϵ (15)

Note that the non-sharp bound in (15) holds when the diagonal elements of E, Eii are non-zero.
Theorem 5.1. Consider linear maps, f(s) = Js, where the columns of J ∈ Rm×d are sampled from

a spherically symmetric distribution pr over Rm; J1,J2, ...,Jd
i.i.d∼ pr. For such maps, the IMA

contrast satisfies for m≫ d and δ > 0:

Pr [CIMA(f , ps) ≤ δ] ≥ 1−min

{
1, exp

(
2 log d− κ(m− 1)

δ2

d2

)}
.

17



Remark: A sharper lower bound for the local IMA contrast is as follows,

cIMA(f , s) ≤
1

2
(− log(1− (d− 1)ϵ)− (d− 1) log(1 + ϵ))

with (high) probability ≥ 1−min
{
1, exp(2 log d− κ(m− 1)ϵ2)

}
for m≫ d and ϵ > 0.

Proof. Computing cIMA(f , s)( 6) relies on Jf (s) being full column-rank. This holds by Lemma B.2.
Further, |J⊤

f (s)Jf (s)| is finite as all the columns of Jf (s), Jf ,1(s),Jf ,2(s), ...,Jf ,d(s) are non-zero.

By Lemma B.3, Jf (s) = WD, where D = diag(∥Jf ,1(s)∥, ∥Jf ,2(s)∥, ..., ∥Jf ,d(s)∥) and the
columns of W, w1,w2, ...,wd ∼ Unif(Um) where Um is the unit sphere in Rm.

Hence, W⊤W = Id +E where Eii = 0. Consider the off-diagonal elements Eij = ⟨Wi,Wj⟩ for
i ̸= j. ⟨Wi,Wj⟩ is congruent in distribution to ⟨wi,Wj⟩ for any wi ∈ Um by Lemma B.4.

Consider g(Wj) = ⟨wi,Wj⟩ for a given wi ∈ Um. EWj
(g(Wj)) = 0 since Wj comes from a

spherically invariant distribution centered at 0. Further, g(.) is Lipschitz with L = 1 since ∥wi∥ = 1.

By Lévy’s Lemma B.1,

P(|g(Wj)| ≤ ϵ) ≥ 1− exp(−κ(m− 1)ϵ2) for arbitrarily small ϵ .

Since Eij ≜ g(Wj),

P(|Eij | ≤ ϵ) ≥ 1− exp(−κ(m− 1)ϵ2) for arbitrarily small ϵ . (16)

P

 ⋂
i,j∈[d],i̸=j

Eij ≤ ϵ

 = 1− P

 ⋃
i,j∈[d],i̸=j

Eij ≥ ϵ


≥ 1−min

{
1,Σi,j∈[d],i̸=jP(Eij ≥ ϵ)

}
By union bound of probability

≥ 1−min
{
1, d2e−κ(m−1)ϵ2

}
By 16

(17)

= 1−min
{
1, e2 log d−κ(m−1)ϵ2

}
(18)

Hence, for m≫ d,
⋂

i,j∈[d],i̸=j Eij ≤ ϵ with high probability.

We write the local IMA contrast cIMA(f , s) as a function of W⊤W and the column norms of the
Jacobian, Jf (s) so that we can bound it.

B.3 Bound on the global IMA contrast

Defining non-linear functions as composition of two affine functions We consider the initial
scenario of partitioning the domain of the map, f : Rd → Rm, into two half-spaces P(0) and P(1)

defined as follows. Given a non-zero vector w ∈ Rd and c ∈ R,

P(0) = {s ∈ Rd,w⊤s ≤ c} and P(1) = Rd \ P(0) = {s ∈ Rd,w⊤s > c} .

To define f , we glue together two affine maps across the partition boundary. The affine maps are
defined by the following local Jacobians,

Jf (s) =

{
J(0), s ∈ P(0)

J(1), s ∈ P(1) .

As previously mentioned, we locally retain the sampling procedure defined in the previous section—
i.e., locally, the columns of the Jacobian of f ,Jf (s) are sampled from a spherically invariant distri-
bution. Let us denote J:,k the k-th column of J. We sample i.i.d. the columns of matrices J(0) and
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J(0) ∈ Rm×d as follows

J
(0)
1 (s),J

(0)
2 (s), ...,J

(0)
d (s)

i.i.d∼ pr ,

J
(1)
1 (s),J

(1)
2 (s), ...,J

(1)
d (s)

i.i.d∼ pr .

where pr is a spherically symmetric distribution in Rm.

We thereby consider the resulting maps of the form,

f(s) =

{
f (0)(s) = J(0)s , w⊤s ≤ c ,

f (1)(s) = J(1)s+ c1 , w⊤s > c .

Before we derive an upper bound on the global IMA contrast, CIMA(f , ps), we introduce lemmas to
ensure that the function is well-defined and well-behaved at every point in the domain:

1. First, we provide the conditions for defining a continuous map f : Rd → Rm,m ≫ d by
composing two affine maps.

2. Second, we discuss how to ensures injectivity of the composition of two affine maps.

3. Finally, we define a smooth approximation to the composition of two affine maps, and show
that such approximation is continuously differentiable (in addition to being continuous and
injective).

In the following lemma, we derive the condition required for local bases across the partition boundary,
w⊤s = c, given by the Jacobians, J(0),J(1) ∈ Rm×d, to be able to define a continuous map.

Lemma B.6 (Conditions on local bases for a continuous map). Consider a map f : Rd → Rm,m≫
d, with full column rank m× d matrices J(0) and J(1) such that

f(s) =

{
f (0)(s) = J(0)s , w⊤s ≤ c ,

f (1)(s) = J(1)s+ c1 , w⊤s > c ,

where w ∈ Rd, c ∈ R, c1 ∈ Rm are given. The local bases of f (0) and f (1), i.e. the columns of J(0)

and J(1), are sampled from a spherically invariant distribution, the columns of J(0) and J(1) are
mutually independent. f is continuous non-linear only if colrank

[
J(0) − J(1)

]
= 1.

Further, if colrank
[
J(0) − J(1)

]
= 1, then ∃w ∈ Rd, c ∈ R, c1 ∈ Rm such that f : Rd → Rm,m≫

d,

f(s) =

{
f (0)(s) = J(0)s , w⊤s ≤ c ,

f (1)(s) = J(1)s ,+c1 w⊤s > c ,

is a continuous non-linear function.

Proof. Consider s ∈ Rd such that w⊤s > c. We define the intersection point i(s) = λ(s)s, λ(s) ∈
(0, 1), of the segment between 0 and s with the partition boundary, w⊤s = c, c > 0 such that
w⊤(λ(s)s) = c. Observe that the Jacobian of the map f : Rd → Rm is as follows:

Jf (s) =

{
J(0) , w⊤s ≤ c ,

J(1) , w⊤s > c .

If we assume f is continuous, in addition to be by definition continuously differentiable within each
half-space, the following holds:

f(s) =

∫ i(s)

0

J(0)ds+

∫ s

i(s)

J(1)ds

= J(0)i(s) + J(1)(s− i(s))

such that

Jf (s) = J(1) + (J(0) − J(1))
∂i(s)

∂s
, whenever w⊤s > c . (19)
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The partition boundary in the domain of f , is defined by w⊤s = c, c > 0, and is thus a (d − 1)-
dimensinoal affine space whose associated vector space is the span ((d− 1)-dimensional) of all ∂i(s)

∂s .
To obtain the correct Jacobian, Jf (s) = J(1), in the half-space w⊤s > c ., we need

(J(0) − J(1))
∂i(s)

∂s
= 0 (20)

Thus, to obtain a continuous map f , dim
(
Null

[
J(0) − J(1)

])
≥ (d − 1). Moreover, to have

a non-linear function, we need the two Jacobian values to be different, such that we require
dim

(
Null

[
J(0) − J(1)

])
= (d− 1).

By the Rank-Nullity Theorem (Wikipedia contributors, 2022),

colrank
(
[J(0) − J(1)]

)
+ dim

(
Null[J(0) − J(1)]

)
= #cols. of [J(0) − J(1)]

Leading to colrank
(
[J(0) − J(1)]

)
= d − (d − 1) = 1 Hence, f is continuous non-linear only if

colrank
[
J(0) − J(1)

]
= 1.

To show the reverse direction, consider the existence of J(0),J(1) ∈ Rm×d s.t.
colrank

[
J(0) − J(1)

]
= 1. Consider the singular value decomposition of

[
J(0) − J(1)

]
=

σuw⊤,u ∈ Rm,w ∈ Rd. To construct a function, f : Rd → Rm, we start by partitioning the
domain into two half space by a hyperplane normal to w, say w⊤s = c for c ∈ R, leading to the
half-spaces definition

P(0) = {s ∈ Rd,w⊤s ≤ c} and P(1) = Rd \ P(0) = {s ∈ Rd,w⊤s > c} .

For the partition boundary, K :=
{
s : w⊤s = c

}
,
(
J(0) − J(1)

)
s = σuw⊤s = cσu. c1 := cσu is a

constant vector in Rm such that ∀s ∈ K,J(0)s = J(1)s+ c1. f : Rd → Rm,m≫ d,

f(s) =

{
f (0)(s) = J(0)s , w⊤s ≤ c ,

f (1)(s) = J(1)s ,+c1 w⊤s > c ,

is a continuous function since, for the exhaustive cases for s ∈ Rd:

1. w⊤s = c

f(s) = J(0)s, and in limit also equal to J(1)s+ c1. Since we have shown that the limit of
the function is equal to the value assumed by the function, f : Rd → Rm is continuous
∀s : w⊤s = c (Theorem 4.6, (Rudin et al., 1964)).

2. w⊤s < c

f(s) = J(0)s is affine in this region, and hence continuous.

3. w⊤s > c

f(s) = J(1)s+ c1 is affine in this region, and hence continuous.

Hence, if ∃J(0),J(1) ∈ Rm×d s.t. colrank
[
J(0) − J(1)

]
= 1, then ∃w ∈ Rd, c ∈ R, c1 ∈ Rm s. t.

f : Rd → Rm,m≫ d,

f(s) =

{
f (0)(s) = J(0)s w⊤s ≤ c

f (1)(s) = J(1)s+ c1 w⊤s > c

}
is a continuous function.

This result leads to one possible way to sample nonlinear mixings approximately satisfying the global
IMA principle.
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Sampling procedure for piecewise affine continuous maps
Observation B.7 (Partition boundaries of continuous maps). For functions f : Rd → Rm,m≫
d,

f(s) =

{
f (0)(s) = J(0)s , w⊤s ≤ c ,

f (1)(s) = J(1)s+ c1 , w⊤s > c ,
,

where J(0),J(1) ∈ Rm×d, one way to achieve colrank
[
J(0) − J(1)

]
= 1 is the following:

1. Sample the columns of J(0) independently from the mentioned spherically symmetric
distribution pr, J(0)

1 ,J
(0)
2 , ...,J

(0)
d

i.i.d∼ pr.

2. To construct J(1), retain any (d−1) columns of J(0) and sample the remaining column,
J
(1)
k ∼ pr.

Notice that the sampling procedure described above is locally equivalent to the one described
in Theorem 5.1. We deliberately retain the same sampling procedure so that we can derive a
similar upper bound to the IMA contrast in the case of non-affine functions defined by joining
two contiguous affine maps (Definition B.8).

We will now show that a consequence of this sampling procedure is that the boundary of the
partition of the domain is constrained to be axis-aligned. The alignment of the partition boundary
w⊤s = c, given by w, is determined by the choice of J(0) and J(1).

Without loss of generality, consider that the last column is newly sampled (B.7) in J(1). Consider
s ∈ Rd such that w⊤s > c. By (20), for continuous f , (J(0) − J(1))∂i(s)∂s = 0. We thus have
the following constraints,

w⊤
(
∂i(s)

∂s

)
= 0;

[
∂i(s)

∂s

]
d.

= 0 (21)

(21) is achieved iff. w defines an axis-aligned (d − 1)-dimensional subspace normal to the
canonical basis vector associated with the index of the column that changes from J(0) to J(1)

(here, the last column), i.e. w = α[0, 0, ..., 1]⊤
Thus, the aforementioned sampling procedure of local bases (B.7) (i.e. the columns of J(0) and
J(1)) to ensure continuity of the resultant manifold, leads to a constraint on the partition of the
domain of f : Rd → Rm, i.e. the partition can only be axis-aligned.

Later in this chapter (Section B.3), when will extend this construction to more expressive maps where
the partition of the input domain is defined as a grid. We will show that axis-alignment of the partition
still allows some degree of expressivity for the resulting class of maps. Those can approximate a
large family of Riemannian manifolds embedded in Rm isomorphic to the d-dimensional Euclidean
space.

Hence, consider the following definition of maps f : Rd → Rm,m ≫ d by composing two affine
maps, incorporating the axis alignement contraint,
Definition B.8 (Maps defined by composing two affine maps). Consider the columns of matrices
J(0) and J(1) are sampled by the following procedure:

1. Sample the d columns of J(0) independently from the mentioned spherically symmetric
distributio, pr, J(0)

:,1 ,J
(0)
:,2 , ...,J

(0)
:,d

i.i.d∼ pr.

2. To construct J(1), retain any (d− 1) columns of J(0) and sample the remaining k-th column,
J
(1)
:,k ∼ pr.

Consider the map f : Rd → Rm,

f(s) =

{
f (0)(s) = J(0)s , sk ≤ c ,

f (1)(s) = J(1)s+ c1 , sk > c ,

where c ∈ R is given and c1 ∈ Rm is set by continuity at the boundary to c1 = c
(
J
(0)
:,k − J

(1)
:,k

)
.
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Note that since the partition boundary for the change of Jacobian is axis-aligned, the map f : Rd →
Rm can be alternatively written as a sum of coordinate-wise functions, f(s) =

∑d
i=1 fi(si) for

s = {s1, s2, ..., sd}. Without loss of generality, we describe the case k = d. The coordinate-wise
functions fi : R→ Rm are then defined as follows:

1. fi(si) = J
(0)
:,i si = J

(1)
:,i si∀i ∈ {1, 2, ..., (d− 1)}

2. fd(sd) =

{
J
(0)
:,d sd sd ≤ td

J
(1)
:,d (sd − td) + J

(0)
:,d td sd > td

for td ∈ R determined by J(0),J(1) ∈ Rm×d.

Next, we show that the functions above defined ( Definition B.8) are injective. The idea is that
injectivity of coordinate-wise functions of f , fi : R → Rm that are in direct sum entails of f(s) =∑d

i=1 fi(si). We first show that the subspaces spanned by the images of fi : R → Rd are linearly
independent, and thereby are in (internal) direct sum (Definition B.9) with respect to the image of
f : Rd → Rm. Then, we show that the coordinate-wise functions, fi : R → Rm are injective, and
conclude that f : Rd → Rm is injective.

Definition B.9 (Internal Direct Sum of Subspaces, Chapter 1 (Roman et al., 2005)). Let V be a vector
space. We say that V is an (internal) direct sum of the family F = {Si|i ∈ K} of subspaces of V if
every vector v ∈ V can be written in a unique way (except for order) as a finite sum of vectors from
the subspaces in F , that is, if for all v ∈ V,

v = u1 + u2 + ...+ un

for ui ∈ Si and furthermore, if
v = w1 +w2 + ...+wn

where wi ∈ Si, then m = n and (after reindexing if necessary) wi = ui for all i = 1, 2, ..., n. If
F = {S1,S2, ...,Sn} is a finite family, we write V = S1

⊕
S2

⊕
...Sn.

Lemma B.10. Consider J(0),J(1) ∈ Rm×d as sampled in Definition (B.8). With probability 1,
the vector space V = span{J(0)

:,1 = J
(1)
:,1 ,J

(0)
:,2 = J

(1)
:,2 , ...,J

(0)
:,(d−1) = J

(1)
:,(d−1),J

(0)
:,d ,J

(1)
:,d } is the

direct sum of the family F = {S1 = span{J(0)
:,1 = J

(1)
:,1 },S2 = span{J(0)

:,2 = J
(1)
:,2 }, ...,Sd−1 =

span{J(0)
:,d−1 = J

(1)
:,d−1},Sd = span{J(0)

:,d ,J
(1)
:,d }}.

Proof. From Lemma B.2, for the scenario m ≫ d, the vectors {J(0)
:,1 = J

(1)
:,1 ,J

(0)
:,2 =

J
(1)
:,2 , ...,J

(0)
:,(d−1) = J

(1)
:,(d−1),J

(0)
:,d ,J

(1)
:,d } are non-zero and linearly independent with probability

1.

Consider v ∈ V,u1,w1 ∈ S1,u2,w2 ∈ S2, ...,ud,wd ∈ Sd such that

v = u1 + u2 + ...+ ud,v = w1 +w2 + ...+wd

By definition B.9, to show V = S1

⊕
S2

⊕
...Sd, we need to show u1 = w1,u2 = w2, ...,ud =

wd.

Let

• u1 = c1J
(0)
:,1 , w1 = c′1J

(0)
:,1

• u2 = c2J
(0)
:,2 , w2 = c′2J

(0)
:,2

...

• ud−1 = cd−1J
(0)
:,d−1, wd−1 = c′d−1J

(0)
:,d−1

• ud = c
(0)
d J

(0)
:,d + c

(1)
d J

(1)
:,d , vd = c

(0)′

d J
(0)
:,d + c

(1)′

d J
(1)
:,d
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v = u1 + u2 + ...+ ud = w1 +w2 + ...+wd

c1J
(0)
:,1 + c2J

(0)
:,2 + ...+ cd−1J

(0)
:,d−1 + c

(0)
d J

(0)
:,d + c

(1)
d J

(1)
:,d =

c′1J
(0)
:,1 + c′2J

(0)
:,2 + ...+ cd−1J

(0)
:,d−1 + c

(0)′

d J
(0)
:,d + c

(1)′

d J
(1)
:,d

(c1 − c′1)J
(0)
:,1 + (c2 − c′2)J

(0)
:,2 + ...+ (cd−1 − c′d−1)J

(0)
:,d−1

+ (c
(0)
d − c

(0)′

d )J
(0)
:,d + (c

(1)
d − c

(1)′

d )J
(1)
:,d = 0

Since {J(0)
:,1 ,J

(0)
:,2 , ...,J

(0)
:,d−1,J

(0)
:,d ,J

(1)
:,d } are nonzero and linearly independent with probability 1

(Lemma B.2),

(c1 − c′1) = (c2 − c′2) = ... = (cd−1 − c′d−1) = (c
(0)
d − c

(0)′

d ) = (c
(1)
d − c

(1)′

d ) = 0

Hence, it follows that u1 = w1,u2 = w2, ...,ud = wd and V = S1

⊕
S2

⊕
...Sd.

Lemma B.11. Consider maps f : Rd → Rm,m≫ d, where f can be written as sum of coordinate-
wise functions, f(s) =

∑d
i=1 fi(si) for s = {s1, s2, ..., sd}. We define V = span(Im(f)),S1 =

span(Im(f1)),S2 = span(Im(f2)), ...,Sd = span(Im(fd)), where Im(f), Im(fi) denote the images of
the functions f : Rd → Rm, fi : R→ Rm ∀i ∈ [d]. If V = S1

⊕
S2

⊕
...
⊕

Sd, the injectivity of
the coordinate-wise functions fi : R→ Rm implies the injectivity of f : Rd → Rm.

Proof. To show injectivity of f : Rd → Rm, we need to show the following:

∀s1, s2 ∈ Rd : f(s1) = f(s2) =⇒ s1 = s2 (22)

We show (22) by contradiction. Let

∃s(1) ̸= s(2) ∈ Rd s.t.f(s(1)) = f(s(2)) (23)

Observe that Im(f) ⊆ V, Im(fi) ⊆ Si∀i ∈ [d]. By Lemma B.10, the vector space V is the direct
sum of the subspaces Si,∀i ∈ [d], i.e. V = S1

⊕
S2

⊕
...
⊕

Sd.

Hence by definition of direct sum (Definition B.9), it follows that

f(s(1)) = f(s(1)) =⇒ f1(s
(1)
1 ) = f1(s

(2)
1 ), f1(s

(1)
2 ) = f1(s

(2)
2 ), ..., f1(s

(1)
d ) = f1(s

(2)
d )

By injectivity of the coordinate-wise functions,

f1(s
(1)
1 ) = f1(s

(2)
1 ) =⇒ s

(1)
1 = s

(2)
1

f1(s
(1)
2 ) = f1(s

(2)
2 ) =⇒ s

(1)
2 = s

(2)
2

...f1(s
(1)
d ) = f1(s

(2)
d ) =⇒ s

(1)
d = s

(2)
d

=⇒ s(1) = s(2)

We arrive at a contradiction to (23), hence ( 22) holds. Injectivity of the coordinate-wise functions,
f1 : R→ Rm, f2 : R→ Rm, ..., fd : R→ Rm implies injectivity of f : Rd → Rm as defined in B.8.

Lemma B.12 (Injectivity of maps defined as a composition of two affine spaces). Maps f : Rd → Rm

defined in B.8 are continuous and injective with probability one.
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Proof. f : Rd → Rm is continuous by lemma B.6.

By definition (B.8), f(s) =
∑d

i=1 fi(si) for s = {s1, s2, ..., sd}. Consider the coordinate-wise
functions fi : R→ Rm:

1. fi(si) = J
(0)
:,i si = J

(1)
:,i si∀i ∈ {1, 2, ..., (d− 1)}

2. fd(sd) =

{
J
(0)
:,d sd sd ≤ td

J
(1)
:,d (sd − td) + J

(0)
:,d td sd > td

for td ∈ R.

1. fi : R→ R∀i ∈ {1, 2, ..., (d− 1)} are injective since they are affine.

2. To show that fd : R→ Rm is injective, we need to show the following:

∀s(1)d , s
(2)
d ∈ R : fd(s

(1)
d ) = fd(s

(2)
d ) =⇒ s

(1)
d = s

(2)
d (24)

As usual, we show ( 24) by contradiction. Let

∃s(1)d ̸= s
(2)
d ∈ R s.t. fd(s

(1)
d ) = fd(s

(2)
d ) (25)

Consider the following cases,

(a) s
(1)
d , s

(2)
d ≤ td Then,

fd(s
(1)
d ) = fd(s

(2)
d )

J
(0)
:,d s

(1)
d = J

(0)
:,d s

(2)
d

s
(1)
d = s

(2)
d ∵ J

(0)
:,d ∈ Rm is non-zero w.p. 1. (Lemma B.2)

Hence, we arrive at a contradiction to ( 25) in this case.

(b) s
(1)
d ≤ td, s

(2)
d > td Then,

fd(s
(1)
d ) = fd(s

(2)
d )

J
(0)
:,d s

(1)
d = J

(1)
:,d (s

(2)
d − td) + J

(0)
:,d td

J
(0)
:,d (s

(1)
d − td) = J

(1)
:,d (s

(2)
d − td)

[J
(0)
:,d − J

(1)
:,d ]

[
s
(1)
d − td
s
(2)
d − td

]
=

[
0
0

]

=⇒

[
s
(1)
d − td
s
(2)
d − td

]
=

[
0
0

]
∵ J

(0)
:,d ,J

(1)
:,d are non-zero

and linearly independent w. p. 1 (Lemma B.2)

=⇒ s
(1)
d = s

(2)
d = td

Thus, we arrive at a contradiction since s
(2)
d > td.
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(c) s
(1)
d , s

(2)
d > td Then,

fd(s
(1)
d ) = fd(s

(2)
d )

J
(1)
:,d (s

(1)
d − td) + J

(0)
:,d td = J

(1)
:,d (s

(2)
d − td) + J

(0)
:,d td

J
(1)
:,d s

(1)
d = J

(1)
:,d s

(2)
d

s
(1)
d = s

(2)
d

∵ J
(1)
:,d ∈ Rm is non-zero w.p. 1.

(Lemma B.2)

Hence, we also arrive at a contradiction to ( 25) in this case.

Since we arrive at a contradiction to ( 25) in the aforementioned exhaustive and mutually
exclusive cases for s(1)d , s

(2)
d ∈ R, we conclude that fd : R→ Rm is injective.

Hence, we have shown that the coordinate wise functions, fi : R→ Rm are injective. By Lemma
B.11, f : Rd → Rm is injective.

We now develop a smooth approximation to the map defined in B.8.

Definition B.13 (Smooth step function). We define the smooth step function as 1̃ϵ : R→ R as

1̃ϵ(s) =


0 , s ≤ −ϵ ,
1
2 sin

(
πs
2ϵ

)
+ 1

2 , −ϵ < s ≤ ϵ ,

1 , s > ϵ .

Definition B.14 (Smoothing composition of affine maps). Consider maps f : Rd → Rm defined in
B.8. Such maps can be written as,

f(s) = (J(0)s)1w⊤s≤c + (J(1)s+ c1)1w⊤s>c

where w ∈ Rd, c ∈ R, c1 ∈ Rm are given.

We define the smoothened version of f : Rd → Rm as f̃ϵ : Rd → Rm as,

f̃ϵ(s) = (J(0)s)1̃ϵ(c−w⊤s) + (J(1)s+ c1)1̃ϵ(w
⊤s− c)

Note that since w ∈ Rd is an axis-aligned vector, without loss of generality for w = ed =
(0, 0, ..., 1) ∈ Rd, the function f̃ϵ : Rd → Rm can be defined as a sum of coordinate-wise functions,
f̃ϵ(s) =

∑d
i=1 f̃ϵ,i(si) where s ∈ Rd = (s1, s2, ..., sd):

1. f̃ϵ,i(si) = J
(0)
:,i si = J

(1)
:,i si∀i ∈ {1, 2, ..., (d− 1)}

2. f̃ϵ,d(sd) = J
(0)
:,d sd1̃ϵ(td − sd) + (J

(1)
:,d (sd − td) + J

(0)
:,d td)1̃ϵ(sd − td)

for td ∈ R determined by J(0),J(1) ∈ Rm×d,w ∈ Rd, c1 ∈ Rm.

Finally, before we present the theorem with the high probability bound on the global IMA contrast,
CIMA(f̃ϵ, ps) for any finite probability density, ps on Rd, we introduce a lemma to show that maps
f̃ϵ : Rd → Rm defined in B.14 are continuous, injective and continuously differentiable. The
objective of the following lemma is to ensure that the Jacobian of f̃ϵ, Jf̃ϵ

∈ Rm×d , is well-defined
for at all points in the domain of f̃ϵ such that the IMA contrast, CIMA(f̃ϵ, ps) can be computed for
maps, f̃ϵ : Rd → Rm, can be computed with respect to all finite distribuitions, ps on Rd.

Lemma B.15. Functions f̃ϵ : Rd → Rm defined in B.14 are continuously differentiable in Rd, in
addition to being continuous and injective, are continuously differentiable with ϵ > 0 arbitrarily
small.
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Proof. We show successively that f̃ϵ : Rd → Rm is continuous, injective and continuously differen-
tiable.

Continuity of f̃ϵ : Rd → Rm

Consider the coordinate-wise decomposition of f̃ϵ; f̃ϵ,i(s) = J
(0)
i,: s1̃ϵ(c − w⊤s) + (J

(1)
i,: s +

c1,i)1̃ϵ(w
⊤s− c)∀i ∈ [m].

J
(0)
i,: s,J

(1)
i,: s+ c1,i are continuous in s ∈ Rd since they are affine.

Note that 1̃ϵ : R→ R is continuous by definition. 1̃ϵ(c−w⊤s), 1̃ϵ(w
⊤s− c) are compositions of a

continuous function with affine functions (thereby continuous), and hence are continuous (Theorem
4.9, (Rudin et al., 1964)).

f̃ϵ,i : Rd → R, being a sum of continuous functions, is continuous for all i ∈ [m] (Theorem
4.9, (Rudin et al., 1964)).

Since the coordinate functions of f̃ : Rd → Rm, f̃i : Rd → R are continuous, f̃ is continuous
(Theorem 4.10, (Rudin et al., 1964)).

Injectivity of f̃ϵ : Rd → Rm

Consider the coordinate-wise functions as defined in B.14.

1. By Lemma B.12, the functions f̃ϵ,i = fi : R→ Rm∀i ∈ {1, 2, ..., d− 1} are injective.

2. We now show that f̃ϵ,d : R→ Rm is injective.

f̃ϵ,d(sd) = J
(0)
:,d sd1̃ϵ(td − sd) + (J

(1)
:,d (sd − td) + J

(0)
:,d td)1̃ϵ(sd − td)

= J
(0)
:,d sd(1− 1̃ϵ(sd − td)) + (J

(1)
:,d (sd − td) + J

(0)
:,d td)1̃ϵ(sd − td)

∵ 1̃ϵ(sd) + 1̃ϵ(−sd) = 1

= J
(0)
:,d (sd − (sd − td)1̃ϵ(sd − td)) + J

(0)
:,d (sd − td)1̃ϵ(sd − td)

= [J
(0)
:,d J

(0)
:,d ]

[
sd − (sd − td)1̃ϵ(sd − td)

(sd − td)1̃ϵ(sd − td)

]
(26)

Define td : R → Rd such that td(sd) =

[
sd − (sd − td)1̃ϵ(sd − td)

(sd − td)1̃ϵ(sd − td)

]
. To show that

f̃ϵ,d : R→ Rm is injective, we need to show the following:

∀s(1)d , s
(2)
d ∈ R : f̃ϵ,d(s

(1)
d ) = f̃ϵ,d(s

(2)
d ) =⇒ s

(1)
d = s

(2)
d (27)

As usual, we show ( 27) by contradiction. Let

∃s(1)d ̸= s
(2)
d ∈ R s.t. f̃ϵ,d(s

(1)
d ) = f̃ϵ,d(s

(2)
d ) (28)

then we deduce
f̃ϵ,d(s

(1)
d ) = f̃ϵ,d(s

(2)
d )

[J
(0)
:,d J

(0)
:,d ]t(s

(1)
d ) = [J

(0)
:,d J

(0)
:,d ]t(s

(2)
d )

=⇒ t(s
(1)
d ) = t(s

(2)
d )

∵ [J
(0)
:,d J

(0)
:,d ] is full column rank, Lemma B.2[

s
(1)
d − (s

(1)
d − td)1̃ϵ(s

(1)
d − td)

(s
(1)
d − td)1̃ϵ(s

(1)
d − td)

]
=

[
s
(2)
d − (s

(2)
d − td)1̃ϵ(s

(2)
d − td)

(s
(2)
d − td)1̃ϵ(s

(2)
d − td)

]
=⇒ s

(1)
d = s

(2)
d

Hence, we arrive at a contradiction to ( 28). Thereby, f̃ϵ,d : R→ Rm is injective.
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Hence, we have shown that the coordinate-wise functions of f̃ϵ : Rd → Rm, f̃ϵ(s) =
∑d

i=1 f̃ϵ,i(si)

where s ∈ Rd = (s1, s2, ..., sd), given by f̃ϵ,i : R → Rm are injective. We now show the above
statement implies the injectivity of f : Rd → Rm, f(s) =

∑d
k=1 fk(sk). Observe that by definition

B.8

1. S1 = span(Im(f1)) = span(J(0)
:,1 ) = span(J(1)

:,1 )

2. S2 = span(Im(f2)) = span(J(0)
:,2 ) = span(J(1)

:,2 )
...

3. Sd−1 = span(Im(fd−1)) = span(J(0)
:,d−1) = span(J(1)

:,d−1)

4. Sd = span(Im(fd)) = span(J(0)
:,1 ,J

(1)
:,1 )

Consider V = span(Im(f)). By Lemma B.10, V = S1

⊕
S2

⊕
...Sd. Further, by Lemma B.11,

injectivity of fi : Rd → Rm∀i ∈ [d] implies injectivity of f : Rd → Rm.

Continuity of derivatives of f̃ϵ : Rd → Rm

Consider the derivatives of f̃ϵ(s) with respect to the coordinates of s = (s1, s2, ..., sd).

1. By definition B.14, f̃ϵ,i(si) = J
(0)
:,i si = J

(1)
:,i si∀i ∈ {1, 2, ..., (d − 1)}. Therefore, ∂ f̃ϵ

∂si
=

J
(0)
:,i = J

(1)
:,i ∀i ∈ {1, 2, ..., (d− 1). Thus, the derivatives ∂f̃ϵ,j

∂si
∀j ∈ [m], i ∈ {1, 2, ..., (d−

1)} are continuous.

2. Consider the derivative of f̃ϵ : Rd → Rm with respect to sd. By ( 26),

f̃ϵ,d(sd) = [J
(0)
:,d J

(0)
:,d ]

[
sd − (sd − td)1̃ϵ(sd − td)

(sd − td)1̃ϵ(sd − td)

]
f̃ ′ϵ,d(sd) = [J

(0)
:,d J

(0)
:,d ]

[
sd − 1̃ϵ(sd − td)− (sd − td)1̃′ϵ(sd − td)

1̃ϵ(sd − td) + (sd − td)1̃′ϵ(sd − td)

]

where by definition B.13 1̃′ϵ(s) =


0 s ≤ −ϵ
1
2 cos

(
πs
2ϵ

)
π
2ϵ −ϵ < s ≤ ϵ

0 s > ϵ

.

Notice that 1̃′ϵ : R → R is continuous in R. f̃ ′ϵ,d(sd) is continuous since it is composed
by a sum and product of continuous functions (Theorem 4.9, (Rudin et al., 1964)). Notice
also that the term (sd − td)1̃′ϵ(sd − td) =

1
2 cos

(
π(sd−td)

2ϵ

)
π
2ϵ .(sd − td) is non-zero only

when −ϵ < (sd − td) ≤ ϵ, hence this term is finite even for ϵ > 0 arbitrarily small. The

other terms in f̃ ′ϵ,d(sd) are also finite be definition. Thus, the derivatives ∂f̃ϵ,j
∂sd
∀j ∈ [m] are

continuous for ϵ > 0 arbitrarily small.

Since all the partial derivatives of f̃ϵ : Rd → Rm are continuous, f̃ is continuously differentiable
(Theorem 9.21, (Rudin et al., 1964)).

We now present the theorem that introduces a bound on the global IMA contrast for non-affine maps,
f̃ϵ : Rd → Rm,m ≫ d, composed by smoothly joining two affine maps with local bases sampled
isotropically as defined here B.14.

Theorem B.16. Consider the map f̃ϵ : Rd → Rm sampled randomly from the procedure B.14 and
any finite probability density, ps, defined over Rd.

Then, for ϵ > 0 arbitrarily small, CIMA(f̃ϵ, ps) ≤ δ with (high) probability ≥ 1 −
min

{
1, exp(2 log d− κ(m− 1) δ

2

d2 )
}

for m≫ d where δ < 1
2 is arbitrarily small.
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Proof. We show that the condition of Theorem 5.1, the columns of the Jacobian of f̃ϵ are locally
sampled isotropically i.e. , is still satisfied for the domain of f̃ϵ, i.e. ∀s ∈ Rd almost surely w.r.t finite
probability measure, ps over Rd.

Following from B.14, consider the following partition of the domain,
s ∈ P(0) ⇐⇒ w⊤s ≤ c− ϵ

s ∈ P(1) ⇐⇒ w⊤s > c+ ϵ

s ∈ B ⇐⇒ c− ϵ < w⊤s ≤ c+ ϵ

.

1. ∀s ∈ P(0),Jf (s) = J(0), with J
(0)
:,1 ,J

(0)
:,2 , ...,J

(0)
:,d

i.i.d∼ pr.

2. ∀s ∈ P(1),Jf (s) = J(1), with J
(1)
:,1 ,J

(1)
:,2 , ...,J

(1)
:,d

i.i.d∼ pr.

3. The region B sandwiching the boundary of the partitions has arbitrarily small probability
measure since:

(a) B is an ϵ-sandwich of a (d − 1)-dimensional subspace of a d-dimensional domain.
The Lebesgue measure on B is equal to the volumne element associated with B (3.3,
(Çinlar, 2011)), thus, λ(B) = Θ(ϵ)8 where λ(.) denotes the Lebesgue measure.

(b) ps is finite at all points.

Hence, p(B) =
∫
B psλ(s) = Θ(ϵ), is arbitrarily small for suitably chosen ϵ.

To derive a bound on the global IMA contrast of f̃ϵ, cIMA(f̃ϵ, ps), we need that in region,
∀s ∈ B, the value of the local IMA contrast cIMA(f̃ϵ, s) is finite. This is equivalent to
showing that the Jacobian, Jf̃ϵ

is full column-rank for all s ∈ B. To show this, consider
the alternate definition of f̃ϵ : Rd → Rm in terms of coordinate-wise functions (Definition
B.14), f̃ϵ(s) =

∑d
i=1 f̃ϵ,i(si) where s ∈ Rd = (s1, s2, ..., sd):

(a) f̃ϵ,i(si) = J
(0)
:,i si = J

(1)
:,i si∀i ∈ {1, 2, ..., (d− 1)}

(b) f̃ϵ,d(sd) = J
(0)
:,d sd1̃ϵ(td − sd) + (J

(1)
:,d (sd − td) + J

(0)
:,d td)1̃ϵ(sd − td)

for td ∈ R
From the above definition, we see that the first (d − 1) columns of the Jacobian, Jf̃ϵ

are

defined as Jf̃ϵ,:,i
= ∂ f̃ϵ(s)

∂si
= J

(0)
:,i = J

(0)
:,i for i ∈ {1, 2, ..., d− 1}. By Lemma B.2, the first

(d− 1) columns of Jf̃ϵ
are nonzero and linearly independent with probability 1. Consider

the d-th column of Jf̃ϵ
.

Jf̃ϵ,:,d
= J

(0)
:,d 1̃ϵ(td − sd) + J

(1)
:,d 1̃ϵ(sd − td)− J

(0)
:,d sd1̃

′
ϵ(td − sd)

+ (J
(1)
:,d (sd − td) + J

(0)
:,d td)1̃

′
ϵ(sd − td)

thus

Jf̃ϵ,:,d
= J

(0)
:,d ((td − sd)1̃′ϵ(td − sd)

+ 1̃ϵ(td − sd)) + J
(1)
:,d ((sd − td)1̃′ϵ(sd − td)

+ 1̃ϵ(sd − td))

Observe that Jf̃ϵ,:,d
is a linear combination of J

(0)
:,d and J

(1)
:,d . Since by Lemma B.2,

J
(0)
:,d ,J

(1)
:,d are nonzero and linearly independent with respect to each other and J

(0)
:,i ,J

(1)
:,i ∀i ∈

{1, 2, ..., (d− 1)}, the only possibility for Jf̃ϵ
to not be full column-rank is

8Refer to big theta notation Θ(.) here.
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Jf̃ϵ,:,d
= 0

=⇒ (td − sd)1̃′ϵ(td − sd) + 1̃ϵ(td − sd) = (sd − td)1̃′ϵ(sd − td) + 1̃ϵ(sd − td) = 0

∵ J
(0)
:,d ,J

(1)
:,d are linearly independent.

Consider the function, q : R→ R such that q(s) = s1̃′ϵ(s) + 1̃ϵ(s). Observe that q(s) ≥ 0

for s ≥ 0. Thus, for (td−sd)1̃′ϵ(td−sd)+1̃ϵ(td−sd) = (sd−td)1̃′ϵ(sd−td)+1̃ϵ(sd−td) =
0, we need that sd = td. At sd = td, q(sd − td) = q(td − sd) =

1
2 ̸= 0. Hence, we have

shown that Jf̃ϵ,:,d
̸= 0, thereby Jf̃ϵ

is full column-rank and cIMA(f̃ϵ, s) is finite for all s ∈ B.

Hence,

CIMA(f̃ϵ, ps) =

∫
Rd

cIMA(f̃ϵ, s) psds

=

∫
P(0)

cIMA(f̃ϵ, s) psds+

∫
P(1)

cIMA(f̃ϵ, s) psds+

∫
B
cIMA psds

=

∫
P(0)

cIMA(f̃ϵ, s) psds+

∫
P(1)

cIMA(f̃ϵ, s) psds+Θ(ϵ)

≈
∫
P(0)

cIMA(f̃ϵ, s) psds+

∫
P(1)

cIMA(f̃ϵ, s) psds for ϵ arbitrarily small.

≤ max
s∈Rd

cIMA(f̃ϵ, s)

∫
Rd

psds

≤ max
s∈Rd

cIMA(f̃ϵ, s) ≤ δ w. p. ≥ 1−min

{
1, exp(2logd− κ(m− 1)

δ2

d2
)

}
by Theorem 5.1.

Thus, CIMA(f̃ϵ, ps) ≤ δ for f̃ϵ : Rd → Rm defined in B.14 with (high) probability ≥ 1 −
min

{
1, exp(2logd− κ(m− 1) δ

2

d2 )
}

for m≫ d where δ < 1
2 is arbitrarily small.

Defining non-linear functions by gluing 2d affine functions We generalize the above construct
for the map, f : Rd → Rm, where f was constructed by stitching together two affine functions. In
the following construct, the domain Rd is split into 2d axis-aligned parts using one split point per
coordinate. The map f : Rd → Rm is now constructed by stitching together 2d affine functions
defined on each part of the domain, mapping the domain to more complex manifolds embedded in
the observation space Rm.

Definition B.17 (Maps defined as a composition of 2d affine maps on an axis-aligned domain
partition). The maps f : Rd → Rm we consider are defined as follows:

1. Consider the map, f : Rd → Rm applied to s ∈ Rd.

2. For any t = (t1, t2, ..., td) ∈ Rd,a partition of the domain of f is defined by the binary
vector, b : Rd → {0, 1}d where bk(s) := 1sk>tk , Rd = PRd =

⋃
b∈{0,1}d P(b), where

P(b) := {s | b(s) = b}. Note that the partition defined is axis-aligned to the canonical
basis in Rd. This follows to extend the continuity argument from the two-partition case in
Lemma B.6, observation B.7.

3. Consider the two matrices, J(0),J(1) ∈ Rm×d, used to define the Jacobian in each
part, P(b) ∀b ∈ {0, 1}d. Sample the columns of J(0),J(1) independently from

the mentioned spherically symmetric distribution (5.1) pr, J
(0)
1 ,J

(0)
2 , ...,J

(0)
d

i.i.d∼ pr,

J
(1)
1 ,J

(1)
2 , ...,J

(1)
d

i.i.d∼ pr.
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4. For s ∈ Rd with b(s) = b ∈ {0, 1}d, Jf (s) = J(b) such that

{
J
(b)
:,k = J

(0)
:,k bk = 0

J
(b)
:,k = J

(1)
:,k bk = 1

}
.

Note that this corresponds to the observation B.7 where changing one column of Jf (s)
across a partition of the domain results in axis-aligned partitions.

5. f : Rd → Rm is defined as:
{
f(s) = J(b)(s) + c(b)| b(s) = b

}
, where c(b) ∈

Rm ∀ b ∈ {0, 1}d.

6. We show that owing to axis-alignment of chosen partition, PRd and resampling ex-
actly one column of the Jacobian, Jf (s) at the boundary between two parts, f
can be written as a product of submanifolds. Consider the functions fk(sk) ={
J
(0)
:,k sk sk ≤ tk

J
(1)
:,k (sk − tk) + J

(0)
:,k tk sk > tk

}
which only act on one coordinate of the input,

s = (s1, s2, ..., sd) ∈ Rd.

Consider again
{
f(s) = J(b)(s) + c(b)| b(s) = b

}
, where c(b) ∈ Rm ∀ b ∈ {0, 1}d,

c(0) = 0, c(b),b ̸= 0 are completely specified by t. f(s) can be equivalently written as
f(s) =

∑d
k=1 fk(sk). Here, we write f : Rd → Rm as a product of the submanifolds,

or also referred to in latter parts of the note as a sum of the coordinate-wise functions,
fk : R→ Rm.

In the following results, we show that the Jacobian of maps defined by stitching together 2d affine
functions is well-defined at all points in the domain. We start by showing that maps defined in
B.17 are continuous and injective. We then define a smooth approximation to B.17, so that the
map is differentiable also at the partition boundary given by the partition of domain defined in PRd .
Futher, we show that the smooth approximation to B.17 is continuous, injective and continuously
differentiable, which ensures that the Jacobian is well-defined at all points in the domain and the IMA
contrast can be computed. Finally, we present a theorem which bounds the IMA contrast with high
probability as the dimension of the observed space grows.
Lemma B.18 (Continuity of composition of 2d affine maps). Consider maps f : Rd → Rm as
defined in B.17. Such a map f is continuous.

Proof. Consider f : Rd → Rm, f(s) =
∑d

k=1 fk(sk), where

fk(sk) =

{
J
(0)
:,k sk , sk ≤ tk ,

J
(1)
:,k (sk − tk) + J

(0)
:,k tk , sk > tk .

We show continuity of fk : R→ Rm ∀k ∈ [d]. For a particular k, consider the cases:

1. sk < tk:

fk(sk) = J
(0)
:,k sk is affine in the entire region and hence, is continuous.

2. sk = tk:

fk(sk) = J
(0)
:,k sk, and in limit equal to J

(1)
:,k (sk − tk) + J

(0)
:,k tk. For sk = tk, we need to

show that J(1)
:,k (sk − tk) + J

(0)
:,k tk converges to J

(0)
:,k sk. This is easily seen by substituting

sk = tk, J(0)
:,k tk = J

(1)
:,k (tk − tk) + J

(0)
:,k tk. fk(sk) is continuous at sk = tk (Theorem 4.6,

(Rudin et al., 1964)).

3. sk > tk:

fk(sk) = J
(1)
:,k (sk − tk) + J

(0)
:,k tk is affine in the entire region and hence, is continuous.

f : Rd → Rm, f(s) =
∑d

k=1 fk(sk) is continuous since the sum of continuous functions is continu-
ous (Theorem 4.9, (Rudin et al., 1964)).
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To show injectivity of f : Rd → Rm defined in B.17, we follow a similar approach as in the
case of maps defined by joining two affine functions (Definition B.8, Lemma B.12). We start
by showing that the images of the coordinate-wise functions, fk : R → Rm which compose
f : Rd → Rm, f(s) =

∑d
k=1 fk(sk), are in direct sum with respect to the image of f . Then, we

show that the coordinate-wise functinos, fk, are injective. Finally, we use that in this scenario the
injectivity of the coordinate-wise functions, fk, implies the injectiivity of f to conclude that f is
injective (Lemma B.11).

Lemma B.19. Consider J(0),J(1) ∈ Rm×d as sampled in Definition (B.17). The vector space
V = span{J(0)

:,1 ,J
(1)
:,1 ,J

(0)
:,2 ,J

(1)
:,2 , ...,J

(0)
:,(d−1),J

(1)
:,(d−1),J

(0)
:,d ,J

(1)
:,d } is the direct sum of the family

F = {S1 = span{J(0)
:,1 ,J

(1)
:,1 },S2 = span{J(0)

:,2 ,J
(1)
:,2 }, ...,Sd−1 = span{J(0)

:,d−1,J
(1)
:,d−1},Sd =

span{J(0)
:,d ,J

(1)
:,d }}.

Proof. From Lemma B.2, for the scenario m≫ d (here it is sufficient to have (m > 2d)), the vectors
{J(0)

:,1 ,J
(1)
:,1 ,J

(0)
:,2 ,J

(1)
:,2 , ...,J

(0)
:,(d−1) = J

(1)
:,(d−1),J

(0)
:,d ,J

(1)
:,d } are non-zero and linearly independent with

probability 1.

Consider v ∈ V,u1,w1 ∈ S1,u2,w2 ∈ S2, ...,ud,wd ∈ Sd such that

v = u1 + u2 + ...+ ud,v = w1 +w2 + ...+wd

By definition B.9, to show V = S1

⊕
S2

⊕
...Sd, we need to show u1 = w1,u2 = w2, ...,ud =

wd.

Let

• u1 = c
(0)
1 J

(0)
:,1 + c

(1)
1 J

(1)
:,1 ,w1 = c

(0)′

1 J
(0)
:,1 + c

(1)′

1 J
(1)
:,1

• u2 = c
(0)
2 J

(0)
:,2 + c

(1)
2 J

(1)
:,2 ,w2 = c

(0)′

2 J
(0)
:,2 + c

(1)′

2 J
(1)
:,2

...

• u1 = c
(0)
d−1J

(0)
:,d−1 + c

(1)
d−1J

(1)
:,d−1,w1 = c

(0)′

d−1J
(0)
:,d−1 + c

(1)′

d−1J
(1)
:,d−1

• ud = c
(0)
d J

(0)
:,d + c

(1)
d J

(1)
:,d ,wd = c

(0)′

d J
(0)
:,d + c

(1)′

d J
(1)
:,d

v = u1 + u2 + ...+ ud = w1 +w2 + ...+wd

(c
(0)
1 J

(0)
:,1 + c

(1)
1 J

(1)
:,1 ) + (c

(0)
2 J

(0)
:,2 + c

(1)
2 J

(1)
:,2 ) = (c

(0)′

1 J
(0)
:,1 + c

(1)′

1 J
(1)
:,1 ) + (c

(0)′

2 J
(0)
:,2 + c

(1)′

2 J
(1)
:,2 )

+ ...+ (c
(0)
d J

(0)
:,d + c

(1)
d J

(1)
:,d ) + ...+ (c

(0)′

d J
(0)
:,d + c

(1)′

d J
(1)
:,d )

(c
(0)
1 − c

(0)′

1 )J
(0)
:,1 + (c

(0)
2 − c

(0)′

2 )J
(0)
:,2 + ...+ (c

(0)
d − c

(0)′

d )J
(0)
:,d

+ (c
(1)
1 − c

(1)′

1 )J
(1)
:,1 + (c

(1)
2 − c

(1)′

2 )J
(1)
:,2 + ...+ (c

(1)
d − c

(1)′

d )J
(1)
:,d = 0

Since {J(0)
:,1 ,J

(0)
:,2 , ...,J

(0)
:,d ,J

(1)
:,1 ,J

(1)
:,2 , ...,J

(1)
:,d } are nonzero and linearly independent with probability

1 (Lemma B.2),

(c
(0)
1 − c

(0)′

1 ) = (c
(0)
2 − c

(0)′

2 ) = ... = (c
(0)
d − c

(0)′

d )

= (c
(1)
1 − c

(1)′

1 ) = (c
(1)
2 − c

(1)′

2 ) = ... = (c
(1)
d − c

(1)′

d ) = 0

Hence, it follows that u1 = w1,u2 = w2, ...,ud = wd and V = S1

⊕
S2

⊕
...Sd.
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Lemma B.20 (Injectivity of composition of 2d affine maps). Consider maps f : Rd → Rm as defined
in B.17. Such a map f is injective.

Proof. Consider f : Rd → Rm written as a sum of coordinate-wise functions (Definition B.17),
f(s) =

∑d
k=1 fk(sk), where

fk(sk) =

{
J
(0)
:,k sk , sk ≤ tk ,

J
(1)
:,k (sk − tk) + J

(0)
:,k tk , sk > tk .

In the following proof, we show injectivity of the coordinate-wise functions fk : R→ Rm ∀k ∈ [d]
and conclude that f : Rd → Rm is injective by Lemma B.19 and Lemma B.11. For a particular k,
to show that fk : R→ Rm is injective, we need to show the following:

∀s(1)k , s
(2)
k ∈ R : fk(s

(1)
k ) = fk(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k (29)

As usual, we show ( B.27) by contradiction. Let

∃s(1)k ̸= s
(2)
k ∈ Rs.t.fk(s(1)k ) = fk(s

(2)
k ) (30)

Consider the mutually exclusive, and exhaustive cases:

1. s
(1)
k ̸= s

(2)
k ∈ R, s(1)k , s

(2)
k ≤ tk

fk(s
(1)
k ) = fk(s

(2)
k )

J
(0)
:,k s

(1)
k = J

(0)
:,k s

(2)
k

=⇒ s
(1)
k = s

(2)
k J(0) ̸= 0 w. p. 1

Thus, for s(1)k , s
(2)
k ≤ tk, fk(s

(1)
k ) = fk(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k , which contradicts (30).

2. s
(1)
k ̸= s

(2)
k ∈ R, s(1)k , s

(2)
k > tk

fk(s
(1)
k ) = fk(s

(2)
k )

J
(1)
:,k (s

(1)
k − tk) + J

(0)
:,k tk = J

(1)
:,k (s

(2)
k − tk) + J

(0)
:,k tk

J
(1)
:,k s

(1)
k = J

(1)
:,k s

(2)
k

=⇒ s
(1)
k = s

(2)
k J(1) ̸= 0 w. p. 1

Thus, for s(1)k , s
(2)
k > tk, fk(s

(1)
k ) = fk(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k , which contradicts (30).

3. s
(1)
k ̸= s

(2)
k ∈ R, s(1)k ≤ tk, s

(2)
k > tk

fk(s
(1)
k ) = fk(s

(2)
k )

J
(0)
:,k s

(1)
k = J

(1)
:,k (s

(2)
k − tk) + J

(0)
:,k tk[

J
(0)
:,k − J

(1)
:,k

] [
s
(1)
k − tk
s
(2)
k − tk

]
= 0

=⇒ s
(1)
k = s

(2)
k = tk ∵

[
J
(0)
:,k − J

(1)
:,k

]
is full column-rank w.p. 1

We arrive at a contradiction since s
(2)
k > tk.
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fk : R → Rm ∀k is injective for the exhaustive cases for s(1)k , s
(2)
k ∈ R in the above-mentioned

points and hence, is injective.

We now show that the injectivity of the coordinate-wise functions fk : R→ Rd implies the injectivity
of f : Rd → Rm, f(s) =

∑d
k=1 fk(sk). Observe that by definition B.17

1. S1 = span(Im(f1)) = span(J(0)
:,1 ,J

(1)
:,1 )

2. S2 = span(Im(f2)) = span(J(0)
:,1 ,J

(1)
:,1 )

...

3. Sd = span(Im(fd)) = span(J(0)
:,1 ,J

(1)
:,1 )

Consider V = span(Im(f)). By Lemma B.19, V = S1

⊕
S2

⊕
...Sd. Further, by Lemma B.11,

injectivity of fk : Rd → Rm∀k ∈ [d] implies injectivity of f : Rd → Rm.

We proceed to define a smooth approximation to the map, f : Rd → Rm defined in B.17.

Definition B.21. Consider the decomposition of f : Rd → Rm as a sum of coordinate-
wise functions, f(s) =

∑d
k=1 fk(sk), s = (s1, s2, ..., sd) ∈ Rd where fk(sk) ={

J
(0)
:,k sk sk ≤ tk

J
(1)
:,k (sk − tk) + J

(0)
:,k tk sk > tk

}
. fk : R→ Rm can be alternatively written as:

fk(sk) = (J
(0)
:,k sk)1sk≤tk + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1sk>tk

We define the smoothened version of f : Rd → Rm as f̃ϵ(s) =
∑d

k=1 f̃ϵ,k(sk) for ϵ > 0 arbitrarily
small where

f̃ϵ,k(sk) = (J
(0)
:,k sk)1̃ϵ(tk − sk) + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1̃ϵ(sk − tk)

As with the case of defining maps f : Rd → Rm by smoothly joining two affine maps (Definition
B.14, Lemma B.15), before we present the theorem with the high probability bound on the global
IMA contrast, CIMA(f̃ϵ, ps) for any finite probability density, ps on Rd, we introduce a lemma to show
that maps f̃ϵ : Rd → Rm defined in B.14 are continuous, injective and continuously differentiable.
The objective of the following lemma is to ensure that the Jacobian of f̃ϵ, Jf̃ϵ

∈ Rm×d , is well-defined
for at all points in the domain of f̃ϵ such that the IMA contrast, CIMA(f̃ϵ, ps) can be computed for
maps, f̃ϵ : Rd → Rm, can be computed with respect to all finite distribuitions, ps on Rd.

Lemma B.22. Functions f̃ϵ : Rd → Rm defined in B.21 are continuously differentiable in Rd, in
addition to being continuous and injective, with ϵ > 0 arbitrarily small.

Proof. We show that f̃ϵ : Rd → Rm defined in B.21 is continuous, injective and continuously
differentiable.

Continuity of f̃ϵ : Rd → Rm

Consider the coordinate-wise decomposition of f̃ϵ; f̃ϵ,i(s) =
∑d

k=1 f̃ϵ,(i,k)(sk), where f̃ϵ,(i,k) : R→
R is defined as f̃ϵ,(i,k)(sk) := (J

(0)
i,ksk)1̃ϵ(tk − sk) + (J

(1)
i,k (sk − tk) + J

(0)
i,k tk)1̃ϵ(sk − tk)

(J
(0)
m,ksk), (J

(1)
m,k(sk − tk) + J

(0)
m,ktk) are continuous in sk ∈ R ∀k ∈ [d] since they are affine.

Note that 1̃ : R → R is continuous by definition. 1̃ϵ(tk − sk), 1̃ϵ(sk − tk) are compositions of a
continuous function with affine functions (thereby continuous), and hence are continuous (Theorem
4.9, (Rudin et al., 1964)).
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f̃ϵ,i : Rd → R, being a sum of continuous functions, is continuous for all i ∈ [m] (Theorem 4.9,
(Rudin et al., 1964)).

Since the coordinate functions of f̃ : Rd → Rm, f̃i : Rd → R are continuous, f̃ is continuous
(Theorem 4.10, (Rudin et al., 1964)).

Injectivity of f̃ϵ : Rd → Rm

Consider the coordinate-wise functions as defined in B.21,
f̃ϵ(s) =

∑d
k=1 f̃ϵ,k(sk), f̃ϵ,k(sk) = (J

(0)
:,k sk)1̃ϵ(tk − sk) + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1̃ϵ(sk − tk).

We now show that all the coordinate-wise functions, f̃ϵ,k : R → Rm ∀k ∈ [d] are injective. The
following proof is the same as the proof of injectivity of f̃ϵ,d : R→ Rm in Lemma B.15.

f̃ϵ,k(sk) = J
(0)
:,k sk1̃ϵ(tk − sk) + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1̃ϵ(sk − tk)

= J
(0)
:,k sk(1− 1̃ϵ(sk − tk)) + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1̃ϵ(sk − tk)

∵ 1̃ϵ(sk) + 1̃ϵ(−sk) = 1

= J
(0)
:,k (sk − (sk − tk)1̃ϵ(sk − tk)) + J

(0)
:,k (sk − tk)1̃ϵ(sk − tk)

= [J
(0)
:,k J

(0)
:,k ]

[
sk − (sk − tk)1̃ϵ(sk − tk)

(sk − tk)1̃ϵ(sk − tk)

]
(31)

Define tk : R→ Rd such that tk(sk) =
[
sk − (sk − tk)1̃ϵ(sk − tk)

(sk − tk)1̃ϵ(sk − tk)

]
. To show that f̃ϵ,k : R→ Rm

is injective, we need to show the following:

∀s(1)k , s
(2)
k ∈ R : f̃ϵ,k(s

(1)
k ) = f̃ϵ,k(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k (32)

As usual, we show ( 32) by contradiction. Let

∃s(1)k ̸= s
(2)
k ∈ R s.t. f̃ϵ,d(s

(1)
k ) = f̃ϵ,k(s

(2)
k ) (33)

Then we obtain

f̃ϵ,k(s
(1)
k ) = f̃ϵ,k(s

(2)
k )

[J
(0)
:,k J

(0)
:,k ]t(s

(1)
k ) = [J

(0)
:,k J

(0)
:,k ]t(s

(2)
k )

=⇒ t(s
(1)
k ) = t(s

(2)
k )

because [J
(0)
:,k J

(0)
:,k ] is full column rank (Lemma B.2)[

s
(1)
k − (s

(1)
k − tk)1̃ϵ(s

(1)
k − tk)

(s
(1)
k − tk)1̃ϵ(s

(1)
k − tk)

]
=

[
s
(2)
k − (s

(2)
k − tk)1̃ϵ(s

(2)
k − tk)

(s
(2)
k − tk)1̃ϵ(s

(2)
k − tk)

]
=⇒ s

(1)
k = s

(2)
k

Hence, we arrive at a contradiction to ( 33). Thereby, f̃ϵ,k : R→ Rm is injective ∀k ∈ [d].

We now show the above statement implies that the injectivity of the coordinate-wise functions
f̃ϵ,k : R → Rm implies the injectivity of f̃ϵ : Rd → Rm, f̃ϵ(s) =

∑d
k=1 f̃ϵ,k(sk). Observe that by

definition B.21

1. S1 = span(Im(f̃ϵ,1)) = span(J(0)
:,1 ,J

(1)
:,1 )

2. S2 = span(Im(f̃ϵ,2)) = span(J(0)
:,1 ,J

(1)
:,1 )

...

3. Sd = span(Im(f̃ϵ,d)) = span(J(0)
:,1 ,J

(1)
:,1 )
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Consider V = span(Im(f̃ϵ)). By Lemma B.19, V = S1

⊕
S2

⊕
...Sd. Further, by Lemma B.11,

injectivity of f̃ϵ,k : R→ Rm∀k ∈ [d] implies injectivity of f̃ϵ : Rd → Rm.

Continuity of derivatives of f̃ϵ : Rd → Rm

Consider the derivatives of f̃ϵ(s) with respect to the coordinates of s = (s1, s2, ..., sd). Since

f̃ϵ(s) =
∑d

k=1 f̃ϵ,k(sk),
∂ f̃ϵ(s)
∂sk

=
df̃ϵ,k(sk)

dsk
= f̃ ′ϵ,k(sk). The proof of continuity of f̃ ′ϵ,k(sk) is

the same as the proof of continuity of f̃ ′ϵ,d(sd) as in Lemma B.15 and is rewritten here for easy
readability.

By ( 31),

f̃ϵ,k(sk) = [J
(0)
:,k J

(1)
:,k ]

[
sk − (sk − tk)1̃ϵ(sk − tk)

(sk − tk)1̃ϵ(sk − tk)

]
f̃ ′ϵ,k(sk) = [J

(0)
:,k J

(1)
:,k ]

[
1− 1̃ϵ(sk − tk)− (sk − tk)1̃′ϵ(sk − tk)
1̃ϵ(sk − tk) + (sk − tk)1̃′ϵ(sk − tk)

]

where by definition B.13 1̃′ϵ(s) =


0 s ≤ −ϵ
1
2 cos

(
πs
2ϵ

)
π
2ϵ −ϵ < s ≤ ϵ

0 s > ϵ

. Notice that 1̃′ϵ : R → R is

continuous in R. f̃ ′ϵ,k(sk) is continuous since it is composed by a sum and product of continuous
functions (Theorem 4.9, (Rudin et al., 1964)). Notice also that the term (sk − tk)1̃′ϵ(sk − tk) =
1
2 cos

(
π(sk−tk)

2ϵ

)
π
2ϵ .(sk − tk) is non-zero only when −ϵ < (sk − tk) ≤ ϵ, hence this term is finite

even for ϵ > 0 arbitrarily small. The other terms in f̃ ′ϵ,k(sk) are also finite be definition. Thus, the

derivatives ∂f̃ϵ,i
∂sk
∀i ∈ [m], k ∈ [d] are continuous for ϵ > 0 arbitrarily small.

Since all the partial derivatives of f̃ϵ : Rd → Rm are continuous, f̃ is continuously differentiable
(Theorem 9.21, (Rudin et al., 1964)).

We now present the theorem that introduces a bound on the global IMA contrast for non-affine maps,
f̃ϵ : Rd → Rm,m ≫ d, composed by smoothly joining 2d affine maps with local bases sampled
isotropically as defined here B.21.

Theorem B.23. Consider the map f̃ϵ : Rd → Rm sampled randomly from the procedure B.21.

Then, the map f̃ϵ : Rd → Rm, for ϵ > 0 arbitrarily small and any finite probability density, ps, defined
over Rd satisfies the following bound on the global IMA contrast CIMA(f̃ϵ, ps), CIMA(f̃ϵ, ps) ≤ δ

with (high) probability ≥ 1 − min
{
1, exp(2 log d− κ(m− 1) δ

2

d2 )
}

for m ≫ d where δ < 1
2 is

arbitrarily small.

Proof. We show that the condition of Theorem 5.1, the columns of the Jacobian of f̃ϵ defined in
B.21 are locally sampled isotropically i.e. , is still satisfied for the domain of f̃ϵ, i.e. ∀s ∈ Rd almost
surely w.r.t finite probability measure, ps over Rd.

Following from Definition B.17 and Definition B.21, consider the partition of the domain of
f̃ϵ : Rd → Rm, Rd into the following regions,

1. int(P(b)) := {s | b(s) = b, si /∈ (ti − ϵ, ti + ϵ] ∀i ∈ [d]} ∀b ∈ {0, 1}d

Notice that by Definition B.17 and Definition B.21, ∀s ∈ int(P(b)), ∀b ∈ {0, 1}d,
Jf̃ϵ

(s) = J(b) (defined in B.17), where J
(b)
1 ,J

(b)
2 , ...,J

(b)
d

i.i.d∼ pr. Thus, the condition of
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Theorem 5.1, the columns of the Jacobian of f̃ϵ are locally sampled isotropically, is still
satisfied for these regions.

2. B := Rd −
⋃

b∈{0,1}d int(P(b))

As in the case where the map, f̃ϵ : Rd → Rm was defined as the smooth connection of two
affine maps (Theorem B.16), the region B sandwiching the boundary of the partitions has
arbitrarily small probability measure since:

(a) B is an ϵ-sandwich of a (d− 1)-dimensional region of a d-dimensional domain. The
Lebesgue measure on B is equal to the volumne element associated with B (3.3, (Çinlar,
2011)), thus, λ(B) = Θ(ϵ)8 where λ(.) denotes the Lebesgue measure.

(b) ps is finite at all points.

Hence, p(B) =
∫
B psλ(s) = Θ(ϵ), is arbitrarily small for suitably chosen ϵ.

Like in Theorem B.16, to derive a bound on the global IMA contrast of f̃ϵ, cIMA(f̃ϵ, ps), we
need that in region, ∀s ∈ B, the value of the local IMA contrast cIMA(f̃ϵ, s) is finite. This
is equivalent to showing that the Jacobian, Jf̃ϵ

is full column-rank for all s ∈ B. Consider
the definition of f̃ϵ : Rd → Rm (Definition B.28) in terms of coordinate-wise functions,
fϵ,k : R→ Rm,∀k ∈ [d].

f̃ϵ,k(sk) = J
(0)
:,k sk1̃ϵ(tk − sk) + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1̃ϵ(sk − tk) ∀k ∈ [d]

Consider the k-th column of Jf̃ϵ
for any k ∈ [d].

Jf̃ϵ,:,k
= J

(0)
:,k 1̃ϵ(tk − sk) + J

(1)
:,k 1̃ϵ(sk − tk)− J

(0)
:,k sk1̃

′
ϵ(tk − sk) + (J

(1)
:,k (sk − tk) + J

(0)
:,k tk)1̃

′
ϵ(sk − tk)

= J
(0)
:,k ((tk − sk)1̃′ϵ(tk − sk) + 1̃ϵ(tk − sk)) + J

(1)
:,k ((sk − tk)1̃′ϵ(sk − tk) + 1̃ϵ(sk − tk))

Observe that Jf̃ϵ,:,k
is a linear combination of J(0)

:,k and J
(1)
:,k ∀k ∈ [d]. Since by Lemma

B.2, J(0)
:,1 ,J

(1)
:,1 ,J

(0)
:,2 ,J

(1)
:,2 , ...,J

(0)
:,d ,J

(1)
:,d are all nonzero and linearly independent with respect

to each other with probability 1, the only possibility for Jf̃ϵ
to not be full column-rank is for

k ∈ [d],

Jf̃ϵ,:,k
= 0

=⇒ (tk − sk)1̃′ϵ(tk − sk) + 1̃ϵ(tk − sk) = (sk − tk)1̃′ϵ(sk − tk) + 1̃ϵ(sk − tk) = 0

∵ J
(0)
:,k ,J

(1)
:,k are linearly independent.

Consider the function, q : R→ R such that q(s) = s1̃′ϵ(s) + 1̃ϵ(s). Observe that q(s) ≥ 0

for s ≥ 0. Thus, for (tk− sk)1̃′ϵ(tk− sk)+ 1̃ϵ(tk− sk) = (sk− tk)1̃′ϵ(sk− tk)+ 1̃ϵ(sk−
tk) = 0, we need that sk = tk. At sk = tk, q(sk − tk) = q(tk − sk) =

1
2 ̸= 0. Hence, we

have shown that Jf̃ϵ,:,k
̸= 0∀k ∈ [d], thereby Jf̃ϵ

is full column-rank and cIMA(f̃ϵ, s) is finite
for all s ∈ B.
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Hence,

CIMA(f̃ϵ, ps) =

∫
Rd

cIMA(f̃ϵ, s) psds

=
⋃

b∈{0,1}d

∫
int(P(b))

cIMA(f̃ϵ, s) psds+

∫
B
cIMA(f̃ϵ, s) psds

=
⋃

b∈{0,1}d

∫
int(P(b))

cIMA(f̃ϵ, s) psds+Θ(ϵ)

≈
⋃

b∈{0,1}d

∫
int(P(b))

cIMA(f̃ϵ, s) psds for ϵ arbitrarily small.

≤ max
s∈Rd

cIMA(f̃ϵ, s)

∫
Rd

psds

≤ max
s∈Rd

cIMA(f̃ϵ, s) ≤ δ w. p. ≥ 1−min

{
1, exp(2logd− κ(m− 1)

δ2

d2
)

}
,

by Theorem 5.1.

Thus, CIMA(f̃ϵ, ps) ≤ δ for f̃ϵ : Rd → Rm defined in B.14 with (high) probability at least 1 −
min

{
1, exp(2 log d− κ(m− 1) δ

2

d2 )
}

for m≫ d where δ < 1
2 is arbitrarily small.

Defining non-linear functions as grid-wise affine functions In the previous subsection, we defined
smooth nonlinear functions, by smoothly approximating affine functions defined on orthants across a
given point (Definition B.17, B.21). In this subsection, we extend the previous sampling process for
functions to consider functions which smoothly approximate functions which are piecewise affine
across a grid-like partition of the domain. However, unlike the previous function sampling processes,
we now restrict ourselves, in the current sampling process, to define functions on a bounded subset of
the d-dimensional Euclidean space and without loss of generality, we choose our domain to be [0, 1]d.
We make this restriction since upon defining a regular grid (with fixed grid width) on an unbounded
domain, we would no longer be able to argue that the columns of the Jacobian of the to-be defined
sampling process of functions (definition B.24), f : Rd → Rm, defining the local bases, would no
longer be linearly independent with probability 1, since there are infinitely many of them, and we can
no longer apply Lemma B.2. Recall that we needed the linear independence of the local bases of the
function with respect to one another to show injectivity of f (Lemmata B.12, B.15, B.27, B.22). In
the context of signal processing, the assumption of bounded domain for the sources is often satisfied.

We proceed in the usual fashion, we first use grid-wise affine function and show their continuity and
injectvity. Then, we define a smooth approximation to the grid-wise affine function and show that it
is continuous, injective and continuously differentiable, and hence, the Jacobian of the function is
defined at all points and the global IMA contrast can be computed. Then, we derive a high probability
bound on the global IMA contrast in this scenario such the bound holds with growing probability as
the dimensionality of the observed space increases.

Following is the definition of the grid-wise affine function.
Definition B.24. The maps f : Rd → Rm we consider are defined as follows:

1. We define a function, f : [0, 1]d → Rm as a grid-wise affine function, applied to say
s ∈ [0, 1]d.

2. Consider a partition of the domain [0, 1]d as a regular grid, with grid width 1 ≥ δ > ϵ >
0, δ, ϵ ∈ R. The number of grid parts along a dimension, k ∈ [d], of the domain [0, 1]d is
therefore equal to p = ⌈ 1δ ⌉+ 1 where ⌈.⌉ is the ceiling function.

3. To define partitions of the domain, [0, 1]d, consider the vector, b; [0, 1]d → [p]d, [p] =
{1, 2, ..., p}, where b(s) = (b1(s), b2(s), ..., bd(s)) such that bk(s) := ⌈ skδ ⌉. The partition
of the domain, [0, 1]d, we consider is defined as [0, 1]d = P[0,1]d =

⋃
b∈[p]d P(b) where

37



P(b) := {s | b(s) = b}. Note that the partition defined is axis-aligned to the canonical
basis in Rd. This follows to extend the continuity argument from the two-partition case in
Lemma B.6, observation B.7.

4. Consider the matrices, J(1),J(2), ...,J(p) ∈ Rm×d, used to define the Jacobian in each
part, P(b) ∀b ∈ [p]d. The columns of J(1),J(2), ...,J(p) are sampled from a spherically

symmetric distribution, pr, J(i)
1 ,J

(i)
2 , ...,J

(i)
d

i.i.d∼ pr∀i ∈ [p], so that the pre-condition for
Theorem 5.1 holds almost everywhere.

5. For s ∈ Rd with b(s) = b ∈ [p]d, Jf (s) = J(b) such that{
J
(b)
:,k = J

(i)
:,k , bk = i , ∀ k ∈ [d], i ∈ [p]

}
Note that this corresponds to Observation B.7 where changing one column of Jf (s) across a
partition of the domain results in axis-aligned partitions, also akin to the definition in B.17,
except we now have a regular grid where each dimension is split into p segments rather than
orthants across a given point in the domain.

6. f : Rd → Rm is defined as:
{
f(s) = J(b)(s) + c(b)| b(s) = b

}
, where c(b) ∈

Rm ∀ b ∈ [p]d.

7. Owing to the axis-alignment of the chosen partition, P[0, 1]
d, f : Rd → Rm can be

decomposed as a sum of functions acting upon individual coordinates (also called as
coordinate-wise functions), f(s) =

∑d
k=1 fk(sk) ∀ k ∈ [d] where fk : [0, 1] → Rm is

defined as,

fk(sk) :=

p∑
t=1

(J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ)1sk∈((t−1)δ,tδ] (34)

We now show that maps, f : Rd → Rm defined in B.24 are continuous and injective.

Lemma B.25 (Continuity of grid-wise affine functions). Consider maps f : Rd → Rm as defined in
B.24. Such a map f is continuous.

Proof. Consider f : [0, 1]d → Rm, f(s) =
∑d

k=1 fk(sk), where fk(sk) = J
bk(s)
:,k (sk − (bk(s) −

1)δ) +
∑bk(s)−1

i=1 J
(i)
:,k(δ) ∀ k ∈ [d].

We show continuity of fk : R→ Rm ∀k ∈ [d]. For a particular k, consider the cases:

1. B := {sk = tδ, t ∈ [p− 1]}

Let sk = tδ, t ∈ [p− 1], bk(s) = t, by ( 34), fk(sk) =
∑t

i=1 J
(i)
:,kδ, which is also equal to

fk(sk) in the left limit. To show that fk : [0, 1]→ Rm is continuous at sk = tδ, it remains to
show that the right limit of fk(sk) is equal to the value of the function at sk = tδ. By ( 34), at
the right limit of sk = tδ, fk(sk) = (J

(t+1)
:,k (tδ−tδ)+

∑t
i=1 J

(i)
:,kδ) =

∑t
i=1 J

(i)
:,kδ = fk(sk).

Hence, fk : [0, 1]→ Rm is continuous as sk = tδ, t ∈ [p− 1].

2. sk ∈ [0, 1]− B

For these values of sk, fk : [0, 1] → Rm is affine. Let ⌈ skδ ⌉ = t, fk(sk) = J
(t)
:,k(sk − (t−

1)δ) +
∑t−1

i=1 J
(i)
:,kδ. Since, fk(sk) is affine for sk in this region, fk(sk) is continuous in this

region.

f : Rd → Rm, f(s) =
∑d

k=1 fk(sk) is continuous since the sum of continuous functions is continu-
ous (Theorem 4.9, (Rudin et al., 1964)).
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To show that f : [0, 1]d → Rm as defined in B.24 is injective, we follow an analogous approach to
the previous cases where non-linear functions were defined as a composition of two affine functions
and 2d affine functions respectively. We first show that the images of the coordinate-wise functions
of f , fk : [0, 1]→ Rm are in direct sum with respect to the image of f : [0, 1]→ Rm. Then, we show
that the coordinate-wise functions, fk are injective and use the direct sum property to conclude that
injectivity of f is implied.

Lemma B.26. Consider J(1),J(2), ...,J(p) ∈ Rm×d as sampled in Definition B.24. The vector
space V = span{

⋃p
i=1 cols(J(i))} is the direct sum of the family

F = {S1 = span{J(1)
:,1 ,J

(2)
:,1 , ...,J

(p)
:,1 },S2 = span{J(1)

:,2 ,J
(2)
:,2 , ...,J

(p)
:,2 },

...,Sd−1 = span{J(1)
:,d−),J

(2)
:,d−1, ...,J

(p)
:,d−1},Sd = span{J(1)

:,d ,J
(2)
:,d , ...,J

(p)
:,d }} ,

where cols(.) denotes the set of columns of a given matrix.

Proof. From Lemma B.2, for the scenario m≫ d (here it is sufficient to have (m > p.d)), the set of
vectors {

⋃p
i=1 cols(J(i))} are non-zero and linearly independent with probability 1.

Consider v ∈ V,u1,w1 ∈ S1,u2,w2 ∈ S2, ...,ud,wd ∈ Sd such that

v = u1 + u2 + ...+ ud,v = w1 +w2 + ...+wd

By definition B.9, to show V = S1

⊕
S2

⊕
...Sd, we need to show u1 = w1,u2 = w2, ...,ud =

wd.

Let

• u1 =
∑p

i=1 c
(i)
1 J

(i)
:,1 , w1 =

∑p
i=1 c

(i)′

1 J
(i)
:,1

• u2 =
∑p

i=1 c
(i)
2 J

(i)
:,2 , w2 =

∑p
i=1 c

(i)′

2 J
(i)
:,2

...

• ud−1 =
∑p

i=1 c
(i)
d−1J

(i)
:,d−1, w2 =

∑p
i=1 c

(i)′

d−1J
(i)
:,d−1

• ud =
∑p

i=1 c
(i)
d J

(i)
:,d, w2 =

∑p
i=1 c

(i)′

d J
(i)
:,d

v = u1 + u2 + ...+ ud = w1 +w2 + ...+wd

p∑
i=1

c
(i)
1 J

(i)
:,1 +

p∑
i=1

c
(i)
2 J

(i)
:,2 + ...+

p∑
i=1

c
(i)
d J

(i)
:,d =

p∑
i=1

c
(i)′

1 J
(i)
:,1 +

p∑
i=1

c
(i)′

2 J
(i)
:,2 + ...+

p∑
i=1

c
(i)′

d J
(i)
:,d

p∑
i=1

(c
(i)
1 − c

(i)′

1 )J
(i)
:,1 +

p∑
i=1

(c
(i)
2 − c

(i)′

2 )J
(i)
:,2 + ...+

p∑
i=1

(c
(i)
d − c

(i)′

d )J
(i)
:,d = 0

Since the set of vectors
⋃p

i=1 cols(J(i)) are nonzero and linearly independent with probability 1
(Lemma B.2),

(c
(i)
1 − c

(i)′

1 ) = (c
(i)
2 − c

(i)′

2 ) = ... = (c
(i)
d − c

(i)′

d ) = 0 ∀i ∈ [p]

Hence, it follows that u1 = w1,u2 = w2, ...,ud = wd and V = S1

⊕
S2

⊕
...Sd.

Lemma B.27 (Injectivity of grid-wise affine maps). Consider maps f : Rd → Rm as defined in
B.24. Such a map f is injective.
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Proof. Consider f : [0, 1]d → Rm written as a sum of coordinate-wise functions (Definition B.24),
f(s) =

∑d
k=1 fk(sk), where fk(sk) =

∑p
t=1(J

(t)
:,k(sk − (t− 1)δ) +

∑t−1
i=1 J

(i)
:,kδ)1sk∈((t−1)δ,tδ].

In the following proof, we show injectivity of the coordinate-wise functions fk : [0, 1]→ Rm ∀k ∈ [d]
and conclude that f : [0, 1]d → Rm is injective by Lemma B.26 and Lemma B.11. For a particular
k, to show that fk : [0, 1]→ Rm is injective, we need to show the following:

∀s(1)k , s
(2)
k ∈ [0, 1] : fk(s

(1)
k ) = fk(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k (35)

As usual, we show ( 35) by contradiction. Let

∃s(1)k ̸= s
(2)
k ∈ [0, 1]s.t.fk(s

(1)
k ) = fk(s

(2)
k ) (36)

Observe that fk(sk) ∈ Sk = span(J(1)
:,k ,J

(2)
:,k , ...,J

(p)
:,k ). We define the coefficient vector for a given

sk ∈ R, ⌈ skδ ⌉ = t+ 1, t : [0, 1]→ [0, 1]p, t(sk) :=
∑t

i=1 δei + (sk − tδ)et+1, ei denotes the i-th
canonical orthonormal basis vector in Rp. Then we get

fk(s
(1)
k ) = fk(s

(2)
k )

[J
(1)
:,k J

(2)
:,k ... J

(p)
:,k ]t(s

(1)
k ) = [J

(1)
:,k J

(2)
:,k ... J

(p)
:,k ]t(s

(2)
k )

=⇒ t(s
(1)
k ) = t(s

(2)
k )

because J
(1)
:,k ,J

(2)
:,k , ...,J

(p)
:,k are linearly independent w. p. 1, Lemma B.2 This implies

⌈
s
(1)
k

δ
⌉ = ⌈

s
(2)
k

δ
⌉ = t+ 1, s

(1)
k − tδ = s

(2)
k − tδ for some t ∈ N

=⇒ s
(1)
k = s

(2)
k .

Thus, we arrive at a contradiction to ( 36), and therefore ( 35) holds, and fk : [0, 1]→ Rm defined as
in B.24 is injective ∀k ∈ [d].

We now show that the injectivity of the coordinate-wise functions fk : [0, 1] → Rd implies the
injectivity of f : [0, 1]d → Rm, f(s) =

∑d
k=1 fk(sk). Observe that by definition B.24

1. S1 = span(Im(f1)) = span(J(1)
:,1 ,J

(2)
:,1 , ...,J

(p)
:,1 )

2. S2 = span(Im(f2)) = span(J(1)
:,2 ,J

(2)
:,2 , ...,J

(p)
:,2 )

...

3. Sd = span(Im(fd)) = span(J(1)
:,d ,J

(2)
:,d , ...,J

(p)
:,d )

Consider V = span(Im(f)). By Lemma B.26, V = S1

⊕
S2

⊕
...Sd. Further, by Lemma B.11,

injectivity of fk : [0, 1]d → Rm∀k ∈ [d] implies injectivity of f : [0, 1]d → Rm.

We proceed to define a smooth approximation to f : [0, 1]d → Rm defined in B.24.
Definition B.28 (Smooth approximation to grid-wise affine maps). Consider the decomposition of
f : [0, 1]d → Rm as a sum of coordinate-wise functions, f(s) =

∑d
k=1 fk(sk), s = (s1, s2, ..., sd) ∈

[0, 1]d where

fk(sk) =

p∑
t=1

(J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ)1sk∈((t−1)δ,tδ] .

We define the smoothened version of f : [0, 1]d → Rm as f̃ϵ(s) =
∑d

k=1 f̃ϵ,k(sk) for ϵ > 0 arbitrarily
small where

f̃ϵ,k(sk) :=

p∑
t=1

(
J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ

)
(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ)) .
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Lemma B.29. Functions f̃ϵ : [0, 1]d → Rm defined in B.28 are continuously differentiable in [0, 1]d,
in addition to being continuous and injective, with ϵ > 0 arbitrarily small.

Proof. We show that f̃ϵ : [0, 1]d → Rm defined in B.28 is continuous, injective and continuously
differentiable.

Continuity of f̃ϵ : [0, 1]d → Rm

Consider the coordinate-wise decomposition of f̃ϵ; f̃ϵ,j(s) =
∑d

k=1 f̃ϵ,(j,k)(sk), where f̃ϵ,(j,k) :
[0, 1]→ R is defined as

f̃ϵ,(j,k)(sk) :=

p∑
t=1

(
J
(t)
j,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
j,kδ

)
(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ)) .

We note that (J(t)
j,k(sk − (t− 1)δ) +

∑t−1
i=1 J

(i)
j,kδ) is continuous in sk ∈ [0, 1] ∀t ∈ [p], k ∈ [d] since

this is affine. Moreover 1̃ : R→ R is continuous by definition. 1̃ϵ(sk − (t− 1)δ), 1̃ϵ(sk − tδ) are
compositions of a continuous function with affine functions (thereby continuous), and hence are
contiinuous (Theorem 4.9, (Rudin et al., 1964)).

f̃ϵ,j : [0, 1]
d → R, being a sum of continuous functions, is continuous for all j ∈ [m] (Theorem 4.9,

(Rudin et al., 1964)).

Since the coordinate functions of f̃ : [0, 1]d → Rm, f̃j : [0, 1]d → R ∀j ∈ [m] are continuous, f̃ϵ is
continuous (Theorem 4.10, (Rudin et al., 1964)).

Injectivity of f̃ϵ : [0, 1]d → Rm

We show injectivity of the coordinate-wise functions f̃ϵ,k : [0, 1]→ Rm ∀k ∈ [d] and conclude that
f̃ϵ : [0, 1]

d → Rm is injective by Lemma B.26 and Lemma B.11. For a particular k, to show that
f̃ϵ,k : [0, 1]→ Rm is injective, we need to show the following:

∀s(1)k , s
(2)
k ∈ [0, 1] : fk(s

(1)
k ) = fk(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k (37)

As usual, we show ( 37) by contradiction. Let

∃s(1)k ̸= s
(2)
k ∈ [0, 1]s.t.fk(s

(1)
k ) = fk(s

(2)
k ) (38)

Observe that fk(sk) ∈ Sk = span(J(1)
:,k ,J

(2)
:,k , ...,J

(p)
:,k ). We define the coefficient vector for a given

sk ∈ R,

t : [0, 1]→ [0, 1]p, t(sk) :=

p∑
t=1

(
t−1∑
i=1

δei + (sk − (t− 1)δ)et

)
(1̃ϵ(sk− (t−1)δ)− 1̃ϵ(sk− tδ)) ,

where ei denotes the i-th canonical orthonormal basis vector in Rp. Then we get

fk(s
(1)
k ) = fk(s

(2)
k )

[J
(1)
:,k J

(2)
:,k ... J

(p)
:,k ]t(s

(1)
k ) = [J

(1)
:,k J

(2)
:,k ... J

(p)
:,k ]t(s

(2)
k )

=⇒ t(s
(1)
k ) = t(s

(2)
k ) ,

because J
(1)
:,k ,J

(2)
:,k , ...,J

(p)
:,k are linearly independent with probability one (Lemma B.2).

Observe that the number of non-zero entries in t(sk) is determined by the value of sk. The number
of nonzero entries in t(sk) for sk ∈ [0, 1] is as follows:

• sk ∈ P(1)
[0,1]

:= [0, δ − ϵ): No. of nonzero entries in t(sk) = 1

• sk ∈ P(2)
[0,1]

:= [δ − ϵ, 2δ − ϵ): No. of nonzero entries in t(sk) = 2

...
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• sk ∈ P(p−1)
[0,1]

:= [(p− 2)δ − ϵ, (p− 1)δ − ϵ): No. of nonzero entries in t(sk) = p− 1

• skP(p)
[0,1]

:=∈ [(p− 1)δ − ϵ, 1]: No. of nonzero entries in t(sk) = p

Therefore, t(s(1)k ) = t(s
(2)
k ) =⇒ s

(1)
k , s

(2)
k ∈ P(r)

[0,1] for r ∈ [p].

1. Consider s(1)k , s
(2)
k ∈ P(r)

[0,1] for r ∈ {2, 3, ..., p}.

For sk ∈ P(r)
[0,1], r ∈ {2, 3, ..., p}, t(sk) =∑r

t=r−1

(∑t−1
i=1 δei + (sk − (t− 1)δ)et

)
(1̃ϵ(sk − (t − 1)δ) − 1̃ϵ(sk − tδ)). Ob-

serve that the coefficient of er is equal to tr(sk) = (sk − (r − 1)δ)1̃ϵ(sk − (r − 1)δ).
tr(sk) is montonic in sk.

t(s
(1)
k ) = t(s

(2)
k ) =⇒ tr(s

(1)
k ) = tr(s

(2)
k ). Thus, s(1)k = s

(2)
k , since tr(.) is monotonic.

2. Consider s(1)k , s
(2)
k ∈ P(1)

[0,1].

For sk ∈ P(1)
[0,1], t(sk) = ske1. Thus, t(s(1)k ) = t(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k .

Thus, we see that, t(s(1)k ) = t(s
(2)
k ) =⇒ s

(1)
k = s

(2)
k , fk(s

(1)
k ) = fk(s

(2)
k ) =⇒ s

(1)
k = s

(2)
k ,

thereby, fk : [0, 1]→ Rm is injective ∀k ∈ [d].

We now show that the injectivity of the coordinate-wise functions f̃ϵ,k : [0, 1] → Rd implies the
injectivity of f̃ϵ : [0, 1]d → Rm, f̃ϵ(s) =

∑d
k=1 f̃ϵ,k(sk). Observe that by definition B.28

1. S1 = span(Im(f̃ϵ,1)) = span(J(1)
:,1 ,J

(2)
:,1 , ...,J

(p)
:,1 )

2. S2 = span(Im(f̃ϵ,2)) = span(J(1)
:,2 ,J

(2)
:,2 , ...,J

(p)
:,2 )

...

3. Sd = span(Im(f̃ϵ,d)) = span(J(1)
:,d ,J

(2)
:,d , ...,J

(p)
:,d )

Consider V = span(Im(f̃ϵ)). By Lemma B.26, V = S1

⊕
S2

⊕
...Sd. Further, by Lemma B.11,

injectivity of f̃ϵ,k : [0, 1]d → Rm∀k ∈ [d] implies injectivity of f̃ϵ : [0, 1]d → Rm.

Continuity of derivatives of f̃ϵ : [0, 1]d → Rm

Consider the derivatives of f̃ϵ(s) with respect to the coordinates of s = (s1, s2, ..., sd). Since

f̃ϵ(s) =
∑d

k=1 f̃ϵ,k(sk),
∂ f̃ϵ(s)
∂sk

=
df̃ϵ,k(sk)

dsk
= f̃ ′ϵ,k(sk). By Definition B.28,

f̃ϵ,k(sk) =

p∑
t=1

(
J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ

)
(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ))

f̃ ′ϵ,k(sk) =

p∑
t=1

J
(t)
:,k(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ))

+

(
J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ

)
(1̃′ϵ(sk − (t− 1)δ)− 1̃′ϵ(sk − tδ)) (39)
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where by definition B.13 1̃′ϵ(s) =


0 s ≤ −ϵ
1
2 cos

(
πs
2ϵ

)
π
2ϵ −ϵ < s ≤ ϵ

0 s > ϵ

. Notice that 1̃′ϵ : R → R is

continuous in R. f̃ ′ϵ,k(sk) is continuous since it is composed by a sum and product of continuous
functions (Theorem 4.9, (Rudin et al., 1964)).

To show that the derivative, f̃ ′ϵ,k(sk), is well-defined for sk ∈ [0, 1], we remark on terms containing
1̃′ϵ(sk − tδ) ∀t ∈ [p− 1] since 1̃′ϵ(.) can be very large for small ϵ. Notice that the term 1̃′ϵ(sk − pδ)

is always equal to zero for sk ∈ [0, 1] since pδ > 1, ϵ > 0 is arbitrarily small; and 1̃′ϵ(sk − tδ)

is nonzero for tδ − ϵ < sk ≤ tδ + ϵ. The coefficient multiplied to 1̃′ϵ(sk − tδ) is equal to(
J
(t+1)
:,k (sk − tδ) +

∑t
i=1 J

(i)
:,kδ − J

(t)
:,k(sk − (t− 1)δ)−

∑t−1
i=1 J

(i)
:,kδ
)
= (J

(t+1)
:,k − Jt

:,k)(sk − tδ).

Thus for tδ− ϵ < sk ≤ tδ+ ϵ, the term (J
(t+1)
:,k −Jt

:,k)(sk− tδ)1̃′ϵ(sk− tδ) = (J
(t+1)
:,k −Jt

:,k)(sk−
tδ) 12 cos

(
πs
2ϵ

)
is well-defined since (sk − tδ) = Θ(ϵ)8.

We have shown that f̃ ′ϵ,k(sk) is continuous and well-defined ∀k ∈ [d]. Thus, the derivatives
∂f̃ϵ,i
∂sk
∀i ∈ [m], k ∈ [d] are continuous for ϵ > 0 arbitrarily small.

Since all the partial derivatives of f̃ϵ : [0, 1]d → Rm are continuous, f̃ is continuously differentiable
(Theorem 9.21, (Rudin et al., 1964)).

We now present the theorem that introduces a bound on the global IMA contrast for non-affine maps,
f̃ϵ : Rd → Rm,m≫ d, defined as a smooth approximation to grid-wise affine maps B.28.

Theorem B.30. Consider the map f̃ϵ : [0, 1]
d → Rm sampled randomly from the procedure B.28.

Then, the map f̃ϵ : Rd → Rm, for ϵ > 0 arbitrarily small and any finite probability density, ps, defined
over [0, 1]d satisfies the following bound on the global IMA contrast CIMA(f̃ϵ, ps), CIMA(f̃ϵ, ps) ≤ δ

with (high) probability ≥ 1 − min
{
1, exp(2logd− κ(m− 1) δ

2

d2 )
}

for m ≫ d where δ < 1
2 is

arbitrarily small.

Proof. We show that the condition of Theorem 5.1, the columns of the Jacobian of f̃ϵ defined in
B.21 are locally sampled isotropically i.e. , is still satisfied for the domain of f̃ϵ, i.e. ∀s ∈ [0, 1]d

almost surely w.r.t finite probability measure, ps over [0, 1]d.

Following from Definition B.24 and Definition B.28, consider the partition of the domain of
f̃ϵ : [0, 1]

d → Rm, [0, 1]d into the following regions,

1. I := {sk − tδ ̸= (−ϵ, ϵ] ∀t ∈ [p− 1], k ∈ [d]}

Notice that by Definition B.17 and Definition B.21, ∀s ∈ I,b ∈ {0, 1}d, such that
b(s) = b, Jf̃ϵ

(s) = J(b). Recall that b(s) is defined such that, bk(s) = ⌈ skδ ⌉ ∀k ∈ [d].
The columns of J(b) are sampled independently from a spherically invariant distribution in
Rm, i.e. J(b)

1 ,J
(b)
2 , ...,J

(b)
d

i.i.d∼ pr. Thus, the condition of Theorem 5.1, the columns of
the Jacobian of f̃ϵ are locally sampled isotropically, is still satisfied for these regions.

2. B := [0, 1]d − I

As in the case where the map, f̃ϵ : Rd → Rm was defined as the smooth connection of two
affine maps (Theorem B.16), the region B sandwiching the boundary of the partitions has
arbitrarily small probability measure since:

(a) B is an ϵ-sandwich of a (d− 1)-dimensional region of a d-dimensional domain. The
Lebesgue measure on B is equal to the volumne element associated with B (3.3, (Çinlar,
2011)), thus, λ(B) = Θ(ϵ)8 where λ(.) denotes the Lebesgue measure.

(b) ps is finite at all points.
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Hence, p(B) =
∫
B psλ(s) = Θ(ϵ), is arbitrarily small for suitably chosen ϵ.

Like in Theorem B.16, to derive a bound on the global IMA contrast of f̃ϵ, cIMA(f̃ϵ, ps), we
need that in region, ∀s ∈ B, the value of the local IMA contrast cIMA(f̃ϵ, s) is finite. This
is equivalent to showing that the Jacobian, Jf̃ϵ

is full column-rank for all s ∈ B. Consider
the definition of f̃ϵ : Rd → Rm (Definition B.28) in terms of coordinate-wise functions,
fϵ,k : R→ Rm,∀k ∈ [d].

f̃ϵ,k(sk) :=

p∑
t=1

(
J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ

)
(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ))

By (39), the k-th column of Jf̃ϵ
for any k ∈ [d] is given by:

Jf̃ϵ,:,k
=

p∑
t=1

J
(t)
:,k(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ))

+

(
J
(t)
:,k(sk − (t− 1)δ) +

t−1∑
i=1

J
(i)
:,kδ

)
(1̃′ϵ(sk − (t− 1)δ)− 1̃′ϵ(sk − tδ))

For sk ∈ (t− ϵ, t+ ϵ],

Jf̃ϵ,:,k
= J

(t)
:,k(1̃ϵ(sk − (t− 1)δ)− 1̃ϵ(sk − tδ)) + J

(t+1)
:,k (1̃ϵ(sk − tδ)− 1̃ϵ(sk − (t+ 1)δ))

+ (J
(t+1)
:,k − Jt

:,k)(sk − tδ)1̃′ϵ(sk − tδ)

= J
(t)
:,k(1− 1̃ϵ(sk − tδ)− (sk − tδ)1̃′ϵ(sk − tδ)) + J

(t+1)
:,k (1̃ϵ(sk − tδ) + (sk − tδ)1̃′ϵ(sk − tδ))

∵ 1̃ϵ(sk − (t− 1)δ) = 1, 1̃ϵ(sk − (t+ 1)δ) = 0

= J
(t)
:,k(1̃ϵ(tδ − sk) + (tδ − sk)1̃′ϵ(tδ − sk)) + J

(t+1)
:,k (1̃ϵ(sk − tδ) + (sk − tδ)1̃′ϵ(sk − tδ))

∵ 1̃ϵ(s) + 1̃ϵ(−s) = 1, 1̃′ϵ(s) = 1̃′ϵ(−s)

Observe that Jf̃ϵ,:,k
is a linear combination of J

(1)
:,k ,J

(2)
:,k , ...,J

(p)
:,k ∀k ∈ [d]. Since by

Lemma B.2,
⋃p

i=1 cols(J(i)) are all nonzero and linearly independent with respect to each
other with probability 1, the columns of Jf̃ϵ

are linearly independent as long as they are all
non-zero. Hence, the only possibility for Jf̃ϵ

to not be full column-rank is for k ∈ [d],

Jf̃ϵ,:,k
= 0

=⇒ (1̃ϵ(tδ − sk) + (tδ − sk)1̃′ϵ(tδ − sk)) = 0, (1̃ϵ(sk − tδ) + (sk − tδ)1̃′ϵ(sk − tδ)) = 0

∵ J
(t)
:,k ,J

(t+1)
:,k are linearly independent.

As in Theorem B.23, consider the function, q : R → R such that q(s) = 1̃ϵ(s) + s1̃′ϵ(s).
Observe that q(s) ≥ 0 for s ≥ 0. Thus, for (1̃ϵ(tδ − sk) + (tδ − sk)1̃′ϵ(tδ − sk)) =

(1̃ϵ(sk − tδ)+ (sk − tδ)1̃′ϵ(sk − tδ)) = 0, we need that sk = tδ. At sk = tδ, q(sk − tδ) =
q(tδ − sk) =

1
2 ̸= 0. Hence, we have shown that Jf̃ϵ,:,k

̸= 0∀k ∈ [d], thereby Jf̃ϵ
is full

column-rank and cIMA(f̃ϵ, s) is finite for all s ∈ B.
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Hence,

CIMA(f̃ϵ, ps) =

∫
Rd

cIMA psds

=

∫
I
cIMA(f̃ϵ, s) psds+

∫
B
cIMA(f̃ϵ, s) psds

=

∫
I
cIMA(f̃ϵ, s) psds+Θ(ϵ)

≈
∫
I
cIMA(f̃ϵ, s) psds for ϵ arbitrarily small.

≤ max
s∈Rd

cIMA(f̃ϵ, s)

∫
Rd

psds

≤ max
s∈Rd

cIMA(f̃ϵ, s) ≤ δ ,

with probability at least 1 − min
{
1, exp(2 log d− κ(m− 1) δ

2

d2 )
}

by Theorem 5.1. Thus,

CIMA(f̃ϵ, ps) ≤ δ for f̃ϵ : Rd → Rm defined in B.28 with (high) probability ≥ 1 −
min

{
1, exp(2logd− κ(m− 1) δ

2

d2 )
}

for m≫ d where δ < 1
2 is arbitrarily small.

We have shown that for smoothened grid-wise affine maps, f̃ϵ : Rd → Rm defined in B.28 where
locally the columns of the Jacobian, Jf̃ϵ

(s), are sampled independently from a spherically invariant
distribution (statistical notion of independent influences), Jf̃ϵ,1

(s),Jf̃ϵ,2
(s), ...,Jf̃ϵ,d

(s) ∼ ps, the
IMA function class which formalizes the non-statistical notion of independent influences is "typical",
i.e. the columns of Jf̃ϵ

(s) are close to orthogonal with high probability.
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