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ABSTRACT

Spatio-temporal data mining plays a pivotal role in informed decision making
across diverse domains. However, existing models are often restricted to narrow
tasks, lacking the capacity for multi-task inference and complex long-form rea-
soning that require generation of in-depth, explanatory outputs. These limitations
restrict their applicability to real-world, multi-faceted decision scenarios. In this
work, we introduce STReason, a novel framework that integrates the reasoning
strengths of large language models (LLMs) with the analytical capabilities of
spatio-temporal models for multi-task inference and execution. Without requiring
task-specific finetuning, STReason leverages in-context learning to decompose
complex natural language queries into modular, interpretable programs, which are
then systematically executed to generate both solutions and detailed rationales. To
facilitate rigorous evaluation, we construct a new benchmark dataset and propose
a unified evaluation framework with metrics specifically designed for long-form
spatio-temporal reasoning. Experimental results show that STReason significantly
outperforms advanced LLM baselines across all metrics, particularly excelling in
complex, reasoning-intensive spatio-temporal scenarios. Human evaluations further
validate STReason’s credibility and practical utility, demonstrating its potential to
reduce expert workload and broaden the applicability to real-world spatio-temporal
tasks. We believe STReason provides a promising direction for developing more
capable and generalizable spatio-temporal reasoning systems. Our code is available
at: https://anonymous.4open.science/r/STReason-B0B2/

1 INTRODUCTION

In the realm of data science, spatio-temporal data, characterized by both spatial and temporal
dimensions, plays a critical role in a wide array of fields such as environmental monitoring (Hettige
et al., 2024; Liang et al., 2023), urban planning and traffic management (Li et al., 2024b; Ji et al.,
2022), and public health (Dong et al., 2024). Over the years, research in spatio-temporal data mining
has progressed from conventional statistical and machine learning approaches (Xie et al., 2020) to
advanced deep learning frameworks (Jin et al., 2023a; Wang et al., 2020; Zhang et al., 2024). In
recent years, the development of Foundation Models (FMs) has sparked a surge in research aimed at
improving spatio-temporal modeling through Large Language Models (LLMs) (Li et al., 2024b; Liang
et al., 2024; 2025). By leveraging the strengths of LLMs in generalization, cross-modal reasoning,
and long-sequence modeling, several LLM-based spatio-temporal models have been developed for
various applications with notable performance improvements in zero-shot and few-shot scenarios
(Cao et al., 2023; Zhou et al., 2023; Chen et al., 2023; Alnegheimish et al., 2024).

Despite significant advancements, current LLM-based spatio-temporal models exhibit critical limita-
tions. First, while these models are commonly applied for numerical tasks such as forecasting, their
use in inferential problem-solving, such as reasoning or decision-making, remains underexplored (Li
et al., 2024b; Zhou et al., 2023; Zhang et al., 2023; Yuan et al., 2024). For example, a forecasting
system might violate real-world constraints, and erroneously predict traffic speeds that exceed safety
thresholds, thus limiting interpretability and reliability of their outputs. Second, although foundation
models generalize well, their performance compared to specialized smaller spatio-temporal models,
is still debatable (Tan et al., 2024; Kambhampati et al., 2024). This raises the need to reassess the
trade-offs between scalability, efficiency, and task optimization by proposing a hybrid approach
that combines the strengths of foundation models and expert spatio-temporal models. Third, most
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current models are restricted to fixed spatio-temporal input formats; typically tensors with pre-defined
dimensions (e.g. [batch, time, location, feature]) and struggle with processing natural language
queries, highlighting a gap in their utility as general-purpose AI systems (Zhou et al., 2023; Chen
et al., 2023; Liu et al., 2024b; 2025).

Building on these limitations, few recent studies have explored models for spatio-temporal reasoning,
though they predominantly focus on highly task-specific inference problems. Majority of these
approaches convert spatio-temporal data into textual descriptions, for processing by LLMs (Peng
et al., 2025; Chen et al., 2024; Guo et al., 2024). This translation often leads to significant information
loss, shallow reasoning, and inability to capture complex dependencies inherent in spatio-temporal
phenomena. To tackle these limitations, certain program-based approaches have been introduced.
For example, UrbanLLM (Jiang et al., 2024) finetunes LLMs for urban planning by breaking down
queries into sub-tasks handled by spatio-temporal AI models. However, its effectiveness is limited by
the specific urban contexts it was trained on, reducing generalizability, and its reliance on pre-trained
models may hinder detailed geospatial understanding. Similarly, TS-Reasoner (Ye et al., 2024)
decomposes complex time-series tasks, yet it remains confined to niche time-series applications
within climate and energy data, highlighting a gap in versatility and broader applicability. Moreover,
the outputs of the aforementioned models are often brief and lack the depth required for long-
form answers, limiting their practical utility. Long-form question answering (Fan et al., 2019) where
comprehensive, explanatory, and interpretable outputs are generated from complex inputs still remains
underexplored in spatio-temporal settings.

Figure 1: Comparison between Human Expert and STReason Model workflows for answering a
complex spatio-temporal query.

Addressing these limitations requires a paradigm shift to a task and domain-agnostic framework that
can adapt to complex spatio-temporal problems and generate outputs with rich context, depth, and
clarity making results more interpretable and actionable. Consider answering a query on analyzing
historical air quality data for anomalies, integrating temporal and spatial reasoning by considering
corresponding weather patterns and nearby locations as shown in Figure 1. Typically, a human
expert (Left) begins by understanding the intent of the query, followed by executing a series of
analytical steps and finally providing a comprehensive answer that synthesizes all gathered insights
with appropriate reasoning. While existing LLM-based systems can handle these individual steps in
isolation, they fall short of effectively executing complex, language driven spatio-temporal queries
end-to-end. They struggle to fully comprehend inputs, integrate multi-dimensional knowledge, and
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produce reasoned, actionable outputs. Bridging this gap requires advanced LLM agents that function
like full-stack data scientists, supporting the entire pipeline from data ingestion and analysis to
interpretation and decision-making.

In response to these challenges, we introduce STReason, a novel framework that combines the
reasoning and comprehension strengths of LLMs with the analytical power of state-of-the-art spatio-
temporal models for multi-task inference and execution. Without requiring task-specific fine-tuning,
STReason leverages LLMs to decompose complex tasks, articulated in natural language, into struc-
tured programs (“ST Program”) using predefined in-context query–program example pairs and a
Function Pool; a curated dictionary of available modules and their specifications that guides the
LLM in aligning sub-tasks with the appropriate executable functions (see Figure 1 (Right)). The
generated ST Programs are then executed by specialized, end-to-end trained models or tailored ana-
lytical programs to produce coherent, long-form answers that go beyond simple numeric predictions
to include structured reasoning, explanatory narratives and meaningful interpretations inspired by
long-form question answering (Fan et al., 2019). A demonstration of STReason can be viewed at:
https://anon.to/T5lL94.

STReason revolutionizes spatio-temporal data analysis by addressing the limitations of conventional
LLMs or LLM agents with limited spatio-temporal understanding (Manvi et al., 2024; Shen et al.,
2023). Unlike task-specific models (Jiang et al., 2024; Li et al., 2024b), STReason requires no pre-
training, enhancing flexibility and generalization across diverse domains. Highlighting its versatility,
we apply STReason to three primary tasks in the traffic and air quality domains. These tasks include
(i) Spatio-temporal Analysis, (ii) Spatio-temporal Anomaly Detection, and (iii) Spatio-temporal
Prediction and Reasoning. The modular nature facilitates easy customization, promoting adaptation
to new tasks without significant retraining. Moreover, STReason’s structured execution allows for
validation of logic and inspection of intermediate outputs crucial for high accountability domains
like environmental monitoring. To enable rigorous evaluation, we also introduce a new benchmark
dataset specifically designed for long form spatio-temporal reasoning. Unlike existing datasets that
focus narrowly on single task, our dataset includes multi-task natural language queries, corresponding
structured programs, and a ground-truth answer annotated with the key components expected in a
comprehensive response. This dataset offers a valuable foundation for systematically evaluating any
spatio-temporal reasoning model. We summarize our contributions as follows:

1. We propose STReason, a novel framework that decomposes complex multi-faceted spatio-
temporal queries into executable steps and produce interpretable and well-reasoned outputs
without human intervention.

2. We develop a benchmark dataset spanning three core tasks: Spatio-temporal Analysis,
Anomaly Detection, and Prediction and Reasoning from real-world traffic and air quality
data to rigorously assess any reasoning model, including STReason.

3. We develop a systematic evaluation framework to assess long-form reasoning responses
for spatio-temporal queries, based on constraint adherence, factual accuracy, and logical
coherence.

4. Extensive experiments demonstrate that STReason excels in spatio-temporal task execution
and inference compared to advanced LLMs, highlighting their limitations in this domain.

2 RELATED WORK

Large Language Models for Spatio-temporal Tasks LLMs are driving significant advancements
in spatio-temporal analysis (Jin et al., 2023b) through diverse tuning-based (Zhou et al., 2023;
Liu et al., 2024b;c), prompt-based (Gruver et al., 2023; Zhang et al., 2023; Wang et al., 2023a),
and foundation model approaches (Liang et al., 2024; 2025). While tuning-based methods risk
catastrophic forgetting, and non-tuning methods rely on manual prompt engineering, task-specific
foundation models face high development costs and limited generalization. Overall, these models
are designed for fixed-format tensor inputs and scalar outputs, making them unsuitable for natural
language queries, multi-task inference, or long-form reasoning. To address this gap, STReason
introduces a task and domain agnostic reasoning framework along with a new benchmark dataset and
evaluation protocol tailored for interpretable, multi-step spatio-temporal question answering, beyond
what traditional metrics can capture.
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Reasoning with Foundation Models Recent advances in foundation models (e.g., GPT-4o,
DeepSeek-R1) extend reasoning capabilities beyond earlier versions (e.g., GPT-3), with improved
context-awareness and domain adaptation. Techniques such as Chain-of-Thought (CoT) prompt-
ing and program-based methods improve logical deduction and generalize to visual, tabular, and
time-series data (Yao et al., 2023; Wang et al., 2023b; Gupta & Kembhavi, 2023; Wang et al., 2024;
Ye et al., 2024). The scope of reasoning has also broadened to include commonsense, numerical,
and causal tasks by integrating contextual and quantitative signals (Li et al., 2024a;b; Zhang &
Wan, 2023). Agent-based systems (JIAWEI et al., 2024; Gao et al., 2024) integrate tool use, while
fine-tuned approaches (Kong et al., 2025) incur high costs and remain prone to hallucinations. These
methods further lack alignment with spatio-temporal data and struggle to generalize beyond their
training scope. In contrast, STReason is training-free and enables robust, constraint-aware, long-form
reasoning across multiple spatio-temporal domains (see Appendix A.1).

3 METHODOLOGY

We introduce the STReason framework which operates in two primary stages: the command gen-
eration and command execution. Given a user query, in the first stage natural language queries
are converted into structured commands by a Command Generator, which leverages the in-context
learning abilities of LLMs. Using well-crafted query-program pairs along with a structured Function
Pool of available interpreter modules, it generates a sequence of executable commands referred to
as an “ST Program” tailored to each query. Each command in the ST Program activates one of the
specific modules within our framework, which include state-of-the-art spatio-temporal prediction
models, language processing units and data processing sub-routines. In the second stage, the gener-
ated ST Program is executed by a Command Interpreter that maps each command to its corresponding
function, generating an integrated final response (see Figure 1 (Right)). This modular pipeline ensures
that inputs are sequentially processed and integrated to deliver comprehensive, well-reasoned outputs.

3.1 COMMAND GENERATOR

Figure 2: STReason Command Generator uses a Func-
tion Pool and in-context query-program pairs to gener-
ate executable ST-Program for a given user query.

The Command Generator is responsi-
ble for translating complex natural lan-
guage queries into executable ST-Programs.
Specifically, it decomposes complex spatio-
temporal queries into manageable sub-
tasks, leveraging the in-context learning
capabilities of LLMs. To enhance ground-
ing and reduce ambiguity in sub-task selec-
tion, STReason augments the input prompt
with a Function Pool; a curated collection
of function specifications that serves as a
structured knowledge base for the model.

Each function in the pool includes its def-
inition, input parameter details and output
structures as shown in A.2. This structured
reference not only clarifies available mod-
ules but also helps to resolve ambiguity dur-
ing program generation, particularly when
in-context examples lack alignment. For
example, if a user query requests seasonal-
ity analysis but the provided examples only
cover trend analysis, the Function Pool
guides the LLM to select the correct func-
tion (“ANALYZE SEASONALITY”) by
referencing its defined syntax and purpose.
It also improves generalization to diverse query phrasing. For example, a query like “Find anything
unusual in pollution patterns over weekends” can still be correctly mapped to the anomaly detection
function, despite differing wording from prior examples. Together with the input query–program pairs,
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the Function Pool enables the Command Generator to produce a clear and interpretable program-
based reasoning path, as illustrated in Figure 2. We use GPT-3.5 Turbo as the backbone LLM, due to
the balance of its cost-efficiency and reasoning capability.

Each step of the generated program (i.e., ST-program) corresponds to a specific module within the
framework, designed for analytical, predictive, or inference tasks. Particularly, each command line
of an ST-program includes a module name (e.g., “ANALYZE TREND”, “DETECT ANOMALY”),
input arguments (e.g., “data”, “location”), and an output variable (e.g., “EVENTS”, “PREDICTION”).
These naming conventions help the LLM understand and map inputs to the appropriate functions
accurately. The final output from the command generator is a complete, interpretable program that
defines all steps, inputs, and outputs needed to answer the query. Example ST-programs for different
tasks are shown in Appendix A.3.

3.2 COMMAND INTERPRETER

The Command Interpreter sequentially executes the ST-Program, functioning like a traditional
programming language interpreter. It accesses a library of pre-defined modules, invoking them as
required by the program. It ensures that each command is executed in the correct order and that data
flows correctly between steps, maintaining consistency and accuracy throughout the process. Finally,
the results from each command are integrated to build a comprehensive response to the initial query,
effectively turning raw data into insightful conclusions.

Figure 3: Command Interpreter Modules

STReason features 12 specialized modules
supporting three core spatio-temporal tasks:
Analysis, Anomaly Detection and Predic-
tion and Reasoning (see Figure 3). Inspired
by VISPROG (Gupta & Kembhavi, 2023),
each module is implemented as a Python
class with methods for parsing inputs, exe-
cuting computations, and summarizing out-
puts. Full module details are provided in
Appendix A.4. This modular architecture
simplifies the integration of new modules
into STReason, requiring only the devel-
opment and registration of a new module
class. To further enhance transparency and
user comprehension, each module gener-
ates a detailed textual summary of its operations, including inputs, processes, and outputs. The
Command Interpreter compiles these into a complete execution rationale, offering clear insights into
the program’s logic and intermediate steps facilitating debugging and refinement (see Appendix A.5).

4 EXPERIMENTS

This section presents a comprehensive evaluation of STReason across key spatio-temporal tasks each
requiring varying degrees of data interpretation, inference, and constraint-based reasoning. STReason
is benchmarked against several advanced LLM-based baselines to assess its effectiveness in multi-task
spatio-temporal inference and execution (Section 4.2). We further validate performance through a
structured human evaluation that compares the quality and coherence of model-generated responses.
(Section 4.3). Additionally, we perform an ablation study to analyze the influence of key factors on
program generation accuracy (Section 4.4).

4.1 EXPERIMENTAL SETUP

Dataset Creation Due to the lack of standardized datasets for evaluating multi-task spatio-temporal
reasoning models, we construct a new dataset tailored to evaluate such capabilities. It encompasses
three representative tasks; Analysis, Anomaly Detection and Prediction and reasoning, each reflecting
distinct spatio-temporal inference challenges. The dataset comprises 150 structured instances, each
including a natural language query, a step-by-step program executable by STReason’s Program
Generator, and a corresponding ground truth answer. To ensure broad coverage and generalizability,
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queries vary across regions, temporal intervals, forecast horizons, and domain-specific constraints.
These instances are derived from four diverse real-world datasets including PEMS-BAY and METR-
LA (Li et al., 2017) for traffic flow, and Beijing1 and Shenzhen2 for air quality. This dataset not only
enables rigorous evaluation of the STReason framework but also aims to serve as a general-purpose
benchmark for the broader research community.

Baselines We compare STReason framework against six advanced LLM baselines; LLaMA-2-7B,
Vicuna-7B-v1.5, GPT-3.5 Turbo, GPT-4o Mini, GPT-4 and DeepSeek-V3. These baselines span
a range of model sizes and architectural designs, allowing for a comprehensive evaluation across
different reasoning capacities and generalization abilities. All models are accessed through public
APIs, except for LLaMA-2-7B and Vicuna-7B-v1.5, which are run locally using open-source weights.
Refer Appendix A.6 for baseline details and inference settings.

Evaluation Metrics To the best of our knowledge, no standardized metrics exist for systematically
evaluating long-form question answering and reasoning in spatio-temporal tasks. To address this
gap, we propose a novel evaluation framework that jointly measures the correctness, interpretability
and reasoning quality of model-generated responses. Informed by the key principles of question
answering and reasoning (Sun et al., 2023), three scores are defined as follows:

• Constraint Adherence Score: Measures whether the generated answer satisfies all query-
specified constraints (e.g. temporal granularity, thresholds), using a binary scoring system.

• Factuality Score: Assess the presence and correctness of required analytical components
(e.g. detected trends, anomaly timestamps, predicted values) by comparing them to a
structured ground truth, scored as the ratio of correct components to expected components.

• Coherence Score: Assess the clarity and logical progression of the explanation on a 3-point
scale, reflecting the overall coherence of the response.

In addition to evaluating overall model performance, we also conduct an in-depth assessment of the
Program Generator as part of our ablation study (see Section 4.4). Here, the three metrics Precision,
Recall, and F1 Score are computed, considering a program step correct if it matches in module
type, input arguments, parameter values, and order. Full details of the evaluation procedure and
corresponding prompt formulations are provided in Appendix A.7.

4.2 MAIN RESULTS

Table 1a presents a comparative evaluation of STReason against six advanced LLM baselines across
three evaluation metrics. Accordingly, the results clearly demonstrate the superiority of STReason
in effectively handling complex spatio-temporal tasks requiring both computational precision and
interpretability. Specifically, STReason achieves a perfect constraint adherence score, satisfying
all task-specific requirements across queries. While DeepSeek-V3 also shows strong performance
in this aspect, STReason stands out by consistently meeting all requirements across every case.
The most pronounced improvement is observed in the factuality score, where STReason achieves
84.44%, demonstrating its’ ability to extract relevant analytical components and produce factually
correct responses. With regard to the coherence score, along with models like GPT-3.5, GPT-4o, and
DeepSeek, STReason delivers a top performance of 100%, maintaining complete logical consistency
in its explanations. This reflects the inherent strengths of advanced LLMs in generating fluent
and well-structured language. Furthermore, STReason’s improvements in factuality and constraint
adherence are statistically significant compared to majority of the baselines (see Appendix A.8).

Overall, STReason’s strong performance across all dimensions highlights its reliable internal mecha-
nisms and task relevant knowledge to generate coherent and factually accurate outputs. These results
further establish STReason as a powerful framework for long-form, multi-task spatio-temporal reason-
ing tasks. Beyond quantitative metrics, we observed notable qualitative differences in model outputs.
STReason consistently produced detailed, specific and statistically grounded analyses addressing the
spatio-temporal queries. In contrast, DeepSeek often produced structured steps but lacked actual
computed results. GPT4, GPT-4o-mini and GPT-3.5 Turbo provided only high-level methods without
executing specific analyses. Responses from Vicuna-7B and LLaMA-2-7B were frequently vague,

1https://dataverse.harvard.edu/dataverse/whw195009
2https://www.microsoft.com/en-us/research/project/urban-air
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Table 1: Quantitative Comparison of STReason against Baseline Models. Scores are reported as
Mean ± Std. The bold and underlined font show the best and the second best result respectively.

(a) Overall Performance

Model Constraint Factuality Coherence
Score Score Score

Vicuna-7B-v1.5 (55.3 ± 49.9)% (11.6 ± 26.4)% (71.6 ± 35.9)%
LLaMA-2-7B (75.3 ± 43.3)% (12.4 ± 23.8)% (87.8 ± 25.2)%

GPT-4 (67.3 ± 47.1)% (25.1 ± 34.9)% (99.1 ± 7.7)%
GPT-3.5 Turbo (88.7 ± 31.8)% (26.1 ± 34.1)% (100 ± 0.0)%
GPT-4o Mini (98.7 ± 11.5)% (29.2 ± 38.3)% (100 ± 0.0)%
DeepSeek-V3 (97.3 ± 16.2)% (32.8 ± 40.4)% (100 ± 0.0)%

STReason (100.0 ± 0.0)% (84.4 ± 26.9)% (100 ± 0.0)%

(b) Forecasting Accuracy

MAE RMSE

43.1 ± 87.6 44.1 ± 87.5
20.9 ± 23.2 22.4 ± 23.7
52.0 ± 19.7 52.7 ± 19.3
22.6 ± 27.1 23.3 ± 27.4
7.9 ± 12.3 8.8 ± 13.5
11.4 ± 18.0 12.4 ± 18.7
7.6 ± 11.9 8.4 ± 12.8

unstructured, or contained hallucinations (Appendix A.10). These observations highlight STReason’s
strength in delivering comprehensive, precise, and actionable outputs for complex spatio-temporal
tasks. Notably, STReason also generalizes well to unseen domains (Appendix A.11).

We further conducted a forecasting accuracy comparison using Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE), the standard metrics in spatio-temporal forecasting (Table 1b).
Unlike the baselines, which often produced incomplete or missing predictions, STReason consistently
generated complete, correctly formatted outputs. For fair comparison, baseline predictions were post
processed by zero padding if no predictions were generated and repeating the last available value to
complete partial prediction sequences. As shown in Table 1b, STReason achieves the lowest MAE
and RMSE, demonstrating superior forecasting accuracy. Moreover, these forecasting improvements
are statistically significant against most baseline models, further confirming its superior quantitative
reliability (see Appendix A.8). Although models like GPT-4o and DeepSeek showed competitive
results, the post-processing adjustments could have unfairly favored these models by smoothing
missing values, potentially inflating their apparent performance. Despite this, STReason still achieves
the best accuracy, confirming its strength in delivering both accurate quantitative predictions and
logically sound reasoning outputs while also maintaining practical efficiency (see Appendix A.9).

4.3 HUMAN EVALUATION EXPERIMENT

To further validate the performance of STReason beyond automated metrics, we conducted a rigorous
human evaluation to assess the credibility, clarity, and reasoning quality of model generated answers.
This complements our quantitative results with human judgment, thereby offering deeper insights
into the effectiveness of STReason in real world contexts. We recruited 27 evaluators with domain
relevant expertise, nearly half holding Ph.D.s and the majority specializing in Computing, Statistics,
or Data Science, ensuring a technically competent cohort (see Appendix A.12). For this study, 18
spatio-temporal queries were curated spanning three core task types targeted by STReason. Each
query was paired with two answers, one from STReason and one from a randomly selected baseline,
with each baseline compared exactly three times. The order of answers was randomized to avoid
positional bias. Evaluators were asked to choose the better response and provide open-ended feedback
to explain their preferences. Full evaluation details are provided in Appendix A.12.

Across all 486 comparisons (27 evaluators × 18 questions), STReason was preferred in 74.1% of
responses on average demonstrating strong user preference and credibility of generated outputs. As
shown in Figure 4, STReason consistently outperformed all baselines. Vicuna-7B exhibited the lowest
preference rate, followed by LLaMA-2-7B, GPT-3.5 Turbo and GPT-4 respectively. Even against
top competitors like GPT-4o and DeepSeek, STReason maintained a clear margin of superiority.
Notably, there is a consistent alignment between human evaluator preferences (Figure 4) and the
automated factuality scores (Table 1a). The order of preference remains similar in both evaluations,
which highlights the robustness and reliability of the proposed evaluation framework. Furthermore,
as illustrated in Figure 5, the task wise preference rate further reveals STReason’s robust performance
across spatio-temporal task categories. Specifically it achieves 84.57% preference rate in prediction
and reasoning task, 77.78% in analysis, and 59.88% in anomaly detection. These results suggest
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that while the model excels generally across all tasks, there’s more room for improvement in tasks
involving rare event detection.

Figure 6: Human Evaluation: Qualitative Feedback

Moreover, qualitative feedback from eval-
uators further supported these findings. As
shown in Figure 6, the word cloud gen-
erated from open-ended responses where
STReason was preferred, highlights at-
tributes such as “detailed”, “comprehen-
sive”, “clear”, “structured”, and “precise”
reflecting STReason’s strength in deliver-
ing well-organized, transparent, and infor-
mative answers. Overall, these outcomes
affirm STReason’s capacity to not only out-
perform baselines in constraint adherence
and factual accuracy, but also to produce
human preferred outputs that are coher-
ent, more interpretable and contextually
grounded.

4.4 ABLATION STUDIES

To better understand the contribution of core components within the STReason framework, we
conduct a series of ablation studies centered on the Command Generator. Each experiment is
evaluated against ground-truth programs using Precision, Recall, and F1 Score as defined in Section
4.1.

All Tasks Combined Analysis Anomaly Detection Prediction and Reasoning
Task Type

0.90

0.92

0.94

0.96

0.98

1.00

Precision Recall F1 Score

Figure 7: Effect of Task

6 8 10 12 14
Number of Examples

0.6

0.7

0.8

0.9

1.0

Precision Recall F1 Score

Figure 8: Effect of No: of Incontext Examples

Effect of Task Type: We first assess performance across different task categories. As shown in
Figure 7, the generator achieves perfect scores in both Analysis and Prediction tasks, while Anomaly
Detection proves more challenging, showing a dip in precision, potentially due to the variability in
task-specific steps and parameter configurations. However, when considering all tasks combined, the
command generator maintains high overall accuracy, demonstrating strong generalizability.

Effect of Number of In-Context Examples: Next, we evaluate the impact of varying the number of
in-context examples on program generation accuracy (see Figure 8). Precision and F1 Score steadily
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improve as the number of examples increases from 6 to 14, while recall remains consistently high
across all configurations. This trend highlights the importance of sufficient context in helping the
model generate more accurate programs. Furthermore it is observed that, as the number of in-context
examples increases, the proportion of task specific examples within the example pool rises from 14%
with 6 examples to 21% with 14 examples contributing to the performance gains.

Table 2: Effect of In-context Example Variant

Equal Random Test-query Test-query
Include Exclude

Precision 0.9816 0.8327 0.9642 0.6091
Recall 1.0000 0.9973 1.0000 1.0000
F1 Score 0.9907 0.9026 0.9818 0.7571

Effect of In-context Example Variant: We then investigate how different in-context example
variants influence program correctness. Four configurations were tested; a) Equal Construction:
A fixed and balanced set of task-specific examples, b) Random Construction: A set of randomly
selected examples from the example pool, c) Test-Query Include: A set of randomly selected examples
including a certain percentage (20% in our case) of examples similar to the test query, c) Test-Query
Exclude: A set of randomly selected examples excluding examples similar to the test query. As
shown in Table 2, the Equal Construction yields the highest performance, affirming the importance
of balanced, task-aligned examples. While the Test-Query Include setup also performs strongly, the
Random setup demonstrates a noticeable drop in precision due to decreased example task alignment.
The Test-Query Exclude configuration exhibits the lowest performance across metrics, highlighting
the challenge of generating correct programs when the example pool lacks task relevance to the query.

Table 3: Effect of Function Pool

Precision F1 Score
Equal Random Test-Query Test-query Equal Random Test-Query Test-Query

Include Exclude Include Exclude
W/O Function Pool 0.9816 0.8327 0.9642 0.6091 0.9907 0.9026 0.9818 0.7571
With Function Pool 0.9874 0.9678 0.9687 0.8440 0.9936 0.9836 0.9841 0.9132

Effect of Function Pool: We further evaluate the benefit of augmenting examples with a curated
function pool. As shown in Table 3, the presence of the function pool significantly boosts precision
and F1 scores across all example construction settings. It is particularly beneficial in the Test-Query
Exclude setting, where query relevant examples are absent. These findings highlight the value of
providing structured functional knowledge alongside in-context examples in improving program
generation accuracy, especially when task-specific cues in the examples are limited.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we introduced STReason, a novel framework for spatio-temporal multi-task inference
and reasoning that seamlessly integrates large language models with state-of-the-art spatio-temporal
models and analytical workflows. Through extensive benchmarking we show that, STReason outper-
forms advanced LLM baselines in spatio-temporal inference and execution tasks, achieving superior
constraint adherence, factual accuracy, and reasoning coherence. Notably, our findings are further
validated through structured human evaluations, reinforcing the credibility and robustness of the pro-
posed automatic evaluation metrics. While effective, STReason currently relies on manually curated
in-context examples which may limit scalability to unseen task types without further adaptation. Ad-
ditionally, performance on tasks such as anomaly detection remains an area for improvement. Future
work will focus on automating example retrieval and function pool maintenance to further enhance
generalization, expanding task coverage and improving adaptability and accuracy through integration
with emerging spatio-temporal foundation models. We also plan to extend STReason into a unified
reasoning agent that can operate interactively across multimodal spatio-temporal environments.
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A APPENDIX

A.1 MORE RELATED WORK

Program-based Reasoning Among several recent reasoning approaches, Program-based reasoning
has been explored in several domains, including visual question answering (VISPROG (Gupta &
Kembhavi, 2023),ViperGPT (Surı́s et al., 2023)), tabular reasoning (Chain-of-Table (Wang et al.,
2024)), multimodal task orchestration (HuggingGPT (Shen et al., 2023)), mathematical problem
solving (Program-of-Thoughts (Chen et al., 2022), PAL (Gao et al., 2023)) and spatio-temporal QA
for ubran planning (UrbanLLM (Jiang et al., 2024). Table 4 contrasts these representative frameworks
with STReason, in terms of domain, input modality, output format and key innovation.

Table 4: Comparison of STReason with representative program-based reasoning frameworks.

Method Domain Input Modality Output Format Key Innovation

VISPROG Vision QA Images Short categorical text/
Edited Images

Compositional visual
reasoning programs

ViperGPT Vision QA Images Short categorical text/
Edited Images

Integrating code-generation
models into vision

Chain-of-Table Tabular reasoning Structured tables Short categorical text/
Result Table

Reasoning chains over
evolving tables

HuggingGPT General AI services Multimodal (text,
image, audio) Task-specific responses LLM routes tasks to expert

models

Program-of-
Thoughts Math/text QA Text Numeric or symbolic

answers
Program synthesis for
mathematical reasoning

UrbanLLM Spatio-temporal QA
(Urban Planning)

Location and Time
indexed urban data

Numeric Forecasts/Short
answers

Domain-tuned LLMs for
traffic/urban tasks

STReason (ours) Spatio-temporal QA
(Multi-Domain)

Location and Time
indexed data

Numeric analysis +
Long-form Reasoning +
Execution Rationale

Analytical, constraint-aware
execution for interpretable,
multi-domain ST reasoning

While these systems share the paradigm of decomposing natural language queries into structured
programs, direct comparisons with STReason are not feasible due to fundamental differences in
problem domain, query types, input and output modalities, and evaluation criteria. For example,
VISPROG processes visual inputs and handles questions such as “How many muffins can each kid
have in the picture?”, whereas STReason is designed for analytical spatio-temporal queries such as

“Perform a trend, seasonality, and neighborhood analysis of the historical traffic speed data for the
past 90 days at location 402117 in the BAY region.”. Similarly, in terms of UrbanLLM, although it
adapts program-based reasoning for spatio-temporal QA in urban planning tasks, its scope remains
limited to specific urban contexts and short numeric predictions, falling short of the broader analytical
reasoning that STReason provides.

To further highlight why comparisons with existing program-based methods are infeasible, we tested
representative STReason queries on several open-source program-based frameworks. Chain-of-Table
returned “Final answer: N/A”, Program-of-Thoughts failed with “Empty solver() function and
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Prediction: None”, and PAL (Program-aided Language Models) returned “No results was produced.
A common reason is that the generated code snippet is not valid or did not return any results.”. These
outcomes show that, although effective in their respective domains, existing models are unable to
process the structured spatio-temporal queries that STReason is designed to address. Moreover,
as shown in Table 4, most existing program-based approaches typically output short categorical
or numerical responses, while STReason generates long-form, interpretable outputs that integrate
numerical analysis, constraint checks, and explanatory narratives. STReason therefore advances
beyond both general program-based frameworks and domain-specific approaches such as UrbanLLM,
introducing mechanisms for structured, actionable reasoning in spatio-temporal decision-making. In
summary, STReason is a deliberate extension of program-guided reasoning to real-world problems
requiring structured inputs, statistical analysis, and interpretable outputs, thereby filling a critical gap
between LLMs and decision-support tools for spatio-temporal domains.

A.2 FUNCTION POOL

The Function Pool serves as an explicit grounding mechanism for in-context learning within STRea-
son. It contains structured descriptions of all callable modules, including their syntax, parameter
definitions, and functional purpose. During program generation, this information is appended to the
prompt, enhancing its ability to align sub-tasks with appropriate functions. This design helps ensure
correct function usage, particularly in cases where the provided in-context examples are insufficient
(Table 3). The structure of a sample function is shown in Figure 9.

LOAD SPATIOTEMPORAL DATA

Call Signature:
LOAD SPATIOTEMPORAL DATA(location, time, feature, region,
time int, period, unit, task)

Description:
Loads spatio-temporal data for a specific location and time period.

Parameters:
• location (str) — The geographical location identifier.
• time (datetime) — The current time.
• feature (str) — Feature of interest (e.g., ’traffic speed’, ’air
quality’).

• region (str) — The broader geographical area.
• time int (int) — Interval in minutes between data points.
• period (int) — Duration for which data is loaded.
• unit (str) — The time unit of the period (e.g., ’hours’, ’days’).
• task (str) — Task of the query (e.g., ’analysis’, ’anomaly
detection’, ’prediction’).

Returns:
DataFrame containing spatio-temporal data.

Figure 9: Structure of Sample Function

A.3 TASK-WISE PROGRAM GENERATION

We showcase sample ST-program structures generated for a range of spatio-temporal tasks including
Analysis 10, Anomaly Detection 11, and Prediction and reasoning 12.
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Figure 10: ST-program for Analysis Task

Figure 11: ST-program for Anomaly Detection Task

Figure 12: ST-program for Prediction and Reasoning Task
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A.4 COMMAND INTERPRETER MODULE DETAILS

We illustrate the details of the 12 modules within the STReason framework below to better understand
their functionalities and specifications.

LOAD SPATIOTEMPORAL DATA

Call Signature:
LOAD SPATIOTEMPORAL DATA(location, time, feature, region,
time int, period, unit, task)
Description:
Loads spatio-temporal data for a specific location and time period. Returns a DataFrame
containing the relevant data based on parameters such as location, feature, and time interval.

LOAD SPATIAL AUX DATA

Call Signature:
LOAD SPATIAL AUX DATA(spatial var, location, time, feature,
region, time int, period, unit, constraint)
Description:
Loads auxiliary spatial data such as neighbourhood data to support spatial reasoning in tasks.

LOAD TEMPORAL AUX DATA

Call Signature:
LOAD TEMPORAL AUX DATA(temp var, location, time, feature,
region, time int, period, unit, constraint)
Description:
Loads auxiliary temporal data such as weather data to support temporal reasoning in tasks.

IMPOSE CONSTRAINTS

Call Signature:
IMPOSE CONSTRAINTS(data, time, time int, period, unit, task,
constraint, constraint val, preds)
Description:
Applies data constraints relevant to analysis, prediction, or anomaly detection. It can filter the
data or enforce threshold-based rules for predictive outputs.

ANALYZE TREND

Call Signature:
ANALYZE TREND(data, feature, location, time int, constraint,
output var)
Description:
Performs trend detection on the selected feature. Returns a text summary of the trend analysis.

ANALYZE SEASONALITY

Call Signature:
ANALYZE SEASONALITY(data, time int, constraint)
Description:
Analyzes seasonality patterns in the spatio-temporal data. Returns a text summary of the
seasonality analysis.
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ANALYZE NEIGHBOURHOOD

Call Signature:
ANALYZE NEIGHBOURHOOD(feature, location, region)
Description:
Examines the spatial surroundings of a location to analyze feature behavior in neighboring
areas. Often used to detect localized anomalies or support spatial reasoning.

GEN EXPLANATION

Call Signature:
GEN EXPLANATION(task, data, feature, location, region,
time int, horizon, horizon unit, constraint, constraint val,
trend, seasonality, neighbourhood, preds, sensitivity)
Description:
Generates a comprehensive narrative explaining the results based on trend, seasonality,
neighborhood context, predictions, constraints, and sensitivity analysis.

DETECT ANOMALY ST DATA

Call Signature:
DETECT ANOMALY ST DATA(data, spatial aux data, temp aux data,
temp reasoning, spatial reasoning, location, feature,
time int, constraint)
Description:
Identifies anomalies using both core and auxiliary data sources.

FORECAST

Call Signature:
FORECAST(data, location, time, feature, region, time int,
period, unit, horizon, horizon unit)
Description:
Performs forecasting on the selected feature based on historical data.

CONDUCT SENSITIVITY ANALYSIS

Call Signature:
CONDUCT SENSITIVITY ANALYSIS(data, preds, location,
time, feature, region, time int, period, unit, horizon,
horizon unit)
Description:
Analyzes how changes in input data influence the predictions, offering insights into both
spatial and temporal sensitivity for more robust interpretations.

REFINE OUTPUT

Call Signature:
REFINE OUTPUT(var)
Description:
Outputs the final result from any task in a standardized format. This can be a summary string,
table, or numeric result depending on the task context.
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A.5 EXECUTION RATIONALE

To demonstrate the transparency and traceability of the STReason framework, we include below the
execution rationale for two queries. These rationales are automatically generated by the Command
Interpreter during the program execution stage.

Spatio-temporal Analysis Query: Perform a trend, seasonality, and neighbourhood analysis of the
historical traffic speed data for the past 90 days at location 402117 in the BAY region, focusing
on weekdays only. Analyze the Trend Significance, Daily Seasonality Strength, Weekly Seasonality
Strength, and Neighbours. The data is recorded at 5-minute intervals and the current time is
2017-03-04 01:40:00.

Figure 13: Execution Rationale for Spatio-temporal Analysis Query

Spatio-temporal Prediction Query: What will be the traffic speed at location 409524 in the BAY
region for the next 35 minutes, based on historical data from the past 1 hour recorded at 5-minute
intervals? The current time is 2017-02-14 03:00:00. Please ensure that the predicted traffic speed
does not exceed 100 km/h. Also, analyze how daily timestamps and neighbouring sensors impact the
accuracy of traffic speed predictions.

Figure 14: Execution Rationale for Spatio-temporal Prediction Query

A.6 BASELINE MODEL DETAILS

Model Descriptions

• LLaMA-2-7B3: An open-source LLM developed by Meta AI with 7 billion parameters.

• Vicuna-7B-v1.54: A fine-tuned variant of LLaMA-2-7B optimized for dialogue and
instruction-following tasks, supporting up to 16k context length.

• GPT-3.5 Turbo (Ye et al., 2023): A widely used commercial LLM by OpenAI, optimized
for speed and cost-effectiveness while retaining strong reasoning capabilities.

• GPT-4o Mini 5: A lightweight, high-performance version of GPT-4o with improved ef-
ficiency. It supports multimodal inputs and enhanced contextual reasoning in real-time
applications.

• GPT-4 (Achiam et al., 2023): OpenAI’s flagship model known for its robust generalization
and reasoning performance across a wide range of tasks, including multi-step and constraint-
based inference.

• DeepSeek-V3 (Liu et al., 2024a): A recent open-weight LLM developed by DeepSeek,
trained on an extensive web-scale corpus with strong performance on benchmark reasoning
and coding tasks.

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://huggingface.co/lmsys/vicuna-7b-v1.5
5https://platform.openai.com/docs/models/gpt-4o-mini
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Inference Settings To ensure a fair comparison across models, we standardized the inference
settings for all LLM baselines. For open source models LLaMA-2-7B and Vicuna-7B-v1.5 we used
HuggingFace Transformers and answer generation was performed with temperature=0.7 and
max new tokens=4096. These two models were run locally using HuggingFace Transformers
on a single NVIDIA A40 GPU (46GB memory, CUDA 12.4). The remaining models including
GPT-3.5 Turbo, GPT-4o Mini, GPT-4, and DeepSeek-V3 were accessed via their respective public
APIs. For GPT-based models, we used the ChatCompletion endpoint with consistent parameters
including temperature=0.7, top p=1, and max tokens=4096. DeepSeek-V3 was queried
using temperature=1.3 which is used for general conversation and default decoding parameters.
This uniform setup ensured consistent evaluation conditions across all models. Table 5 provides a
summary of further details of baseline models.

Table 5: Summary of LLM Baselines used for Comparison.

Model Parameter Size Context Length Access Type
LLaMA-2-7B 7B 4k tokens Open-source (HuggingFace)
Vicuna-7B-v1.5 7B 16k tokens Open-source (HuggingFace)
GPT-3.5 Turbo 175B (est.) 16k tokens API (OpenAI)
GPT-4o Mini Unknown 128k tokens API (OpenAI)
GPT-4 1.7T (est.) 8k tokens API (OpenAI)
DeepSeek-V3 671B 128k tokens API (OpenAI)

Prompting Strategy for Baseline Models

To ensure fair comparison, each baseline model received the same input query and data as STReason.
Additionally, a task-specific system prompt was prepended to guide the model’s behavior (e.g., “You
are an expert in spatio-temporal forecasting.). This format was adapted across all tasks and baseline
models and input data was passed as structured tables. Given below is a representative example of a
prediction task prompt.

Example Prompt for Prediction Task

You are an expert in spatio-temporal forecasting. The current time is 2017-01-04 07:00:00.
Predict the air quality of location dongsi aq in the Beijing region for the next 6 hours using the
historical data of the past 24 hours with data points recorded at 60-minute intervals. Ensure the predicted
air quality does not exceed the 75 µg/m3 safety threshold.
Input Data:

Timestamp dongsi aq (µg/m3)
2017-01-03 08:00:00 56.0
2017-01-03 09:00:00 60.0
2017-01-03 10:00:00 62.0
2017-01-03 11:00:00 64.0

...
...

2017-01-04 07:00:00 68.0

A.7 EVALUATION METRICS

We propose a novel evaluation framework that jointly assesses the correctness, interpretability, and
reasoning quality of model-generated responses, using three distinct metrics described below:

Constraint Adherence Score: This binary metric assesses whether the generated response satisfies
all explicit constraints in the query (e.g., thresholds, time spans). A structured prompt (see Figure 15)
is used to check constraint fulfillment through an LLM-based verifier, returning ‘True‘ or ‘False‘.
Finally, the scores are averaged over all queries.

Factuality Score: This metric evaluates the correctness and completeness of key analytical compo-
nents (e.g., trend values, anomalies, predictions) against the ground truth. As shown in Figure 16, a
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Figure 15: Prompt for assessing Constraint Adherence

prompt guides the LLM to extract and validate components. The score is computed as the proportion
of correct components identified. The final score is the average rating across all queries.

Figure 16: Prompt for assessing Factual Correctness

Coherence Score: This metric evaluates the logical consistency and clarity of model generated
answer. An LLM evaluator (Figure 17) rates model generated answers on a 3-point ordinal scale
based on transition quality and reasoning flow. The final score is the average rating across all samples.

We also assess the accuracy of the ST-Program generated by the Command Generator, which form
the backbone of STReason’s execution process. A program step is considered correct if it matches
the reference in module type, argument names, parameter values, and order. To measure program
generation performance, we adopt the following metrics:
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Figure 17: Prompt for assessing Logical Coherence

Precision evaluates the accuracy of predicted steps by measuring the proportion of generated com-
mands that are both syntactically and semantically correct.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(1)

Recall measures the completeness of the generated program by calculating the proportion of required
steps that the model successfully included.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(2)

F1-score provides a balanced measure by computing the harmonic mean of precision and recall,
offering a single metric to capture the trade-off between completeness and correctness:

F1 Score = 2×
(

Precision × Recall
Precision + Recall

)
(3)

• True Positives (TP): Program steps that exactly match the ground truth in module type,
argument names, and values.

• False Positives (FP): Steps generated by the model that either do not appear in the ground
truth, or are incorrect in terms of function, parameters, or sequence.

• False Negatives (FN): Steps present in the ground truth but missing from the generated
program, such as omitted data loading or post-processing functions.

A.8 STATISTICAL SIGNIFICANCE TESTING

To assess the robustness of STReason’s performance improvements, we conducted paired Wilcoxon
signed-rank tests over 150 test examples, comparing STReason against each baseline across all
evaluation metrics.

Overall Performance Significance: The p-values reported in Table 6a indicate that STReason
significantly outperforms all baselines in constraint adherence (p < 0.05), except GPT-4o Mini,
which achieved comparable constraint scores. In terms of factuality, STReason outperformed all
models with strong significance (p < 0.0001), confirming its reliability in producing accurate,
data-grounded responses. For coherence, STReason achieved perfect scores along with GPT-3.5
Turbo, GPT-4o Mini, and DeepSeek, leading to tied outcomes and non-applicable tests. However, its
advantage over LLaMA, and Vicuna are statistically significant. These results collectively validate
the robustness of STReason across interpretability, factual soundness, and analytical precision.

Forecasting Accuracy Significance: Based on the p-values for forecasting accuracy metrics in
Table 6b, STReason demonstrated statistically significant improvements in MAE and RMSE over
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Table 6: Wilcoxon Signed-Rank Test p-values for STReason vs. Baselines

(a) Overall Performance

Model Constraint Factuality Coherence
Score Score Score

Vicuna-7B-v1.5 <0.0001 <0.0001 <0.0001
LLaMA-2-7B <0.0001 <0.0001 <0.0001

GPT-4 <0.0001 <0.0001 0.1573
GPT-3.5 Turbo <0.0001 <0.0001 —
GPT-4o Mini 0.1573 <0.0001 —
DeepSeek-V3 0.0455 <0.0001 —

(b) Forecasting Accuracy

MAE RMSE

<0.0001 <0.0001
0.0005 0.0002
<0.0001 <0.0001
0.0061 0.0028
0.6652 0.3895
0.2268 0.1478

GPT-3.5 Turbo, GPT-4, LLaMA2, and Vicuna. The differences were not statistically significant
compared to GPT-4o Mini and DeepSeek, likely due to similar performance and the effect of sequence
post-processing. These results reinforce STReason’s robustness in forecasting accuracy across diverse
baselines.

A.9 LATENCY AND COST ANALYSIS

To evaluate the practical feasibility of deploying STReason in real world decision-making settings,
we further analyzed its latency, token usage and API cost across representative query types. All
evaluations were conducted using GPT-3.5 Turbo on standard hardware without GPU acceleration.

Table 7: Average Latency by Task Type (in seconds)

Task Type Program Gen Answer Gen Total Time
Analysis 4.27 5.04 9.31

Anomaly Detection and Reasoning 4.20 6.92 11.12
Prediction and Reasoning 4.59 10.91 15.5

Latency Analysis: Table 7 reports the average latency results for three task categories. Each query
goes through two LLM calls, one for Program Generation and one for Answer Generation, including
function execution and explanation synthesis. Analysis tasks are completed in approximately 9
seconds, demonstrating rapid end-to-end execution. Anomaly detection, which requires deeper
contextual reasoning, takes slightly longer. Prediction tasks involve generating multi-step predictions
and explanatory narratives, resulting in the highest average latency of approximately 16 seconds.
Overall, all task types remain within an acceptable response window for interactive applications,
confirming the practical feasibility of deploying STReason in urban monitoring and planning systems.

Cost Analysis: Token usage in STReason varies with the complexity and task type of the query. On
average, queries are ∼ 80 tokens, and responses are ∼ 364 tokens. In addition, the input includes a
structured Function Pool (∼ 2211 tokens) and in-context examples (∼ 700 tokens). This results in a
total input size of ∼ (2800−3000) tokens per query, which remains well within the 16k context limit
of GPT-3.5 Turbo. At OpenAI’s current pricing for GPT-3.5 Turbo ($0.0015 per 1K input tokens
and $0.002 per 1K output tokens), the estimated cost per query is approximately $0.0051, making
STReason highly cost-efficient for scalable deployment.

A.10 QUALITATIVE OUTPUT COMPARISON

To complement the quantitative metrics, we provide the following examples that illustrate commonly
observed issues in baseline models. These examples highlight qualitative gaps such as hallucinations,
vague or unstructured responses, and missing computations, contrasted with STReason’s consistent,
specific, and statistically grounded analyses of spatiotemporal queries.
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Example 1: Hallucination (Vicuna-7B-v1.5)

Query: Perform a seasonality and neighbourhood analysis using the historical air quality data
for the past 30 days at location yongledian aq in the Beijing region, based on daily patterns.
The data is recorded at 60-minute intervals. The current time is 2017-08-15 09:00:00.

Generated Answer:
1. Seasonality: The air quality data shows a clear seasonality pattern with higher values in the
summer months and lower values in the winter months. Specifically, the average air quality
in the summer months (June, July, and August) is significantly higher than the average air
quality in the winter months (December, January, and February). This seasonality pattern is
. . .

Issue: The model hallucinates seasonal trends across summer (June–August) and winter (Decem-
ber–February), despite being provided with only 30 days of hourly data.

Example 2: Vague, Unclear and Incomplete Response (Vicuna-7B-v1.5)

Query: Examine the historical air quality data for the past 24 hours at location xizhimen-
bei aq in the Beijing region on weekdays only, with recordings at 60-minute intervals. The
current time is 2017-04-29 09:00:00. Identify any anomalies and provide temporal reasoning
by analyzing anomalies in corresponding weather data patterns and spatial reasoning by
identifying anomalies in nearby locations.

Generated Answer:
A: Identify any anomalies in the data by considering temporal patterns in corresponding
weather data and spatial anomalies in nearby locations.
B: Identify any spatial anomalies in the data by considering the spatial patterns in the weather
data and the data itself.
C: Identify any temporal patterns in the data by considering the temporal patterns in the
weather data and the data itself.
D: Identify any spatial–temporal patterns in the data by considering the spatial patterns in the
weather data and the temporal patterns in the data itself.
E: Identify any spatial–temporal anomalies in the data by considering the spatial patterns in
the weather data and the temporal patterns in the data itself.
Please provide the answer for each question.

Issue: Instead of performing any computation, the model merely repeats the query as a list of
instructions. The response is vague, repetitive, and incomplete, lacking concrete anomaly detection,
temporal reasoning, or spatial analysis.

Example 3: Irrelavant and High-level steps (LLaMA-2-7B)

Query: Perform a seasonality and neighbourhood analysis using the historical air quality data
for the past 30 days at location yongledian aq in the Beijing region, focusing on daily patterns.
The data is recorded at 60-minute intervals. The current time is 2017-08-15 09:00:00.

Generated Answer:
1. Calculate the seasonality of the air quality data at location yongledian aq using a seasonal
decomposition method (e.g. STL decomposition) . . .
B: Perform a time series forecasting of the air quality data at location yongledian aq using a
time series forecasting model (e.g. ARIMA, LSTM, etc.) . . .
C: Investigate the impact of weather factors (e.g. temperature, humidity, wind speed, etc.) on
the air quality data at location yongledian aq using a linear regression model . . .
D: Perform a clustering analysis of the air quality data at location yongledian aq using a
clustering algorithm (e.g. K–means, hierarchical clustering, etc.) . . .
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Issue: Instead of executing the requested analyses, the model outputs generic procedural steps without
producing any computed results. Several suggested steps (e.g., time-series forecasting, clustering)
are irrelevant to the original query and introduce inconsistencies across responses.

Example 4: Generic, High-Level Explanations without Computation (GPT-3.5 / GPT-4)

Query: What will be the traffic speed at location 409524 in the BAY region for the next 35
minutes, based on historical data from the past 1 hour recorded at 5-minute intervals? The
current time is 2017-02-14 03:00:00. Please ensure that the predicted traffic speed does not
exceed 100 km/h. Also, analyze how daily timestamps and neighbouring sensors impact the
accuracy of traffic speed predictions.

Generated Answer (GPT-3.5 Turbo):
Given the historical data provided: - At 2017-02-14 03:00:00, the traffic speed at location
409524 is 64.4 km/h. - The traffic speed at location 409524 for the past hour has fluctuated
between 64.1 km/h and 64.6 km/h. To predict the traffic speed at location 409524 for the
next 35 minutes, we can analyze the trend in the historical data. Since the traffic speed has
been relatively stable around 64.4 km/h, we can forecast that it will remain around that speed
for the next 35 minutes. Therefore, the predicted traffic speed at location 409524 will be
approximately 64.4 km/h for the next 35 minutes, as long as there are no major disruptions or
changes in traffic patterns . . .
- Daily timestamps: Daily timestamps can impact the accuracy of traffic speed predictions by
capturing the daily patterns and variations in traffic flow. For example, rush hours, weekends,
holidays, and special events can all influence traffic speed . . .
- Neighboring sensors: Neighboring sensors provide additional data points that can help
improve the accuracy of traffic speed predictions. By analyzing the data from neighboring
sensors, we can identify correlations and patterns in traffic flow between different locations.
. . .

Generated Answer (GPT-4):
As an AI, I can’t dynamically predict data, but I can explain how the process would work
using the given data.
To predict the traffic speed at location 409524 in the BAY region for the next 35 minutes, we
can use a spatiotemporal forecasting model . . .
The first step would be to analyze the historical data for sensor 409524. We can observe that
the traffic speed at this sensor is relatively stable, oscillating around 64.3 km/h. This suggests
that unless there are significant changes in the surrounding environment, the speed will likely
remain stable for the next 35 minutes.
Next, hlwe’d analyze the neighbouring sensors data. It’s important to consider neighbouring
sensors because traffic conditions in one location can be influenced by conditions in nearby
locations.. . .
Therefore, we can make an educated guess that the traffic speed at sensor 409524 will likely
stay around its current value of 64.4 km/h for the next 35 minutes, given that there is no
sudden change in traffic conditions. . . .
However, this prediction should be taken as a rough estimate. Real-time traffic conditions can
be influenced by many unpredictable factors . . .

Issue: Both GPT-3.5 and GPT-4 provide qualitative explanations and high-level methods rather than
executing multi-step numeric forecasts. GPT-3.5 produces a static repetition of the last observed
value and supplements it with generic knowledge (e.g., “daily timestamps impact accuracy”), but
does not validate constraints or generate fresh predictions. GPT-4 explicitly states its inability to
perform forecasting, then offers a rough guess framed as a methodological outline. In both cases, the
responses lack actual computation, constraint enforcement, and actionable reasoning.
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Example 5: Structured but Trivial Forecasts with Limited Analysis (GPT-4o Mini /
DeepSeek-V3)

Query: What will be the traffic speed at location 409524 in the BAY region for the next 35
minutes, based on historical data from the past 1 hour recorded at 5-minute intervals? The
current time is 2017-02-14 03:00:00. Please ensure that the predicted traffic speed does not
exceed 100 km/h. Also, analyze how daily timestamps and neighbouring sensors impact the
accuracy of traffic speed predictions.

Generated Answer (GPT-4o Mini):
To forecast the traffic speed at location 409524 for the next 35 minutes based on the historical
data provided and considering the neighboring sensors, we can follow these steps:
Step 1: Analyze Historical Data The historical data for the last hour . . .
Step 2: Identify Trends From the historical data, we can observe that the traffic speed has not
varied significantly over the previous 55 minutes . . .
Step 3: Consider Neighboring Data The neighboring sensors (409525, 409526, 409528,
409529) also show consistent speeds, generally ranging from 61.5 km/h to 69.0 km/h . . .
Step 4: Forecasting Future Speeds Given that the speed is stable and the surrounding data
from neighboring sensors does not indicate any sudden changes, we can reasonably predict
that the speed at sensor 409524 will remain around the same mark.
Step 5: Create a Prediction for the Next 35 Minutes We can make a simple prediction for the
next 7 readings (5 minutes each) based on the current speed and the historical average. . . .
Impact of Daily Timestamps and Neighboring Sensors: - **Daily Timestamps**: Traffic
patterns can vary significantly based on the time of day . . . - **Neighboring Sensors**: Data
from neighboring sensors can greatly enhance the accuracy of predictions. If speeds in
neighboring areas are significantly different, it may indicate incidents, road work, or other
factors affecting traffic. . . .

Generated Answer (DeepSeek-V3):
1. Data Analysis Pattern Recognition
- **Target Sensor (409524) Analysis:** The traffic speed at location 409524 over the past
hour has been exceptionally stable, hovering between **64.1 km/h and 64.6 km/h** . . . -
**Temporal Context:** The timestamp (2017-02-14 03:00:00) is crucial. This is **3 AM on
a Tuesday morning**. Traffic patterns at this time are highly predictable and characterized
by the lowest volume of the day. There is no influence from morning commutes, and the road
network is operating at free-flow speeds. . . .
2. Traffic Speed Prediction for the Next 35 Minutes Given the remarkable stability of the data
and the time of day, the most reasonable forecasting approach is **persistence forecasting**,
which assumes that the current conditions will remain unchanged in the near future. . . .
3. Impact Analysis on Prediction Accuracy a) Impact of Daily Timestamps:** During the early
morning hours, traffic demand is minimal and consistent. . . . . b) Impact of Neighbouring
Sensors:** Traffic is a spatial phenomenon; congestion forms in waves. If sensor 409525
(upstream) shows a sudden drop in speed, it is a strong leading indicator that the congestion
will likely reach sensor 409524 minutes later. . . .
Conclusion:Based on the historical stability of the data and the contextual factors of very
early morning traffic, the traffic speed at location **409524** for the next 35 minutes is
predicted to remain constant at **64.4 km/h**. . . .

Issue: While both responses are clearly structured, they rely on trivial forecasts or basic forecasting
models (e.g: Persistence, Historical average or simple models like ARIMA) rather than executing
advanced model-based computation. GPT-4o Mini supplements its steps with generic facts similar
to other GPT variants but provides only a simple average-based prediction. DeepSeek-V3 applies
contextual reasoning (time of day, spatial correlations) but still defaults to persistence forecasting, of-
fering no multi-step modeling or constraint validation. In both cases, explanations remain descriptive
rather than analytical, lacking the depth and precision required for spatio-temporal decision support.

Unlike the above baseline models, which either hallucinate patterns, repeats the query, or rely on
trivial or basic model forecasts, STReason delivers precise numeric predictions using advanced
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predictive models, validated against constraints and enriched with temporal and spatial attribution
as shown in Example 6 below. This highlights its strength in producing interpretable, statistically
grounded, and actionable outputs for spatio-temporal decision support .

Example 6: Comprehensive Forecast with Temporal and Spatial Reasoning (STReason)

Query: What will be the traffic speed at location 409524 in the BAY region for the next 35
minutes, based on historical data from the past 1 hour recorded at 5-minute intervals? The
current time is 2017-02-14 03:00:00. Please ensure that the predicted traffic speed does not
exceed 100 km/h. Also, analyze how daily timestamps and neighbouring sensors impact the
accuracy of traffic speed predictions

Generated Answer (STReason):
Predictions: The predicted traffic speed values for the next 55 minutes at location 409524 are
[64.51839, 64.49478, 64.48434, 64.4911, 64.50357, 64.51794, 64.53189]. These predictions
were generated using the deep learning based GraphWaveNet Model.

Constraint Adherence: All predictions are within the traffic speed threshold, indicating that
the forecasted values are within the acceptable range for traffic speed at location 409524.

Temporal Features: The Timestamp Sensitivities reveal that certain time periods have a
significant impact on the traffic speed predictions. For example, timestamp 2017-02-14
02:55:00 has the highest impact, followed by timestamps representing morning rush hour
such as 2017-02-14 03:00:00 and timestamps indicating evening rush hour like 2017-02-14
02:45:00. This suggests that distinct daily traffic patterns, such as rush hours, greatly influence
the forecasted traffic speed values.

Spatial Features: The analysis also highlights the influence of data from neighboring nodes
and significant nodes on the traffic speed predictions at location 409524. Among the sig-
nificant nodes impacting the forecast, locations 401816, 401817, 409525, 404759, 404453,
409528, 404461, 409529, 409526, and 400995 play a key role in shaping the predictions. The
presence of neighboring nodes like 409525, 409526, 409528, and 409529 further emphasizes
the spatial factors affecting the forecast at location 409524.

In conclusion, the traffic speed predictions at location 409524 are not only influenced by
temporal factors like daily traffic patterns but also by spatial factors involving data from
neighboring and significant nodes. By incorporating these insights into the forecasting model,
more accurate and reliable predictions can be achieved.

A.11 GENERALIZABILITY OF STREASON TO OTHER SPATIO-TEMPORAL DOMAINS

While our main experiments focus on traffic and air quality domains, STReason is designed to
generalize across spatio-temporal domains without modifying its core architecture or prompting
strategy. To illustrate this, we tested the framework on two unseen domains: epidemiology and
finance. The only adjustments involved were updating the data retrieval function to point to the
relevant sources, and replacing the forecasting module with TimesNet (Wu et al., 2022) for pure
time-series inputs.
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Epidemiology Example

Query: Perform a seasonality analysis of historical national ILI case counts for the past 52
weeks. The current time is 2019-01-22 00:00:00. The data is recorded at every week. Analyze the
Monthly Seasonality Strength.

Generated Answer: The data represents the number of ILI (Influenza-Like Illness) case counts
recorded every week. The data starts with 23169 cases in the first week and peaks at 70056
cases in the 15th week before gradually decreasing to 27419 cases in the last week. The monthly
seasonality strength is calculated to be 0.00036, indicating a very weak monthly seasonality
pattern in the data. This suggests that the fluctuations in the number of ILI case counts do not
follow a consistent monthly pattern and are more likely influenced by other factors. The low
monthly seasonality strength suggests that the variations in the number of ILI case counts are
not significantly affected by the month in which the data was collected. This could be due to
factors such as changes in weather, vaccination campaigns, or other external factors that impact
the spread of influenza-like illnesses.

Finance Example

Query: The current time is 2010-07-06 12:00:00. Predict the exchange rate of GBP to USD
for the next 5 days using the historical data of the past 96 days with data points recorded at
daily intervals. Ensure predictions stay below the 1.55 financial stability threshold. Analyze how
temporal patterns affect the forecast.

Generated Answer: The predicted exchange rate values for the next 5 days are as follows:

[1.3212, 1.3242, 1.3186, 1.3189, 1.3200].

These predictions were generated using the deep learning-based TimesNet Model. All predictions
fall within the exchange rate threshold, indicating that the model’s forecasts are within acceptable
limits and align with historical data. The timestamp sensitivity scores provide insights into the
temporal factors influencing the exchange rate predictions. Among the timestamps analyzed,
the strongest influences were observed on July 4, 2010, July 5, 2010, and July 6, 2010, with
impacts of 0.19, 0.17, and 0.17 respectively. These dates likely correspond to significant events
or announcements that had a notable impact on the exchange rate forecast. By analyzing these
timestamps in conjunction with macroeconomic trends, we can gain a deeper understanding of
the drivers behind the predicted exchange rate values.

These examples highlight STReason’s adaptability to new spatio-temporal domains without additional
training or architectural changes. Its modular design allows flexible integration of domain-specific
data and models, supporting broader applicability. We plan to further extend this adaptability to
multimodal settings in future work (see Section 5).

A.12 HUMAN EVALUATION DETAILS

Evaluation Procedure To assess the interpretability and reasoning quality of model outputs and fur-
ther validate our quantitative metrics we designed a human evaluation study involving 27 participants.

1. Participant Selection: Evaluators were selected based on the following criteria to ensure
technical competence:

• Minimum of a Bachelor’s degree in Computing, Data Science, Statistics, Mathematics,
or a related technical discipline.

• General understanding of spatio-temporal tasks such as analysis, anomaly detection,
and forecasting.

2. Material Preparation: The study included 18 queries covering three task categories:
Analysis, Anomaly Detection, and Prediction and Reasoning. Each query was paired with
two answers, one from STReason and one from a randomly selected baseline ensuring
each baseline appeared an equal number of times. The order of answers and pairings was
randomized to mitigate bias.
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3. Evaluation Design: Participants were instructed to select the more effective answer based
on clarity, completeness, reasoning, and overall helpfulness. They were also encouraged to
provide open-ended feedback explaining their choices.

Evaluator Background Human evaluation was conducted involving 27 evaluators with domain
relevant expertise, nearly half holding Ph.D.s and the majority specializing in Computing, Statistics,
or Data Science (Figure 18).

(a) Highest Level of Education (b) Field of Study

Figure 18: Evaluator Background

Instructions provided to Evaluators

Thank you for agreeing to participate as an evaluator in this critical assessment exercise. Your
expertise is crucial in evaluating the performance of sophisticated question answering and inference
models tailored to spatio-temporal tasks.

Objective of the Evaluation: The primary objective of this evaluation is to objectively assess and
validate the performance of various question answering models in managing spatio-temporal inference
and reasoning tasks. Your evaluations will play a pivotal role in identifying the most effective models
and will guide the development of future enhancements.

Task Overview: You will be presented with 18 questions, each accompanied by two answers. These
answers are generated by two distinct models. Please note that these answers are generated by
different language models, each with unique capabilities and limitations. This might result in some
answers appearing less comprehensive, less meaningful or partially incomplete.The pairings and the
order of the answers have been randomized to ensure an unbiased assessment.

Your Role:

• Answer Selection: For each question, your task is to select the answer that most compre-
hensively and accurately addresses the query. There is no right or wrong choice, only your
professional judgment on which answer performs better in the context of the given question.
While making your selections, you can consider the following aspects:

– Adherence to Constraints: Evaluate how well the answer adheres to the specific
constraints set by the question.

– Completeness and Accuracy: Assess whether the answer fully captures all necessary
aspects of the query and provides accurate information.

– Logical Progression and Clarity: Determine the logical flow and clarity of the explana-
tion and reasoning within the answer.

• Providing Feedback: After evaluating each answer, please provide qualitative feedback
in the space provided explaining why you chose one answer over the other. This feedback
is invaluable as it helps us understand the reasoning and decision-making processes that
influenced your preferences.

Confidentiality and Ethical Consideration: Please treat the information provided during this
evaluation with confidentiality. The data, questions, and responses should not be discussed outside of
this evaluation context.
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