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Abstract001

Large language models (LLMs) exhibit remark-002
able multilingual capabilities despite the ex-003
treme language imbalance in the pre-training004
data. In this paper, we closely examine the005
reasons behind this phenomenon, focusing on006
the pre-training corpus. We find that the exis-007
tence of code-switching, alternating between008
different languages within a context, is key009
to multilingual capabilities. We conduct an010
analysis to investigate code-switching in the011
pre-training corpus, examining its presence012
and categorizing it into four types within two013
quadrants. We then assess its impact on mul-014
tilingual performance. These types of code-015
switching data are unbalanced in proportions016
and demonstrate different effects on facilitat-017
ing language transfer. To better explore the018
power of code-switching for language align-019
ment during pre-training, we investigate the020
strategy of synthetic code-switching. We con-021
tinuously scale up the synthetic code-switching022
data and observe remarkable improvements in023
both benchmarks and representation space. Ex-024
tensive experiments indicate that incorporat-025
ing synthetic code-switching data enables bet-026
ter language alignment and generalizes well027
to high, medium, and low-resource languages028
with pre-training corpora of varying qualities.029

1 Introduction030

Large Language Models (LLMs) such as Chat-031

GPT (OpenAI, 2023), GPT-4 (Achiam et al., 2023),032

Llama2 (Touvron et al., 2023), Llama3 (Dubey033

et al., 2024), and Qwen2.5 (Yang et al., 2024)034

have demonstrated remarkable performance across035

various tasks, including multiple-choice question-036

answering (Robinson and Wingate, 2023), summa-037

rization (Pu et al., 2023), and reasoning (Yu et al.,038

2023). Meanwhile, LLMs also demonstrate excel-039

lent multilingual capabilities. Among them, some040

models are pre-trained on corpora not specifically041

designed for multilingual use (Touvron et al., 2023),042

Target-Language English20

30

40

50

60

70

Av
er

ag
e A

cc
ur

ac
y

32.83

59.69

36.85

58.83
CS-free Data
Original Data

0K 5K 10K 15K 20K 25K 30K
Training Steps

22

26

30

34

38

42

46

50

Av
er

ag
e A

cc
ur

ac
y 

(C
hi

ne
se

)

+SynCS 2,000M
+SynCS 100M
+Monolingual 2,000M

Figure 1: Performance of models pre-trained on
language-imbalance data (60B, 100:1). “CS-free Data”
in the upper sub-graph means the natural code-switching
is removed using the document-substitute-based method
for fair comparison. “+SynCS” and “+Monolingual”
in the lower sub-graph denote adding synthetic code-
switching data and adding monolingual data, respec-
tively, to the original 1% target language data. The
numbers represent newly added target language tokens.

while others are pre-trained on corpora containing 043

only a small fraction of multilingual data (Dubey 044

et al., 2024). Despite the extreme language imbal- 045

ance in the pre-training corpus (Ranta and Goutte, 046

2021), LLMs demonstrate impressive cross-lingual 047

transfer to some extend (Pires et al., 2019; Kar- 048

garan et al., 2024). This raises the question: where 049

do these cross-lingual transfers come from? 050

Code-switching, also known as code-mixing or 051

language alternation, is the process of alternating 052

between two or more languages in a single con- 053

versation (Thara and Poornachandran, 2018). This 054
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Category Example

Sent-Annt. Now depending on where you shop in China, sometimes you need to bargain for what you are buying. Mike, the
fruits stand is just ahead, let’s buy some fruit OK? (麦克,前面有一个水果摊,我们买点儿水果吧.)

Sent-Repl. Can you name some traditional Chinese festivals? Do you like them? Why? 这道题的目的是要求考生陈述
出来传统文化的重要性。 Traditional cultures should be protected. because first...... [The Chinese sentence
means “The purpose of this question is to require candidates to state the importance of traditional culture.”]

Token-Annt. The customs of the spring festival: 1. Putting up Spring Couplet (贴春联) and Burning Firecrackers (放鞭炮).

Token-Repl. You can use the above picture and add some related words, such as剃须刀、字典、镜子、毛巾、冰箱、微波
炉、电脑 and书橱. Classify these words and fill in the table. [These Chinese words mean “razor”, “dictionary”,
“mirror”, “towel”, “refrigerator”, “microwave”, “computer”, and “bookcase”, respectively.]

Table 1: Examples of code-switching types in FineWeb-Edu. For annotation types, annotations are typically placed
in parentheses, with the annotated text underlined. For replacement types, code-switching occurs within the original
text, and explanations are appended in brackets after the example.

type of data puts concepts from different languages055

within the same context, creating favorable condi-056

tions for potential language transfer learning in057

LLMs. Many works attempt to leverage code-058

switching on multilingual tasks. Yoo et al. (2024a);059

Li et al. (2024b) reveal the effects of synthetic code-060

switching data in cross-lingual transfers. Briakou061

et al. (2023) investigate the incidental bilingual-062

ism in the unreasonable translation capabilities of063

LLMs. However, there is a lack of detailed analysis064

of code-switching in multilingual pre-training.065

To investigate the effects of code-switching, we066

pre-train a 1.5B model on 60B tokens with ex-067

treme language imbalance (100:1). Taking En-068

glish and Chinese as the high and low-resource069

language examples, we initially explore the natural070

code-switching phenomenon of two high-quality071

pre-training corpora. We conduct a model-based072

method to analyze and categorize four common073

code-switching types. Subsequently, we conduct074

experiments to assess the impact of various code-075

switching on cross-lingual transfer.076

Building on this analysis, we propose to en-077

hance the advantages of code-switching by incor-078

porating synthetic code-switching data during pre-079

training, valued for its controllability and flexi-080

bility. Through a series of scaling experiments,081

synthetic code-switching (SynCS) significantly im-082

proves cross-lingual transfer, outperforming the083

addition of 20 times the amount of monolingual084

data with natural code-switching. Further analysis085

shows that models trained on SynCS data obtain086

improved multilingual alignment in the represen-087

tation space. Finally, we expand our approach to088

multilingual settings, encompassing high, medium,089

and low-resource languages, showcasing the gener-090

alization of SynCS across languages.091

In summary, our findings are: 092

• Natural Code-Switching in Pre-Training Data: 093

In FineWeb-Edu (Penedo et al., 2024), 0.4% 094

of documents contain English-Chinese code- 095

switching, compared to 51.6% in Chinese- 096

FineWeb-Edu-v2 (Yu et al., 2025). These in- 097

stances, categorized into four types, enhance 098

multilingual transfer despite their imbalance. 099

• Role of Natural Code-Switching: Natural 100

code-switching plays a crucial role in facil- 101

itating cross-lingual transfer. As illustrated in 102

Figure 1, models trained without it experience 103

a notable performance drop. 104

• We introduce SynCS, a flexible framework 105

for synthesizing code-switching with precise 106

control over density and magnitude. Models 107

trained with SynCS exhibit superior multilin- 108

gual alignment, surpassing the performance 109

achieved by adding 20x monolingual data, as 110

shown in Figure 1. 111

2 Measuring Code-Switching 112

2.1 Categorizing Code-Switching 113

Based on our empirical analysis, code-switching 114

segments are categorized into Sentence-Level and 115

Token-Level, each further divided into Annotation 116

and Replacement. Considering languages A and 117

B, the code-switching types are defined as follows: 118

• Sentence-Level-Annotation (denoted as 119

Sent-Annt.): In a continuous sequence of sen- 120

tences in the context of language A, some 121

sentences are annotated by their translation 122

in language B, commonly appearing in paren- 123

theses. The semantics represented by these 124

sentences appear in both languages A and B. 125
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Figure 2: Distribution of different types on English-side
code-switching (FineWeb-Edu).

• Sentence-Level-Replacement (denoted as126

Sent-Repl.): In a continuous sequence of sen-127

tences in the context of language A, some sen-128

tences are replaced by their translation in lan-129

guage B. The semantics represented by these130

sentences appear only in language B.131

• Token-Level-Annotation (denoted as Token-132

Annt.): In a sentence of language A, some133

tokens are annotated by their translation in134

language B, commonly appearing in parenthe-135

ses. The concepts represented by these tokens136

appear in both languages A and B.137

• Token-Level-Replacement (denoted as138

Token-Repl.): In a sentence of language A,139

some tokens are replaced by their translation140

in language B. The concepts represented by141

these tokens appear only in language B.142

Table 1 presents examples for each type of Chinese143

code-switching in English data. In our following144

discussions, “A-side code-switching” refers to con-145

taining text of B in the context of A. We denote the146

low-resource language as “Target Language”, to147

which we aim to transfer capabilities from English.148

2.2 Detecting Code-Switching Segments149

To investigate the characteristics of natural code-150

switching, we need first detect all code-switching151

segments. We start by collecting documents con-152

taining text in both English and the target language.153

These documents are then split into sentences, with154

each sentence tagged with its corresponding lan-155

guage. We consider the sentence consisting entirely156

of one language as sentence-level code-switching157

and the sentence consisting of both English and the158

target language as the token-level code-switching.159

The strategy for classifying segments into Annt.160

and Repl. differs between sentence-level and token-161

level code-switching. For sentence level, this pro-162

cess is indeed identifying translation pairs. We163

Figure 3: Distribution of different types on Chinese-side
code-switching (Chinese-FineWeb-Edu-v2).

employ a cross-lingual encoder to find semanti- 164

cally aligned sentence pairs, following Briakou 165

et al. (2023). For token level, we leverage SOTA 166

LLMs to classify. Additionally, we use LLMs to 167

detect unrelated code-switching segments, which 168

may result from nonsensical content or language 169

recognition errors (such as text of Japanese). 170

To simplify our analysis, we choose to ex- 171

plore the Chinese and English code-switching 172

data, featuring two high-quality corpora: FineWeb- 173

Edu (Penedo et al., 2024) and Chinese-FineWeb- 174

Edu-v2 (Yu et al., 2025). More details are illus- 175

trated in section A.1. 176

2.3 Counting Code-Switching Segments 177

We calculate the ratio of different code-switching 178

types at the segment granularity. 179

In FineWeb-Edu, 0.4% of documents contain 180

Chinese-English code-switching. Figure 2 shows 181

the distribution of different types. 19% code- 182

switching segments fall under unrelated, most 183

of which are segments containing characters of 184

Japanese or nonsense text. In the remaining 81% 185

code-switching documents, the main type is token- 186

level (62%), among which Annt. accounts the most 187

(43%). For sentence-level code-switching, the pro- 188

portion of Annt. and Repl. are similar. Examples 189

of each type are illustrated in Table 1 and section B. 190

In Chinese-FineWeb-Edu-v2, 51.2% of docu- 191

ments contain Chinese-English code-switching. 192

Figure 3 demonstrates the distribution. 24% are 193

unrelated. The proportion of sentence-level code- 194

switching is very small, approximately 3%, with 195

1% being Annt. and the rest 2% being Repl. In 196

contrast to FineWeb-Edu, the Token-Repl. code- 197

switching accounts more than the Token-Annt. 198

code-switching. This is caused by the frequent 199

use of proper noun, such as “Microsoft”, “CAR- 200

T” (Chimeric Antigen Receptor T-Cell) and so on. 201

Examples of each type are illustrated in section B. 202
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Data PPL ↓ MEXA Acc. Avg.

Original Data 41.2 0.66 36.9
Clean-sub Data 40.5 0.66 37.9
CS-free Data 66.0 0.43 32.8

Table 2: Comparison of target language (Chinese) per-
formance of models trained on data with and without
natural code-switching. “Acc. Avg.” is the average
accuracy on Hellaswag and ARC-Easy.

3 Analyzing the Impact of203

Code-Switching204

Based on our analysis of natural code-switching,205

we investigate its impact on cross-lingual transfer206

for each type. We employ a document-substitute-207

based ablating method, using reserved clean docu-208

ments (without code-switching) to substitute code-209

switching documents in the pre-training corpus.210

3.1 Experiment Setup211

Pre-Training Recipes We sample 60B English212

tokens from FineWeb-Edu and 600M Chinese to-213

kens from Chinese-FineWeb-Edu-v2 to simulate214

the language imbalance (100:1) pre-training1. A215

1.5B Qwen2.5 model (Yang et al., 2024) is trained216

on this sampled data to explore the cross-lingual217

transfer during pre-training. The hyper-parameters218

for pre-training are detailed in section D.219

Evaluation Recipes We use the perplexity on220

Wikipedia (Foundation), and the accuracy on Hel-221

laswag (Zellers et al., 2019) and ARC-Easy (Clark222

et al., 2018) to evaluate the performance in each223

language. Besides, we present MEXA (Kargaran224

et al., 2024) scores, which assess alignment be-225

tween English and non-English languages using226

parallel sentences to evaluate language transfer.227

More evaluation details are illustrated in Section D.228

3.2 Ablating All Code-Switching229

To investigate the overall impact of all code-230

switching, we conduct experiments trained on code-231

switching-free data.232

Let M denote the documents used for pre-233

training and P denote the homologous holdout234

documents. Mcs ⊆ M refers to documents con-235

taining code-switching and Mclean = M \ Mcs236

refers to clean documents. We construct “CS-free237

data” by substituting Mcs with |Mcs| documents238

1We follow Li et al. (2024b)’s language imbalance pre-
training settings.
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Figure 4: Impact of different types of natural code-
switching on the cross-lingual transfer.

randomly sampled from Pclean, which means re- 239

moving the natural code-switching. We also con- 240

struct “Clean-sub data” by substituting |Mcs| ran- 241

domly selected documents in Mclean with the same 242

documents sampled from Pclean as a comparison. 243

Natural Code-Switching Plays a Crucial Role in 244

Cross-Lingual Transfer In Table 2, the perplex- 245

ity of the model trained on CS-free data shows a 246

significant increase compared to that of the Clean- 247

sub data (40.5 to 66.0), and the benchmark perfor- 248

mance also decreases by about 5 points. Without 249

natural code-switching, the MEXA alignment score 250

of the model drops significantly (0.66 to 0.43), in- 251

dicating a worse multilingual alignment in hidden 252

states. These results reveal the importance of natu- 253

ral code-switching in cross-lingual transfer. 254

3.3 Ablating Individual Type 255

To further investigate the impact of code-switching 256

in various formats, we conduct experiments trained 257

on data containing only one type. Since the ablation 258

for each type shows an imperceptible difference 259

in benchmarks, we mainly report the perplexity. 260

Figure 4 demonstrates the results. 261

Less Tokens but Better Transfer For Chinese- 262

side Repl. code-switching, the number of tokens 263

in Chinese is actually decreasing from the original 264

600M since some tokens are replaced by its trans- 265

lation. However, leveraging Repl. code-switching 266

can still reduce the perplexity, indicating the poten- 267

tial cross-lingual transfer. Sent-Repl. presents the 268

best effects on cross-lingual transfer, even though 269

it only accounts for 2%. 270

Repl. Contributes More than Annt. on En- 271

glish Side For English-side code-switching, Repl. 272

demonstrates better effects than Annt., as shown in 273
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Figure 4. We suppose that while the concepts rep-274

resented by code-switched tokens appear twice in275

both languages in Annt., the model may pay less at-276

tention to the Chinese tokens during training. This277

process may degrade the potential transfer learning.278

This issue is specific to the English side due to the279

low natural code-switching ratio in English data,280

which may require more significant alterations to281

the original English context.282

Translation Fails in Enhancing Multilingual283

Transfer It is worth noting that Sent-Annt. on284

both English and Chinese sides, show the worst285

effects compared to other types. This suggests286

that while parallel sentences in the pre-training287

corpus are crucial for the model’s translation capa-288

bilities (Briakou et al., 2023), they may not signifi-289

cantly enhance multilingual transfer.290

4 Scaling up Code-Switching291

Despite the effectiveness evidenced in the ex-292

periment of previous section, the natural code-293

switching phenomenon is rare and usually re-294

stricted to specific domains. In this section, we295

explore improving multilingual pre-training by296

synthesizing large-scale documents with code-297

switching. This method is more flexible and con-298

trollable, allowing us to inject code-switching into299

any document at any density and in any format.300

4.1 Code-Switching Synthesis Pipeline301

Given a collection of documents, we first split them302

into sentences and randomly select sentences to303

apply different types of code-switching.304

Synthesizing Sentence-level Code-switching305

For sentence-level code-switching, we use TowerIn-306

struct (Colombo et al., 2024) to translate each se-307

lected sentence. When conducting Sent-Repl., the308

source sentence is directly replaced with its trans-309

lation. When conducting Sent-Annt., the source310

sentence is preserved with its translation following311

behind in parentheses, which is the most frequent312

pattern for natural Sent-Annt.313

Synthesizing Token-level Code-Switching Cur-314

rently, there is a lack of flexible and low-cost meth-315

ods for synthesizing high-quality token-level code-316

switching. Li et al. (2024b) conduct rule-based317

method using a bilingual dictionary. However, it318

suffers from the one-to-many problem of word319

alignment and fails to select suitable tokens to re-320

place or annotate. Yoo et al. (2024a) leverages321

GPT-4o and parallel sentences to synthesize high 322

quality Token-Repl. code-switching data. How- 323

ever, it is expensive when scaling up and can not 324

be used on monolingual documents. Empirically, 325

we also find that SOTA LLMs struggle to gener- 326

ate token-level code-switching content given only 327

monolingual text. 328

To synthesize high-quality token-level code- 329

switching without requiring parallel sentences at 330

a low-cost, we introduce a data-based distillation 331

method. Initially, inspired by Yoo et al. (2024a), 332

we leverage GPT-4o-mini to generate high-quality 333

Token-Annt. and Token-Repl. code-switching data 334

based on parallel sentences. Then we construct 335

Supervised Fine-Tuning (SFT) data by only pre- 336

serving the sentence of one language in the instruc- 337

tion, resulting in a multilingual dataset. A small 338

language model is then fine-tuned on this dataset, 339

learning to synthesize token-level code-switching. 340

Practically, we select Qwen2.5-3B-Instruct as the 341

base model, taking both speed and effect into con- 342

sideration. The resultant model can rapidly gener- 343

ate diverse and high-quality code-switching data at 344

a low cost. The prompts for generating SFT data 345

and fine-tuning are illustrated in section C.1. 346

4.2 Scaling up Target-Side Code-Switching 347

To assess whether scaling on the target language 348

side enhances cross-lingual transfer, we modify the 349

600M Chinese documents to include English code- 350

switching segments. In Figure 5, we increase the 351

number of newly added English tokens from 0M to 352

500M by adjusting the ratio of modified sentences. 353

Improved Cross-Lingual Transfer with Target- 354

Side Scaling As we modify more sentences from 355

the 600M Chinese documents, the performance in 356

Chinese continues to improve. Adding 300M new 357

English tokens results in significant improvements 358

(39.99 vs 36.85). This demonstrates that SynCS on 359

the Chinese side effectively enhances cross-lingual 360

transfer. 361

The Importance of Target-Side Monolingual 362

Data Beyond 300M, all four types of code- 363

switching on the Chinese side exhibit a notable 364

performance drop. This decline is due to excessive 365

alterations of the original Chinese documents as we 366

modify over 60% of the sentences. This highlights 367

the importance of retaining monolingual data on 368

the target language side. Notably, even with 100% 369

modification, Token-Annt. still presents substantial 370

improvements (+2.43). 371
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Figure 5: Scaling Target-side code-switching: Average
accuracy on Hellaswag and ARC-Easy in Chinese.

Token-Level Code-Switching Exceeds Sentence-372

Level on Target Side In Figure 5, Token-Annt.373

and Token-Repl. consistently exceeds Sent-Annt.374

and Sent-Repl., with a maximum gap of 1.58 points.375

The scalability of sentence-level code-switching on376

the Chinese side appears to be limited, suggesting377

that token-level code-switching is more suitable for378

the target language side.379

4.3 Scaling up English-Side Code-Switching380

Since SynCS on the English side doesn’t reduce the381

token count of target language, we explore whether382

it exhibits better scalability. We modify only 20%383

of the documents (12B) to ensure stable English384

learning. In Figure 6, we increase the number of385

newly added Chinese tokens from 0M to 2,000M386

by adjusting the ratio of modified sentences.387

Greater Efficiency of English-Side Code-388

Switching The results show the advantages of389

English-side SynCS compared to Chinese side. By390

adding 100M new target language tokens, the per-391

formance of English-side SynCS exceeds that of392

Chinese side by 1.42 points. This gap increases393

with over 100M tokens, reaching a maximum of394

6.93 points. As English dominates during pre-395

training, it allows for extensive code-switching scal-396

ing without reducing target language tokens.397

Superior Scalability of English-Side Code-398

Switching By scaling the newly added Chinese399

tokens from 0M to 2,000M, SynCS demonstrates400

improvements from 0 to 10.14. This showcases its401

superior scalability. In experiments comparing the402

addition of an equivalent amount of Chinese mono-403

lingual tokens from holdout documents, SynCS404

consistently demonstrates superior performance.405

At 100 M, SynCS matches or surpasses the perfor-406

mance achieved by adding 20x monolingual data407

at 2,000M, highlighting its remarkable efficiency.408
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Figure 6: Scaling English-side code-switching: Average
accuracy on Hellaswag and ARC-Easy in Chinese.

Replacement Transfers Better than Annotation 409

on English Side Figure 6 shows that Sent-Repl. 410

and Token-Repl. outperform Sent-Annt. and 411

Token-Annt. with faster performance improve- 412

ments. This is consistent with the ablation study of 413

natural English-side code-switching in section 3.3, 414

which indicates that Repl. on the English side en- 415

hances multilingual performance more than Annt. 416

Figure 7 presents the t-SNE visualizations (Van der 417

Maaten and Hinton, 2008) of parallel sentences’ 418

middle-layer hidden states for models trained on 419

SynCS data of different types. Notably, only Token- 420

Repl. and Sent-Repl. exhibit significant changes, 421

suggesting a more comprehensive cross-lingual 422

transfer process through evenly mixed represen- 423

tations of parallel sentences. 424

4.4 Bring All Together 425

To investigate potential mutual promotion effects 426

between different code-switching types and iden- 427

tify the optimal mixing strategy, we merge all types 428

on both English and Chinese sides. For simplic- 429

ity, code-switching of type X is denoted as “En-X” 430

for English side and “Zh-X” for Chinese side. Un- 431

der the 500M and 2,000M budgets explored in the 432

scaling experiments, we implement the following 433

heuristic mixing strategies: 434

• Equal: On each side, four types of code- 435

switching are evenly mixed. 436

• Extreme: On each side, the most powerful 437

type of code-switching is used at its optimal 438

scale (En-Token-Repl. at 2,000M, and Zh-T- 439

Annt. at 200M). 440

• En-Repl. Equal: En-Token-Repl. and En- 441

Sent-Repl. are evenly mixed with each at the 442

1,000M scale, derived from their superior per- 443

formance in the scaling experiments. 444
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Figure 7: T-SNE visualization of parallel sentences’ middle-layer hidden states shows significant changes only in
En-Token-Repl. and En-Sent-Repl, as illustrated in Figures 9. We take En-Token-Annt. and En-Token-Repl. as
examples here.

Data # New Tokens English Chinese

PPL ↓ ARC-E Hellaswag Acc. Avg. PPL ↓ GK. NLU Reasoning Acc. Avg.

Original Data 0M 11.3 66.9 50.7 58.8 41.2 29.8 52.8 41.6 41.4
+Monolingual 2,000M 11.2 68.5 50.0 59.3 29.0 31.0 54.8 43.2 43.0

+SynCS
En-Token-Repl. 100M 11.3 67.9 50.8 59.3 38.5 30.8 55.4 43.0 43.1 (+0.01)
En-Token-Repl. 2,000M 11.4 68.1 50.2 59.1 35.0 31.5 55.4 47.6 44.9 (+1.83)

Equal 2,000M 11.8 68.2 49.9 59.1 40.5 30.6 56.1 46.9 44.5 (+1.52)
Extreme 2,000M 11.6 67.9 50.3 59.1 36.4 30.7 56.2 47.4 44.7 (+1.72)

En-Repl. Equal 2,000M 11.4 68.4 50.3 59.4 34.1 31.7 57.4 47.9 45.7 (+2.65)

Table 3: Evaluation results of different code-switching mixing strategies. “En-Token-Repl.” represents English-side
Token-Level-Replacement code-switching, which performs the best in the scaling experiments.
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Figure 8: The MEXA alignment score comparison.

We expand our evaluation to three dimensions:445

General Knowledge (GK.), Natural Language Un-446

derstanding (NLU), and Reasoning with each con-447

taining 4 benchmarks (Kydlíček et al.). Details are448

illustrated in section D. Table 3 presents the results.449

SynCS Achieves 20x the Efficiency of Mono-450

lingual Data SynCS-Equal leads to a signifi-451

cant improvement (+3.16) and substantially outper-452

forms adding an equal amount of monolingual data453

with natural code-switching (+1.52). Using the454

best En-Token-Repl. type at the 100M scale even455

demonstrates comparable performance to adding456

20x monolingual data (43.1 vs 43.0).457

Mixing SynCS on Both Sides Brings No Im- 458

provement Results show that SynCS-Equal and 459

SynCS-Extreme demonstrate a slight decrease com- 460

pared to En-Token-Repl., indicating that mixing 461

SynCS on both sides does not yield significant mu- 462

tual promotion effects. 463

The Most Two Powerful Types Promote Each 464

Other En-Repl. Equal showcases substantial im- 465

provements over other mixing strategies. Its perfor- 466

mance outperforms each of its composition types 467

at the same scale, indicating the potential mutual 468

promotion effects. We use this strategy as our final 469

method in the following experiments, denoted as 470

SynCS*. Figure 8 shows the MEXA alignment 471

scores. SynCS* significantly enhances MEXA 472

alignment across all layers, particularly in shallow 473

and deep layers, whereas monolingual data exhibits 474

a slower, natural alignment process. 475

4.5 Extend to Multilingual 476

To assess SynCS’s effectiveness in multilingual set- 477

tings, we select Chinese, Romanian, and Bengali as 478

representatives of high, medium, and low-resource 479

languages. Details of the synthesis setup are in 480

section C. The pre-training setup follows section D, 481

except that the tokenizer is changed to DeepSeek- 482
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Data # New Tokens English Chinese

PPL ↓ Hellaswag ARC-E Acc. Avg. PPL ↓ Hellaswag ARC-E Acc. Avg.

Original Data 0M 13.6 48.4 67.8 58.1 60.0 33.9 49.1 41.5
+Monolingual 3,000M 13.7 48.2 66.4 57.3 50.1 34.6 52.2 43.4
+SynCS* 150M 13.8 48.4 66.5 57.4 58.6 35.1 52.5 43.8
+SynCS* 3,000M 14.2 46.8 65.3 56.1 56.1 37.2 56.3 46.7

Data # New Tokens Romanian Bengali

PPL ↓ Hellaswag ARC-E Acc. Avg. PPL ↓ Hellaswag ARC-E Acc. Avg.

Original Data 0M 9.8 30.9 33.9 32.4 9.7 27.0 28.9 28.0
+Monolingual 3,000M 8.6 32.0 35.6 33.8 7.9 27.6 31.5 29.6
+SynCS* 150M 9.2 30.9 37.1 34.0 8.6 27.8 30.1 29.0
+SynCS* 3,000M 8.7 32.5 40.7 36.6 8.2 28.1 32.6 30.3

Table 4: Evaluation results in the multilingual setting.

V3 (Liu et al., 2024) for improved tokenization of483

Romanian and Bengali. Due to the lack of bench-484

marks for Bengali and Romanian, we evaluate only485

on perplexity, Hellaswag, and ARC-Easy.486

We first choose the same sentences at the 2,000M487

setting in our scaling experiments and evenly al-488

locate them to these languages. Notably, the total489

number of new target language tokens becomes490

3,000M beacause of the different tokenization for491

languages. Table 4 presents that SynCS signifi-492

cantly outperforms the addition of an equivalent493

amount of monolingual documents across all three494

languages. Meanwhile, the 20x efficiency ratio495

still holds true on Romanian. For Bengali, SynCS496

presents comparable performance to its 20x mono-497

lingual data. This demonstrates the robust language498

generalization capabilities of SynCS.499

5 Related Work500

5.1 Cross-Lingual Transfer501

Due to the imbalance of languages in the pre-502

training corpora, LLMs’ multilingual abilities still503

show significant disparities (Bai et al., 2023; Dubey504

et al., 2024). Since addressing this language data505

imbalance is challenging (Ranta and Goutte, 2021),506

many efforts have been made to explore cross-507

lingual transfer in LLMs, which aim to transfer508

knowledge or reasoning capabilities from high-509

resource languages to low-resource languages. In510

the post-training stage, She et al. (2024) uti-511

lize response consistency between low- and high-512

resource languages to optimize and enhance LLMs’513

multilingual reasoning using DPO or PPO. Zhou514

et al. (2024) propose to prevent high-resource515

languages’ catastrophic forgetting during contin-516

ual pre-training for better low-resource language517

adaptation. In the pre-training stage, Dufter and518

Schütze (2020) identify shared parameters, sub-519

words, and position embeddings as keys to trans- 520

former’s multilingualism. Li et al. (2024b) argue 521

that aligning multilingual representations before 522

large-scale pre-training, followed by input-only 523

code-switching, enhances multilingual capabilities. 524

5.2 Code-Switching 525

Code-switching, or language alternation, is a lin- 526

guistic phenomenon where multilingual speak- 527

ers use multiple languages within a conversa- 528

tion (Poplack, 1978). While LLMs exhibit strong 529

multilingual capabilities, they struggle with code- 530

switching tasks. Yoo et al. (2024b) show that code- 531

switching attack prompts increase success rates. 532

Code-switching aids multilingual alignment, as 533

demonstrated by Li et al. (2024b), who use input- 534

only code-switching during pre-training. Yoo et al. 535

(2024a) introduce CSCL, a curriculum learning 536

method using synthetic code-switching data to en- 537

hance multilingual alignment. Yoo et al. (2024a) 538

is the most similar work to us. However, we focus 539

on the pre-training stage, analyzing how natural 540

code-switching enhances LLMs’ multilingual ca- 541

pabilities and proposing a more flexible and less 542

expensive code-switching synthesis approach. 543

6 Conclusion 544

This study explores the impact of code-switching 545

on cross-lingual transfer during pre-training. We 546

find that natural code-switching significantly en- 547

hances the multilingual capabilities of LLMs un- 548

der extreme language imbalance. To address the 549

scarcity of natural code-switching, we introduce a 550

synthetic framework requiring only a small set of 551

high-quality parallel sentences. Through extensive 552

experiments and analysis, we demonstrate that this 553

framework outperform those trained on equivalent 554

monolingual data, improving performance across 555

languages of varying resources. 556
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7 Limitations557

Due to the resource limit, our models fall under558

a 1.5B small language model trained on 60B to-559

kens, which lacks generation abilities. Whether560

the findings in the paper hold on larger settings561

remains to be explored. Table 4 demonstrates that562

the improvement achieved on the low-resource lan-563

guage is not substantial because of the low-quality564

of the pre-training and synthetic code-switching565

data. How to generate high-quality code-switching566

data for these languages is a problem. Additionally,567

models trained with SynCS demonstrates worse568

performance on the Wiki-ppl compared to mono-569

lingual data, which may be handled by continue570

training on monolingual data or using the input-571

only code-switching (Li et al., 2024b). We leave572

these limitations for further work.573
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A Code-Switching Data Detecting 843

A.1 Detecting Details 844

We first apply a character-based filtering to ob- 845

tain documents that contain English and Chinese. 846

Then we use fasttext (Joulin et al., 2017) to classify 847

each sentence as monolingual or bilingual, corre- 848

sponding to sentence-level and token-level code- 849

switching, respectively. We prompt Qwen2.5-72B- 850

Instruct (Yang et al., 2024) to filter out the unrelated 851

code-switching sentences. Each segment is then 852

categorized as either Annt. or Repl.. 853

For sentence level, classifying into Annt. and 854

Repl. is indeed detecting the translation pairs. We 855

employ LABSE (Feng et al., 2022) cross-lingual 856

encoder to find semantic-align sentence pairs in 857

two languages, following Briakou et al. (2023). 858

For token level, we use an LLM-based detection 859

strategy to categorize. We prompt Qwen2.5-72B- 860

Instruct with the instructions as following and ask 861

for classification. 862

Prompts for Annotation and Replacement
classification

Code-switching can be classified more
finely according to different characteris-
tics and uses. Here are some common types:

1. Annotation: In this case, another lan-
guage is used to explain or define a noun
before or after it. For example: During the
festival, we watched a dragon dance (舞龙).
In this sentence, the word "舞龙" serves as
an annotation for "dragon dance".
2. Replacement: A specific word is
replaced by a foreign word. For example:
During the festival, we watched a舞龙. In
this sentence, the word "舞龙" replaces the
English word "dragon dance".
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Given an English sentence containing Chi-
nese code-switching, please classify the sen-
tence according to the above two types.
Examples:
[English Sentence]: During the festival, we
watched a dragon dance (舞龙), which is a
traditional Chinese performance.
[Answer]: "舞龙" appears after "dragon
dance", which explains this English word
in Chinese and is its annotation. Formatting
result: \\box(1)

[English Sentence]: We enjoyed some deli-
cious food at a nearby茶馆.
[Answer]: The word "茶馆" is directly used
as part of the sentence. It can be assumed
that the original word is "teahouse", but it
is directly replaced by "茶馆". Formatting
result: \\box(2)

The following is your task. You can do a
brief analysis, but please be sure to output
it in the format of the example at the end.
[English Sentence]:
[Answer]:

864

B Examples for Various Natural865

Code-Switching Segments866

English-Side Code-Switching

Unrelated:
1. ◇お客、こちらのブラウスですと、
いまお召しのスツにもよく合います
が。
2. there are also the phrases いつ(about
when?
3. 2 Polypodiaceae Tac ke家Me.

867

Chinese-Side Code-Switching

Unrelated:
1. zxx520llc发表于: 2个月前#9
2. X$Gx170水利图书F’ q A
t8̂t2G [Garbled]

T-Annt.:
1.比如盐酸(HCL)、硝酸。[Explanation
in English: For example, hydrochloric acid
(HCL) and nitric acid.]

868

T-Repl.:
1. Microsoft 商店很可能误解了你尝试
下载或安装的应用程序。[Explanation
in English: It’s possible that the Microsoft
Store misunderstood the app you were
trying to download or install.]

S-Annt.:
1. 任何人都不太可能真正了解它的全
部。These are the basic materials that go
into a pencil, graphite, cedar, metal,and rub-
ber。这些就是构成铅笔的基本材料，
石墨、雪松、金属、橡胶。

S-Repl.:
1. 我只想引述GPT-4官方新闻的一句
话：As a result, our GPT-4 training run
was (for us at least!) unprecedentedly
stable. [Explanation in English: I just want
to quote a sentence from the official GPT-4
news: As a result, our GPT-4 training run
was (for us at least!) unprecedentedly
stable.]

869

C Code-Switching Data Synthesis 870

Synthesis Model Training Details We utilize 871

4 A100 GPUs and conduct multilingual and 872

multi-task supervised fine-tuning on Qwen2.5-3B- 873

Instruct. The model is fine-tuned for 3 epochs, 874

using a context length of 2048 tokens, a warmup 875

ratio of 0.1, and a peak of learning rate at 5e-5 with 876

cosine decaying to 0. We utilize bf16 mixed preci- 877

sion and flash attention (Dao, 2024) to speed up the 878

training process. We assign the temperature as 0 879

when generating code-switching data and translat- 880

ing sentences (i.e. greedy decoding). vLLM (Kwon 881

et al., 2023) is used to accelerate the generation. 882

The source data for generating code-switching 883

supervised fine-tuning data includes X-ALMA (Xu 884

et al., 2024) and flores200 (Costa-jussà et al., 2022). 885

While TowerInstruct doesn’t support Bengali, we 886

use NLLB (Costa-jussà et al., 2022) as the transla- 887

tor. As the data of Xu et al. (2024) doesn’t contain 888

Bengali, we directly use the dev and devtest set 889

of the flores200 (Costa-jussà et al., 2022) dataset. 890

Table 5 shows the number of parallel sentences in 891

each language when generating the SFT data. We 892

use the same data for the Annotation and Replace- 893

ment types in both languages, resulting in a total of 894
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Language Pairs # of Parallel Sentences

English-Chinese 6906
English-Romanian 4987
English-Bengali 3604
Total 15500

Table 5: Number of parallel sentences used for generat-
ing token-level code-switching SFT data.

62000 multilingual and multi-task SFT data. We895

directly reuse the prompts above except only the896

source language sentence is given.897

C.1 Synthesis Prompts898

When generating the token-level code-switching899

SFT data using GPT4o-mini, we follow and slightly900

modify the prompt of Yoo et al. (2024a) for better901

instruction-following.902

Prompts of Code-Switching Generation

Annotation (Target-Side as example):
Given a pair of {Source Language}-English
parallel sentence, generate an English-
annotated {Source Language} sentence.
Annotation is the use of words from another
language to explain certain words in a sen-
tence.
[{Source Language} Sentence]:

Replacement:
Given a pair of {Source Language}-English
sentence, generate a {Source Language}
and English code-switching sentence. Code-
switching is the use of more than one lin-
guistic variety in a manner consistent with
the syntax and phonology of each variety.
[{Source Language} Sentence]:

903

D Experiment Settings904

Pre-Training Recipes We sample 60B English905

tokens from FineWeb-Edu and 600M Chinese to-906

kens from Chinese-FineWeb-Edu-v2 to simulate907

the language-imbalance (100:1) pre-training. A908

1.5B Qwen2.5 model (Yang et al., 2024) is trained909

on this sampled data to explore the cross-lingual910

transfer during pre-training. All models are trained911

for 30,000 steps with a batch size of 2M tokens. We912

group training documents with the length of 2048913

and pre-training with global batch size of 1024.914

The learning rate performs cosine decay from 2e-4915

to 5e-6 with 1% warmup. Experiments are con- 916

ducted on the Megatron-LM (Shoeybi et al., 2019) 917

framework. We use flash-attn (Dao, 2024) to accel- 918

erate training. Each experiment is trained on 128 919

A100s for 9 hours. 920

Evaluation Recipes We use the perplexity on 921

Wikipedia (Foundation) and the finetasks (Kydlíček 922

et al.) to evaluate our models. In finetasks, we 923

choose the 12 tasks belonging to 3 dimensions: 924

• General Knowledge: AGI-Eval (Zhong 925

et al., 2024), C-EVAL (Huang et al., 2023), 926

CMMLU (Li et al., 2024a), M3Exams (Zhang 927

et al., 2023). 928

• Natural Langauge Understanding: M- 929

Hellaswag (Lai et al., 2023), Ocnli (Hu et al., 930

2020), X-winigrad (Muennighoff et al., 2023), 931

Xstory-cloze (Mostafazadeh et al., 2017). 932

• Reasoning: Xcodah (Chen et al., 2019), 933

XCOPA (Ponti et al., 2020), XCSPA (Lin 934

et al., 2021), ARC-Easy (Clark et al., 2018). 935

The multilingual translated version of Hel- 936

laswag (Lai et al., 2023) is used. Since there is 937

no multilingual version of ARC-Easy, we trans- 938

late the original English version to Chinese, Ro- 939

manian, and Bengali using GPT-4o-mini, follow- 940

ing Lai et al. (2023). We also present MEXA (Kar- 941

garan et al., 2024) scores, which assess alignment 942

between English and non-English languages us- 943

ing parallel sentences, flores200 (Costa-jussà et al., 944

2022), to evaluate language transfer. When we ex- 945

plore the natural code-switching and scaling up the 946

synthetic code-switching, since the differences on 947

these benchmarks are insignificant at a small scale, 948

only perplexity, Hellaswag, and ARC-Easy are re- 949

ported. Besides, in our multilingual settings, there 950

are lack of evaluation benchmarks for Bengali and 951

Romanian. We also only report these three results. 952

E T-SNE Visualization 953

Figure 9 demonstrates the T-SNE visualization of 954

parallel sentences’ middle layer hidden states for 955

models trained on Chinese and English-side SynCS 956

respectively. Only En-Token-Repl. and En-S-Repl. 957

showcase obvious differences for mixing the repre- 958

sentation space in two languages. 959

E.1 Detailed Evaluations 960

Table 6, 7, and 8 presents the detailed evaluations 961

on each Chinese benchmarks mentioned at Table 3. 962
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Figure 9: T-SNE visualization of parallel sentences’ middle layer hidden states for models trained on Chinese-side
and English-side SynCS.

Data # New Tokens AGI-Eval CEVAL CMMLU M3Exams Avg.

Original Data 0M 28.8 28.3 30.1 31.9 29.8
+Monolingual 2,000M 29.5 31.0 31.6 32.0 31.0

+SynCS
En-Token-Repl. 100M 30.5 30.2 30.8 31.9 30.8
En-Token-Repl. 2,000M 30.7 31.3 31.8 32.3 31.5

Equal 2,000M 29.7 29.5 30.6 32.8 30.6
Extreme 2,000M 29.2 30.9 31.1 31.4 30.7

En-Repl. Equal 2,000M 30.5 29.9 31.5 35.1 31.7

Table 6: Chinese evaluation results on the General Knowledge (GK.) evaluation set.

Data # New Tokens AGI-Eval CEVAL CMMLU M3Exams Avg.

Original Data 0M 33.8 54.3 65.5 57.8 52.8
+Monolingual 2,000M 35.3 56.8 66.9 60.3 54.8

+SynCS
En-Token-Repl. 100M 35.8 59.9 67.7 58.3 55.4
En-Token-Repl. 2,000M 39.7 55.2 68.9 57.7 55.4

Equal 2,000M 38.5 60.3 66.7 59.1 56.1
Extreme 2,000M 39.2 58.3 66.9 60.3 56.2

En-Repl. Equal 2,000M 40.1 62.4 66.9 60.2 57.4

Table 7: Chinese evaluation results on the Natural Language Understanding (NLU) evaluation set.

Data # New Tokens XCodah XCOPA XCSQA ARC-Easy Avg.

Original Data 0M 33.0 57.4 35.9 39.9 41.6
+Monolingual 2,000M 33.0 58.6 36.3 45.0 43.2

+SynCS
En-Token-Repl. 100M 33.7 56.6 35.4 46.5 43.0
En-Token-Repl. 2,000M 35.7 61.8 39.0 54.1 47.6

Equal 2,000M 32.7 62.4 38.3 54.0 46.9
Extreme 2,000M 34.3 60.0 40.0 55.2 47.4

En-Repl. Equal 2,000M 33.3 61.4 40.0 56.8 47.9

Table 8: Chinese evaluation results on the Reasoning evaluation set.
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