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Abstract

Spoken language understanding is essential001
for extracting meaning from spoken language,002
particularly in low- or zero-resource language003
settings relying on speech in the absence of004
text data. This work investigates the effec-005
tiveness of using synthetic speech data in Spo-006
ken Question Answering (SQA). By manip-007
ulating prosody in human-read test sets, as008
well as proposing a new SQA dataset for fine-009
tuning, we demonstrate that models trained010
solely on synthetic speech can utilise prosodic011
cues. Moreover, synthetic speech fine-tuned012
models outperform those fine-tuned on natural013
speech, even with the same or restricted lexical014
information. Our findings suggest that current015
text-to-speech systems can simulate sufficient016
prosody for SQA models, and that the contribu-017
tion from natural prosody is limited within the018
current textless SQA framework.019

1 Introduction020

Spoken language understanding (SLU) aims to021

extract meaningful information from spoken lan-022

guage input. Unlike natural language understand-023

ing (NLU), which relies on text, SLU is particu-024

larly valuable for so-called low-resource languages025

with limited text data; speech serves as the primary026

linguistic signal (Bloomfield, 1933) and there is027

generally an abundance of speech data to harvest028

for spoken languages. Traditional SLU systems,029

however, consist of two separate components: an030

automatic speech recognition (ASR) model and an031

NLU model, with only the NLU model fine-tuned032

for the downstream task. This cascaded approach033

is easy to implement, as the models can be trained034

separately with external datasets. However, errors035

from ASR propagate to the NLU model, signif-036

icantly impacting performance due to ill-formed037

inputs to the NLU model. Recently, there have038

been efforts to bypass the explicit transcription step039

by using end-to-end models (Chuang et al., 2020)040

or discrete units as pseudo-text (Lin et al., 2022). 041

Training such models requires task-oriented speech 042

datasets, that typically would only have been cre- 043

ated for text previously. Since most SLU tasks 044

build on corresponding NLU datasets and collect- 045

ing annotated audio recordings is labor-intensive, 046

applying Text-to-Speech (TTS) techniques to gen- 047

erate large training datasets is common (Lee et al., 048

2018; Lin et al., 2022; Ünlü Menevşe et al., 2022). 049

However, research has shown people perceive 050

natural speech differently from synthetic speech: 051

listeners often have more difficulty understanding 052

synthetic speech due to limited acoustic-phonetic 053

cues and the lack of natural variability (Winters 054

and Pisoni, 2004; Wester et al., 2016). Addition- 055

ally, modeling prosody has been shown to benefit 056

various tasks, from segmentation-related tasks to 057

meta-information and paralinguistics tasks (Tran 058

et al., 2018; Cho et al., 2022). Therefore, we are 059

interested in exploring the role of prosody in SLU. 060

In this paper, we focus on spoken question an- 061

swering (SQA) as our main task, which predicts 062

the start and end points of an answer span from its 063

input. We first modify the prosodies of the audios 064

in the human-read test set and demonstrate that a 065

model trained solely on synthetic speech can still 066

leverage prosodic cues to answer questions. We 067

then explore whether natural speech is necessary 068

for training a SQA system by comparing systems 069

fine-tuned on natural and synthetic speech with 070

the same lexical information. Since there are no 071

existing natural SQA datasets 1 for English, we 072

propose a novel data extension approach. Our find- 073

ings reveal that synthetic speech fine-tuned systems 074

not only perform competitively with natural speech 075

fine-tuned systems, but can also maintain compet- 076

itive performance even when lexical information 077

within the speech data is severely restricted. 078

1We are only interested in factoid SQA datasets with the
context from human speech. Other related SQA datasets are
discussed in Section 2
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2 Related work079

Linguistics research has long confirmed that080

prosody can aid across a variety of tasks, from dis-081

ambiguating homographs to conveying a speaker’s082

sentiments (Tran, 2020). While the role of prosody083

has been studied for decades in human speech per-084

ception and production, its use in spoken language085

technology has been limited due to the challenges086

in computational modeling (Cutler et al., 1997;087

Tran, 2020). Since recovering prosody from text is088

difficult (Talman et al., 2019), recent work has fo-089

cused on incorporating coarse acoustic features into090

ASR outputs for downstream SLU tasks (Tran et al.,091

2018; Tran, 2020; Tran and Ostendorf, 2021; Cho092

et al., 2022). Additionally, perturbing the input au-093

dio to omit certain sources of prosodic information094

has been explored to investigate whether models095

can learn to pick up prosodic cues (Ekstedt and096

Skantze, 2022). In this work, we apply a similar097

idea to investigate if the SQA models trained on098

synthetic speech can pick up any prosodic features.099

SQA was used to refer to work on spoken docu-100

ments (manual or ASR transcripts) rather than au-101

dio files (Umbert, 2012). Recently, it has evolved102

to resemble extractive textual QA tasks, involving103

a spoken context, a question, and an answer within104

the context, which is also our focus here.105

Several datasets have been developed for this106

task. Lee et al. (2018) introduced Spoken SQuAD,107

a dataset with spoken contexts and textual ques-108

tions, using TTS on the SQuAD dataset (Rajpurkar109

et al., 2016). Lin et al. (2022) extended Spoken110

SQuAD by applying TTS to questions and pro-111

viding a benchmark corpus read by humans: Nat-112

ural Multi-speakers Spoken Question Answering113

dataset (NMSQA). Ünlü Menevşe et al. (2022) pro-114

posed a framework for generating SQA data by115

fine-tuning a language model to generate questions116

and answers, followed by TTS for audio. We focus117

only on factoid QA in this paper but there are other118

research directions including multi-turn conversa-119

tional SQA datasets (You et al., 2022), QA from120

meeting transcripts and interviews (Archiki Prasad121

and Bansal, 2023; Shankar et al., 2024), and SLUE-122

SQA-5 retrieving only relevant but real natural123

speech from Spoken Wikipedia (Shon et al., 2023).124

3 SQA Data and Model125

Most English SQA datasets are generated by TTS126

systems, with limited human-read samples like127

NMSQA’s testset, making detailed analysis or fine-128

tuning challenging. Therefore, we propose a novel 129

dataset extension approach using natural speech 130

as context passages. We select the Boston Univer- 131

sity Radio News Corpus (BURNC) as our natural 132

speech source due to its rich prosody and mix of 133

formal and communicative speech (Ostendorf et al., 134

1996) and employ DUAL (Lin et al., 2022) as our 135

SQA model. 136

3.1 BURNC_QA dataset 137

We first segment transcripts into utterances and 138

generate named entities (NE) as answers using 139

the Flair toolkit (Akbik et al., 2019). This ap- 140

proach, compared to generating questions directly 141

from the transcription using a language model as 142

in (Ünlü Menevşe et al., 2022), offers better effi- 143

ciency and accuracy. It ensures semantically rele- 144

vant questions while providing greater control over 145

the generation process. 146

The next step involves generating questions 147

corresponding to the answer and the utterance. 148

We fine-tune the FLAN T5-BASE model (Chung 149

et al., 2022) on a question generation task with 150

the SQuAD dataset, by concatenating the context 151

and answers as input and use questions as out- 152

put2. During the experiments, we observed that 153

the model may generate questions containing the 154

answers themselves or irrelevant information, and 155

the examples are shown in Appendix A.1. We filter 156

out self-answered questions and check if the NE 157

extracted from the questions exists in the context. 158

Following (Lin et al., 2022), we apply Long- 159

former3 as our SOTA textual QA system on the 160

generated pairs, achieving results of exact_match: 161

78.18, F1: 88.36. Assuming incorrect answers (un- 162

der exact_match) may result from prior generation 163

errors, we also filter them out, leaving in a total of 164

7,318 QA pairs. To align with the SQuAD dataset 165

structure, we use entire BURNC paragraphs, as 166

context instead of individual utterances. 167

After obtaining textual QA pairs, we utilise 168

SPEECHT5_TTS (Ao et al., 2022) to generate syn- 169

thetic speech for the questions. To ensure consis- 170

tency in alignment across different datasets, we re- 171

align all datasets using the Montreal Forced Aligner 172

framework (McAuliffe et al., 2017). 173

There are 7 speakers in the BURNC dataset. We 174

assign all audios from speaker m3b to the test set 175

2eval_rouge1: 0.51, eval_rouge2: 0.28, eval_rougeL: 0.47,
and eval_rougeLsum: 0.47 on the SQuAD testset

3https://huggingface.co/valhalla/longformer-base-4096-
finetuned-squadv1
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test set
original shiftpitch flatpitch flatintensity avg lowpass

FF1 AOS FF1 AOS FF1 AOS FF1 AOS FF1 AOS FF1 AOS

NMSQA 61.08 54.44 61.55 53.82 55.54 48.86 52.31 46.31 29.60 24.35 27.83 23.85
BURNC 59.79 52.25 59.29 51.84 59.67 52.16 58.44 51.12 58.72 51.29 32.96 27.12

Table 1: Performance of DUAL on modified NMSQA and BUNRC_QA testsets.

to also assess the ability of the model on unseen176

speakers. The remaining data is randomly 4 split177

so that eventually we obtain 7:2:1 for training, de-178

velopment and test.179

3.2 DUAL framework and evaluation metrics180

The DUAL framework comprises a Speech Con-181

tent Encoder (SCE) and a Pre-trained Language182

Model (PLM). Unlike conventional cascade mod-183

els, DUAL does not rely on ASR transcripts, thus184

avoiding ASR error propagation. Our SCE uses Hu-185

bert (Hsu et al., 2021), a self-supervised pre-trained186

model which also has demonstrated effectiveness187

for prosody-related tasks (Lin et al., 2023), to en-188

code representations directly from raw waveforms.189

K-means clustering is then applied to transform190

representations into discrete units, which are then191

fed into the PLM. The PLM predicts the span of192

the answer in the context passage by identifying193

the start and end positions.194

Frame-level F1 (FF1) score (Chuang et al., 2020)195

and Audio Overlapping Score (AOS) (Lee et al.,196

2018) are used as the evaluation metrics. FF1 score197

is similar to F1 score in textual QA, but are calcu-198

lated on frames instead of tokens. AOS measures199

the overlap between predicted and ground-truth200

spans with the intersection-over-union ration on201

frames. The detailed illustration is Appendix A.2.202

4 Prosodic variation203

Method. To investigate if the model has learned204

prosodic cues, we modify the audio prosodies in205

both the NMSQA human-read subset and proposed206

BURNC_QA testset. Inspired by Ekstedt and207

Skantze (2022), we explore the following prosodic208

details using Parselmouth (Jadoul et al., 2018;209

Boersma and Weenink, 2021). These modifications210

are also illustrated in Appendix A.3.211

Pitch flatten: Flattens F0 to the average value of212

each utterance.213

Pitch shift: Shifts the pitch by 90% of its original214

value for each utterance.215

4In BURNC, some news stories are read by multiple speak-
ers. We ensure there is no overlap of identical stories between
the test and other sets.

Intensity flatten: Flattens intensity to the average 216

value of each utterance. 217

Low pass filter: Removes high-frequency phonetic 218

information using a cutoff frequency of 800Hz. 219

Average phone duration: Scales each phone to its 220

average duration obtained from the corpus, check 221

Appendix A.4 for their values. 222

Experiments and results. We evaluate the 223

DUAL checkpoint released by (Lin et al., 2022), 224

trained exclusively on synthetic speech, on both 225

NMSQA and BURN_QA. From the results in Ta- 226

ble 1, we observe the performance drops when 227

prosodic features are modified, except for the FF1 228

score with shiftpitch on NMSQA. That indicates 229

the utilisation of prosodic cues despite the model’s 230

lack of exposure to natural speech. 231

Similar to Ekstedt and Skantze (2022), we find 232

DUAL is most sensitive to the low-pass transform, 233

which preserves intensity and F0 contour while re- 234

moving most high-frequency phonetic information. 235

This underscores the significant impact of phonetic 236

details in SQA tasks. The average phone duration 237

transform impacts differ between the two datasets, 238

possibly because the average duration is calculated 239

from 11 hours of BURNC data compared to just 240

2 hours of NMSQA data. Additionally, BURNC 241

audios are read by professional news announcers, 242

resulting in less disfluencies and prosodic errors 243

(Ostendorf et al., 1996) 244

Between shiftpitch and flatpitch, we observe that 245

DUAL performs better with shiftpitch on NMSQA 246

but better with flatpitch on BURNC, illustrating the 247

complex nature of prosody. Variations and patterns 248

learned from synthetic data may enhance the model 249

by introducing contextual cues, yet they may also 250

introduce noise and ambiguity compared to natural 251

prosody patterns. Interestingly, our results indicate 252

that flattening intensity has a greater impact than 253

pitch variation, although pitch typically is consid- 254

ered more crucial for language understanding, as it 255

conveys nuances such as intonation and stress. 256

Therefore, our study shows that synthetic speech 257

can effectively simulate reasonable prosodies, and 258

training models on such data enables effective util- 259

isation of prosodic cues for SQA tasks. 260
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5 Natural-BURNC vs Synthetic-BURNC261

Method. To investigate the necessity of natural262

speech in training a SQA system, we syntheti-263

cally generate two variations of the BURNC_QA264

training dataset with SpeechBrain (Ravanelli et al.,265

2021): UTT_TTS where each audio is generated266

using the speaker embedding extracted from the267

corresponding natural audio, and SPK_TTS where268

utterance embeddings from all utterances by the269

same speaker are mean-normalised to obtain a sin-270

gle embedding per speaker. This latter approach al-271

lows us to generate 6 audios (still excluding speaker272

m3b from 7 speakers in BURNC) for every audio.273

Experiments and Results. We finetune 5 DUAL274

on all three datasets. FF1 results are illustrated in275

the first three bars on each modified testset in Fig-276

ure 1, with detailed numbers in Appendix A.5. The277

model trained on SPK_TTS data performs the best,278

and the worst when trained on UTT_TTS, even279

though both contain identical lexical information.280

This suggests that the quantity of speech data plays281

a more important role than the prosody embedded282

within it, especially under the assumption that TTS283

may not fully capture natural prosody.284

To further investigate the influence of the lexical285

information, e.g. number of unique QA texts, we286

randomly incorporate 6 additional speaker embed-287

dings extracted from the CMU ARCTIC dataset288

(Kominek and Black, 2004) into our experiments.289

Following the same generation process, we now290

have 12 audios (6 generated using speaker embed-291

dings from BURNC as described before and 6 from292

CMU ARCTIC) for each utterance. We first sam-293

ple from 50% to 100% of unique textual QAs from294

BURNC_QA, and then randomly select synthetic295

speech accordingly, ensuring we ultimately have296

the same amount of speech data as SPK_TTS. The297

FF1 results are also shown in the bars to the right298

side on each modified testset Figure 1, and the de-299

tailed numbers are also presented in Appendix A.5.300

We observe that even with only 50% of the unique301

QA pairs, when the speech data is increased six-302

fold compared to the quantity of natural speech,303

their scores are already on par. Generally, within304

the same amount of speech data, exposure to more305

lexical information during training improves the306

final results. This suggests that as the PLM compo-307

nent in DUAL has already learned how to answer308

5Preliminary experiments indicated that training the DUAL
framework from scratch requires at least 150 hours. Fine-
tuning is chosen due to the limited 11 hours of data available.

Figure 1: FF1 of DUAL finetuned (with 10 epoches, lr
1e-6, batch of 4 on 4GPUs) on natural and different syn-
thetic data on modified BURNC. The y-axis is broken
for better viewing of the difference between models.

textual QA effectively, it requires only a limited 309

amount of data to adapt to similar tasks on discrete 310

units. Furthermore, SPK_TTS, which uses speaker 311

embeddings exclusively from BURNC, performs 312

significantly better than using external speaker em- 313

beddings that do not match the testset domain, even 314

when they contain identical lexical information. 315

6 Conclusion 316

Synthetic datasets are commonly used to train SQA 317

systems, yet their effectiveness compared to natu- 318

ral speech remains unclear. In this work, we first 319

demonstrated that models trained solely on syn- 320

thetic data can still capture prosodic features by 321

showing performance changes when modifying 322

these features on human-read test sets. We then 323

compare models fine-tuned on natural and synthetic 324

datasets and find that the quantity of speech data is 325

more crucial than the embedded prosody. Synthetic 326

speech fine-tuned systems achieve similar results 327

using only half the lexical information of natural 328

speech by augmenting the same text. 329

Our findings indicate that current TTS systems 330

can simulate sufficient prosody for SQA models to 331

utilise prosodic cues and the use of discrete units 332

carry enough lexical information, enabling lan- 333

guage models to adapt efficiently to new domains 334

with limited data. Thus, while building realistic 335

spoken QA datasets is important, simply collecting 336

speech data without explicit instructions may not 337

significantly benefit model training, at least for fac- 338

toid SQA tasks. Therefore, the answer to our title is 339

affirmative, given that the PLM-like component in 340

the current textless SQA framework can effectively 341

answer factoid questions, limiting the contribution 342

of natural prosody. 343
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7 Limitation344

This study primarily focuses on prosodic differ-345

ences in context passages, overlooking their pres-346

ence in questions, which also directly influences347

question intent. Moreover, only named entities are348

considered as answers, ensuring specificity and rel-349

evance of QA pairs but limiting question scope and350

depth. We employ SOTA textual QA for filtering351

potentially incorrect QA pairs, which might ex-352

clude those answerable by SQA systems instead of353

textual QA systems. Additionally, our study is lim-354

ited to English datasets, a rich-resource language355

with more advanced TTS systems compared to356

other languages. Finally, the factoid question types357

examined may diminish the relevance of prosody358

compared to communicative QA types.359
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A Appendix 531

A.1 Examples of incorrect generated 532

questions 533

Example 1 : Self-contained question 534

Context/utterance : He will be in London at five 535

Answer : London 536

Incorrect question : Where will he be in London at five? 537

Example 2 : Irrelevant information 538

Context/utterance : He will be in London at five 539

Answer : at five 540

Incorrect question : At what time will Schwarzenegger 541

be in London? 542

A.2 Evaluation metrics 543

A.2.1 Frame-level F1 544

Precision =
Overlapping Span

Predicted Span

Recall =
Overlapping Span
Ground Truth Span

FF1 =
2× Precision × Recall

Precision + Recall

545

A.2.2 Audio Overlap Score 546

AOS =
Overlapping Span

Predicted Span ∪ Ground Truth Span 547
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(a) Original (b) Flat Pitch

(c) Flat Intensity (d) Low Pass Filter

(e) Pitch Shift (f) Average Phone Duration

Figure 2: Waveforms, mel-spectrograms, intensity contours and F0 contours for an example audio with its modified
versions.

Figure 3: Average phone duration in NMSQA and BURNC

A.3 Example of prosodic modification548

Figure 2 presents the change in waveform, mel-549

spectrograms, intensity contours and F0 contours550

when modifying different prosodic information on 551

the utterance ... most of these districts are located 552

in northen san diego and .... 553
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Models
original shiftpitch flatpitch flatintensity avg lowpass

FF1 AOS FF1 AOS FF1 AOS FF1 AOS FF1 AOS FF1 AOS

Natural 74.40 67.63 74.49 67.90 74.08 67.34 73.74 66.84 71.57 64.63 38.90 33.49
UTT_TTS 73.49 67.01 73.87 67.49 73.70 67.17 73.33 66.85 70.79 64.12 36.76 31.41
SPK_TTS 76.20 69.80 76.52 70.34 75.86 69.55 76.20 69.76 73.44 66.85 39.87 34.45

Table 2: Performance of DUAL fine-tuned on natural, UTT_TTS and SPK_TTS on modified BUNRC_QA testset.

Data size
original shiftpitch flatpitch flatintensity avg lowpass

FF1 AOS FF1 AOS FF1 AOS FF1 AOS FF1 AOS FF1 AOS

0.5 74.30 67.83 74.27 68.07 74.36 68.03 73.90 67.53 71.89 65.46 39.22 33.62
0.6 74.54 68.24 75.02 68.77 74.60 68.22 74.72 68.34 71.81 65.26 40.03 34.47
0.7 74.85 68.46 75.60 69.35 74.68 68.36 74.69 68.25 71.59 65.08 39.15 33.76
0.8 75.16 68.80 75.57 69.35 75.55 69.20 75.10 68.71 72.86 66.31 39.17 33.84
0.9 75.78 69.49 76.23 70.12 75.90 69.50 76.46 70.13 73.39 66.92 40.10 34.59
1.0 75.87 69.54 76.08 69.87 75.93 69.55 75.48 69.03 73.08 66.53 39.72 34.21

Table 3: Performance of DUAL fine-tuned on TTS of different data sizes on modified BUNRC_QA testset.

A.4 Phone duration distribution554

Figure 3 illustrates the final phone duration we used555

in the data perturbation.556

A.5 Results557

Tabel 2 and 3 presents the detailed results of DUAL558

fine-tuned on different datasets.559

8


	Introduction
	Related work
	SQA Data and Model
	BURNC_QA dataset
	DUAL framework and evaluation metrics

	Prosodic variation
	Natural-BURNC vs Synthetic-BURNC
	Conclusion
	Limitation
	Appendix
	Examples of incorrect generated questions
	Evaluation metrics
	Frame-level F1
	Audio Overlap Score

	Example of prosodic modification
	Phone duration distribution
	Results


