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Abstract

Spoken language understanding is essential
for extracting meaning from spoken language,
particularly in low- or zero-resource language
settings relying on speech in the absence of
text data. This work investigates the effec-
tiveness of using synthetic speech data in Spo-
ken Question Answering (SQA). By manip-
ulating prosody in human-read test sets, as
well as proposing a new SQA dataset for fine-
tuning, we demonstrate that models trained
solely on synthetic speech can utilise prosodic
cues. Moreover, synthetic speech fine-tuned
models outperform those fine-tuned on natural
speech, even with the same or restricted lexical
information. Our findings suggest that current
text-to-speech systems can simulate sufficient
prosody for SQA models, and that the contribu-
tion from natural prosody is limited within the
current textless SQA framework.

1 Introduction

Spoken language understanding (SLU) aims to
extract meaningful information from spoken lan-
guage input. Unlike natural language understand-
ing (NLU), which relies on text, SLU is particu-
larly valuable for so-called low-resource languages
with limited text data; speech serves as the primary
linguistic signal (Bloomfield, 1933) and there is
generally an abundance of speech data to harvest
for spoken languages. Traditional SLU systems,
however, consist of two separate components: an
automatic speech recognition (ASR) model and an
NLU model, with only the NLU model fine-tuned
for the downstream task. This cascaded approach
is easy to implement, as the models can be trained
separately with external datasets. However, errors
from ASR propagate to the NLU model, signif-
icantly impacting performance due to ill-formed
inputs to the NLU model. Recently, there have
been efforts to bypass the explicit transcription step
by using end-to-end models (Chuang et al., 2020)

or discrete units as pseudo-text (Lin et al., 2022).
Training such models requires task-oriented speech
datasets, that typically would only have been cre-
ated for text previously. Since most SLU tasks
build on corresponding NLU datasets and collect-
ing annotated audio recordings is labor-intensive,
applying Text-to-Speech (TTS) techniques to gen-
erate large training datasets is common (Lee et al.,
2018; Lin et al., 2022; Unlii Menevse et al., 2022).
However, research has shown people perceive
natural speech differently from synthetic speech:
listeners often have more difficulty understanding
synthetic speech due to limited acoustic-phonetic
cues and the lack of natural variability (Winters
and Pisoni, 2004; Wester et al., 2016). Addition-
ally, modeling prosody has been shown to benefit
various tasks, from segmentation-related tasks to
meta-information and paralinguistics tasks (Tran
et al., 2018; Cho et al., 2022). Therefore, we are
interested in exploring the role of prosody in SLU.
In this paper, we focus on spoken question an-
swering (SQA) as our main task, which predicts
the start and end points of an answer span from its
input. We first modify the prosodies of the audios
in the human-read test set and demonstrate that a
model trained solely on synthetic speech can still
leverage prosodic cues to answer questions. We
then explore whether natural speech is necessary
for training a SQA system by comparing systems
fine-tuned on natural and synthetic speech with
the same lexical information. Since there are no
existing natural SQA datasets ! for English, we
propose a novel data extension approach. Our find-
ings reveal that synthetic speech fine-tuned systems
not only perform competitively with natural speech
fine-tuned systems, but can also maintain compet-
itive performance even when lexical information
within the speech data is severely restricted.

'We are only interested in factoid SQA datasets with the
context from human speech. Other related SQA datasets are
discussed in Section 2



2 Related work

Linguistics research has long confirmed that
prosody can aid across a variety of tasks, from dis-
ambiguating homographs to conveying a speaker’s
sentiments (Tran, 2020). While the role of prosody
has been studied for decades in human speech per-
ception and production, its use in spoken language
technology has been limited due to the challenges
in computational modeling (Cutler et al., 1997;
Tran, 2020). Since recovering prosody from text is
difficult (Talman et al., 2019), recent work has fo-
cused on incorporating coarse acoustic features into
ASR outputs for downstream SLU tasks (Tran et al.,
2018; Tran, 2020; Tran and Ostendorf, 2021; Cho
et al., 2022). Additionally, perturbing the input au-
dio to omit certain sources of prosodic information
has been explored to investigate whether models
can learn to pick up prosodic cues (Ekstedt and
Skantze, 2022). In this work, we apply a similar
idea to investigate if the SQA models trained on
synthetic speech can pick up any prosodic features.

SQA was used to refer to work on spoken docu-
ments (manual or ASR transcripts) rather than au-
dio files (Umbert, 2012). Recently, it has evolved
to resemble extractive textual QA tasks, involving
a spoken context, a question, and an answer within
the context, which is also our focus here.

Several datasets have been developed for this
task. Lee et al. (2018) introduced Spoken SQuAD,
a dataset with spoken contexts and textual ques-
tions, using TTS on the SQuAD dataset (Rajpurkar
et al., 2016). Lin et al. (2022) extended Spoken
SQuAD by applying TTS to questions and pro-
viding a benchmark corpus read by humans: Nat-
ural Multi-speakers Spoken Question Answering
dataset (NMSQA). Unlii Menevse et al. (2022) pro-
posed a framework for generating SQA data by
fine-tuning a language model to generate questions
and answers, followed by TTS for audio. We focus
only on factoid QA in this paper but there are other
research directions including multi-turn conversa-
tional SQA datasets (You et al., 2022), QA from
meeting transcripts and interviews (Archiki Prasad
and Bansal, 2023; Shankar et al., 2024), and SLUE-
SQA-5 retrieving only relevant but real natural
speech from Spoken Wikipedia (Shon et al., 2023).

3 SQA Data and Model

Most English SQA datasets are generated by TTS
systems, with limited human-read samples like
NMSQA'’s testset, making detailed analysis or fine-

tuning challenging. Therefore, we propose a novel
dataset extension approach using natural speech
as context passages. We select the Boston Univer-
sity Radio News Corpus (BURNC) as our natural
speech source due to its rich prosody and mix of
formal and communicative speech (Ostendorf et al.,
1996) and employ DUAL (Lin et al., 2022) as our
SQA model.

3.1 BURNC_QA dataset

We first segment transcripts into utterances and
generate named entities (NE) as answers using
the Flair toolkit (Akbik et al., 2019). This ap-
proach, compared to generating questions directly
from the transcription using a language model as
in (Unli Menevse et al., 2022), offers better effi-
ciency and accuracy. It ensures semantically rele-
vant questions while providing greater control over
the generation process.

The next step involves generating questions
corresponding to the answer and the utterance.
We fine-tune the FLAN T5-BASE model (Chung
et al.,, 2022) on a question generation task with
the SQuAD dataset, by concatenating the context
and answers as input and use questions as out-
put?. During the experiments, we observed that
the model may generate questions containing the
answers themselves or irrelevant information, and
the examples are shown in Appendix A.1. We filter
out self-answered questions and check if the NE
extracted from the questions exists in the context.

Following (Lin et al., 2022), we apply Long-
former’ as our SOTA textual QA system on the
generated pairs, achieving results of exact_match:
78.18, F1: 88.36. Assuming incorrect answers (un-
der exact_match) may result from prior generation
errors, we also filter them out, leaving in a total of
7,318 QA pairs. To align with the SQuAD dataset
structure, we use entire BURNC paragraphs, as
context instead of individual utterances.

After obtaining textual QA pairs, we utilise
SPEECHTS_TTS (Ao et al., 2022) to generate syn-
thetic speech for the questions. To ensure consis-
tency in alignment across different datasets, we re-
align all datasets using the Montreal Forced Aligner
framework (McAuliffe et al., 2017).

There are 7 speakers in the BURNC dataset. We
assign all audios from speaker m3b to the test set

2eval_rougel: 0.51, eval_rouge2: 0.28, eval_rougeL: 0.47,
and eval_rougeLsum: 0.47 on the SQuAD testset

3https://huggingface.co/valhalla/longformer-base-4096-
finetuned-squadv1



test set

FF1 AOS | FF1  AOS | FFl

original shiftpitch

flatpitch
AOS

avg lowpass

flatintensity
AOS | FF1  AOS

FFl  AOS | FFl

NMSQA || 61.08 54.44 | 61.55 53.82 | 55.54 48.86 | 52.31 4631 | 29.60 2435 | 27.83 23.85

BURNC | 59.79 5225|5929 51.84|59.67 52.16 | 58.44 51.12 | 58.72 51.29 | 32.96 27.12

Table 1: Performance of DUAL on modified NMSQA and BUNRC_QA testsets.

to also assess the ability of the model on unseen
speakers. The remaining data is randomly # split
so that eventually we obtain 7:2:1 for training, de-
velopment and test.

3.2 DUAL framework and evaluation metrics

The DUAL framework comprises a Speech Con-
tent Encoder (SCE) and a Pre-trained Language
Model (PLM). Unlike conventional cascade mod-
els, DUAL does not rely on ASR transcripts, thus
avoiding ASR error propagation. Our SCE uses Hu-
bert (Hsu et al., 2021), a self-supervised pre-trained
model which also has demonstrated effectiveness
for prosody-related tasks (Lin et al., 2023), to en-
code representations directly from raw waveforms.
K-means clustering is then applied to transform
representations into discrete units, which are then
fed into the PLM. The PLM predicts the span of
the answer in the context passage by identifying
the start and end positions.

Frame-level F1 (FF1) score (Chuang et al., 2020)
and Audio Overlapping Score (AOS) (Lee et al.,
2018) are used as the evaluation metrics. FF1 score
is similar to F1 score in textual QA, but are calcu-
lated on frames instead of tokens. AOS measures
the overlap between predicted and ground-truth
spans with the intersection-over-union ration on
frames. The detailed illustration is Appendix A.2.

4 Prosodic variation

Method. To investigate if the model has learned
prosodic cues, we modify the audio prosodies in
both the NMSQA human-read subset and proposed
BURNC_QA testset. Inspired by Ekstedt and
Skantze (2022), we explore the following prosodic
details using Parselmouth (Jadoul et al., 2018;
Boersma and Weenink, 2021). These modifications
are also illustrated in Appendix A.3.

Pitch flatten: Flattens FO to the average value of
each utterance.

Pitch shift: Shifts the pitch by 90% of its original
value for each utterance.

“In BURNC, some news stories are read by multiple speak-
ers. We ensure there is no overlap of identical stories between
the test and other sets.

Intensity flatten: Flattens intensity to the average
value of each utterance.

Low pass filter: Removes high-frequency phonetic
information using a cutoff frequency of 800Hz.
Average phone duration: Scales each phone to its
average duration obtained from the corpus, check
Appendix A.4 for their values.

Experiments and results. We evaluate the
DUAL checkpoint released by (Lin et al., 2022),
trained exclusively on synthetic speech, on both
NMSQA and BURN_QA. From the results in Ta-
ble 1, we observe the performance drops when
prosodic features are modified, except for the FF1
score with shiftpitch on NMSQA. That indicates
the utilisation of prosodic cues despite the model’s
lack of exposure to natural speech.

Similar to Ekstedt and Skantze (2022), we find
DUAL is most sensitive to the low-pass transform,
which preserves intensity and FO contour while re-
moving most high-frequency phonetic information.
This underscores the significant impact of phonetic
details in SQA tasks. The average phone duration
transform impacts differ between the two datasets,
possibly because the average duration is calculated
from 11 hours of BURNC data compared to just
2 hours of NMSQA data. Additionally, BURNC
audios are read by professional news announcers,
resulting in less disfluencies and prosodic errors
(Ostendorf et al., 1996)

Between shiftpitch and flatpitch, we observe that
DUAL performs better with shiftpitch on NMSQA
but better with flatpitch on BURNC, illustrating the
complex nature of prosody. Variations and patterns
learned from synthetic data may enhance the model
by introducing contextual cues, yet they may also
introduce noise and ambiguity compared to natural
prosody patterns. Interestingly, our results indicate
that flattening intensity has a greater impact than
pitch variation, although pitch typically is consid-
ered more crucial for language understanding, as it
conveys nuances such as intonation and stress.

Therefore, our study shows that synthetic speech
can effectively simulate reasonable prosodies, and
training models on such data enables effective util-
isation of prosodic cues for SQA tasks.



5 Natural-BURNC vs Synthetic-BURNC

Method. To investigate the necessity of natural
speech in training a SQA system, we syntheti-
cally generate two variations of the BURNC_QA
training dataset with SpeechBrain (Ravanelli et al.,
2021): UTT_TTS where each audio is generated
using the speaker embedding extracted from the
corresponding natural audio, and SPK_TTS where
utterance embeddings from all utterances by the
same speaker are mean-normalised to obtain a sin-
gle embedding per speaker. This latter approach al-
lows us to generate 6 audios (still excluding speaker
m3b from 7 speakers in BURNC) for every audio.

Experiments and Results. We finetune > DUAL
on all three datasets. FF1 results are illustrated in
the first three bars on each modified testset in Fig-
ure 1, with detailed numbers in Appendix A.5. The
model trained on SPK_TTS data performs the best,
and the worst when trained on UTT_TTS, even
though both contain identical lexical information.
This suggests that the quantity of speech data plays
a more important role than the prosody embedded
within it, especially under the assumption that TTS
may not fully capture natural prosody.

To further investigate the influence of the lexical
information, e.g. number of unique QA texts, we
randomly incorporate 6 additional speaker embed-
dings extracted from the CMU ARCTIC dataset
(Kominek and Black, 2004) into our experiments.
Following the same generation process, we now
have 12 audios (6 generated using speaker embed-
dings from BURNC as described before and 6 from
CMU ARCTIC) for each utterance. We first sam-
ple from 50% to 100% of unique textual QAs from
BURNC_QA, and then randomly select synthetic
speech accordingly, ensuring we ultimately have
the same amount of speech data as SPK_TTS. The
FF1 results are also shown in the bars to the right
side on each modified testset Figure 1, and the de-
tailed numbers are also presented in Appendix A.S.
We observe that even with only 50% of the unique
QA pairs, when the speech data is increased six-
fold compared to the quantity of natural speech,
their scores are already on par. Generally, within
the same amount of speech data, exposure to more
lexical information during training improves the
final results. This suggests that as the PLM compo-
nent in DUAL has already learned how to answer

SPreliminary experiments indicated that training the DUAL

framework from scratch requires at least 150 hours. Fine-
tuning is chosen due to the limited 11 hours of data available.
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Figure 1: FF1 of DUAL finetuned (with 10 epoches, Ir
le-6, batch of 4 on 4GPUs) on natural and different syn-
thetic data on modified BURNC. The y-axis is broken
for better viewing of the difference between models.

textual QA effectively, it requires only a limited
amount of data to adapt to similar tasks on discrete
units. Furthermore, SPK_TTS, which uses speaker
embeddings exclusively from BURNC, performs
significantly better than using external speaker em-
beddings that do not match the testset domain, even
when they contain identical lexical information.

6 Conclusion

Synthetic datasets are commonly used to train SQA
systems, yet their effectiveness compared to natu-
ral speech remains unclear. In this work, we first
demonstrated that models trained solely on syn-
thetic data can still capture prosodic features by
showing performance changes when modifying
these features on human-read test sets. We then
compare models fine-tuned on natural and synthetic
datasets and find that the quantity of speech data is
more crucial than the embedded prosody. Synthetic
speech fine-tuned systems achieve similar results
using only half the lexical information of natural
speech by augmenting the same text.

Our findings indicate that current TTS systems
can simulate sufficient prosody for SQA models to
utilise prosodic cues and the use of discrete units
carry enough lexical information, enabling lan-
guage models to adapt efficiently to new domains
with limited data. Thus, while building realistic
spoken QA datasets is important, simply collecting
speech data without explicit instructions may not
significantly benefit model training, at least for fac-
toid SQA tasks. Therefore, the answer to our title is
affirmative, given that the PLM-like component in
the current textless SQA framework can effectively
answer factoid questions, limiting the contribution
of natural prosody.




7 Limitation

This study primarily focuses on prosodic differ-
ences in context passages, overlooking their pres-
ence in questions, which also directly influences
question intent. Moreover, only named entities are
considered as answers, ensuring specificity and rel-
evance of QA pairs but limiting question scope and
depth. We employ SOTA textual QA for filtering
potentially incorrect QA pairs, which might ex-
clude those answerable by SQA systems instead of
textual QA systems. Additionally, our study is lim-
ited to English datasets, a rich-resource language
with more advanced TTS systems compared to
other languages. Finally, the factoid question types
examined may diminish the relevance of prosody
compared to communicative QA types.
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A Appendix

A.1 Examples of incorrect generated
questions

Example 1 : Self-contained question

Context/utterance : He will be in London at five
Answer : London

Incorrect question : Where will he be in London at five?
Example 2 : Irrelevant information

Context/utterance : He will be in London at five
Answer : at five
Incorrect question : At what time will Schwarzenegger

be in London?

A.2 Evaluation metrics
A.2.1 Frame-level F1

. Overlapping Span
Precision = -
Predicted Span
Recall Overlapping Span
ecall =
Ground Truth Span
FEL— 2 X Precision x Recall

Precision + Recall
A.2.2 Audio Overlap Score
A0S — . Overlapping Span
Predicted Span U Ground Truth Span
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Figure 2: Waveforms, mel-spectrograms, intensity contours and FO contours for an example audio with its modified
versions.
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Figure 3: Average phone duration in NMSQA and BURNC
A.3 Example of prosodic modification when modifying different prosodic information on

the utterance ... most of these districts are located

Figure 2 presents the change in waveform, mel- :
in northen san diego and ....

spectrograms, intensity contours and FO contours



original shiftpitch flatpitch flatintensity avg lowpass
FF1 AOS | FF1 AOS | FF1 AOS | FF1 AOS | FF1 AOS | FF1  AOS
Natural 7440 67.63 | 7449 67.90 | 74.08 67.34 | 7374 66.84 | 71.57 64.63 | 38.90 33.49

UTT_TTS | 73.49 67.01 | 73.87 67.49 | 73.70 67.17 | 73.33 66.85 | 70.79 64.12 | 36.76 31.41
SPK_TTS | 76.20 69.80 | 76.52 70.34 | 75.86 69.55 | 76.20 69.76 | 73.44 66.85 | 39.87 34.45

Models

Table 2: Performance of DUAL fine-tuned on natural, UTT_TTS and SPK_TTS on modified BUNRC_QA testset.

original shiftpitch flatpitch flatintensity avg lowpass
FF1 AOS | FF1 AOS | FF1 AOS | FF1 AOS | FF1 AOS | FF1  AOS

0.5 7430 67.83 | 7427 68.07 | 7436 68.03 | 73.90 67.53 | 71.89 65.46 | 39.22 33.62
0.6 74.54 68.24 | 75.02 68.77 | 74.60 68.22 | 74.72 6834 | 71.81 65.26 | 40.03 34.47
0.7 74.85 68.46 | 75.60 69.35 | 74.68 68.36 | 74.69 68.25 | 71.59 65.08 | 39.15 33.76
0.8 75.16 68.80 | 75.57 69.35 | 75.55 69.20 | 75.10 68.71 | 72.86 66.31 | 39.17 33.84
0.9 75.78 69.49 | 76.23 70.12 | 75.90 69.50 | 76.46 70.13 | 73.39 66.92 | 40.10 34.59
1.0 7587 69.54 | 76.08 69.87 | 7593 69.55 | 75.48 69.03 | 73.08 66.53 | 39.72 34.21

Data size

Table 3: Performance of DUAL fine-tuned on TTS of different data sizes on modified BUNRC_QA testset.

A.4 Phone duration distribution

Figure 3 illustrates the final phone duration we used
in the data perturbation.

A.5 Results

Tabel 2 and 3 presents the detailed results of DUAL
fine-tuned on different datasets.
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