
Learning Task-Relevant Representations with Selective Contrast for
Reinforcement Learning in a Real-World Application

Flemming Brieger 1 Daniel A. Braun 2 Sascha Lange 1

Abstract
We use contrastive learning to obtain task-relevant
state-representations from images for reinforce-
ment learning in a real-world system. To test
the quality of the representations, an agent is
trained with reinforcement learning in the Neuro-
Slot-Car environment (Kietzmann & Riedmiller,
2009; Lange et al., 2012). In our experiments,
we restrict the distribution from which samples
are drawn for comparison in the contrastive loss.
Our results show, that the choice of sampling dis-
tribution for negative samples is essential to al-
low task-relevant features to be represented in
the presence of more prevalent, but irrelevant fea-
tures. This adds to recent research on feature
suppression and feature invariance in contrastive
representation learning. With the training of the
reinforcement learning agent, we present to our
knowledge a first approach of using contrastive
learning of state-representations for control in a
real-world environment, using only images from
one static camera.

1. Introduction
We propose a system for real-world reinforcement learn-

ing (RL) with contrastive learning of task-relevant state-
representations. Our approach builds upon the works of
Kietzmann & Riedmiller (2009) and Lange et al. (2012),
who introduced a slot-car racer as an environment for real-
world reinforcement learning (RL) and demonstrated the
viability of using an auto-encoder to learn low-dimensional
state-representations from images of that environment. We
make several updates and improvements to this approach
on the basis of recent advancements in the field of self-
supervised learning.
Learning based on contrasting representations of samples

1Psiori GmbH, Freiburg, Germany 2Institute of Neural Informa-
tion Processing, Ulm University, Ulm, Germany. Correspondence
to: Flemming Brieger <flemming@psiori.com>.

The 2021 ICML Workshop on Unsupervised Reinforcement Learn-
ing. Copyright 2021 by the author(s).

against each other has proven to be a powerful paradigm
for self-supervised pre-training of artificial neural networks
for downstream tasks such as classification (Oord et al.,
2018; Chen et al., 2020a) or control (Srinivas et al., 2020;
Mazoure et al., 2020). Unlike earlier self-supervised ap-
proaches, these methods avoid reconstruction of partial or
complete inputs making it significantly more parameter-
efficient. Moreover, the choice of which inputs are con-
trasted is highly influential on the learned representations
and consequently their usefulness for a given downstream
task (Chen & Li, 2020).
On this basis, we update the "Deep-Fitted-Q" system in-
troduced by Lange (2010) and Lange et al. (2012): First,
we use a contrastive representation learning paradigm - con-
trastive predictive coding (CPC) (Oord et al., 2018) - instead
of an auto-encoder to learn state-representations for the vi-
sual RL-task, thereby eliminating the need for a parameter-
expensive decoder for image reconstruction. Additionally,
the CPC-model is trained to learn state-representations from
image-sequences instead of single images, by which the
dynamics of the environment are integrated at the represen-
tation learning stage. Second, using this contrastive learning
paradigm, we demonstrate how contrastive learning can be
used to focus on representation of task-relevant features in
the presence of more prevalent, yet irrelevant features that
can suppress the expression of the former. This is achieved
independently from reinforcement learning by restricting
the distribution from which negative samples are drawn for
the contrastive objective to samples with similar lighting
conditions.

2. Background
A range of self-supervised frameworks for learning rep-

resentation from images and video have been proposed in
recent years (Zhang et al., 2016; Vondrick et al., 2018; Qian
et al., 2020; Misra et al., 2016; He et al., 2020; Le-Khac
et al., 2020) with varying pretext tasks, that determine which
features are represented in the resulting latent space (Doer-
sch & Zisserman, 2017). In order to produce more general
representations for various data-domains, contrastive predic-
tive coding (Oord et al., 2018; Henaff, 2020) was developed,
which is based on classifying related parts of one sample



Selective Contrast for Reinforcement Learning in a Real-World Application

(e.g. first and second part of a sequence) versus negative
samples from one data-set using a loss based on noise con-
trastive estimation. This classification pretext task is entirely
formulated in the latent space learned by the neural network
and as such does not require any reconstruction of the input.
Other approaches have used data augmentations to optimize
agreement not between different parts of an input, but rather
augmented versions of one input (Chen et al., 2020a;b) and
noted, that the choice of what inputs are contrasted is a
significant influence on the structure of the learned repre-
sentation (Xiao et al., 2020). Chen & Li (2020) have since
systematically demonstrated that the suppression of certain
features by the presence or emphasis (e.g. through augmen-
tations) of others is a demonstrably important influence on
the learned representation and its usefulness for downstream
tasks. Moreover, this is a distinctive property of contrastive
compared to reconstruction based methods.

The viability of visual reinforcement learning for control
of an exemplary real-world system was previously demon-
strated in the works of Lange (2010) and Lange et al. (2012)
for control of a slot-car racer. The authors proposed to tackle
the problem with a two-stage system of an auto-encoder that
learns to encode high-dimensional observations (images) of
the environment into low-dimensional state-representations
and using these representations to train an agent. The result-
ing system successfully solved the real-world RL-task and
in doing so avoided common problems of an end-to-end RL-
approach such as the need for vast amounts of experiences
to learn the objective from high-dimensional inputs.
More recently, contrastive objectives have been applied as
an auxiliary loss to support learning state-representations
jointly with a visual RL-task (Oord et al., 2018; Srinivas
et al., 2020; Mazoure et al., 2020). However, having an
already trained feature extractor for state-representations,
avoids having to collect training samples for learning rep-
resentations during the potentially costly RL-phase. Train-
ing data for representation learning is generally easier to
come by, e.g. from historic data, than the training expe-
riences needed for RL, when applying RL for control in
real-world systems. Moreover, while the aforementioned
approaches have yielded state-of-the-art performance on
several benchmarks, these benchmarks are based on con-
trol in a simulation, not a real-world system, which would
potentially present additional challenges that are not neces-
sarily accounted for in simulations (see Dulac-Arnold et al.
(2019)).

3. Methods
3.1. The Slot-Car Environment

The slot-car environment follows the structure introduced
by Kietzmann & Riedmiller (2009) and Lange et al. (2012):

A downwards-facing camera recorded images of a car driv-
ing on a slot-car racing track from above. We record with 5
frames per second with an image-resolution of 202×76. Un-
like the setup by Lange et al. (2012), the track is arranged in
an 8-like shape with a bridge over the middle section, where
the track would intersect itself (Figure 1), thereby occluding
the car in a small section of the track. Only the right one of
the two car slots was used.
The agent has three available actions corresponding to the
voltage applied to the track and consequently the car’s speed.
The goal is for the agent to learn to drive as fast as possi-
ble without getting flung off the track by driving too fast
in curves. To this end, costs are attributed to each state
based on the voltage (the chosen action) applied. Lower
costs are attributed to higher voltages, encouraging high
speeds. However, the relation between voltage and speed is
non-linear. The available actions and their corresponding
costs are:

• 20 to drive at high speed (cost: 0).

• 15 to drive at moderate speed (cost: 0.005).

• 10 to drive at low speed (cost: 0.01).

A terminal state is defined for instances when the car has
lost connection to the track and is punished with comparably
high cost of 1. While it is not possible to drive steadily with
20 without crashing, the slower actions could be applied
consistently without risk. This forces the agent to learn
to choose between the available actions according to the
car’s position on the track. To further highlight this optimal
behaviour, a guardrail was installed on the left, wider curve
of the track to allow the agent to drive through this curve
at high speed, while having to slow down for the right
curve. There is no braking action included in our setup,
since friction alone slows down the car considerably when
switching to lower voltages. From a perspective of optimal
control, this task is particularly interesting, because the
optimal policy will always be close to a terminal state.

Figure 1. Example image from the camera above the slot-car track.
The car (red square) is positioned at the starting line. White arrows
indicate the car’s driving direction and track for all experiments in
this work. On this (right) track the car drives a wider bend on the
left side than the right.



Selective Contrast for Reinforcement Learning in a Real-World Application

3.2. CPC-Model

genc genc genc genc

xt-m xt xt+1 xt+n

zt-m zt zt+1 zt+n

gc gc

ct
Linear Prediction

Scores

Figure 2. Illustration of the operations involved in the CPC-model,
adapted from Oord et al. (2018). Each element of an input-
sequence x is passed through the encoder network genc separately
to produce a sequence of latent representations z. The first part of
this sequence z≤t is used as input to the recurrent context-network
gc to produce a context embedding ct that "summarizes" the infor-
mation from z≤t. Based on ct a linear prediction is made for each
zt and scores are calculated via the dot-product between predic-
tions and z>t. The InfoNCE loss (Oord et al., 2018) is optimized
to identify positive samples against a set of negative samples in a
training batch.

In the original paper proposing CPC (Oord et al., 2018)
the authors do not include an application for sequential im-
ages or video, but handle single images as a sequence of
patches. Since the data for this project consists of sequential
images, we instead pass single images to the encoder genc,
such that there is one representation zt per image xt in the
original sequence. Afterwards, the procedure is unaltered
(see Figure 2).
CPC was originally applied to much larger and more com-
plex problems w.r.t. the number of training samples as well
as the diversity of the input. As the problem at hand is con-
ceptually less complex, we defined a less powerful network
topology to avoid overfitting.
The encoder is made up of ten convolutional layers fol-
lowed by three dense layers. The convolutional layers can
be divided into three blocks with two layers of 3 × 3 fil-
ters followed by one layer of 1× 1-dimensional filters with
one extra layer of 1 × 1 filters before the fully-connected
layers. Every second 3 × 3 convolutional layer applies a
strided convolution with stride 2. The final output of the
convolutional part is a feature vector of 528 dimensions.
The subsequent dense layers have 128, 64 and 3 units. The
context network is a GRU (Cho et al., 2014) with 3 output
units, and the prediction is done with one dense layer per
target with 3 units and no activation or bias, i.e. a linear
prediction. Unless otherwise noted, we use SELU activation
functions (Klambauer et al., 2017) in all convolutional and
dense layers except the final layer of the encoder, which has

no activation. For the GRU, we omitted the tanh-activation
as this produced better results in preliminary experiments.
Both the encoder-representation zt and the context-
representation ct are thereby three-dimensional, which is
based on the assumption that there are three relevant features
of the input-sequences to represent: Two dimensions for the
position of the car on the track (e.g. x- and y-coordinates)
and another for the speed of the car. The latter can however
only be represented by ct by considering sequences of im-
ages. The third dimension of zt is instead intended as an
"auxiliary" dimension to avoid local minima.

3.3. CPC Training

Selective Contrast A problem not considered in the auto-
encoder based approach to the real-world slot-car environ-
ment of Lange et al. (2012), is that of changing environ-
mental conditions (e.g. lighting, see (Lange, 2010), p. 196)
that are apparent and even prevalent in the input-images but
irrelevant to the RL-task. For instance, in our setup, the
lighting of the track varies considerably with time-of-day
due to the sunlight coming in through windows or different
lamps being switched on or off. In order to account for this
in the data used for representation learning, we record data
from five different conditions (ML, MN, NL, E1, E2), for
which the most prominent property between conditions is
the lighting of the track (see Figure 3). This property is
functionally irrelevant to the representation the model is
expected to learn, which should be focused on the position
and speed of the car. Moreover, invariance to the lighting in
the image is even preferred, such that an RL-agent trained
under one condition could be evaluated under another with
little to no loss of performance.
When presenting the network with a sample from one con-
dition as the target and contrasting it with negative samples
from other lighting conditions, the lighting will be the major
distinguishing feature between the target and the negative
samples in the contrastive loss. During training, the model
will therefore initially learn to distinguish samples by light-
ing condition not by the position of the car. To avert this, the
complete training set could comprise only samples from the
same condition, such that lighting differences are not present
at all. However, diversity of the training data generally im-
proves generalisation, as evident from the widespread use
of data augmentation in deep learning (Shorten & Khosh-
goftaar, 2019). We therefore hypothesize, that a network
trained on data with only one lighting condition will per-
form poorly on data from other conditions. In order to
use multiple conditions in a training set and still focus the
representation on relevant features, we therefore sample
training-batches in such a way that all samples in one batch
stem from the same condition. Since the contrastive sam-
ples for a given sample in the CPC-paradigm are simply all
other samples in the batch, this ensures that negatives do



Selective Contrast for Reinforcement Learning in a Real-World Application

not predominantly differ from the target w.r.t. the lighting
condition. In the following, we will refer to this method
as selective contrast, as it is selective in which data/feature
expressions a target sample is contrasted with. This practice
has previously been applied for speech recognition (Oord
et al., 2018; Wang et al., 2020): A CPC-model trained with
negative samples (audio-snippets) recorded by the same
speaker as the target sample achieved higher performance
for phone-classification than when trained with negative
samples from mixed speakers.

Figure 3. Visualization of the five recording conditions. Recorded
at morning with overhead lights on (ML), morning without lights
(MN), noon with lights (NL), evening with overhead lights (E1),
evening with light from the side (E2). Conditions E1 and E2 have
a guardrail installed in the left bend.

For training of the CPC-models we record a sequence
of 4, 000 images per lighting condition of the car driving
on the track, with step-wise increasing voltage in the range
of safe actions. For each of the five training data-sets, we
record a test-set of 1, 000 images under the same condition
and with the same distribution of voltages. For training, we
transform these data-sets into 3, 985 sub-sequences (985 for
test-sets) of length 16 to use as input to the model. The
image-sequence is split in the middle into 8 targets and 8 as

input to the context-model gc
Using this training-data, we train models with 3 different
setups:

L: Training only on data from one lighting con-
dition.

NSC: Training on data from four of the five condi-
tions without selective contrast. Batches can
include images from all conditions.

SC: Training on data from four of the five con-
ditions with selective contrast. Batches only
include images from the same condition.

By leaving out at least one of the five lighting conditions
in each setup, we can use the remaining condition to as-
sess how well the model is able to generalize to the unseen
condition(s). In each setup, we use ~4, 000, from which
25% of samples from the same recording(s) are used for
validation after each epoch. Lighting conditions are evenly
distributed in all SC- and NSC-sets. The images (pixel val-
ues in range [0, 1]) are passed to the encoder without further
pre-processing, except applying random noise from a Gaus-
sian distribution (µ = 0, σ = 0.02) for regularization. Each
model is trained with a batch-size of 16 (i.e. 15 contrastive
samples) for a maximum of 300 epochs, stopping the train-
ing earlier if the loss on the validation data has not decreased
for 20 epochs. We use Adam optimization (Kingma & Ba,
2014) with gradients clipped to a maximum norm of 0.01
as suggested by (Henaff, 2020) and an initial learning rate
of 1× 10−4 which is decreased by a factor of 0.9 if the val-
idation loss has not decreased for five epochs to a minimum
of 1× 10−5.

3.4. RL-Model

In order to validate the usefulness of the learned represen-
tation in a downstream task, we use neural fitted Q-Iteration
(Riedmiller, 2005) to solve the previously established RL-
task in the slot-car environment (Kietzmann & Riedmiller,
2009). The neural network of the NFQ-agent receives a
6-dimensional vector as input: the 3-dimensional output
from the CPC-encoder of the current observation and its
predecessor, in order to provide information on not only the
car’s position, but its velocity as well. This 6-dimensional
input is passed through two fully-connected layers of 12
tanh-units and a third output layer of 3 sigmoid-units, one
unit for each action. Since the problem is framed as mini-
mizing costs instead of maximizing rewards, the output unit
with the lowest activation indicates the chosen action.
We collect episodes of data for training the agent from in-
teraction with the environment. One episode entails the car
driving around the track for a maximum of 100 steps or
less if the car loses connection to the track. For the first 20
episodes, actions are chosen uniformly at random in order to



Selective Contrast for Reinforcement Learning in a Real-World Application

build up an initial set of experience-tuples. Afterwards, we
use an ε-greedy strategy, where the probability of choosing
an action at random is initially set to ε = 0.8 and decreased
by 0.05 after each episode to a minimum of 0.1. After each
episode, all experiences collected up to this point are used
to train the neural network for 200 epochs with RMSProp
optimization (Ruder, 2016) and a learning rate of 0.001 on
batches of size 512. Inputs to the network are normalized
to minimum and maximum over the complete set of experi-
ences. We set the discount factor to γ = 0.1. Before starting
the next episode we evaluate the performance of the agent
with an additional episode of 100 steps without randomly
chosen actions. Experiences from the evaluation episodes
are not added to the training data. The complete process is
repeated for a total of 70 training episodes.

4. Results
4.1. Representation Learning

In order to evaluate the performance of the three sam-
pling setups previously discussed - without selective con-
trast (NSC), with selective contrast (SC) and training only
on data from a single lighting condition (L) - we report the
performance of one model per five possible combinations
of lighting conditions and setup (always using 4 out of 5
conditions for NSC/SC). As a result, we have 5 models for
each setup, a total of 15 models.

Model Performance An overview of the models’ perfor-
mance is depicted in Figure 4. The (contrastive) accuracy
as reported here refers to the proportion of samples in one
batch of 16 for which the model’s mean score over x>t was
highest for the correct sample against the other 15 samples
in the batch. We use this metric over the actual loss for inter-
pretability (Oord et al., 2018). In each sampling setup, the
models’ accuracy reaches an accuracy on the validation-set
above 0.40, at least 6 times higher than the random accu-
racy of 1

16 = 0.0625. In all cases, accuracy on the test
and generalisation sets is lower. However, for training with
selective contrast, this discrepancy is notably smaller than
for the other setups. For both L and NSC, some models fail
to generalize on the generalisation set completely.

Quality of Representations To gain a deeper insight into
the quality of the learned representations, we report the
results of an analysis inspecting how the relevant features for
the downstream RL-task are predictable from the embedding
learned by the encoder. Our focus lies on the encoder-
embedding z as only the encoder is used in the RL-task.
As exemplified in Figure 5, for the L- and SC-model, the
embedding is arranged in an elliptical structure and the car’s
y-coordinate in the image can be clearly perceived, while
differences between lighting conditions for the SC-model

L NSC SC

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Val. set
Test set
Gen. set
random

co
nt

ra
st

iv
e

ac
cu

ra
cy

Figure 4. Contrastive accuracy for each setup on the respective
sets: Validation set (same recording, different sequences), test set
(different recording, same lighting), generalisation set (different
recording and lighting). Each box is based on 5 models, whiskers
extend to min/max values. The dotted line indicates accuracy for
random guessing.

Table 1. Coefficient of determination (R2) of regressing latent z
on position of car in x- (upper) and y-position (lower) with support
vector regression.

µ σ min max
x-coordinate L 0.94 0.08 0.79 0.99

NSC 0.00 0.00 0.00 0.00
SC 0.98 0.01 0.96 0.99

y-coordinate L 0.78 0.44 -0.10 1.00
NSC -0.01 0.02 -0.01 0.06
SC 1.00 0.00 0.99 1.00

Table 2. Mean accuracy of support vector classifiers classifying the
correct out of all 5 lighting conditions (random baseline: 1

5
= 0.2)

from encoder outputs z.

µ σ min max
L 0.59 0.11 0.42 0.70
NSC 0.97 0.06 0.87 1.00
SC 0.85 0.13 0.64 0.97

are present, but do not vary substantially with the first two
principal components. On the other hand, the NSC-model’s
embedding is clustered by the lighting condition (Figure
5 top center). The y-coordinate of the car in the image is
not perceivable as a color-gradient like in the other setups
(Figure 5 bottom center). Although the bridge of the track
produces a section in which the car is occluded and its
position therefore uncertain, this does not lead to gaps in
the representation.
In order to quantify how well the x- and y-coordinate of
the car and the lighting condition are represented in each



Selective Contrast for Reinforcement Learning in a Real-World Application

Figure 5. First two principal components (PC) for the embeddings of the models with the highest test-set accuracy for each training setup
(columns). Percentage of explained variance of the two PCs is indicated above each column. Color indicates the individual lighting
conditions included in the training-set (top) and the estimated y-coordinate of the car in the image (bottom). The high percentage of
explained variance of the first two principal components as seen in Figure 5 is consistent over all trained models with a median of
≈ 99.9% of explained variance with max ≈ 100% and min ≈ 90.3%.

latent space, we fit support vector machines1 mapping the
encoder-representation to the respective property and assess
the performance.
For both L and SC, the numbers in Table 1 show that the
car’s coordinates are overall predictable (R2 ≈ 1) from the
latent vector, unlike for the NSC-models (R2 ≈ 0). For L,
the results are however considerably less consistent than
for SC as evident from the standard distribution. Predicting
the lighting condition from the encoder-representations z is
possible with higher accuracy than random for all training
setups, with highest accuracy for the NSC-models, followed
by SC and L (see Table 2).

Generalisation In order to assess how well the models
generalize to previously unseen lighting conditions, we ap-
ply the presented evaluation methods to data from all light-
ing conditions that were not included in the training-sets
of each model (referred to as the generalisation-set in the
following). This again only includes the models with the
highest test-set-accuracy per setup and lighting condition.
For both L and SC, the car’s position can be predicted from
the encoder embedding fairly well with the SVM-fit for
the test-set, but a discrepancy between the two approaches

1Support vector regressions for position, support vector classi-
fiers for lighting condition. We used the default hyperparameters
as specified in the sklearn machine learning library (Pedregosa
et al., 2011).

is apparent for the generalisation-set (Table 3). Like on
the test-set, the car’s position is not predictable from the
embeddings of the NSC-models (R2 = 0).

Table 3. Coefficient of determination (R2) of regressing latent z
on position of car in x- (upper) and y-position (lower) for images
from the lighting conditions not included in the training-/test-sets.
Summary statistics are calculated over the best models from each
setup (L, NSC, SC).

µ σ min max
x-coordinate L 0.84 0.21 0.10 0.98

NSC 0.00 0.00 0.00 0.00
SC 0.96 0.02 0.92 0.98

y-coordinate L 0.74 0.40 -0.04 1.00
NSC -0.01 0.00 -0.02 -0.01
SC 0.99 0.01 0.98 1.00

4.2. RL-Task

Figure 7 shows the cumulative costs divided by the num-
ber of steps for the evaluation episodes (100 steps) of one
training run of 70 episodes after the initial 20 episodes of
random interaction. While the agent achieves lower costs
than constant driving with 15 already after two episodes
of training, its performance only stabilizes after around 20
training episodes to a costs comparable to constant 15. From



Selective Contrast for Reinforcement Learning in a Real-World Application

-20 -10 0 10 20

-20

-10

0

10

20
10
15
20

(a) (b)

Figure 6. Visualisation of the fastest policy achieved by the agent. (a) The agent’s policy in the encoder representation (first two principal
components, 99.6% of variance explained). (b) the agent’s policy for the car’s position on the track. Colors indicate the chosen action.

Table 4. Costs per step and seconds per lap needed for each lighting
condition compared to the baseline of constant 15.

costs/step seconds/lap
Baseline 15 0.0050 3.91
NL (Trained on) 0.0028 2.90
ML 0.0037 3.22
MN 0.0036 3.10
E1 0.0030 3.02
E2 0.0026 2.96

episode 25 on the agent attains on average lower costs than
this baseline apart from two evaluation episodes (37 & 59),
in which a terminal state was reached. Note, that because
close to optimal policies are always close to terminal states
for this task, occasional spikes in costs for the evaluation
are expected.
As another metric of performance we report the seconds
needed to complete one lap for the fastest iteration of the
agent (episode 29) in table 4. With 2.9 seconds per lap un-
der the lighting condition it was trained on, the agent is ~1
second faster than the baseline 15. Furthermore, the agent
outperforms this baseline across conditions by a minimum
of ~0.7 seconds, as the encoder’s representation is mostly
invariant to the lighting.
The policy employed by the fastest agent is visualised in
Figure 6 for both the car’s position on the track and the
encoder’s representation. For the two curves, the agent’s
behaviour noticeably differs: Approaching the right curve,
the agent decelerates (10) in order to avoid a crash, but ac-
celerates (20) already in the curve and all the way to the left
side of the track as there is not risk of crashing there, due
to the guardrail. Leaving the left curve, the agent deceler-
ates again to 15. These three phases are also visible in the
embedding, which further illustrates, how the encoder has
learned an untangled representation of the track.

0 20 40 60

0.003

0.005

0.01

0.05

15

10

episode

co
st

s
/s

te
p

(l
og

)

Figure 7. Costs per step over evaluation episodes for 70 episodes
of training after 20 episodes of random interaction. The gray
line shows actual costs per step. Costs > 0.01 are the result of
reaching a terminal state. The thinner black line shows costs per
step without terminal costs, smoothed by taking the mean of a
rolling window over 5 episodes.

5. Discussion & Conclusion
Our results show, that CPC can be used to learn a sensible

representation from raw image(-sequence)s for solving an
RL-task of driving a slot-car around the track at high speeds
without crashing. The CPC-objective could be optimized
for all proposed training setups (L, NSC, SC) to a similar
degree. However, the qualitative analysis of the learned rep-
resentations reveals that the learned representations differ
in which features are represented between setups.
By using selective contrast, we are able to train on data
from multiple lighting conditions, while avoiding primarily
learning to distinguish samples based on these conditions.
In addition, the models benefit from the inclusion of multi-
ple lighting conditions in the training-set for generalisation
compared to training on only one condition. The car’s po-
sition was most predictable from the embedding for the
SC-models for both test and generalisation set, indicating
that training with selective contrast produced representa-
tions which are sensible across multiple lighting conditions.



Selective Contrast for Reinforcement Learning in a Real-World Application

The circular structure of the learned representation shows
that the CPC-model learned to represent the car’s position
in the context of the track, not only its coordinates in the
input image.
As evident from the differences between the NSC and SC
models, the expression of features in the contrasted data con-
stitutes the structure of the learned embedding and thereby
its applicability for the downstream task. Moreover, cer-
tain features can be suppressed by other, more prevalent
features, if not accounted for in the pretext task. This is in
line with the findings of Chen & Li (2020), who have stud-
ied contrastive learning with artificial data-sets, for which
independent features can be specifically controlled, and
summarize that "a few bits of easy-to-learn features could
suppress, or even fully prevent, the learning of other sets of
features" (Section 5, line 7-8). Although their work is based
on augmentation-based contrastive learning methods, we
believe that our findings are related regarding implications
for contrastive learning.

Using the embedding from a CPC-encoder trained with
selective contrast to build state-representations, we are able
to train an agent with NFQ to drive around the track with
higher speed than possible with the maximum possible con-
stant baseline. Note, that with the applied cost-pattern this
baseline is also the expected value for uniformly random
actions, if leaving the track were impossible. Visualisation
of the final policy reveals a generally sensible behaviour
of the agent. By using CPC with selective contrast, we
improve on the previous system of Lange et al. (2012) by
achieving high performance independent of lighting condi-
tions and integrating the environment’s dynamics into the
representation learning process.

Acknowledgements
This study was partly funded by the German Federal Min-
istry of Education and Research (BMBF) via the DeToL
project (grant number 01IS18046F) and by the European
Research Council (ERC-StG-2015—BRISC: 678082).

References
Chen, T. and Li, L. Intriguing properties of contrastive

losses, 2020.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. arXiv preprint arXiv:2002.05709, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. Big self-supervised models are strong semi-
supervised learners, 2020b.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F.,

Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL
http://arxiv.org/abs/1406.1078.

Doersch, C. and Zisserman, A. Multi-task self-supervised
visual learning. CoRR, abs/1708.07860, 2017. URL
http://arxiv.org/abs/1708.07860.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Chal-
lenges of real-world reinforcement learning, 2019.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9729–
9738, 2020.

Henaff, O. Data-efficient image recognition with contrastive
predictive coding. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 4182–4192. PMLR, 13–18 Jul
2020. URL http://proceedings.mlr.press/
v119/henaff20a.html.

Kietzmann, T. C. and Riedmiller, M. The neuro slot car
racer: Reinforcement learning in a real world setting. In
2009 International Conference on Machine Learning and
Applications, pp. 311–316. IEEE, 2009.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter,
S. Self-normalizing neural networks. Advances in neural
information processing systems, 30:971–980, 2017.

Lange, S. Tiefes Reinforcement-Lernen auf Basis visueller
Wahrnehmungen. PhD thesis, University of Osnabrück,
2010.

Lange, S., Riedmiller, M., and Voigtländer, A. Autonomous
reinforcement learning on raw visual input data in a real
world application. In The 2012 international joint confer-
ence on neural networks (IJCNN), pp. 1–8. IEEE, 2012.

Le-Khac, P. H., Healy, G., and Smeaton, A. F. Contrastive
representation learning: A framework and review. IEEE
Access, 2020.

Mazoure, B., des Combes, R. T., Doan, T., Bachman, P., and
Hjelm, R. D. Deep reinforcement and infomax learning,
2020.

Misra, I., Zitnick, C. L., and Hebert, M. Unsupervised
learning using sequential verification for action recog-
nition. CoRR, abs/1603.08561, 2016. URL http:
//arxiv.org/abs/1603.08561.

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1708.07860
http://proceedings.mlr.press/v119/henaff20a.html
http://proceedings.mlr.press/v119/henaff20a.html
http://arxiv.org/abs/1603.08561
http://arxiv.org/abs/1603.08561


Selective Contrast for Reinforcement Learning in a Real-World Application

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Qian, R., Meng, T., Gong, B., Yang, M.-H., Wang, H.,
Belongie, S., and Cui, Y. Spatiotemporal contrastive
video representation learning, 2020.

Riedmiller, M. Neural fitted q iteration–first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pp. 317–
328. Springer, 2005.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of Big Data,
6(1):60, 2019.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
arXiv preprint arXiv:2004.04136, 2020.

Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S.,
and Murphy, K. Tracking emerges by colorizing videos.
CoRR, abs/1806.09594, 2018. URL http://arxiv.
org/abs/1806.09594.

Wang, L., Kawakami, K., and van den Oord, A. Contrastive
predictive coding of audio with an adversary. Proc. Inter-
speech 2020, pp. 826–830, 2020.

Xiao, T., Wang, X., Efros, A. A., and Darrell, T. What
should not be contrastive in contrastive learning, 2020.

Zhang, R., Isola, P., and Efros, A. A. Colorful image col-
orization. CoRR, abs/1603.08511, 2016. URL http:
//arxiv.org/abs/1603.08511.

http://arxiv.org/abs/1806.09594
http://arxiv.org/abs/1806.09594
http://arxiv.org/abs/1603.08511
http://arxiv.org/abs/1603.08511

