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Abstract
Multi-modal salient object detection (SOD) through the in-
tegration of additional data such as depth or thermal infor-
mation has become a significant task in computer vision dur-
ing recent years. Traditionally, the challenges of identifying
salient objects in RGB, RGB-D (Depth), and RGB-T (Ther-
mal) images are tackled separately, which often leads to is-
sues like poorly defined object edges or overconfident inac-
curate predictions. Recent studies have shown that design-
ing a unified end-to-end framework to handle all these three
types of SOD tasks simultaneously is both necessary and dif-
ficult. To address this need, we propose a novel approach that
treats multi-modal SOD as a conditional mask generation task
utilizing diffusion models. Specifically, we introduce DiM-
SOD, which enables the concurrent use of local (depth maps,
thermal maps) and global controls (images) within a uni-
fied model for progressive denoising and refined prediction.
DiMSOD is efficient, only requiring fine-tuning of local con-
trol adapter on the existing stable diffusion model, which not
only reduces the fine-tuning cost and model size, making it
more viable for real-world applications, but also enhances
the integration of multi-modal conditional controls. Addition-
ally, we have developed modules including SOD-ControlNet,
Feature Adaptive Network (FAN), and Feature Injection At-
tention Network (FIAN) to further enhance the model’s per-
formance. Extensive experiments demonstrate that DiMSOD
efficiently detects salient objects across RGB, RGB-D, and
RGB-T datasets, achieving superior performance compared
to previous methods. Our code and datasets are accessible at:
https://anonymous.4open.science/r/DiMSOD-0B47/.

Introduction
Salient Object Detection (SOD) aims to accurately detect
and locate the most salient objects in a given image, mimick-
ing the human visual perception system (Gao et al. 2023b).
It serves as an essential preliminary step for numerous
other computer vision applications, including object detec-
tion (Cheng et al. 2023), visual tracking (Li et al. 2023),
image segmentation (Chen et al. 2024), and quality assess-
ment (Zhai and Min 2020). Despite the recent progress in
SOD (Cai et al. 2024; Huo et al. 2024), most of these ap-
proaches primarily focus on processing individual RGB im-
ages. However, achieving accurate SOD results in challeng-
ing background and complex scenes remains difficult. In
recent years, extensive use of depth cameras and infrared
imaging devices have shown that the depth and thermal

data gathered can significantly improve the performance
of salient object detection. Nevertheless, the task of effec-
tively combining multi-modal information without overes-
timating point estimates remains a considerable challenge,
and it greatly influences the achievement of robust detection
performance.
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Figure 1: (a) Current SOD paradigm involves feeding im-
ages into the network for one-way prediction, resulting in
a deterministic segmentation mask. (b) We propose a novel
paradigm that decomposes SOD into a series of forward-
and-reverse diffusion processes.

Currently, benefiting from the advancements of deep neu-
ral networks, SOD methods have evolved from designing
ingenious low-level features (Jian and Yu 2023; Liu et al.
2017) to learning high-level models (Cai et al. 2024; Gu
et al. 2023). By incorporating the advantages of dense fea-
ture interaction (Ma, Xia, and Li 2021; Cai et al. 2024),
diverse attention module (Gu et al. 2023), and multi-task
learning pipeline (Zong et al. 2023), deep learning-based
methods have emerged as a promising technology for the
SOD task. However, existing deep learning-based methods
only focus on one specific type of input data. Considering
the detection needs of RGB, RGB-D and RGB-T data, it is
essential to develop a unified and comprehensive method to
accommodate different data types. In response, a few recent
studies (Gao et al. 2021; Jia et al. 2023; Luo et al. 2024)
have focused on this direction. Although these methods have
paved the way for the much-needed unified approach to
multi-modal salient object detection, they still struggle to
achieve precise localization and segmentation in complex
scenarios. This limitation stems from their adherence to the
paradigm shown in Fig. 1 (a), where a deterministic network
solution generates a single output for a given input image.
As a result, they fail to effectively integrate multi-modal



information while avoiding overconfident incorrect predic-
tions.

Given the unique challenges presented by multi-modal
SOD, we propose using a diffusion model paradigm. As
illustrated in Fig. 1 (b), we reformulate the multi-modal
SOD task into a generative process, training the model to
produce salient object masks by constructing a conditional
noise-to-mask paradigm. Diffusion models (Ho, Jain, and
Abbeel 2020a) have recently shown exceptional efficacy in
generative modeling, particularly in conditional generation
tasks (Dhariwal and Nichol 2021). Their inherent iterative
denoising mechanism replaces the need for complex refine-
ment modules in popular multi-modal SOD models, allow-
ing for gradual distinction between salient object boundaries
and background context. The random sampling process en-
ables the generation and evaluation of multiple predictions,
which further reduces the risk of the model making overcon-
fident and erroneous estimations. The integration of Control-
Net (Zhang, Rao, and Agrawala 2023) with diffusion models
introduces cross-modal information, thereby providing bet-
ter guidance for the denoising process. However, applying
diffusion models and ControlNet to multi-modal SOD di-
rectly still faces several shortcomings, including limited dis-
criminative ability, inadequate mask refinement, high fine-
tuning costs, and relatively unstable controllability. To ad-
dress these, we have tailored our method, DiMSOD, which
leverages the denoising process of diffusion models to pro-
gressively correct the discrepancies between the initial noise
and the ground truth. Depth maps and thermal maps are
utilized as local auxiliary control conditions, while the im-
age itself serves as a global auxiliary control condition. We
have also improved upon ControlNet and proposed SOD-
ControlNet, embedding our proposed Feature Adaptive Net-
work (FAN) into the ControlNet and altering the method
of conditional injection. By employing a multi-scale con-
ditional injection strategy, we inject the introduced cross-
modal information from depth maps and thermal maps into
all resolutions. This significantly enhances the expressive
power of DiMSOD, reduces model size and fine-tuning
costs and aids in accurately identifying salient objects. Fur-
thermore, to effectively bridge the gap between the diffu-
sion noise embeddings and the conditional semantic fea-
tures when integrating global image control into the model,
we designed a Feature Injection Attention Network (FIAN).
This network enhances the denoising process by aggregat-
ing the conditional semantic features of the image with the
features from the diffusion model encoder through a cross-
attention mechanism.

To summarize, our contributions are as follows:

• We are the first to formulate the multi-modal SOD as
a generative denoising process and propose a stable
diffusion-based model, DiMSOD. It can identify salient
objects by denoising noisy masks to generate object
masks based on the input images, depth maps, and ther-
mal maps.

• We introduce SOD-ControlNet, specifically designed for
multi-modal SOD. It integrates our proposed Feature
Adaptive Network, effectively injecting depth and ther-

mal condition information across all resolutions, thereby
enabling efficient cross-modal information fusion.

• We have also designed a Feature Injection Attention Net-
work to facilitate the interaction between noise embed-
dings and image features, thereby integrating global se-
mantic information from the image to enhance the de-
noising process.

Related Work
SOD is a fundamental task in computer vision (Li et al.
2024; Xia et al. 2024). There are currently numerous meth-
ods focused on SOD for individual types of data, such as
RGB, RGB-D, or RGB-T (Pang et al. 2023; Lee et al. 2023;
Konwer et al. 2023). However, as solving multi-modal SOD
using one single model is a relatively novel field of study,
there are only a limited number of methods available cur-
rently, among which the most notable ones are MMNet (Gao
et al. 2021), AiONet (Jia et al. 2023), and VSCode (Luo
et al. 2024). In MMNet (Gao et al. 2021), a cross-modal
multi-stage fusion module (CMFM) is proposed, which con-
sists of two stages: feature response and adversarial com-
bination. This module explores the complementarity of in-
formation from different modalities. In AiONet (Jia et al.
2023), a multi-modal feature extraction (MMFE) framework
is proposed, which concurrently extracts features from RGB,
depth, and thermal modalities. This framework aims to miti-
gate performance degradation caused by interference among
multi-modal features. VSCode (Luo et al. 2024) utilizes vi-
sual saliency transformer as the foundational model and in-
corporates 2D prompts and discrimination loss within the
encoder-decoder architecture. This approach facilitates the
learning of both domain and task-specific knowledge, as
well as shared knowledge.

Diffusion models (Cao et al. 2024; Graikos et al. 2022)
sample noisy images using a forward Gaussian diffusion
process and refine them iteratively through a backward de-
noised process to generate images. Diffusion models have
demonstrated significant potential across various fields, such
as image super-resolution (Gao et al. 2023a), image syn-
thesis (Gu et al. 2022), image inpainting (Zhang et al.
2023), depth estimation (Ke et al. 2023), medical image
segmentation (Zhang, Rao, and Agrawala 2023), and se-
mantic segmentation (Ji et al. 2023). Different from these
works, we propose the first diffusion-based model for multi-
modal SOD. Moreover, our proposed SOD-ControlNet, Fea-
ture Adaptive Network, and Feature Injection Attention Net-
work modules are perfectly aligned with the requirements
of multi-modal SOD, effectively addressing challenges that
other multi-modal SOD approaches have been unable to
overcome.

Method
Network Architecture
We have developed DiMSOD, a model built upon a pre-
trained text-to-image LDM, Stable Diffusion v2 (Rombach
et al. 2022), which leverages the excellent image priors ob-
tained from LAION-5B (Schuhmann et al. 2022). With min-
imal modifications to the model components, we have con-
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Figure 2: Overview of the Architecture of DiMSOD. We encode the image x and saliency map y into the latent space using
the pre-trained Stable Diffusion VAE and fine-tune the U-Net by optimizing the noise loss relative to the saliency latent code.
The SOD-ControlNet is proposed to leverage cross-modal information, such as depth maps and thermal maps, to control the
generation of saliency masks. The Feature Injection Attention Network (FIAN) is introduced to implicitly guide the diffusion
process with the corresponding conditional semantic features between diffusion information zt and image features f that have
been processed through the ViT backbone.

verted it into a multi-modal salient object detector. Fig. 2
provides an overview of the network architecture of DiM-
SOD. We introduced SOD-ControlNet and an Feature Adap-
tive Network to extract conditional semantic features and
cross-modality interaction features from RGB images and
depth map (thermal map), resulting in condition features rich
in multi-scale details. Moreover, we developed a feature in-
jection attention network based on cross-attention, enabling
the salient object and localization information in the global
conditional semantic features to guide the denoising pro-
cess. These modules effectively integrate cross-modal infor-
mation into the diffusion model, bridging the gap between
diffusion features and image features, and thereby guiding
the denoising network to generate more refined salient ob-
ject boundaries and accurate predictions.

Saliency Encoder, Decoder and Local Feature Extractor.
We start by encoding both the input image and its associated
saliency map into a latent space using the frozen VAE. To ac-
commodate the saliency map, we expand it to three channels
to mimic an RGB image. This adjustment is crucial because
the encoder was originally designed for 3-channel (RGB)
inputs, whereas the saliency map has only a single channel.
Through our experience and practice, we have found that
saliency maps can be reconstructed from the encoded latent

codes without any modifications to the latent space structure
or the VAE. During inference, the predicted saliency map
is obtained by averaging the three channels of the saliency
latent code after it has been decoded at the end of the dif-
fusion process. Our feature extractor is composed of a stack
of convolutional layers and SiLU activations, enabling the
extraction of conditional features at various resolutions. Ad-
ditionally, the feature extractor projects the conditions into
the corresponding latent spaces of different encoding layers,
enhancing the alignment between the local conditional fea-
tures and noise features.

Local Control Adapter. SD employs a U-Net-like (Ron-
neberger, Fischer, and Brox 2015) architecture as its de-
noising model, consisting primarily of an encoder, a middle
block, and a decoder. Each encoder and decoder contains
12 corresponding blocks. Inspired by ControlNet (Zhang,
Rao, and Agrawala 2023), we introduced SOD-ControlNet,
as depicted in Fig. 2. In this illustration, each SDEB and
SDDB represents an encoder block and a decoder block,
respectively, while each SDEC and SDDC represents the
copied versions of SDEB and SDDB. The diagram shows
four blocks, each of which needs to be repeated three times.
Additionally, SDMB denotes the middle block, and SDMC
is the copied version of SDMB. For brevity, we denote the



output of the i-th block in SDEB and SDDB as ei and di
. Similarly, e

′
and g

′
denote the output of the i-th block in

SDEC and SDDC, while m and m′ represent the output of
SDMB and SDMC, respectively. Due to the skip connec-
tions in the U-Net and our intention to incorporate the lo-
cal control information from the SOD-ControlNet during the
decoding process, we modify the input for the i-th decoder
block as:{

concat(m+m′, ej + Z(e
′

j)) i = 1, i+ j = 13.

concat(di−1, dj + Z(e
′

j)) 2 ≤ i ≤ 12, i+ j = 13.

where Z signifies a zero convolutional layer with weights
that progressively increase from zero to gradually embed
control information into SD. Our SOD-ControlNet differs
from ControlNet in the way it handles conditions. While
ControlNet directly adds conditions to the input noise and
injects them into copied encoders, we employ a multi-scale
condition injection strategy, adapting the conditions to all
resolutions before injecting them into the copied encoders.
Specifically, we begin by extracting multi-resolution condi-
tional features (Depth, Thermal, RGB) using a feature ex-
tractor composed of stacked convolutional layers. We then
select the first block from each resolution level (i.e., 64×64,
32× 32, 16× 16, and 8× 8) within the copied encoder (i.e.,
the SDEC in Fig. 2) for condition injection. Inspired by the
Feature Denormalization technique in SPADE (Park et al.
2019) , we develop the Feature Adaptive Network (FAN) for
the injection process. FAN can modulate the normalization
(i.e., Norm ∥·∥) of the input noise features using conditional
features, as detailed below:

FANl(Zt, hl) = ∥Zt∥ · (1 + cγ(Z(hl))) + cβ(Z(hl)),

where Zt represents noise features, with a resolution of l.
The hl denotes the features obtained from local conditions
c (Depth map, Thermal map, RGB image) after passing
through the feature extractor, with a resolution of l. Learn-
able convolutional layers, cγ and cβ , are used to transform
condition features into spatially-sensitive scale and shift
modulation coefficients.
Multi-scale Feature Fusion and Feature Injection Atten-
tion Network. For an RGB image RH×W×3, we use the
Swin Transformer (Gao et al. 2019) as our visual back-
bone to extract the top three high-level image features fi,
i ∈ {1, 2, 3}, with resolutions of H

s × W
s , where s ∈

{8, 16, 32}. These features are then combined using multi-
scale feature fusion. The feature fusion process consists of
three branches for processing fi each enhancing features via
two 3 × 3 convolutional kernels. The features from these
three branches are then aggregated through convolution and
downsampling operations, resulting in image features f with
a size of RH

64×
W
64×C .

To incorporate salient information and semantic details
from the original input features during the denoising pro-
cess, we propose the Feature Injection Attention Network
(FIAN), which is integrated into the the UNet-based denois-
ing network. We use the multi-scale feature f and the deep-
est diffusion feature e12 ∈ RH

64×
W
64×C from SDEB as inputs

to FIAN. In detail, we utilize e12 to generate the query Q,

key K, and the value V1 by linear projection of a square ma-
trix. Similarly, we use f to generate the P and V2. To reduce
computational complexity and perform information weight-
ing and fusion, we do not generate Q and K for f . Instead,
we use P as an intermediary to connect with e12. The details
of FIAN are shown in Fig. 3, where M1 = softmax

(
QKT

√
d

)
,

M2 = softmax
(

KPT
√
d

)
, m = M1 ×M2 × (V1 + V2). Here,

the resolution of m is RH
64×

W
64×C . However, it is important

to note that m here is merely a placeholder and does not rep-
resent the complete output from SDMB. The final feature m
in SDMB is obtained only after adding m to the features
output by SDMC.
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Figure 3: Details on how to conduct interactions between
image features and the diffusion features using FIAN.

Training
We formulate multi-modal SOD as a conditional denoising
diffusion generation task and train DiMSOD to fit the con-
ditional distribution D(y |x, c) over saliency y ∈ RH×W ,
where the global condition x is input image and the local
condition c is the corresponding depth map or thermal map.
In the forward process, which begins at y0 := y from the
conditional distribution, Gaussian noise is gradually added
to the ground-truth yt at levels t ∈ {1, ..., T} to obtain noisy
mapping yt as

yt =
√
ᾱty0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I), ᾱt :=
∏t

s=1 1−βs, and {β1, . . . , βT }
denotes the variance schedule of a process with T steps. In
the reverse process, the noise present in yt is progressively
eliminated to produce yt−1 using the conditional denoising
model ϵθ(·), which is parameterized by learned parameters.

To enable the input image x to conditionally guide the la-
tent denoiser ϵθ(z

(y)
t , z(x), c, t), we concatenate the image

latent code z(x) and the saliency latent code z
(y)
t into a uni-

fied input zt = cat(z(y)t , z(x)). Additionally, to enhance the
use of saliency features, we overlay the saliency latent code
onto the input image latent code, resulting in the transformed
input represented as zt = cat(z(y)t , z(x) + z

(y)
t ). This ad-

justment is intended to improve the convergence efficiency
of the model without introducing predictive errors, as ob-
served through experience. Following this, the input chan-
nels are doubled to accommodate the expanded input zt. To



prevent the activation levels from inflating and to preserve
the pre-trained structure as much as possible, we duplicate
the weight tensor of the input layer and halve its values.

During training, the parameters θ are updated by first tak-
ing the input (x + y,y) from the training data. The mask
y is then noised with sampled multi-resolution noise ϵ at a
randomly selected timestep t. The noise estimate ϵ̂ is com-
puted using ϵ̂ = ϵθ(yt,x, c, t). Finally, the denoising dif-
fusion objective function Ey0,c,ϵ∼N (0,I),t∼U(T ) |ϵ− ϵ̂|22 is
minimized.

Latent diffusion models improve computational efficiency
and image generation by performing diffusion in a low-
dimensional latent space, which is created within the VAE’s
bottleneck and is trained separately from the denoiser (Rom-
bach et al. 2022). To translate our formulation into the latent
space, a latent code is defined as E : z(y) = E(y), which
is generated by the encoder. Given a saliency latent code,
the saliency mask can be reconstructed using the decoder
D as follows: ŷ = D(z(y)). The conditioning image x is
also mapped into the latent space, resulting in z(x) = E(x).
Subsequently, the denoiser is trained in the latent space as
ϵθ(z

(y)
t , z(x), c, t). The adapted inference procedure intro-

duces an additional step in which the decoder D reconstructs
the data ŷ from the estimated clean saliency latent code z(y)0 :
ŷ = D(z

(y)
0 ).

Inference
During inference, y := y0 is reconstructed by iteratively ap-
plying the denoiser ϵθ(yt,x, c, t) to a normally distributed
variable yT . We begin by initializing the saliency latent code
with standard Gaussian noise and encoding the input image
into the latent space. We then progressively denoise this la-
tent code following the same schedule used during training.
From our experience, we have observed that initializing with
standard Gaussian noise yields better results compared to us-
ing multi-resolution noise, despite the model being trained
with the latter. To expedite the inference process, we adopt
the non-Markovian sampling with recalibrated steps as de-
scribed in DDIM (Song, Meng, and Ermon 2020). Finally,
using the VAE decoder, we generate the ultimate saliency
map from the latent code and apply channel-wise averaging
for post-processing.

Experiments
Experimental Setup
Our proposed DiMSOD is trained jointly using three differ-
ent types of SOD datasets, following the recent work (Jia
et al. 2023), our training dataset consists of the following
subsets and resize it to 512× 512 : the RGB dataset DUTS-
TR (Wang et al. 2017) with 10,553 images, the RGB-T
dataset VT5000 (Tu et al. 2022b) with 2,500 images, the
RGB-D dataset NJUD (Ju et al. 2014) with 1,485 image,
NLPR (Peng et al. 2014) with 700 images, and DUTLF-
Depth (Piao et al. 2019) with 800 images. Stable Diffusion
v2 (Rombach et al. 2022) is used as our backbone when im-
plementing DiMSOD in PyTorch (Paszke et al. 2019). The

initial pre-training configurations with a v-objective (Sali-
mans and Ho 2022) are adhered to our experiments. In train-
ing, we implement the DDPM noise scheduler (Ho, Jain, and
Abbeel 2020b) with 1,000 diffusion steps. For inference, we
employ DDIM scheduler (Song, Meng, and Ermon 2020)
and sample 50 steps. For the final prediction, we combine
outcomes from 10 inference iterations initiated with diverse
initial noise. Training our method takes 50 epoches with
a batch size of 32. We adopt the Adam optimizer with a
learning rate of 3 × 10−5. We also implement training data
augmentation through random horizontal and vertical flips.
Training our DiMSOD until convergence spans around 1.5
days with a single Nvidia RTX 4090.

Evaluation Datasets and Metrics
For RGB datasets, we evaluate DiMSOD on 5 widely

used benchmark datasets that are not seen during training,
including DUT-OMRON (Yang et al. 2013) (5,168 images),
ECSSD (Yan et al. 2013) (1,000 images), PASCAL-S (Li
et al. 2014b) (850 images), HKU-IS (Li and Yu 2015) (4,447
images), and DUTS-TE (Wang et al. 2017) (5,019 Images).
For RGB-D datasets , we use the test sets of DUTLF-Depth
(Piao et al. 2019) (400 images), NJUD (Ju et al. 2014) (500
images), NLPR (Peng et al. 2014) (300 images), SIP (Fan
et al. 2020a) (929 images), LFSD(Li et al. 2014a)(100 im-
ages). For RGB-T datasets ,we use the testset of VT5000(Tu
et al. 2022b) (2,500 images) ,VT821(Wang et al. 2018)(821
images) , VT1000(Tu et al. 2019) (1,000 images).

Four metrics are evaluated on each dataset: Fβ-
measure (Achanta et al. 2009), MAE, E-measure (Fan et al.
2018), S-measure (Fan et al. 2017).

Comparisons with state-of-the-art
For all the RGB, RGB-D, and RGB-T experiments, we
conducted comprehensive comparisons with state-of-the-art
multi-modal SOD methods, including MMNet, AiONet, and
VSCode. Additionally, for RGB SOD, we compared our ap-
proach against other specialized methods , namely, F3Net,
MINet(Pang et al. 2020),U2Net (Qin et al. 2020), PFSNet
(Ma, Xia, and Li 2021), VST(Liu et al. 2021), EDN (Wu
et al. 2022), SHNet (Zhang et al. 2022), SRfor (Yun and Lin
2022), USOD (Zhou et al. 2023a), M3Net (Yuan, Gao, and
Tan 2023), and UTD (Huo et al. 2024). For RGB-D SOD,
the compared methods are HDF-Net, CMWNet (Li et al.
2020), DANet, PGA-Net, BBS-Net (Fan et al. 2020b) , DD-
CNN (Wang et al. 2022) and PICR.

For RGB-T SOD, the compared methods are R3Net,
SGDL, M3S-NIR, ADF (Tu et al. 2022b), DCNet (Tu et al.
2022a), and LSNet (Zhou et al. 2023b). For fair compar-
isons, all results either come directly from the authors or are
reproduced using the model retrained on the identical train-
ing dataset with the suggested settings. The code for evalu-
ating the model is derived from F3Net.
Quantitative Evaluation. For RGB SOD, the results are
given in Table 1. We can find that DiMSOD outperformed
in all metrics across the three benchmark datasets. Due to
space limitations, detailed results for all datasets are pro-
vided in the supplementary materials.



Table 1: Quantitative comparisons between DiMSOD and
other methods on three RGB SOD benchmark datasets.

Methods DUTS-TE HKU-IS PASCAL-S
Fβ↑ M↓ Eξ↑ Sα↑ Fβ↑ M↓ Eξ↑ Sα↑ Fβ↑ M↓ Eξ↑ Sα↑

F3Net20 .891 .035 .901 .888 .936 .028 .952 .917 .871 .061 .858 .854
MINet20 .883 .037 .897 .884 .934 .028 .953 .918 .866 .063 .850 .849
U2Net20 .872 .044 .886 .873 .935 .031 .948 .915 .859 .073 .842 .838

MMNet∗21 .877 .034 .911 .875 .927 .026 .953 .907 .862 .060 .858 .843
PFSNet 21 .896 .036 .902 .892 .943 .026 .956 .924 .875 .063 .856 .854

VST21 .890 .037 .891 .896 .942 .029 .952 .928 .875 .060 .837 .865
EDN 22 .893 .035 .904 .891 .939 .027 .948 .922 .879 .062 .857 .855

SHNet 22 .883 .030 .938 .908 .926 .025 .959 .926 .855 .056 .910 .884
SRfor22 .905 .029 .919 .904 .943 .025 .956 .928 .890 .052 .870 .873
USOD23 .810 .047 .901 .884 .902 .037 .947 .908 .831 .073 .890 .857

AiONet∗23 .856 .040 .927 .882 .933 .028 .921 .911 .873 .049 .873 .868
M3Net23 .909 .026 .921 .908 .947 .024 .958 .931 .897 .050 .878 .879

VSCode∗24 .906 .032 .918 .902 .943 .027 .956 .924 .886 .059 .865 .862
UTD24 .904 .043 .926 .900 .933 .028 .926 .921 .854 .063 .845 .851
Ours .918 .024 .927 .919 .948 .023 .961 .937 .915 .041 .887 .881

Table 2: Quantitative comparisons between DIMSOD and
other methods on three RGB-D SOD benchmark datasets.

Methods DUTD LFSD NJUD
M↓ Fβ↑ Sα↑ Eξ↑ M↓ Fβ↑ Sα↑ Eξ↑ M↓ Fβ↑ Sα↑ Eξ↑

PGANet20 .048.889.894 .898 .071.868 .865 .874 .035.927.925 .903
DANet20 .029.936.931 .933 .074.854 .858 .829 .037.914.915 .917
HDF20 .025.944.933 .893 .066.870 .866 .872 .030.926.919 .897

MMNet∗21 .039.916.913 .891 .071.862 .863 .898 .040.913.911 .917
BBSNet21 .029.934.930 .916 .061.879 .877 .857 .036.918.918 .912
CMW21 .036.915.905 .903 .087.832 .827 .831 .037.911.910 .915

AiONet ∗
23 .029.933.928 .933 .072.859 .853 .864 .039.907.904 .908

DDCNN23 .024.947.941 .923 .054.892.890 .898 .035.919.922 .915
PICR23 .029.938.932 .924 .068.883 .875 .848 .035.928.925 .881

VSCode∗24 .034.927.919 .925 .072.862 .859 .869 .038.910.910 .908
OURS .020.951.943.938 .053.894 .888 .899 .029.931.927.921

Table 3: Quantitative comparisons between DiMSOD and
other methods on three RGB-T SOD benchmark datasets.

Method
VT821 VT1000 VT5000

Sα↑ Eξ↑ Fβ↑ M↓ Sα↑ Eξ↑ Fβ↑ M↓ Sα↑ Eξ↑ Fβ↑ M↓
R3Net18 .786 .809 .660 .073 .842 .859 .761 .055 .757 .790 .615 .083
M3S19 .723 .859 .734 .140 .726 .827 .717 .145 .652 .780 .575 .168

SGDL20 .765 .847 .731 .085 .787 .856 .764 .090 .750 .824 .672 .089
MMNet∗21 .871 .895 .803 .045 .915 .933 .880 .027 .868 .896 .799 .043

ADF22 .810 .842 .717 .077 .910 .921 .847 .034 .864 .891 .778 .048
DCNet22 .877 .913 .822 .033 .923 .949 .902 .021 .872 .921 .819 .035
LSNet23 .877 .911 .827 .033 .924 .936 .887 .022 .876 .916 .827 .036

AiONet ∗
23 .904 .937 .882 .028 .841 .974 .941 .020 .896 .937 .875 .035

VSCode∗24 .892 .923 .830 .029 .929 .941 .893 .024 .886 .926 .823 .033
Ours .912 .939 .897 .025 .933 .955 .893 .020 .906 .939 .881 .029

It demonstrates the excellent performances of the pro-
posed DiMSOD. On the three larger datasets, DUTS-TE,
HKUIS, and PASCAL-S, we achieved the average improve-
ments in Fβ , MAE, Eξ, and Sα are 1.2%, 4.6%, 3%, and
4%, respectively. For RGB-D SOD, as shown in Table 2,
our method also achieves the best performance. It outper-

forms the second-best model by 3% and 1% in MAE and
Fβ , respectively. For RGB-T SOD, the overall results of our
DiMSOD is almost the best, although there are some vic-
tories and defeats compared to AiONet on VT100. Our ap-
proach performs better on RGB and RGB-D datasets com-
pared to RGB-T, indicating a high level of consistency be-
tween salient objects and depth information in many cases.
Hence, we can conclude that by leveraging the proposed
model framework, DiMSOD demonstrates a competitive ad-
vantage across RGB, RGB-D, and RGB-T datasets.

RGB GT Ours VSCode∗AiONet∗ MMNet∗ UTD
Figure 4: Visual comparison of saliency map results gener-
ated by various methods for RGB SOD.

RGB Depth GT Ours VSCode AiONet MMNet
Figure 5: Visual comparison of saliency map results gener-
ated by various methods for RGB-D SOD.
Qualitative Evaluation. Fig. 4, Fig. 5, and Fig. 6 show
the comprehensive visual comparison of many challenging
samples, including complex backgrounds, rich edge details,
small objects, and multiple salient objects. From the re-
sults, we can find that compared with other methods, our
method exhibits good structural completeness and has more
intricate details. For more experimental results, please refer
to our supplementary materials. Besides, previous models
have muddled the identification of edge components, even
when accurately pinpointing the object’s location. Neverthe-
less, DiMSOD captures intricate object textures effectively
in an incredibly detailed way, addressing the segmentation
mask blurring issue presented in other methods. More de-
tailed output results can be seen in the last column of Fig.
7, where our model demonstrates excellent handling of the



texture and edge details of the targets.

RGB Thermal GT Ours VSCode AiONet MMNet
Figure 6: Visual comparison of saliency map results gener-
ated by various methods for RGB-T SOD.

Ablation Studies
As depicted in Table 4, experimental results demonstrate
that ViT, SOD-ControlNet (SOD-CNet), Feature Injection
Attention Network (FIAN) can all improve multi-model
SOD performance very well. Combining them with Stable
Diffusion (SD) led to significant improvements across all
evaluation metrics.
Effectiveness of ViT backbone. From Table 4, we can see
that No.2 has an average improvement of 3% and 7.8% over
No.1 for Fβ and MAE on the there types datasets, respec-
tively. Fig. 7 illustrates how the critical clues identified by
ViT are seamlessly incorporated into the diffusion process
through the assistance of FF and FIAN.

(a) Image (b) GT (d) Step 4 (e) Step 8 (f) Step 16 (g) Step 50(c) Step 2
Figure 7: Visual results of the DiMSOD sampling process.

Effectiveness of SOD-ControlNet. The purpose of SOD-
ControlNet is to address the issue of cross-modal informa-
tion fusion in multi-modal SOD. As shown in Table 4, com-
pared to No.2, No.3 has an average improvement of 9.7%
and 17.5% for Fβ and MAE on the there types datasets,
respectively. Meanwhile, a comparison between No.3 and
No.2 reveals that while directly using ControlNet does pro-
vide some performance improvement, it is evidently less ef-
fective than SOD-ControlNet.
Effectiveness of Feature Injection Attention Network.
From Table 4, wo can find that FIAN plays a key role in
improving the performance of the model. The average im-
provement of DiMSOD with FIAN over No.4 without FIAN

Table 4: Ablation studies of DiMSOD. The best results are
highlighted in bold.

No. Settings DUTS-TE NJUD VT1000
Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓

1 SD .881 .039 .884 .043 .851 .041
2 SD+ViT .890 .037 .924 .038 .873 .039
3 SD+ViT+CNet .897 .029 .927 .033 .884 .031
4 SD+ViT+SOD-CNet .905 .026 .930 .030 .891 .024

OursSD+ViT+SOD-CNet+FIAN .918 .024 .931 .029 .893 .020

for Fβ and MAE on the three types of datasets is 2.3% and
13%, respectively. It indicates that FIAN effectively inte-
grates both diffusion and salient features from the backbone
in a cohesive manner.

Figure 8: Remarkable results generated by DiMSOD.

Additionally, the outcomes from the sampling process at
denoising steps 2, 4, 8, 16, and 50 were visualized in Fig. 7
. The core of DiMSOD lies in leveraging SOD-ControlNet
to effectively integrate the rich visual priors stored in Sta-
ble Diffusion and cross-modal auxiliary information . This
enhanced integration facilitates more accurate guidance in
the generation of saliency masks. Despite being trained on
relatively coarse SOD benchmark datasets, our model effec-
tively segments the edges of salient objects, thanks to its ro-
bust visual priors. As illustrated in Fig. 8, the final results
of salient object detection exhibit even greater precision and
refinement compared to the ground-truth mask. Additional
experimental results are available in the supplementary ma-
terials. We also offer the trained weights and inference code,
enabling you to apply DiMSOD to your own images for di-
rect experience.

Conclusion
In this paper, we presented DiMSOD, a diffusion-based
framework for in RGB, RGB-D and RGB-T images. To our
knowledge, this is the first framework to apply a denois-
ing diffusion model to multi-modal SOD. DiMSOD decom-
poses multi-modal SOD into a series of forward and back-
ward diffusion processes, leveraging key details from the se-
mantic features under both global (image) and local condi-
tions (depth map, thermal map) to guide the processes. Ex-
tensive quantitative and qualitative experiments demonstrate
that DiMSOD outperforms other state-of-the-art methods
across various benchmark datasets. Additionally, ablation
studies confirm the effectiveness of the SOD-ControlNet and
FIAN we introduced for multi-modal SOD. While our cur-
rent model offers a strategy to balance accuracy and infer-
ence time, this is not a long-term solution. In the future, we
will conduct further research and optimization to improve
the model’s inference efficiency.
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