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Abstract

This study investigates the contextual best arm identification (BAI) problem, aiming
to design an adaptive experiment to identify the best treatment arm conditioned on
contextual information (covariates). We consider a decision-maker who assigns
treatment arms to experimental units during an experiment and recommends the
estimated best treatment arm based on the contexts at the end of the experiment.
The decision-maker uses a policy for recommendations, which is a function that
provides the estimated best treatment arm given the contexts. In our evaluation, we
focus on the worst-case expected regret, a relative measure between the expected
outcomes of an optimal policy and our proposed policy. We derive a lower bound
for the expected simple regret and then propose a strategy called Adaptive Sampling-
Policy Learning (PLAS). We prove that this strategy is minimax rate-optimal in the
sense that its leading factor in the regret upper bound matches the lower bound as
the number of experimental units increases.

1 Introduction

In this study, we design an adaptive experiment for policy learning. We consider the problem of
decision-making given multiple treatment arms, such as arms in slot machines, diverse therapies, and
distinct unemployment assistance programs. The primary objective is to identify the best treatment
arm for individuals given covariates, often referred to as context, at the end of an experiment. For
this purpose, we aim to learn a policy that recommends the conditional best treatment arm by using
data adaptively collected via an experiment.

In our setting, at each round of an adaptive experiment, a decision-maker sequentially observes
a context (covariate) and assigns one of the treatment arms to a research subject based on past
observations and the observed contexts. At the end of the experiment, the decision-maker recommends
an estimated best treatment arm conditional on a context.

We design the adaptive experiment by developing a strategy that the decision-maker follows. A
strategy is defined as a pair of a sampling rule and a recommendation rule. In the adaptive experiment,
the decision-maker assigns treatment arms following the sampling rule during the experiment and
recommends a treatment arm following the recommendation rule at the end of the experiment.

We measure the performance of a strategy using the expected simple regret, which is the difference
between the maximum expected outcome that could be achieved with full knowledge of the distri-
butions of the treatment arms and the expected outcome of the treatment arm recommended by the
decision-maker’s strategy. Our goal is to develop a strategy that minimizes the expected simple regret.
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The challenge in our problem arises from the need for context-specific recommendations. Unlike prior
studies that do not consider contextual information, developing a model that captures the relationship
between context and outcomes becomes imperative.

To address this issue, we define a function suggesting a treatment arm given a context as a policy.
By using a policy, we restrict strategies to ones with recommendation rules using a policy learned
from observations obtained from an adaptive experiment. Policy learning has been extensively
studied in causal inference and reinforcement learning (Dudı́k et al., 2011; Swaminathan & Joachims,
2015; Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Zhou et al., 2023), but to the best of our
knowledge, adaptive experimental design for policy learning has not been fully explored. Note
that there are existing studies that address contextual BAI aiming to find the best treatment arm
marginalized over the contextual distribution (Russac et al., 2021; Kato & Ariu, 2021; Simchi-Levi
et al., 2024), motivated by the studies of efficient average treatment effect estimation (van der Laan,
2008; Hahn et al., 2011; Kato et al., 2020; Cook et al., 2023).

Our problem corresponds to a generalization of best arm identification (BAI, Bubeck et al., 2009,
2011; Audibert et al., 2010), an instance of the stochastic multi-armed bandit (MAB) problem
(Thompson, 1933; Lai & Robbins, 1985). Therefore, we refer to the problem as contextual fixed-
budget BAI, as well as an adaptive experimental design for policy learning.

Contribution. We propose a strategy that assigns treatment arms following Adaptive Sampling
(AS) and recommends a treatment arm using Policy Learning (PL). In the AS rule, a decision-maker
assigns a treatment arm to an experimental unit based on a probability depending on the variances of
the experimental units’ outcomes. Because the variances are unknown, the decision-maker estimates
them during the experiment and continues updating the assignment probability. At the end of the
experiment, the decision-maker trains a policy using observations obtained in the experiment and
recommends a treatment arm using the trained policy. We refer to our strategy as the PLAS strategy.

To design an optimal strategy, we first develop a lower bound (theoretical limit) for the expected
simple regret. Subsequently, we design a strategy and evaluate its upper bound (performance) by
comparing it to the lower bound.

In the evaluation, given the inherent uncertainties, we use the minimax criterion for performance
assessment, which evaluates the worst-case scenario among a set of distributions. The minimax
approach has garnered attention in studies about experimental design, including BAI (Bubeck et al.,
2009, 2011; Carpentier & Locatelli, 2016; Ariu et al., 2021; Yang & Tan, 2022; Komiyama et al.,
2022). A critical quantity in the minimax evaluation is the gap between the expected outcomes of the
best treatment and the other suboptimal treatment arms, referred to as the average treatment effects in
the literature of causal inference. The worst-case distributions are characterized by gaps approaching
zero at a rate of order

√
T (Bubeck et al., 2009, 2011), where T denotes the sample size (total rounds

of an adaptive experiment).

Our research identifies the leading factor in the lower bound as the variances of potential outcomes,
also providing a variance-dependent sampling rule. We subsequently show that the PLAS strategy
is asymptotically minimax optimal, as its foremost factor of the worst-case expected simple regret
aligns with the lower bound.

In summary, our contributions include: (i) a lower bound for the worst-case expected simple regret;
(ii) the PLAS strategy with a closed-form target assignment ratio, characterized by the variances
of outcomes; and (iii) the asymptotic minimax optimality of the PLAS strategy. These findings
contribute to a variety of subjects, including decision theory and causal inference, in addition to BAI.

Organization. The structure of this paper is as follows: Section 2 defines our problem. Section 3
develops lower bounds for the worst-case expected simple regret. Section 4 introduces the PLAS
strategy, and Section 5 presents upper bounds for the proposed strategy and its asymptotic minimax
optimality. Further related work is introduced in Appendix A.

2 Problem Setting

This study considers an adaptive experiment with a fixed budget (sample size) T ∈ N, a set of
treatment arms [K] := {1, 2, . . . ,K}, and a decision-maker who aims to identify the context-
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conditional best treatment arm. In each round t ∈ [T ], experimental units sequentially visit, and the
decision-maker can assign treatment arms to them. At the end of the experiment, the decision-maker
recommends an estimated context-conditional best treatment arm.

2.1 Potential Outcomes

Following the Neyman-Rubin causal model (Neyman, 1923; Rubin, 1974), let Y a ∈ Y be a potential
random outcome of treatment arm a ∈ [K], where Y ⊂ R denotes a set of possible outcomes. We
also define X ∈ X as a context, also called covariates, that characterizes an experimental unit, where
X ⊂ Rd denotes a set of possible d-dimensional covariates. We define a tuple (Y 1, . . . , Y K , X)
as a (YK × X )-valued random variable following a probability distribution P ∈ M(YK × X ),
where M(T ) denotes the set of all Borel probability measures on a topological space T . Let EP

and VarP be the expectation and variance operators under P , respectively. For each P ∈ P , let us
denote the first and second moments of the potential outcome as µa(P )(x) := EP [Y

a | X = x] and
νa(P )(x) := EP [(Y

a)2 | X = x], respectively.

In our setting, a distribution P of (Y 1, . . . , Y K , X) belongs to a bandit model P defined below. We
refer to the bandit model as a location-shift bandit model.

Definition 2.1 (Location-shift bandit model). Let (σa)2 : X → (0,+∞) be a function that is
exogenously given but unknown to the decision-maker. Let ζ be a distribution of X that is exogenously
given but unknown to the decision-maker, which is supported on X . Then, a location-shift bandit
model P is defined as follows:

P := Pζ :=
{
P ∈ M(YK ×X ) : ∀a ∈ [K] ∀x ∈ X , VarP (Y

a | X = x) = σa(x),

Y a − µa(P )(x) is zeo-mean subgaussian given x, µa(P )(x) ∈ (−∞,+∞), margX (P ) = ζ
}
,

where margX (P ) denotes the marginal distribution of P on X .

Our lower and upper bounds are characterized by σa(x), given independently of the experiment.
Location-shift models are a commonly employed assumption in statistical analysis (Lehmann &
Casella, 1998). A key example is a Gaussian distribution, where for all P , the variances are fixed
and only mean parameters shift. Note that we can omit the condition |νa(P )(x)| < C from the
boundedness of the variance. However, we introduce it to simplify the definition of our strategies.

2.2 Adaptive Experiment

We consider a decision-maker who aims to identify the best treatment arm

a∗(P )(x) ∈ argmax
a∈[K]

µa(P )(x)

for each context x ∈ X through an adaptive experiment. A fixed number of rounds T , called the
budget or sample size, is exogenously given. At each round t ∈ [T ], the decision-maker uses the
following procedure:

1. A potential outcome (Y 1
t , Y

2
t , . . . , Y

K
t , Xt) is generated from P .

2. The decision-maker observes a context Xt.
3. The decision-maker assigns treatment arm At to an experimental unit based on past observations

(Xs, As, Ys)
t−1
s=1 and the context Xt.

4. The decision-maker observes an outcome of the assigned treatment arm, Yt =
∑

a∈[K] 1[At =

a]Y a
t .

This process is referred to as the exploration phase. Note that outcomes from unassigned treatment
arms remain unobserved. This setting is called the bandit feedback or Rubin causal model (Ney-
man, 1923; Rubin, 1974). Through the exploration phase, the decision-maker obtains observations
(Xt, At, Yt)

T
t=1. After round T , the decision-maker recommends an estimated best treatment arm

âT (x) for each context x given the observations (Xt, At, Yt)
T
t=1.
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2.3 Strategy with Policy Learning

A strategy of the decision-maker defines which treatment arm to assign in each period during the
exploration phase and which treatment arm to recommend as an estimated best arm for each context.
A strategy is defined as a pair ((At)t∈[T ], âT ) in which:

• the sampling rule (At)t∈[T ] determines which treatment arm At to assign in round t
based on the past observations. In other words, At is Gt-measurable, where Gt :=
σ(X1, A1, Y1, . . . , Xt−1, At−1, Yt−1, Xt) for each t ∈ [T ].

• the recommendation rule âT : X → [K] returns an estimated best treatment arm for each context
âT based on the observations collected during the exploration phase. In other words, for each
x ∈ X , âT (x) is FT -measurable, where FT := σ(X1, A1, Y1, . . . , XT , AT , YT ).

Policy. In this study, we impose a restriction on a class of recommendation rules that the decision-
maker can use. We assume that there is an exogenously given class of policies Π, whose typical
element is a policy π : [K]×X → [0, 1] that is measurable and satisfies

∑
a π(a, x) = 1 for each x.

Here, π(a, x) denotes a probability that the decision-maker recommends treatment arm a ∈ [K] as an
estimated best treatment arm for context x. With a slight abuse of notation, we write π(a | x) instead
of π(a, x). We require the decision-maker to obtain an estimator âT (x) of a∗(P )(x) as follows:
first, the decision-maker constructs a policy π ∈ Π based on the observations collected during the
exploration phase; then, âT (x) is drawn from π(· | x) for each x.

Optimal policy. We evaluate the performance of policies via a simple regret. The value of policy
π ∈ Π under P is the expected outcome when the decision-maker uses a policy π, which is defined as

Q(P )(π) := EP

 ∑
a∈[K]

π(a | X)µa(P )(X);π

 ,

and the optimal policy within class Π is defined as π∗(P ) := argmaxπ∈Π Q(P )(π).

Given a strategy with a policy π̂ ∈ Π of the decision-maker, we define a simple regret for each
context x ∈ X under P ∈ P as

rT (P ) (π̂) (x) :=
∑

a∈[K]

π∗(P )(a | x)µa(P )(x)− µâT (x)(P )(x),

and the marginalized simple regret is defined as

RT (P ) (π̂) := E
X∼ζ

[rT (P ) (π̂) (X)] = Q(P )(π∗(P ))−Q(P ) (π̂) .

Then, we define the expected simple regret as EP [RT (P ) (π̂)], where the expectation is taken over π̂.
This expected simple regret is our performance measure of interest. We also refer to the expected
simple regret EP [RT (P ) (π̂)] as the policy regret. The decision-maker aims to identify the best
treatment arm with a smaller expected simple regret.

Notation. Let o(g(x)) be Landau’s notation, and f(x) = o(g(x)) implies that ∀ε > 0 ∃x0 ∀x >
x0 : |f(x)| < εg(x) holds. Let let thre(A, a, b) := max{min{A, a}, b} be a truncation function.

3 Regret Lower Bound

This section presents a lower bound on the expected simple regret EP [RT (P ) (π̂)]. The lower bound
is provided under weak conditions on the policy. Not only does the lower bound offer insights into
the difficulty of the problem, but it also helps argue which sample allocations are optimal.

3.1 Restriction and Complexity of a Policy Class

To establish lower bounds, we introduce a moderate precondition related to the strategy space of
the decision-maker. Specifically, we require that, in the limit, strategies choose all the arms with an
equal probability when, for a given covariate x, the expected outcomes associated with all arms are
identical. Strategies adhering to this criterion are termed null consistent strategies.
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Definition 3.1 (Null consistent strategy). We say a strategy is null consistent if the following condition
is satisfied: If µ1(P )(x) = µ2(P )(x) = · · · = µK(P )(x), then for any a, b ∈ [K], we have∣∣∣PP (âT (X) = a | X = x)− PP (âT (X) = b | X = x)

∣∣∣→ 0 (T → ∞).

Under any null consistent strategies,
∣∣PP (âT (X) = a | X = x) − 1/K

∣∣ = o(1) holds for each
a ∈ [K] as T → ∞ if µ1(P )(x) = µ2(P )(x) = · · · = µK(P )(x).

Next, we introduce the Natarajan dimension, a metric that measures the complexity of a policy class
Π (Natarajan, 1989). Our lower bounds are characterized by the Natarajan dimension.
Definition 3.2 (Natarajan dimension). We say that Π shatters M points {s1, s2, . . . , sM} ⊆ X if
there exist f1, f−1 : {s1, s2, . . . , sM} → [K] such that

1. for any j ∈ [M ], f−1(sj) ̸= f1(sj) holds;

2. for any σ := {σ1, σ2, . . . , σM} ∈ {±1}M , there exists a policy π ∈ Π such that for any j ∈ [M ],

it holds that π(sj) =
{
f1(sj) if σj = 1

f−1(sj) if σj = −1
.

The Natarajan dimension of Π, denoted by dN(Π), is the maximum cardinality of a set shattered by
Π.

Let dVC(Π) be the Vapnik-Chervonenkis (VC) dimension of Π. Note that when K = 2, the Natarajan
dimension is equivalent to the VC dimension; that is, when K = 2, dVC(Π) = dN(Π) holds.

3.2 Regret Lower Bounds

We derive the following lower bounds of the expected simple regret, which hold for any null consistent
strategies and depend on the complexity of a policy class Π, measured by the Natarajan dimension.
The proof is shown in Appendix B.
Theorem 3.3. There exists a distribution ζ on X such that for any K ≥ 2, any null consistent
strategy π with a policy class Π such that dN(Π) = M satisfies

sup
P∈Pζ

√
TEP [R(P ) (π)] ≥ 1

8
E

X∼ζ

√M
∑

a∈[K]

(σa(X))
2

+ o(1) as T → ∞,

where EX∼ζ denotes the expectation of a random variable X under the probability distribution ζ.

Our lower bounds also depend on the variances of outcomes Y a.

When K = 2, we can obtain a tighter lower bound than the one in Theorem 3.3. The proof is provided
in Section B.4.
Theorem 3.4. There exists a distribution ζ on X such that for K = 2, any null consistent strategy π
with policy class Π such that dVC(Π) = M satisfies

sup
P∈Pζ

√
TEP [R(P ) (π)] ≥ 1

8
E

X∼ζ

[√
M (σ1(X) + σ2(X))

2

]
+ o(1) as T → ∞.

Here, note that
∑

a∈{1,2} (σ
a(x))

2 ≤
(
σ1(x) + σ2(x)

)2
holds for each x ∈ X . Therefore, when

K = 2, we use the lower bound in Theorem 3.4 and when K ≥ 3, we use the one in Theorem 3.3.

4 The PLAS Strategy

Our strategy consists of the following sampling and recommendation rules. First, we define a target
assignment ratio, which is an ideal treatment assignment probability. At each round, t = 1, 2, . . . , T ,
our sampling rule randomly assigns a unit to a treatment arm with a probability identical to an
estimated target assignment ratio. After the final round T , our recommendation rule recommends a
treatment arm with the highest value of a policy trained by maximizing empirical policy value. We
refer to our strategy as the PLAS strategy. Our strategy depends on hyperparameters C ∈ (0,∞),
which are introduced for technical purpose in the proof and can be set as sufficiently large values. We
show a pseudo-code in Algorithm 1.
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4.1 Optimal Target Assignment Ratio

We first define a target assignment ratio. The target assignment ratio is the expected value of the
sample average of At of a strategy ( 1

T

∑T
t=1 EP [1[At = a] | Xt = x]) under which a leading factor

of its expected simple regret aligns with that of our derived lower bound.
Definition 4.1 (Target assignment ratio). When K = 2, for each a ∈ [K] = {1, 2}, we define the
target assignment ratio w∗ as

w∗(a | x) = σa(x)

σ1(x) + σ2(x)
. (1)

When K ≥ 3, for each a ∈ [K], we define the target assignment ratio as

w∗(a | x) = (σa(x))
2∑

b∈[K] (σ
b(x))

2 . (2)

This target assignment ratio is given in the course of proving Theorem 3.3, in which we solve

minw∈W

{∑
s∈S maxa∈[K]

{√
(σa(s))2

w(a|s)

}}
, where S := {s1, s2, . . . , sM} ⊆ X , and W is the

set of all measurable functions w : X × [K] → (0, 1) such that
∑

a∈[K] w(a | x) = 1 for each
x ∈ X . The solutions w∗, whose explicit forms appear in (1) and (2), work as a conjecture for
1
T

∑T
t=1 EP [1[At = a] | Xt = x].

These target assignment ratios are ex-ante unknown to the decision-maker since the variance (σa(x))2

is unknown. Therefore, the decision-maker needs to estimate it during an adaptive experiment and
employ the estimator as a probability of assigning a treatment arm.

Remark (Efficiency gain). For each a ∈ [K], let (σa)
2 be the unconditional variance of Y a

t , and
w : [K] → [0, 1] be an assignment ratio such that

∑
a∈[K] w(a) = 1 when we cannot utilize the

contextual information. Then, the following inequality holds:

sup
P∈P

√
TEP [R(P ) (π̂)] ≥ 1

8
inf

w∈W
max
a∈[K]

√
M(σa)

2
/w(a)

≥ 1

8
inf

w∈W
max
a∈[K]

√
M E

X∼ζ

[
(σa(X))

2
/w(a | X)

]
≥ 1

8
inf

w∈W
max
a∈[K]

E
X∼ζ

[√
M(σa(X))

2
/w(a | X)

]
.

This result implies that we can minimize a lower bound by using contextual information; that
is, strategies utilizing contextual information are more efficient than ones not utilizing contextual
information.

4.2 Sampling Rule with Adaptive Sampling (AS)

In this section, we describe our sampling rule, referred to as athe AS rule.

In round t ≤ K, the strategy chooses At = t, i.e., each arm is pulled once as initialization. In
round t > K, given an estimated target assignment ratio ŵt(a | x), we assign treatment arm a with
probability ŵt(a | Xt). Below, we describe the construction of ŵt(a | x).
In each round t, we estimate w∗ using the past observations. We first construct estimators µ̂a

t (x)
and ν̂at (x) of the first moment µa(P )(x) and the second moment νa(P )(x) of Y a. The estimators
constructed to converges to the true functions with probability one, as stated in Assumption 5.1, and
their absolute values are bounded by C. Then, given these estimators, we estimate the variances as
(σ̂a

t (x))
2
= thre

(
(σ̂†a

t (x))2, C, 1/C
)

, where (σ̂†a
t (x))2 = ν̂at (x)− (µ̂a

t (x))
2. Lastly, we construct

the estimator of the target assignment ratio ŵt(a | x) by replacing σa(x) by the estimator σ̂a
t (x).

For obtaining estimators µ̂a
t (x), ν̂

a
t (x), and σ̂a

t (x), we can use nonparametric estimators, such as
the nearest neighbor regression estimator and kernel regression estimator, which have been proven
to converge to the true function almost surely under a bounded sampling probability ŵt by Yang &
Zhu (2002) and Qian & Yang (2016). It should be noted that we do not assume specific convergence
rates for estimators for µa(P )(x) and w∗ as the asymptotic optimality of the AIPW estimator can be
demonstrated without them (van der Laan, 2008; Kato et al., 2020, 2021).
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Algorithm 1 PLAS strategy

Parameter: Positive constants Cµ and Cσ2 .
Initialization:
for t = 1 to K do

Assign At = t. For each a ∈ [K], set ŵt(a | x) = 1/K.
end for
for t = K + 1 to T do

Observe covariate Xt.
Construct the estimated target assignment ratio ŵt defined in Definition 4.1.
Draw ξt from the uniform distribution on [0, 1].
At = 1 if ξt ≤ ŵt(1 | Xt) and At = a for a ≥ 2 if ξt ∈

(∑a−1
b=1 ŵt(b | Xt),

∑a
b=1 ŵt(b | Xt)

]
.

end for
Construct Q̂(π) following (3).
Train a policy π̂PLAS

T as π̂PLAS
T = argmaxπ∈Π Q̂(π).

Recommend âT following π̂PLAS
T .

4.3 Recommendation Rule with Policy Learning

The following part presents our recommendation rule. To recommend the conditionally best treatment
arm a∗(P )(x), we train a policy π : [K]×X → [0, 1] by maximizing the empirically approximated
policy value function, which we will describe below.

At the end of an experiment, we estimate the policy value Q(π) by using the augmented doubly
robust estimator, which is defined as follows:

Q̂T (π) :=
1

T

T∑
t=1

∑
a∈[K]

π(a | Xt)Γ̂
a
t , (3)

where

Γ̂a
t :=

1[At = a]
(
cT (Yt)− µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt), cT (Yt) = thre
(
Yt, UT ,−UT

)
,

and UT is a positive value that approaches infinity as T → ∞. Then, we train a policy as

π̂PLAS
T := argmax

π∈Π
Q̂T (π)

By using this trained policy, given x ∈ X , we recommend âT (x) ∈ [K] as the best treatment arm
with probability π̂PLAS

T (âT (x) | x).
The AIPW estimator debiases the sample selection bias resulting from treatment assignment based
on contextual information. Additionally, the AIPW estimator possesses the following properties: (i)
its components {Γ̂a

t − µa(P )(x)}Tt=1 are a martingale difference sequence, allowing us to employ
the martingale limit theorems in derivation of the upper bound; (ii) it has the minimal asymptotic
variance among the possible estimators. For example, other estimators with a martingale property,
such as the inverse probability weighting (IPW) estimator, may be employed, yet their asymptotic
variance would be greater than that of the AIPW estimator. The t-th element of the sum in the AIPW
estimator utilizes nuisance parameters (µa(P )(x) and w∗) estimated from past observations up to
round t−1 for constructing a martingale difference sequence (van der Laan, 2008; Hadad et al., 2021;
Kato et al., 2020, 2021). For those reasons, this estimator is often used in the context of adaptive
experimental design.

5 Regret Upper Bound

This section provides upper bounds for the expected simple regret of the PLAS strategy. First, we
assume the following convergence rate for estimators of µa(P )(x) and w∗(a | x).
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Assumption 5.1. For any ζ, any P ∈ Pζ , and all a ∈ [K], it holds that

sup
x∈X

∣∣∣ŵT (a | x)− w∗(a | x)
∣∣∣ a.s.−−→ 0, sup

x∈X

∣∣∣µ̂a
T (x)− µa(P )(x)

∣∣∣ a.s.−−→ 0 as T → ∞.

Next, we define an entropy integral of a policy class.
Definition 5.2. Given the feature domain X , a policy class Π, a set of n points {x1, . . . , xn} ⊂ X ,
define:

1. Hamming distance between any two policies π1 and π2 in Π: H(π1, π2) =
1
n

∑n
j=1 1 [π1(xj) ̸= π2(xj)].

2. ϵ-Hamming covering number of the set {x1, . . . , xn}:

NH(ϵ,Π, {x1, . . . , xn}) is the smallest number K of policies {π1, . . . , πK} in Π, such that
∀π ∈ Π,∃πi, H(π, πi) ≤ ϵ.

3. ϵ-Hamming covering number of Π: NH(ϵ,Π) = sup{NH(ϵ,Π, {x1, . . . , xm}) | m ≥
1, x1, . . . , xm ∈ X}.

4. Entropy integral: κ(Π) =
∫ 1

0

√
logNH(ϵ2,Π)dϵ.

The entropy represents the complexity of a policy class, as well as the Natarajan dimension. Between
the entropy integral κ(Π) and the Natarajan dimension dN(Π), κ(Π) ≤ C

√
log(d)dN(Π) holds for

some universal constant C > 0 (Jin, 2023; Zhan et al., 2022) when K ≥ 3. When K = 2, dN(Π) is
equal to the VC dimension, and κ(Π) ≤ 2.5

√
dN(Π) holds (Haussler, 1995).

Furthermore, we make the following assumption for the ϵ-Hamming covering number.
Assumption 5.3. For all ϵ ∈ (0, 1), NH(ϵ,Π) ≤ C exp(D( 1ϵ )

ω) for some constants C,D > 0, 0 <
ω < 0.5.

Then, we obtain the following upper bound for the expected simple regret of the PLAS strategy.
Theorem 5.4 (Upper bound). Suppose that Assumptions 5.1–C.1 hold. Then, for any ζ and any
P ∈ Pζ , the expected simple regret of the PLAS strategy satisfies
√
TEP

[
R (P )

(
π̂PLAS
T

) ]

≤


(
108.8κ(Π) + 870.4

)
EX∼ζ

[√∑K
a=1 (σ

a(X))
2

]
+ o(1) if K = 2(

108.8κ(Π) + 870.4
)
EX∼ζ

[√
(σa(X) + σ2(X))

2

]
+ o(1) if K ≥ 3

as T → ∞,

where κ(Π) =

{
2.5
√
dN(Π) if K = 2

C
√
log(d)dN(Π) if K ≥ 3

holds for a universal constant C > 0.

From Lemma 5.4 and the relationship between the entropy integral and the Natarajan dimension, the
following theorem holds.

When K = 2, for M = dVC(Π), the regret upper bound is given as
(
272

√
M +

870.4
)
EX∼ζ

[√∑K
a=1 (σ

a(X))
2

]
+o(1) as T → ∞. When K ≥ 3, for M = dN(Π), the regret up-

per bound is given as
(
108.8C

√
log(d)M +870.4

)
EX∼ζ

[√∑K
a=1 (σ

a(X))
2

]
+o(1) as T → ∞.

Here, we note that the leading factor in these upper bounds are EX∼ζ

[√
log(d)M

∑K
a=1 (σ

a(X))
2

]
and EX∼ζ

[√
M (σa(X) + σ2(X))

2

]
, a product of the policy complexity ( Natarajan dimension

dN(Π)) and outcome variances. This theorem implies that the leading factors align with the lower
bounds with high probability.
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Figure 1: The results of simulation studies. The y-axis is the policy value of the learned policy.

6 Simulation Study

We conduct simulation studies to investigate the empirical performance of our proposed PLAS
strategy. We compare the PLAS strategy with a combination of uniform sampling and policy learning,
denoted as Uniform. The Uniform strategy assigns treatment arms with an equal ratio of 1/K and
then applies policy learning. As a baseline method, we use the PLAS strategy with known variances,
referred to as Oracle.

We consider a simple scenario with K = 4. We examine three cases for d and T : (d, T ) = (2, 10000),
(d, T ) = (5, 10000), and (d, T ) = (5, 25000). Let Xi be the i-th dimension of X , and let mi and
vi be its mean and variance, respectively. The mean mi is drawn from a uniform distribution with
support [−1, 1], and the variance vi is fixed at 1. If X(1) > 0.5 and X(2) > 0.5, then µ1(P )(X) =

5.00 and µ2(P )(X) = µ3(P )(X) = µ4(P )(X) = 4.50; if X(1) < 0.5 and X(2) > 0.5, then
µ2(P )(X) = 5.00 and µ1(P )(X) = µ3(P )(X) = µ4(P )(X) = 4.50; if X(1) > 0.5 and X(2) <

0.5, then µ2(P )(X) = 5.00 and µ1(P )(X) = µ3(P )(X) = µ4(P )(X) = 4.50; if X(1) < 0.5 and
X(2) < 0.5, then µ4(P )(X) = 5.00 and µ1(P )(X) = µ2(P )(X) = µ3(P )(X) = 4.50.

We conduct 50 independent trials to evaluate the performance of the strategies. The results are
presented in Figure 1 with three different settings for d and T . The y-axis represents the policy value
of the learned policy. From the experimental results, we confirm that our proposed strategy effectively
improves the policy value.

7 Conclusion

In this study, we presented an adaptive experiment with policy learning. Our main contributions
include the derivation of lower bounds for strategies, the development of the PLAS strategy, and the
establishment of its regret upper bound. First, by utilizing the lower bounds developed by Kaufmann
et al. (2016), we derived lower bounds for the expected simple regret, which depend on the variances
of outcomes. Then, based on these lower bounds, we developed the PLAS strategy, which trains a
policy at the end of the experiment. Lastly, we provided upper bounds for the regret of the PLAS
strategy.

From a technical perspective, we demonstrated how to use Rademacher complexity for i.i.d. samples
in an adaptive experiment with non-i.i.d. samples. We did not employ complexity measures for
non-i.i.d. samples as presented by Rakhlin et al. (2015) and Foster et al. (2023). Instead, our
technique relies on an approach used by Hahn et al. (2011), which we extended by incorporating
sample splitting, also known as double machine learning (van der Laan, 2008; Zheng & van der Laan,
2011; Chernozhukov et al., 2018; Hadad et al., 2021; Kato et al., 2020, 2021).

We also contributed to the literature on policy learning by providing a variance-dependent lower
bound, which applies to observational studies with i.i.d. samples, and by discussing matching upper
bounds. Our derived lower bound is distinct from that in Athey & Wager (2021) and more tightly
depends on variances, necessitating the refinement of existing upper bounds.

Our next step is to tighten both the lower and upper bounds. When K = 2, we showed that assigning
each treatment arm a proportion based on standard deviations is optimal, consistent with existing
works such as Neyman (1934), Glynn & Juneja (2004), and Kaufmann et al. (2016). However, we
found that assigning each treatment arm a proportion based on variances is optimal when K ≥ 3.
Other studies on fixed-budget BAI without contextual information, such as Glynn & Juneja (2004),
Kaufmann et al. (2016), and Kato (2024a), indicate that strategies with different sampling rules are
optimal. Bridging the gap between our study and these existing studies remains an open issue.
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A Related Work

The MAB problem has been explored as an instance of the sequential decision-making problem
(Thompson, 1933; Robbins, 1952; Lai & Robbins, 1985), where BAI is a paradigm within this context
(Even-Dar et al., 2006; Audibert et al., 2010; Bubeck et al., 2011).

BAI and ordinal optimization. The study of BAI can be traced back to sequential testing, ranking,
and selection problems in the 1940s (Wald, 1947; Bechhofer et al., 1968). Subsequent studies in
operations research, particularly in the realm of ordinal optimization, have garnered considerable
attention (Chen et al., 2000; Glynn & Juneja, 2004). These studies focus on devising optimal strategies
under the assumption of known distributional parameters. The machine learning community has
reframed the problem as the BAI problem, placing a specific emphasis on estimating unknown
distributions (Jennison et al., 1982; Even-Dar et al., 2006; Audibert et al., 2010; Bubeck et al., 2011).

Audibert et al. (2010) propose the UCB-E and Successive Rejects (SR) strategies. Bubeck et al. (2011)
demonstrates minimax optimal strategies for expected simple regret in a non-asymptotic setting by
extending the minimax lower bound of Auer et al. (2002). Carpentier & Locatelli (2016) further
enhances the minimax lower bound, showing the optimality of Audibert et al. (2010)’s methods in
terms of leading factors in expected simple regret. Based on their lower bound,Yang & Tan (2022)
proposes minimax optimal linear fixed-budget BAI.

In addition to minimax evaluation, Komiyama et al. (2023) develop an optimal strategy whose upper
bound for simple Bayesian regret lower bound aligns with their derived lower bound. Atsidakou
et al. (2023) propose a Bayes optimal strategy for minimizing the probability of misidentification,
revealing a surprising result that a 1/

√
T -factor dominates the evaluation.

Russo (2016), Qin et al. (2017), and Shang et al. (2020) propose Bayesian BAI strategies that are
optimal in terms of posterior convergence rate. Kasy & Sautmann (2021) and Ariu et al. (2021)
discuss that such optimality does not necessarily guarantee asymptotic optimality for the probability
of misidentification in fixed-budget BAI.

In contrast to the approaches of Bubeck et al. (2011) and Carpentier & Locatelli (2016), regarding
asymptotic optimality, Kaufmann et al. (2016) derives distribution-dependent lower bounds for BAI
with fixed confidence and a fixed budget, based on change-of-measure arguments and building upon
the work of Lai & Robbins (1985). Following their work, Garivier & Kaufmann (2016) proposes an
optimal strategy for BAI with fixed confidence; however, in the fixed-budget setting, there is currently
a lack of strategies whose upper bound matches the lower bound established by Kaufmann et al.
(2016). This issue has been discussed by Kaufmann (2020), Ariu et al. (2021), Qin (2022), Degenne
(2023), Kato (2024b), and Wang et al. (2023).

Kock et al. (2023) generalizes the results of Bubeck et al. (2011) for the case where the parameter of
interest is a functional of the distribution and finds that, in contrast to the results Bubeck et al. (2011),
the target allocation ratio is not uniform.

The problem of BAI with contextual information is still under investigation. For example, Tekin &
van der Schaar (2015), Guan & Jiang (2018), Deshmukh et al. (2018), Kato & Ariu (2021), and Qin
& Russo (2022) consider this problem, but their analyses and settings differ from those employed in
this study.

Our proposed strategy assigns treatment arms with a probability depending on their variances.
Variance-dependent BAI has been explored by Chen et al. (2000), Glynn & Juneja (2004), Kaufmann
et al. (2016), Sauro (2020), Jourdan et al. (2023), Kato et al. (2023), Kato (2024b,a,c), and Lalitha
et al. (2023). Our choice of treatment-assignment probability is also inspired by van der Laan (2008)
and Hahn et al. (2011) in adaptive experimental design for efficient treatment effect estimation.

Decision theory and treatment choice. Beyond BAI, our study is further related to statistical
decision theory (Wald, 1949). Manski (2000, 2002, 2004) extend this decision theory and introduce
the treatment choice problem from a decision theory perspective, independent of BAI. They focus
on recommending the best treatment arm using non-experimental, independently and identically
distributed (i.i.d.) observations without adaptive experimental design (Schlag, 2007; Stoye, 2009,
2012; Manski & Tetenov, 2016; Dominitz & Manski, 2017, 2022). Hirano & Porter (2009) employs
the limit experiment framework (Le Cam, 1972, 1986; Lehmann & Casella, 1998; van der Vaart,
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1991, 1998) for discussing the problem of treatment choice, where the class of alternative hypotheses
comprises local models, with parameters of interest converging to the true parameters at a rate of
1/

√
T . Armstrong (2022) and Hirano & Porter (2023) apply this framework to adaptive experimental

design. Adusumilli (2021, 2022) present an alternative minimax evaluation of bandit strategies for
both regret minimization and BAI, based on a formulation utilizing a diffusion process proposed by
Wager & Xu (2021) and the limit experiment framework (Le Cam, 1960, 1972, 1986; van der Vaart,
1991, 1998).

Policy learning. Inspired by supervised learning and statistical decision theory, various off-policy
learning methods have been proposed. Swaminathan & Joachims (2015) proposes counterfactual risk
minimization, an extension of empirical risk minimization for policy learning. Kitagawa & Tetenov
(2018) extends counterfactual risk minimization by linking it to the viewpoint of treatment choice and
proposes welfare maximization. Athey & Wager (2021) refines the method proposed by Kitagawa &
Tetenov (2018). Zhou et al. (2023) shows a tight upper bound for general policy learning methods.
Zhan et al. (2022) develops a policy learning method from adaptively collected observations.

For the expected simple regret, Bubeck et al. (2011) shows that the Uniform-Empirical Best Arm
(EBA) strategy is minimax optimal for bandit models with bounded supports. Kock et al. (2023)
extends the results to cases where parameters of interest are functionals of the distribution and finds
that optimal sampling rules are not uniform. Adusumilli (2022, 2021) consider a different minimax
evaluation of bandit strategies for both regret minimization and BAI problems, based on a formulation
using a diffusion process, as proposed by Wager & Xu (2021).

Other related work. Efficient estimation of ATE via adaptive experiments constitutes another
area of related literature. van der Laan (2008) and Hahn et al. (2011) propose experimental design
methods to estimate ATE more efficiently by using covariate information in treatment assignments.
Karlan & Wood (2014) examine donors’ responses to new information by applying the method of
Hahn et al. (2011). Subsequently, Tabord-Meehan (2022) and Kato et al. (2020) attempt to improve
these studies, and more recently, Gupta et al. (2021) proposes the use of instrumental variables in this
context. Viviano (2022) explores experimental designs for network inference.

We employ the Augmented Inverse Probability Weighting (AIPW) estimator in policy learning. The
AIPW estimator has been extensively used in the fields of causal inference and semiparametric
inference (Tsiatis, 2007; Bang & Robins, 2005; Chernozhukov et al., 2018). More recently, it has
also been utilized in other MAB problems, as seen in Kim et al. (2021), Ito et al. (2022), Zimmert &
Seldin (2021), and Masoudian & Seldin (2021).

B Proof of the Minimax Lower Bounds (Theorems 3.3 and 3.4)

In this section, we establish the proofs for Theorems 3.3 and 3.4. Initially, we focus on proving
Theorem 3.3, which presents a lower bound applicable for cases where K ≥ 2. Following this,
Section B.4 introduces a refined lower bound specifically for K = 2. While the initial lower bound
from Theorem 3.3 is valid for K = 2, Theorem 3.4 offers a tighter lower bound.

B.1 Transportation Lemma

Let fa
P (y

a | s) be a density of Y a conditional on X = s under P . Let ζP (s) be a density of X under
P .

Kaufmann et al. (2016) derives the following result based on a change-of-measure argument, which
is the principal tool in our lower bound. Let us define a density of (Y 1, Y 2, . . . , Y K , X) under a
bandit model P ∈ P as

p(y1, y2, . . . , yK , s) =
∏

a∈[K]

fa
P (y

a | s)ζP (s).

Between two bandit models P,Q ∈ P , following the proof of Lemma 1 in Kaufmann et al. (2016), re-
ferred to as the transportation lemma, we define the log-likelihood ratio of a sequence of observations
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(Xt, Yt, At)
T
t=1 under a given strategy as

LT (P,Q) =

T∑
t=1

∑
a∈[K]

1[At = a] log

(
fa
P (Y

a
t | Xt)

fa
Q(Y

a
t | Xt)

)
.

As discussed by Kaufmann et al. (2016), the transportation lemma immediately yields the following
lemma.
Lemma B.1 (Lemma 1 and Remark 2 in Kaufmann et al. (2016)). Suppose that for any two bandit
model P,Q ∈ P with K treatment arms and for all a ∈ [K], the distributions P a and Qa are
mutually absolutely continuous, where P a and Qa are distributions of (Y a, X) under P and Q,
respectively. Then, for any a ∈ [K] and x ∈ X , any strategy satisfies

∣∣PP (â(x) = a)− PQ(â(x) = a)
∣∣ ≤√EP [LT (P,Q)]

2

B.2 Restricted Bandit Models

Fix any policy class Π with Natarajan dimension M . We can find a set of M points S :=
{s1, s2, . . . , sM} that are shattered by Π.

Gaussian bandit models. We choose a specific ζ, a marginal distribution on X , and define a
specific subclass P† of a class of location-shift bandit models to derive a lower bound. Let ζ be
a distribution on X such that supp ζ = S and Prζ(X = s) = 1/M for any s ∈ S. We focus on
Gaussian bandit models, where outcomes follow Gaussian distributions conditional on contexts. A
subclass P† ⊆ P is defined as follows:

P† :=

{
P ∈ P : ∀a ∈ [K] ∀s ∈ S

[
Y a | X = s ∼ N

(
µa(s), (σa(s))

2
)
, µa(s) ∈ R

]
, margX (P ) = ζ

}
,

where σa : X → R+ is given (introduced in Definition 2.1).

Alternative hypothesis The set of alternative hypotheses Q† ⊆ P† is defined as follows:

Q† :=

{
P ∈ P† : ∀s ∈ S, ms ∈ R, d(s) ∈ [K], ∆d(s) > 0,

∀s ∈ S, µd(s)(P )(s) = ms +∆d(s)(s),

∀s ∈ S, ∀b ∈ [K]\{d(s)} µb(P )(s) = ms

}
.

Note that a distribution in Q† is characterized by a parameter (d,∆,m), where d = (d(s))s, ∆ =
(∆d(s))s, and m = (ms)s. We denote a typical element of Q† by Qd,∆,m.

Next, we will define a distribution P ♯,s
d,∆,m ∈ P† by

∀a ∈ [K], µa
(
P ♯,s
d,∆,m

)
(s) = ms,

∀s′ ∈ S \ {s}∀a ∈ [K], µa
(
P ♯,s
d,∆,m

)
(s′) = µa (Qd,∆,m) (s′).

Note that, since P ♯,s
d,∆,m ∈ P†, it is characterized once we fix the conditional means for each

arm-context pair. We write P ♯,s
d,∆,m as P ♯,s when (d,∆,m) is clear from the context.

Change of measure. For any Qd,∆,m ∈ Q† and for each s ∈ S, the following equation holds:

LT (P
♯,s, Qd,∆,m) =

T∑
t=1

∑
a∈[K]

{
1[At = a] log

(
fa
P ♯,s(Y

a
t | Xt)

fa
Qd,∆,m

(Y a
t | Xt)

)}
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=

T∑
t=1

∑
a∈[K]

∑
s′∈S

{
1[At = a] log

(
fa
P ♯,s(Y

a
t | s′)

fa
Qd,∆,m

(Y a
t | s′)

)}
1[Xt = s′]

(i)
=

T∑
t=1

∑
a∈[K]

{
1[At = a] log

(
fa
P ♯,s(Y

a
t | s)

fa
Qd,∆,m

(Y a
t | s)

)}
1[Xt = s]

(ii)
=

T∑
t=1

1[At = d(s)] log

 f
d(s)

P ♯,s(Y
d(s)
t | s)

f
d(s)
Qd,∆,m

(Y
d(s)
t | s)

1[Xt = s].

In
(i)
=, we used

fa

P♯,s (Y
a
t |s′)

fa
Qd,∆,m

(Y a
t |s′) = 1 for s′ ̸= s from the definition of P ♯,s. In

(ii)
= , we used the

assumption that for each b ∈ [K]\{d(s)}, it holds that f b
P ♯,s(y | s) = f b

Qd,∆,m
(y | s).

Given a strategy, its assignment ratio w : [K]×X → [0, 1] under P is defined as follows:

w(a | x) := EP

[
T∑

t=1

1{At = a} | X = x

]
.

For submodel Q†, the following lemma holds.
Lemma B.2. For any s ∈ S, P ♯,s ∈ P†, Qd,∆,m ∈ Q†, and T ∈ N, the following equality holds:

EP ♯,s

[
LT (P

♯,s, Qd,∆,m)
]
=

T

2M

(
∆d(s)(s)

)2
(σd(s)(s))

2

w(d(s)|s)

.

Proof. We have

EP ♯,s

[
LT (P

♯,s, Qd,∆,m)
]
= EP ♯,s

 T∑
t=1

1[At = d(s)] log

 f
d(s)

P ♯,s(Y
d(s)
t | s)

f
d(s)
Qd,∆,m

(Y
d(s)
t | s)

1[Xt = s]


=

T∑
t=1

EP ♯,s

EP ♯,s

1[At = d(s)] log

 f
d(s)

P ♯,s(Y
d(s)
t | s)

f
d(s)
Qd,∆,m

(Y
d(s)
t | s)

 | Xt = s

1[Xt = s]


=

T∑
t=1

EP ♯,s

w(d(s) | s)EP ♯,s

log
 f

d(s)

P ♯,s(Y
d(s)
t | s)

f
d(s)
Qd,∆,m

(Y
d(s)
t | s)

 | Xt = s

1[Xt = s]


= Tw(d(s) | s)

(
µd(s)(Qd,∆,m)(s)− µd(s)(P ♯,s)(s)

)2
2
(
σd(s)(s)

)2 /M

=
T

2M

(
∆d(s)(s)

)2(
σd(s)(s)

)2
/w(d(s) | s)

.

To show the second last equality, we use

EP ♯,s

log
 f

d(s)

P ♯,s(Y
d(s)
t | s)

f
d(s)
Qd,∆,m

(Y
d(s)
t | s)

 | Xt = s

 =

(
µd(s)(Qd,∆,m)(s)− µd(s)(P ♯,s)(s)

)2
2
(
σd(s)(s)

)2 ,

which corresponds to a KL divergence between two Gaussian distributions.

B.3 Proof of Theorem 3.3: General Minimax Lower Bounds

We derive the lower bound of the expected simple regret.

Proof of Theorem 3.3. Our proof below is built on the following line of reasoning: First, suppose
that nature selects a true distribution in a two-step process: Initially, nature determines (ea(s))s,a ∈
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RM×K
+ , ensuring that

∑
a e

a(s) = 1 for each state s ∈ S. It then selects the optimal arms d(s)

with probability ed(s)(s) for each state s. Subsequently, nature chooses some (d,∆,m), determining
Qd,∆,m ∈ Q†, which represents the true distribution. 1 We then focus on the expected simple
regret that the decision-maker could encounter under these strategies of nature, regardless of the
strategy employed by the decision-maker. By construction, there must exist at least one distribution
Qd,∆,m ∈ Q† ⊆ P that attains this regret. Hence, this value serves as a lower bound for the regret.

Fix any strategy of the decision-maker. First, observe that, for each P ∈ P†, the expected simple
regret can be simplified as follows:

R(P )(π) = EP

 ∑
a∈[K]

(
µa∗(P )(X)(P )(X)− µa(P )(X)

)
PP (âT (X) = a)


=
∑
s∈S

∑
a∈[K]

(
µa∗(P )(s)(P )(s)− µa(P )(s)

)
PP (âT (s) = a)PP (X = s)

=
∑
s∈S

∑
a∈[K]

(
µa∗(P )(s)(P )(s)− µa(P )(s)

)
PP (âT (s) = a) /M.

Next, we decompose the expected simple regret by using the definition of P†: fix any (ea(s))s,a and
(d,∆,m). Then, the expected simple regret the decision-maker experiences is:∑
s∈S

∑
d(s)∈[K]

ed(s)(s)
∑

b∈[K]\{d(s)}

(
µd(s)(Qd,∆,m)(s)− µb(Qd,∆,m)(s)

)
PQd,∆,m

(âT (s) = b) /M

=
∑
s∈S

∑
d(s)∈[K]

ed(s)(s)

 ∑
b∈[K]\{d(s)}

∆d(s)(s)PQd,∆,m
(âT (s) = b)

 /M

=
∑
s∈S

∑
d(s)∈[K]

ed(s)(s)
{
∆d(s)(s)PQd,∆,m

(âT (s) ̸= d(s))
}
/M

=
∑
s∈S

∑
d(s)∈[K]

ed(s)(s)
{
∆d(s)(s)

(
1− PQd,∆,m

(âT (s) = d(s))
)}

/M, (4)

Note that, as we saw in the beginning of the proof, the regret lower bound is bounded from below by
(4).

From Lemma B.1. and the definition of null consistent strategies, we have

(4) =
∑
s∈S

∑
d(s)∈[K]

ed(s)(s)

{
∆d(s)

(
1− PP ♯,s (âT (s) = d(s)) + PP ♯,s (âT (s) = d(s))− PQd,∆,m

(âT (s) = d(s))
)}

/M

≥
∑
s∈S

∑
d(s)∈[K]

ed(s)(s)

∆d(s)(s)

1− PP ♯,s (âT (s) = d(s))−

√√√√EP ♯,s

[
L
d(s)
T (P ♯,s, Qd,∆,m)

]
2


 /M.

(5)

Since we assume that the strategy is null consistent, we have PP ♯,s (âT (s) = d(s)) = 1/K + o(1).
By Lemma B.2, we obtain

(5) =
∑
s∈S

∑
d(s)∈[K]

ed(s)(s)∆d(s)(s)

1− 1

K
−
√√√√ T (∆d(s)(s))2

4M
(σd(s)(s))

2

w(d(s)|s)

 /M + o(1).

1Note that the choice of (ms)s∈S does not affect any objects in the proof of Theorem 3.3.
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Let

E :=

(ed(s))d,s ∈ R[K]×S : ed(s) ∈ [0, 1], ∀s ∈ S,
∑
d∈[K]

ed(s) = 1

 ,

and denote its typical element by e. In principle, if we take the supremum with respect to e ∈ E
and (∆d(s)(s))s ∈ RM

>0 in (5), that will be a regret lower bound. By substituting ∆d(s)(s) =√
M

(σd(s)(s))
2

w(d(s)|s) /2T , taking the infimum with respect to w, and taking the supremum with respect to

(ea(s))a,s, we obtain the following regret lower bound, which is lower than the lower bound obtained
by taking the supremum with respect to e and ∆:

1

8

1√
MT

∑
s∈S

sup
e∈E

inf
w∈W

∑
d(s)∈[K]

ed(s)(s)


√(

σd(s)(s)
)2

w(d(s) | s)

+ o(1). (6)

Fix any s ∈ S. Let h(e,w) :=
∑

d∈[K] e
d(s)

√
(σd(s))2

w(d|s) and consider supe∈E infw∈W h(e,w).

Note that h is concave in e, convex in w, and continuous in (e,w). Denote the closure of W by W .
First, observe that

sup
e∈E

inf
w∈W

h(e,w) ≥ sup
e∈E

inf
w∈W

h(e,w).

Since W is compact and h(e, ·) is continuous for each e, we have

sup
e∈E

inf
w∈W

h(e,w) = sup
e∈E

min
w∈W

h(e,w).

By Berge’s Maximum Theorem, minw∈W h(e,w) is continuous in w. Since E is compact, we have

sup
e∈E

min
w∈W

h(e,w) = max
e∈E

min
w∈W

h(e,w).

Since E and W are both compact and convex and h is concave-convex, by the minimax theorem, we
have

max
e∈E

min
w∈W

h(e,w) = min
w∈W

max
e∈E

h(e,w).

Combining these results, we have

sup
e∈E

inf
w∈W

h(e,w) ≥ min
w∈W

max
e∈E

h(e,w).

Let us consider maxe∈E h(e,w) for a fixed w. At the optimum, we have ed(s) = 1 iff d ∈
argmaxd∈[K]

√
(σd(s))2

w(d|s) . Thus, we have

min
w∈W

max
e∈E

h(e,w) = min
w∈W

max
d∈[K]

√
(σd(s))

2

w(d | s)
. (7)

For each s, we consider the following constrained optimization:

min
R≥0,w∈W

R

s.t. R ≥

√
(σd(s))

2

w(d | s)
∀d ∈ [K]

Note that if (R∗, w∗) is the optimal solution to this problem, w∗ is also the optimal solution to (7).
After some algebra, we can show that

w∗(d | s) = (σd(s))2∑
a∈[K](σ

a(s))2
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for each d ∈ [K].

Thus, we have

(7) =
√∑

a∈[K]

(σa(s))2,

and hence

(6) ≥ 1

8

1√
TM

∑
s∈S

√∑
a∈[K]

(σa(s))2 =
1

8

1√
T

∑
s∈S

√
M

∑
a∈[K]

(σa(s))2
1

M
+ o(1)

=
1

8

1√
T

E
X∼ζ

√M
∑

a∈[K]

(σa(s))2

+ o(1). (8)

The last equality follows since we choose ξ so that ξ puts equal probabilities on S . This implies that,
for any strategy of the decision-maker, there exists a distribution in P under which the simple regret
is lower bounded by (8).

Although this lower bound is applicable to a case with K = 2, we can tighten the lower bound by
changing the definiton of the parametric submodel.

B.4 Refined Minimax Lower Bounds for Two-armed Bandits (Proof of Theorem 3.4)

When K = 2, we can derive a tighter lower bound. As in previous sections, we choose ξ ∈ M(X )
such that Prξ(X = s) = 1/M for each s ∈ S.

Change of measure. For any Qd,∆,m ∈ Q† and s ∈ S, the following equation holds:

LT (P
♯,s, Qd,∆,m) =

T∑
t=1

∑
a∈[K]

{
1[At = a] log

(
fa
P ♯,s(Y

a
t | Xt)

fa
Qd,∆,m

(Y a
t | Xt)

)}

=

T∑
t=1

∑
a∈[K]

∑
s′∈S

{
1[At = a] log

(
fa
P ♯,s(Y

a
t | s′)

fa
Qd,∆,m

(Y a
t | s′)

)}
1[Xt = s′]

(i)
=

T∑
t=1

∑
a∈[K]

{
1[At = a] log

(
fa
P ♯,s(Y

a
t | s)

fa
Qd,∆,m

(Y a
t | s)

)}
1[Xt = s].

In
(i)
=, we used

fa

P♯,s (Y
a
t |s′)

fa
Qd,∆,m

(Y a
t |s′) = 1 for s′ ̸= s from the definition of P ♯,s.

Proof of Theorem 3.4. By the same argument as in Section B.3, we have the following lower bound
for the simple regret (cf. equation (5)):

∑
s∈S

∑
d(s)∈[K]

ed(s)(s)

∆d(s)(s)

1− PP ♯,s (âT (s) = d(s))−

√√√√EP ♯,s

[
L
d(s)
T (P ♯,s, Qd,∆,m)

]
2


 /M.

(9)

By the same argument as in the proof of Lemma B.2, we have

EP ♯,s

[
LT (P

♯,s, Qd,∆,m)
]
=

T

2M

{
w(1 | s)

(
µ1(Qd,∆,m)(s)−ms

)2
(σ1(s))

2 + w(2 | s)
(
µ2(Qd,∆,m)(s)−ms

)2
(σ2(s))

2

}
.
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We consider the following optimization problem with respect to ms:

min
ms∈R

{
w(1 | s)

(
µ1(Qd,∆,m)(s)−ms

)2
(σ1(s))

2 + w(2 | s)
(
µ2(Qd,∆,m)(s)−ms

)2
(σ2(s))

2

}
.

The solution is

ms =
c1µ1(Qd,∆,m)(s) + c2µ2(Qd,∆,m)(s)

c1 + c2
,

where

ca =
w(a | s)
(σa(s))

2 ,

and, the optimal value is (
∆d(s)

)2 [ (σ1(s))2

w(1 | s)
+

(σ2(s))2

w(2 | s)

]−1

. (10)

Since we assume a null consistent strategy, we have PP ♯,s (âT (s) = d(s)) = 1/K + o(1). By (9)
and (10), we have the following regret lower bound:

inf
w∈W

sup
∆d(s)∈(0,∞)

for s∈S

∑
s∈S

∑
d(s)∈[K]

ed(s)(s)∆d(s)


1− 1

K
−

√√√√√√
T∆2(s)

4M

{
(σ1(s))2

w(1|s) + (σ2(s))2

w(2|s)

}


/M + o(1).

By substituting ∆d(s) =

√√√√M

{
(σ1(s))2

w(1|s) + (σ2(s))2

w(2|s)

}
/2T , we obtain the following regret lower

bound:

1

8

1√
MT

∑
s∈S

sup
e∈E

inf
w∈W

∑
d(s)∈[K]

ed(s)(s)


√

(σ1(s))
2

w(1 | s)
+

(σ2(s))
2

w(2 | s)

+ o(1)

=
1

8

1√
MT

∑
s∈S

sup
e∈E

inf
w∈W


√

(σ1(s))
2

w(1 | s)
+

(σ2(s))
2

w(2 | s)

 ∑
d(s)∈[K]

ed(s)(s) + o(1)

=
1

8

1√
MT

∑
s∈S

inf
w∈W


√

(σ1(s))
2

w(1 | s)
+

(σ2(s))
2

w(2 | s)

+ o(1).

Consider the following optimization problem:

min
w∈W

√
(σ1(s))

2

w(1 | s)
+

(σ2(s))
2

w(2 | s)
.

The solution is

w(a | s) = σa(s)

σ1(s) + σ2(s)
,

and the optimal value is √(
σ1(s) + σ2(s)

)2
.

Therefore, we obtain the following lower bound:
1

8

1√
MT

∑
s∈S

√
(σ1(s) + σ2(s))

2
+ o(1) =

1

8

1√
T

E
X∼ξ

√
M (σ1(X) + σ2(X))

2
+ o(1).

This completes the proof.
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C Proof of Theorem 5.4

In the following sections, we prove the upper bound. To show the upper bound, we aim to use the
result of Zhou et al. (2023), which provides an upper bound for expected simple regret in the problem
of policy learning with multiple treatment arms. Here, note that we cannot directly apply the results of
Zhou et al. (2023) because they assume that the observations are i.i.d. in their study, but observations
are non-i.i.d. in our study.

Zhou et al. (2023) assumes that their outcomes are bounded. Therefore, to apply their result, for
analysis, let us define the following quantities:

µa
c (P )(X) := EP [cT (Y

a)], Qc(P )(π) := E
X∼ζ

 ∑
a∈[K]

π(a | X)µa
c (P )(X)

 ,

π∗
c (P ) := argmax

π∈Π
Qc(P )(π), Rc(P )(π) := Qc(P )(π∗

c )−Qc(P )(π).

These quantities are used in the conditions in the main theorem and the following proof. For Q and
Qc, we state the following lemma. We omit the proof.
Lemma C.1. There exist 0 < α < 1/2 and UT = Tα such that and for any ζ, and any P ∈ Pζ ,

supπ∈Π

∣∣∣√TQ(P )(π)−
√
TQc(P )(π)

∣∣∣→ 0 holds as T → ∞.

Because we set UT in cT (·) as UT → ∞ when T → ∞, this assumptions implies that when a
clipping cT (Yt) = thre

(
Yt, UT ,−UT

)
asymptotically vanishes as T → ∞, π∗

c approaches π∗, an
optimal policy under outcomes without the clipping. For example, this assumption is satisfied by
assuming sub-Gaussianity about Y (a).

Thus, by clipping the outcomes using cT (·) in Qc, our problem satisfies the boundedness in Zhou
et al. (2023). To circumvent the issue of non-i.i.d. observations, we show an asymptotic equivalence
between our empirical policy value Q̂T (π) and a hypothetical empirical policy value constructed
from hypothetical i.i.d. observations in Section C.1. Then, using the results of Zhou et al. (2023), we
upper bound a regret for Qc(P )(π∗

c )−Qc(P )(π̂) with the hypothetical policy value in Section C.2.
Finally, in Section C.3, we derive the upper bounds for R(π∗) = Q(P )(π∗) − Q(P )(π̂) from the
upper bounds for Qc(P )(π∗

c )−Qc(P )(π̂).

C.1 Asymptotic Equivalence

Let wt(0 | x) be 0. We write Γ̂a
t as

Γ̂a
t = Γ̂a((Y a

t )a∈[K], ξt, Xt)

=
1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(a | Xt)

] (
cT (Y

a
t )− µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt).

This expression equals the original definition of Γ̂a
t . Let w∗(0 | x) be 0. Then, we define

Γ∗a
t ((Y a

t )a∈[K], ξt, Xt)

:=
1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(a | Xt)

] (
cT (Y

a
t )− µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt).

Here. we show that Γ̂a
t and Γ∗a

t are asymptotically equivalent. The proof is shown in Appendix D.
Lemma C.2. Suppose that Assumption 5.1 holds. Then,

√
TQ̂T

(
π̂PLAS
T

)
=

√
T

T∑
t=1

∑
a∈[K]

π(a | Xt)Γ
∗a
c ((Y a

t )a∈[K], ξt, Xt) + oP (1).

holds as T → ∞.
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Denote
√
T
∑T

t=1

∑
a∈[K] π(a | Xt)Γ

∗a
t by Q̂T

(
π̂PLAS
T

)
. Note that Q̂T

(
π̂PLAS
T

)
consists of only

i.i.d. observations; therefore, we can directly apply the results of Zhou et al. (2023) to derive the
upper bound for the policy regret.

This technique of the asymptotic equivalence is inspired by Hahn et al. (2011) and is important
because, for dependent observations (even if they are martingales), we cannot apply the tools for
upper-bounding regrets or risks, such as the Rademacher complexity. For instance, Zhan et al.
(2022) addresses this issue and establishes an off-policy learning method from adaptively collected
observations by utilizing the Rademacher complexity for martingales developed by Rakhlin et al.
(2015). However, our interest lies in developing upper bounds depending on variances because our
lower bounds also depend on variances, and such upper bounds are considered to be tight. Although
Zhou et al. (2023) derives such upper bounds for policy learning from i.i.d. observations using the
local Rademacher complexity, it is unclear whether we can use the results of Zhou et al. (2023)
with the Rademacher complexity for martingales developed by Rakhlin et al. (2015). In contrast, in
this study, if we restrict the problem to BAI and the evaluation metric to the worst-case expected
simple regret, we show that we can apply the results of Zhou et al. (2023) and avoid the use of the
Rademacher complexity for martingales by bypassing a hypothetical policy value that only depends
on i.i.d. observations.

C.2 Upper Bound under I.I.D. Observations

Because Q̂T (π̂
PLAS
T ) is asymptotically equivalent to a policy value that consists of i.i.d. observations,

we can apply the results of policy learning with i.i.d. observations to bound the policy regret.
Specifically, we modify a regret upper bound shown by Zhou et al. (2023), given as the following
lemma.

Lemma C.3 (Modified upper bound). Suppose that Assumptions 5.1 and 5.3 hold. Then, for any ζ
and any P ∈ Pζ ,

EP

[
Rc(P )

(
π̂PLAS
T

) ]
= EP

[
Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS
T

) ]
= EP

[(
54.4κ(Π) + 435.2

) Υ∗√
T

+O

(√
UT

T 3/4

)]
holds, where

Υ∗ = E


√√√√√ sup

π1,π2∈Π

∑
t∈[T ]

 ∑
a∈[K]

(
π1(a | Zi)− π2(a | Zi)

)
Γ∗a(Yt, ξt, Xt)


2
 .

The proof is shown in Appendix E.

C.3 Asymptotic Optimality

Finally, we derive the upper bounds of R(P )
(
π̂PLAS
T

)
= Q(P )(π∗)−Q(P )(π̂PLAS

T ) from the upper
bounds of Rc(P )

(
π̂PLAS
T

)
= Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS
T

)
.

By using Lemma C.1, we can evaluate the regret R(π∗) as follows:

R(P )
(
π̂PLAS
T

)
= R(P )

(
π̂PLAS
T

)
−Rc(P )

(
π̂PLAS
T

)
+Rc(P )

(
π̂PLAS
T

)
= Q(P )(π∗)−Q(P )

(
π̂PLAS
T

)
−
{
Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS

)}
+
{
Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS
T

)}
=
{
Q(P )(π∗)−Q(P )(π∗

c )
}

+
({

Q(P )(π∗
c )−Q(P )

(
π̂PLAS
T

)}
−
{
Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS
T

)})
+
{
Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS
T

)}
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=
{
Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS
T

)}
+ o(1/

√
T ) = Rc(P )

(
π̂PLAS
T

)
+ o(1/

√
T ).

Let UT be a value that satisfies Lemma C.1. From the Cauchy-Schwarz inequality, we have

Υ∗ = E


√√√√√ sup

π1,π2∈Π

∑
t∈[T ]

 ∑
a∈[K]

(
π1(a | Xt)− π2(a | Xt)

)
Γ∗a
c (Yt, ξt, Xt)


2


≤ E


√√√√√ sup

π1,π2∈Π

∑
t∈[T ]

 ∑
a∈[K]

(
π1(a | Xt)− π2(a | Xt)

)
2 ∑

a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2


≤ E


√√√√√ sup

π1,π2∈Π

∑
t∈[T ]

4

 ∑
a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2


= 2E


√√√√√∑

t∈[T ]

 ∑
a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2
 .

From the law of iterated expectations and the Jensen inequality, we have

Υ∗ ≤ 2E


√√√√√∑

t∈[T ]

 ∑
a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2


= 2 E
X∼ζ


√√√√√√E

∑
t∈[T ]

 ∑
a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2



= 2 E
X∼ζ


√√√√√√TE


 ∑

a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2

 .

In conclusion, we obtain

Υ∗/
√
T ≤ 2 E

X∼ζ


√√√√√√E


 ∑

a∈[K]

Γ∗a
c (Yt, ξt, Xt)


2



= 2 E
X∼ζ


√√√√√√E


 ∑

a∈[K]

Γ∗a(Yt, ξt, Xt)


2

+ o(1)

= 2 E
X∼ζ

√√√√∑
a∈[K]

(σa(X))
2

w∗(a | X)

+ o(1),

as T → ∞ (cT → ∞).

Similarly, we obtain

Υ̃∗/
√
T ≤ 2

√√√√∑
a∈[K]

E
X∼ζ

[
(σa(X))

2

w∗(a | X)

]
+ o(1).
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By substituting w∗ for each case with K = 2 and K ≥ 3, we obtain Theorem 5.4.

D Proof of Lemma C.2

In this section, we show

√
TQ̂T (π) =

√
T
1

T

T∑
t=1

∑
a∈[K]

π(a | Xt)Γ̂
a
t =

√
T
1

T

T∑
t=1

∑
a∈[K]

π(a | Xt)Γ
∗a
t ((Y a

t )a∈[K], ξt, Xt) + oP (1).

(11)

Here, recall that

1√
T

T∑
t=1

π(a | Xt)Γ̂
a
t ((Y

a
t )a∈[K], ξt, Xt)

=
1√
T

T∑
t=1

π(a | Xt)

1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)

 .

Therefore, to show (11), we show

1√
T

T∑
t=1

π(a | Xt)

1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)



=
1√
T

T∑
t=1

π(a | Xt)

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)

+ oP (1).

(12)

Proof. Let us define

Gt

(
Y a
t , Xt, ξt; {ŵt(b | Xt)}b∈[K] , µ̂

a
T (Xt)

)
:= π(a | Xt)

1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)

 .

Then, we obtain

Gt

(
Y a
t , Xt, ξt; {ŵt(b | Xt)}b∈[K] , µ̂

a
T (Xt)

)
= Gt

(
Y a
t , Xt, ξt; {w∗(b | Xt)}b∈[K] , µ

a(P )(Xt)
)

−Gt

(
Y a
t , Xt, ξt; {w∗(b | Xt)}b∈[K] , µ

a(P )(Xt)
)
+Gt

(
Y a
t , Xt, ξt; {ŵt(b | Xt)}b∈[K] , µ̂

a
T (Xt)

)
= Gt

(
Y a
t , Xt, ξt; {w∗(b | Xt)}b∈[K] , µ

a(P )(Xt)
)
+Bt,

where

Bt := Gt

(
Y a
t , Xt, ξt; {ŵt(b | Xt)}b∈[K] , µ̂

a
T (Xt)

)
−Gt

(
Y a
t , Xt, ξt; {w∗(b | Xt)}b∈[K] , µ

a(P )(Xt)
)
.

To show (12), we consider showing 1√
T

∑T
t=1 Bt → 0 as T → ∞ in probability.

We show 1√
T

∑T
t=1 Bt → 0 as T → ∞ in probability by using the properties of martingales. First,

we have

E [Bt | Xt,Ft−1]
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= E

π(a | Xt)

1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)

 | Xt,Ft−1



− E

π(a | Xt)

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)

 | Xt,Ft−1



= E

[
π(a | Xt)

{
ŵt(a | Xt)

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)

}
| Xt,Ft−1

]

− E

[
π(a | Xt)

{
w∗(a | Xt)

(
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)

}
| Xt,Ft−1

]
= π(a | Xt)µ

a(P )(Xt)− π(a | Xt)µ
a(P )(Xt)

= 0.

This result implies that {Bt}Tt=1 is a martingale difference sequence (MDS) because E[Bt |
Xt,Ft−1] = E[E[Bt | Xt,Ft−1]] = 0 holds.

Besides, from w̃t(a | Xt)−w∗(a | Xt)
a.s.−−→ 0 and µ̂a

t (Xt)−µa(P )(Xt)
a.s.−−→ 0, E

[
B2

t | Xt,Ft−1

]
also converges to zero almost surely as

E[B2
t | Xt,Ft−1]

= E

[
π2(a | Xt)

(1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)



−

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)


)2

| Xt,Ft−1

]

a.s.−−→ 0.

This is because from µ̂a
t (Xt)− µa(P )(Xt)

a.s.−−→ 0,

E

[
π2(a | Xt)

(1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µ̂a

t (Xt)
)

ŵt(a | Xt)
+ µ̂a

t (Xt)


−

1

[∑a−1
b=0 ŵ(b | Xt) ≤ ξt ≤

∑a
b=0 ŵ(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)


)2

| Xt,Ft−1

]

a.s.−−→ 0.

holds. Additionally, from w̃t(a | Xt) − w∗(a | Xt)
a.s.−−→ 0, for any ε > 0, there exists T (ε) > 0

such that for any t > T (ε), |w̃t(a | x)− w∗(a | x)| < ε holds for all a ∈ [K] with probability one;
that is,

E

[
π2(a | Xt)

(1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
ŵt(a | Xt)

+ µa(P )(Xt)


27



−

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
ŵt(a | Xt)

+ µa(P )(Xt)


)2

| Xt,Ft−1

]

≤ E

[1

[
min

{∑a−1
b=0 ŵt(b | Xt),

∑a−1
b=0 w

∗(b | Xt)
}
≤ ξt ≤ max

{∑a−1
b=0 ŵt(b | Xt),

∑a−1
b=0 w

∗(b | Xt)
}]

ŵ2
t (a | Xt)


× π2(a | Xt)

(
Y a
t − µa(P )(Xt)

)2
| Xt,Ft−1

]

+ E

[{
1 [min {

∑a
b=0 ŵt(b | Xt),

∑a
b=0 w

∗(b | Xt)} ≤ ξt ≤ max {
∑a

b=0 ŵt(b | Xt),
∑a

b=0 w
∗(b | Xt)}]

ŵ2
t (a | Xt)

}

× π2(a | Xt)
(
Y a
t − µa(P )(Xt)

)2
| Xt,Ft−1

]

≤ E

1

[∑a−1
b=0

{
w∗(b | Xt)− ε

}
≤ ξt ≤

∑a−1
b=0

{
w∗(b | Xt) + ε

}]
ŵ2

t (a | Xt)

π2(a | Xt)
(
Y a
t − µa(P )(Xt)

)2
| Xt,Ft−1



+ E

1

[∑a
b=0

{
w∗(b | Xt)− ε

}
≤ ξt ≤

∑a
b=0

{
w∗(b | Xt) + ε

}]
ŵ2

t (a | Xt)

π2(a | Xt)
(
Y a
t − µa(P )(Xt)

)2
| Xt,Ft−1



≤ 2(a− 1)ε

ŵ2
t (a | Xt)

E

[
π2(a | Xt)

(
Y a
t − µa(P )(Xt)

)2
| Ft−1

]
+

2aε

ŵ2
t (a | Xt)

E

[
π2(a | Xt)

(
Y a
t − µa(P )(Xt)

)2
| Xt,Ft−1

]

≤ Cε

holds with probability one, where C > 0 is a constant independent from t. This implies that for any
ε′ > 0, there exists T ′(ε′) > 0 such that for any t > T ′(ε′),∣∣∣∣∣E
[
π2(a | Xt)

(1

[∑a−1
b=0 ŵt(b | Xt) ≤ ξt ≤

∑a
b=0 ŵt(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
ŵt(a | Xt)

+ µa(P )(Xt)



−

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
ŵt(a | Xt)

+ µa(P )(Xt)


)2

| Xt,Ft−1

]∣∣∣∣∣ < ε′

with probability one. We also have

E

[
π2(a | Xt)

(1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
ŵt(a | Xt)

+ µa(P )(Xt)



−

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(b | Xt)

] (
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)


)2

| Xt,Ft−1

]
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a.s.−−→ 0.

Thus, E[B2
t | Xt,Ft−1]

a.s.−−→ 0 holds.

Based on these results, from Chebyshev’s inequality, 1√
T

∑T
t=1 Bt converges to zero in probability.

This is because for any v > 0,

PP

(∣∣∣∣∣ 1√
T

T∑
t=1

Bt − E

[
1√
T

T∑
t=1

Bt

]∣∣∣∣∣ ≥ v

)
= PP

(∣∣∣∣∣ 1√
T

T∑
t=1

Bt

∣∣∣∣∣ ≥ v

)
≤

VarP

(
1√
T

∑T
t=1 Bt

)
v2

(13)

Because Bt is an MDS, the covariance between Bt and Bs for t ̸= s is zero; that is, if s < t,
Cov(Bt, Bs) = E [BtBs] = E [BsE [Bt | Ft−1]] = 0.

Therefore, we can show 1√
T

∑T
t=1 Bt

p−→ 0 by showing

VarP

(
1√
T

T∑
t=1

Bt

)
=

1

T

T∑
t=1

Var (Bt) → 0, (14)

as T → ∞, where we used that the covariance between Bt and Bs for t ̸= s is zero.

To show (14), we show

1

T

T∑
t=1

VarP (Bt | Xt,Ft−1) =
1

T

T∑
t=1

EP [B
2
t | Xt,Ft−1]

p−→ 0,

by using E[B2
t | Xt,Ft−1]

a.s.−−→ 0.

Let ut be ut = EP

[
B2

t | Xt,Ft−1

]
. Fix some positive ϵ > 0 and δ > 0. Almost-sure convergence

of ut to zero as t → ∞ implies that we can find a large enough t(ϵ) such that |ut| < ϵ for all
t ≥ t(ϵ) with probability at least 1 − δ. Let E(ϵ) denote the event in which this happens; that is,
E(ϵ) = {|ut| < ϵ ∀ t ≥ t(ϵ)}. Under this event, for T > t(ϵ),

T∑
t=1

|ut| ≤
t(ϵ)∑
t=1

C +

T∑
t=t(ϵ)n+1

ϵ = t(ϵ)C + Tϵ.

Therefore, we obtain

P

(
1

T

T∑
t=1

|ut| > 2ϵ

)
= P

({
1

T

T∑
t=1

|ut| > 2ϵ

}
∩ E(ϵ)

)
+ P

({
1

T

T∑
t=1

|ut| > 2ϵ

}
∩ Ec(ϵ)

)

≤ P
(
t(ϵ)

T
C + ϵ > 2ϵ

)
+ P (Ec(ϵ)) = P

(
t(ϵ)

T
C > ϵ

)
+ P (Ec(ϵ)) .

Letting T → ∞, for arbitrarily small δ > 0, , 1
T

∑T
t=1 EP [B

2
t | Xt,Ft−1]

p−→ 0 as T → ∞ holds.

Then, from the dominated convergence theorem and the boundedness of B2
t , 1

T

∑T
t=1 VarP (Bt)

p−→ 0

as T → ∞ holds2.

Therefore, from (13), 1√
T

∑T
t=1 Bt

p−→ 0 holds, which implies

1√
T

T∑
t=1

π(a | Xt)Γ̂
a
t (Y

a
t , ξt, Xt)

=
1√
T

T∑
t=1

π(a | Xt)

1

[∑a−1
b=0 w

∗(b | Xt) ≤ ξt ≤
∑a

b=0 w
∗(a | Xt)

] (
Y a
t − µa(P )(Xt)

)
w∗(a | Xt)

+ µa(P )(Xt)

+ oP (1)

as T → ∞.
2Our proof for this part refers to the proof of Lemma 10 in Hadad et al. (2021).
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E Proof of Lemma C.3

This section provides the proof of Lemma C.3. In Appendix E.1, we introduce an upper bound of
the Rademacher complexity shown by Zhou et al. (2023). Then, in Appendix E.2, we prove a new
lemma (Lemma E.3), which directly yields Lemma C.3.

E.1 Upper bound of the Rademacher complexity.

Let us define a policy class

ΠD :=

h : X ×
K∏

a=1

R → R | h
(
x, (Γa)a∈[K]

)
:=

∑
a∈[K]

(
π1(a | x)− π2(a | x)

)
Γa, π1, π2 ∈ Π


Then, let us define the Rademacher complexity as follows.
Definition E.1. Let {Zt}Tt=1 be a sequence of i.i.d. Rademacher random variables Zt ∈ {−1,+1}:
P[Zt = +1] = P[Zt = −1] = 1

2 .

• The empirical Rademacher complexity RT

(
ΠD;

{
Xt,Γ

∗a
t

}T
t=1

)
of a function class ΠD is

defined as

RT

(
ΠD;

{
Xt,Γ

∗a
t

}T
t=1

)
= E

 sup
π1,π2∈Π

1

T

∣∣∣∣∣∣
T∑

t=1

Zt

∑
a∈[K]

(
π1(a | Xt)− π2(a | Xt)

)
Γ∗a
t

∣∣∣∣∣∣ |
{
Xt,Γ

∗a
t

}T

t=1

 ,

where the expectation is taken with respect to Z1, . . . , Zt.

• The Rademacher complexity RT

(
ΠD
)

of the function class ΠD is the expected value taken

with respect to the observations
{
Xt,Γ

∗a
t

}T

t=1
of the empirical Rademacher complexity:

RT

(
ΠD
)
:= E

[
RT

(
ΠD;

{
Xt,Γ

∗a
t

}T
t=1

)]
.

Our proof starts from the following result about the Rademacher complexity shown by Zhou et al.
(2023).
Lemma E.2 (From the inequality above (C.14) and the inequality in (C.19) of Zhou et al. (2023)).
Suppose that Assumptions 5.1 and 5.3 hold. Then, for any ζ and P ∈ Pζ ,

RT

(
ΠD
)
≤ 13.6

√
2 {κ(Π) + 8} Υ∗√

T
++O

(√
UT

T 3/4

)
.

holds, where

Υ∗ = E


√√√√√ sup

π1,π2∈Π

∑
t∈[T ]

 ∑
a∈[K]

(
π1(a | Zi)− π2(a | Zi)

)
Γ∗a(Yt, ξt, Xt)


2
 .

Following this upper bound, Zhou et al. (2023) applies the Jensen inequality to bound Υ∗ by

Υ∗ ≤

√√√√√√E

 sup
π1,π2∈Π

 ∑
a∈[K]

(
π1(a | Zi)− π2(a | Zi)

)
Γ∗a(Yt, ξt, Xt)


2
.

Then, they apply the Talagrand inequality to bound the regret as

Υ∗ ≤

√√√√√√ sup
π1,π2∈Π

E


 ∑

a∈[K]

(
π1(a | Zi)− π2(a | Zi)

)
Γ∗a(Yt, ξt, Xt)


2
.
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However, the use of the Jensen inequality yields a loose upper bound, which results in a mismatch
between the upper bound and our derived lower bound. Therefore, in our proof, we consider bounding
Υ∗ without using Jensen’s inequality.

E.2 Proof of Lemma C.3

Based on this proof strategy, we show the following lemma.
Lemma E.3 (From the equation above (C.14) in Zhou et al. (2023)). Suppose that Assumptions 5.1
and 5.3 hold. Then, for each P ∈ P ,

EP

[
Rc(P )

(
π̂PLAS
T

)]
≤ 54.4

√
2 {κ(Π) + 8} Υ∗√

T
++O

(√
UT

T 3/4

)
.

holds, where Υ∗ is defined in Lemma E.2.

Lemma C.3 directly follows from Lemma E.3 by multiplying both sides by
√
T and letting T → ∞.

Proof of Lemma E.3. Recall that

Q̂T (π) :=
1

T

T∑
t=1

∑
a∈[K]

π(a | Xt)Γ̂
a
t ,

Let us define the following quantities:

Q̃T (π) :=
1

T

T∑
t=1

∑
a∈[K]

π(a | Xt)Γ
∗a
c ((Y a

t )a∈[K], ξt, Xt),

∆̂
(
π1, π2

)
:= Q̂T (π1)− Q̂T (π2) ,

∆̃
(
π1, π2

)
:= Q̃T (π1)− Q̃T (π2) ,

∆
(
π1, π2

)
:= Qc(P ) (π1)−Qc(P ) (π2) .

Then, we have

Rc(P )
(
π̂PLAS
T

)
= Qc(P ) (π∗

c )−Qc(P )
(
π̂PLAS

)
= Q̂T (π∗

c )− Q̂T

(
πPLAS

)
+∆

(
π∗
c , π

PLAS
)
− ∆̂

(
π∗
c , π

PLAS
)

≤
∣∣∣∆ (π∗

c , π
PLAS

)
− ∆̂

(
π∗
c , π

PLAS
)∣∣∣

≤ sup
π1,π2∈Π

∣∣∣∆(π1, π2

)
− ∆̂

(
π1, π2

)∣∣∣
≤ sup

π1,π2∈Π

∣∣∣∆̂(π1, π2

)
− ∆̂

(
π1, π2

)∣∣∣+ sup
π1,π2∈Π

∣∣∣∆(π1, π2

)
− ∆̃

(
π1, π2

)∣∣∣ .
From Lemma C.2, we have

√
TRc(P ) ≤ sup

π1,π2∈Π

∣∣∣∆(π1, π2

)
− ∆̃

(
π1, π2

)∣∣∣+ oP (1).

Therefore, we obtain

EP

[
Rc(P )

(
π̂PLAS
T

)]
≤ EP

[
sup

π1,π2∈Π

∣∣∣∆(π1, π2

)
− ∆̃

(
π1, π2

)∣∣∣] ,
where we used that supπ1,π2∈Π

∣∣∣∆̂(π1, π2

)
− ∆̂

(
π1, π2

)∣∣∣ is a bounded random variable.

Then, from the property of the Rademacher complexity (Bartlett & Mendelson, 2003) and Lemma E.2,
we have

EP

[
sup

π1,π2∈Π

∣∣∣∆(π1, π2

)
− ∆̃

(
π1, π2

)∣∣∣]
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≤ 4RT (Π)

≤ 54.4
√
2 {κ(Π) + 8} Υ∗√

T
++O

(√
UT

T 3/4

)
.

This completes the proof.
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