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ABSTRACT

Graph Convolutional Networks (GCNs) have been dominating skeleton-based ac-
tion recognition in recent years. While GCN-based approaches keep establishing
new state-of-the-art results, the proposed architectures are getting increasingly
sophisticated with a variety of add-ons. Many recent works attempt to relax
the topology restriction imposed by the GCN framework, such as local/sparse
connections and permutation invariance. However, the room for further inno-
vation is extremely limited under such a framework. In this work, we present
Topology-Agnostic Network (ToANet), a simple architecture based merely on
Fully-Connected (FC) layers, as opposed to GCNs for skeleton-based action
recognition. It is constructed by chaining FC layers applied across joints (ag-
gregate joint information) and within each joint (transform joint features) in an
alternate manner. Moreover, it contains a novel design of parallel paths for multi-
relational modeling. ToANet proves to be a powerful architecture for learning the
joint co-occurrence of human skeleton data. ToANet achieves better or compa-
rable results to state-of-the-art GCNs on NTU RGB+D, NTU RGB+D 120 and
Northwestern-UCLA datasets. These results challenge the convention of choos-
ing GCNs as the de-facto option for skeleton-based action recognition. We hope
that our work stimulates further research on non-GCN based methods, eliminating
the restriction of topology.

1 INTRODUCTION

Human action recognition has a broad range of real-world applications, such as video surveillance
and human-machine interaction. In recent years, skeleton-based human action recognition methods
have gained increased popularity due to their robustness to variations in lighting conditions, camera
viewpoints, etc. The skeleton data can also be easily acquired by depth sensors or pose estimation
algorithms Cao et al. (2017).

Earlier approaches construct a sequence of features or a pseudo-image from human joints as input
for Recurrent Neural Networks (RNNs) Liu et al. (2016); Li et al. (2018) or Convolutional Neural
Networks (CNNs) Ke et al. (2017); Liu et al. (2017) to generate the prediction. Nevertheless, these
methods hardly capture the inherent correlations between human joints, which are intuitively crucial
for human action recognition. For example, the action ’drinking’ needs to be accomplished by arm,
hand and head together. Yan et al. (2018) first propose to treat joints and their physical connections
as nodes and edges of a graph, then a GCN is employed on such a predefined graph to learn the joint
interactions.

In spite of its significant improvement on previous RNN- or CNN-based approaches, the manually
defined topology ignores the relationship between physically unconnected joints, thus limiting the
representation power of GCNs. Moreover, the hierarchical structure of GCNs is supposed to capture
multilevel semantic information and predefined connections may not be suitable for higher layers.
To address this issue, most recent approaches Gao et al. (2022); Cheng et al. (2020); Shi et al. (2019);
Ye et al. (2020); Chen et al. (2021); Song et al. (2021); Xia & Gao (2021) employ a learnable
topology and merely initialize it as the natural one imposed by the skeleton. After training, the
learned topology is indeed fully connected. Many among them also add an adaptive component via
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Figure 1: Visualization of the learned inter-joint FC layer’s weights of our ToANet trained on the
NTU RGB+D 120 dataset. Darker lines (the color ranges from shallow yellow to dark red with
increased weights) indicates larger weights. It can be seen that ToANet automatically learns to
focus on relations with a specific group of joints at each path. Many of the joint pairs with large
weights are indeed those that interact intensively with each other.

attention or similar mechanisms, which are also fully connected but with dynamic weights instead.
Such fully-connected topologies, including learnable and dynamic connections, has almost become
the default choice of recent works and it contributes significantly to the improved performance over
previous GCN-based models, as experimentally shown, e.g. in Shi et al. (2019).

These results conform to the human intuition that considering the relation between all joint pairs,
regardless of whether they are physically connected or not, is necessary for better performance in
skeleton-based human action recognition. Consequently, the concept of topology is of little sig-
nificance in such fully-connected models Chen et al. (2021), except for initialization. Yet, in our
analysis (see Sec. 4.2), we also see that the initialization is redundant. Therefore, we deduce that
an elementary fully-connected layer applied on the spatial dimension is theoretically adequate for
modelling the relation between all joint pairs, by simply stacking them along the spatial dimension.

Motivated by these observations, we propose in this paper a purely FC-layer-based model for the
spatial modeling of skeleton-based human action recognition, called ToANet. It chains a range of FC
layers applied on joint and feature dimension alternately. The former is intended to aggregate global
information from other joints, whereas the latter plays the role of feature projection. Based on this
architecture, we further propose a novel design for learning multi-relational interactions between
joints. Semantically, there may exist different types of relationships between joints. For example,
wrists and elbows both belong to the upper limbs, but they also cooperate intensively with far-away
joints, e.g., ankles for actions such as ”jumping”, etc. Therefore, we assume that the consideration
of multiple relations contributes to a more realistic modeling of the skeleton data.

There has been an on-going trend of exploring architectures with less hard-coded priors so that
higher capacity and flexibility can be provided, e.g., CNNs and GCNs had saved researchers from
the heavy routine of handcrafting features and had created more room for architecture designs.
Recently, vision transformers Dosovitskiy et al. (2021); Liu et al. (2021) and MLP-based models
Tolstikhin et al. (2021); Touvron et al. (2021) further get rid of the convolutional inductive bias for
image data, namely local/sparse connectivity and translation invariance. Analogously, our proposed
topology-agnostic network provides a more flexible model for skeleton-based human action recogni-
tion, which we hope may stimulate follow-up studies without being restricted to topology modelling
in the current research landscape of skeleton-based human action recognition.

In summary, we contribute, first, a model purely based on fully connected layers for the spatial
modeling of skeleton-based human action recognition, called ToANet. Second, we propose a novel
design for learning multi-relational interactions between human body joints. We further show that
the topology-agnostic modeling with fully connected layers we propose can reach or exceed results
on par with recent GCN based models on the commonly used datasets NTU RGB-D Shahroudy
et al. (2016), NTU RGB-D 120 Liu et al. (2019) and Northwestern-UCLA Wang et al. (2014).
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2 RELATED WORK

2.1 SKELETON-BASED HUMAN ACTION RECOGNITION

Considering deep neural network approaches, RNNs Du et al. (2015); Song et al. (2017); Zhang
et al. (2017) have been a first popular choice to tackle skeleton-based human action recognition.
The application of CNNs for this task is also well studied Ke et al. (2017); Liu et al. (2017). Yet, the
spatial interactions of body joints are not explicitly given in the such methods. In contrast, GCNs
can model the spatial configurations of joints as a graph. We will focus our following review on
such graph-based models since they have become the de-facto choice for this task.

2.2 GCN-BASED SKELETON ACTION RECOGNITION

Graph convolution is a generalization of the convolution operation in the image space to the non-
Euclidean space. To apply convolution on graphs, there is an additional challenge of how to handle
different numbers of neighboring nodes. Comparing to many advanced GCN models such as GIN
Xu et al. (2018) and MPNN Gilmer et al. (2017), the GCN proposed by Kipf & Welling (2016) is
widely adopted for action recognition due to its simplicity and thus higher resistance to overfitting.
It first applies a spatially-shared feature transformation on them and then aggregates information of
neighboring nodes by a weighted sum of their transformed features (the order is invertible according
to associative law of matrix multiplication). Finally, a scalar nonlinearity is added to the end.

Yan et al. (2018) first introduce a GCN to model the joint correlations and demonstrate its effective-
ness for action recognition. For GCNs, the topology defines the vertex connectivity and thus plays a
crucial role. Yan et al. (2018) simply assume a fixed topology according to the natural connections
of joints. However, its limitation is identified later, and many follow-up works focus on the topology
of GCNs for action recognition. The topology of recent proposed GCNs falls into one or more of
the following four categories:

• Learnable Topology Most recent approaches Gao et al. (2022); Cheng et al. (2020); Shi
et al. (2019); Ye et al. (2020); Chen et al. (2021); Song et al. (2021); Xia & Gao (2021);
Liu et al. (2020); Chi et al. (2022) are based on a learnable topology which considers the
relationship between both physically connected and unconnected joints.

• Dynamic Topology Many among them Gao et al. (2022); Cheng et al. (2020); Shi et al.
(2019); Chen et al. (2021); Ye et al. (2020); Chi et al. (2022) also adopt attention or similar
mechanisms to produce a data-dependent component of the topology (analogous to Graph
Attention Networks Veličković et al. (2017)), boosting GCN’s performance further. Chi
et al. (2022) propose an novel loss to improve over Chen et al. (2021), which they build
upon.

• Channel-Specific Topology Both CTR-GCN Chen et al. (2021) and Decoupling GCN
Cheng et al. (2020) propose to consider the variation of topology along the channel dimen-
sion in a similar fashion, i.e. dividing the channels into multiple groups (up to number of
channels) with independent or refined topologies. This technique can increase the expres-
siveness of spatial aggregation to some extent without adding Floating Point Operations
(FLOPs).

• Spatially Partitioned Topology For images, the weight function varies at different spatial
positions of the convolution kernel. For instance, the weight W ∈ RC,K,K of a K × K
2D convolution kernel contains K × K slices of unique weight vectors for each spatial
position. To adapt convolution for graph data, the adjacency matrix is often partitioned
into multiple subsets Niepert et al. (2016); Yan et al. (2018). Each subset is then assigned
a corresponding convolution weight vector. Manually designing and validating a complex
partition strategy is laborious, and the computation of each subset is not parallelizable.
So the number of partitions is typically less than three. For skeleton-based human action
recognition, a practically efficient and thus widely adopted strategy Yan et al. (2018); Chi
et al. (2022); Chen et al. (2021); Shi et al. (2019); Cheng et al. (2020); Zhang et al. (2020);
Liu et al. (2020) is the so-called spatial configuration partitioning Yan et al. (2018), which
divides the adjacency matrix into three matrices according to the distance from the refer-
enced node.
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Figure 2: Compare our method to other multi-relational modelling approaches including decoupling
aggregation Cheng et al. (2020) and the default partition strategy Yan et al. (2018) in recent GCN-
based approaches.

3 METHOD

3.1 REVISITING GCNS FOR SKELETON-BASED HUMAN ACTION RECOGNITION

The original GCN layer has the formulation Kipf & Welling (2016)

H(l+1) = σ(ÃH(l)W (l)) , (1)

where Ã ∈ RV×V denotes the normalized adjacency matrix, H ∈ RV×T×C and W ∈ RC×C are
hidden representation and weight matrix applied on the channel dimension, respectively, where V
denotes for the number of joints, T the number of frames and Cdenotes the number of channels. σ
is the nonlinear ReLU activation and the superscript l indicates layer number. State-of-the-art GCN-
based approaches make adaptations to the above formulation to arrive at high accuracy predictions.
We summarize the characteristics of the topologies defined by recently proposed GCN-based meth-
ods as follows:

• Fully-Connected Modeling Notably, both the learnable and dynamic topologies in
Cheng et al. (2020); Shi et al. (2019); Ye et al. (2020); Chen et al. (2021); Song et al.
(2021); Xia & Gao (2021); Liu et al. (2020) are assuming a fully-connected topology. It is
also intuitively better to consider the semantic connections between all joint pairs instead
of only the physically linked joints, challenging the need for GCNs in this context.

• Multi-Relational Modeling We find that both the channel-specific Cheng et al. (2020);
Chen et al. (2021) and spatially partitioned topologies are essentially different ways of
modelling a multi-relational graph. For learnable topologies with/without a dynamic com-
ponent, those handcrafted partition rules actually do not hold, because each subset becomes
fully-connected after learning. In such a case, employing multiple partitions is equivalent
to ensembling multiple paths at each layer. Channel-specific topologies can be regarded as
another way of modelling such a multi-relational graph by dividing the channel dimension
into multiple groups, instead of replicating the channel dimension multiple times. How-
ever, there is a gap between this technique and partitioning: it assigns the same convolution
weight to different groups of topologies, whereas each topology is assigned a different
convolution weight for the partitioning approach, see Fig. 2.

3.2 OUR PROPOSED TOANET

Assuming all the joints are (semantically) connected to one another, the topology is no longer im-
portant and we can directly stack joints together to form the spatial dimension of the input. Equiv-
alently, this can be achieved by simply replacing the adjacency matrix A with a weight matrix
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Figure 3: An overview the proposed ToANet with temporal convolution modules. The basic block
of ToANet consists of two fully-connected layers applied alternately on the spatial and the channel
dimension. In addition, the fully-connected layers are divided into multiple parallel paths, in order
to model the multi-relational joint co-occurrence and interdependence.

Wspatial ∈ RV×V applied on the spatial dimension in Eq. (1):

H(l+1) = σ(W
(l)
spatialH

(l)W (l)). (2)

Surprisingly, this results in an architecture which resembles ResMLP Touvron et al. (2021) and
MLP-Mixer Tolstikhin et al. (2021) for image data, except that it is based on single fc layers instead
of MLPs.

3.2.1 MULTI-RELATIONAL MODELING

Inspired by multi-head self-attention Vaswani et al. (2017), we propose a novel approach to model
the multi-relational spatial configuration of skeleton data. As shown in Fig. 3, the feature dimension
is divided into K paths (K = 3 for illustration), then both spatial aggregation and feature projection
are applied on each kth path in parallel:

H
(l+1)
k = σ(W

(l)
k,spatialH

(l)
k W

(l)
k ) (3)

where Hk ∈ RV,T,C/K and Wk ∈ RC/K×C/K . Our approach differs from the decoupling aggrega-
tion Cheng et al. (2020) in two aspects:

• At an operation level, our method assigns a unique weight vector to each group, whereas
the decoupling method assumes a shared weight vector.

• The decoupling method is intended to bridge the gap between convolution on graphs and
images, whereas our method aims at multi-relational modeling of skeleton data.

3.2.2 ARCHITECTURE

As shown in Fig. 3, the whole network consists of a number of elementary blocks, followed by
a spatial-temporal global average pooling layer and a linear layer to predict action classes. There
are a total of three stages and the number of channels are doubled at the beginning of each stage.
Following Chen et al. (2021); Liu et al. (2020); Chi et al. (2022), we adopt a multi-scale temporal
convolution module with 4 branches, including two temporal convolutions with different dilations of
1 and 2, Max Pooling as well as residual connection respectively. A 1x1 convolution is also applied
at the beginning of each branch for reducing channel dimension. The stride is 1 by default, except
that they are set to 2 at the beginning of each stage. The basic block of our ToANet is illustrated in
Fig. 3. Each block is composed of a spatial module, i.e. our ToANet, and a temporal convolution
module.
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3.2.3 DIFFERENCES TO GCN-BASED APPROACHES

Our architecture differs from recent proposed GCNs with the following simplifications:

• Topology-Agnostic As discussed in Sec. 2, recent GCNs are already utilizing a fully-
connected topology. However, they stick to the physical connections for initialization.
More importantly, many architecture designs are restricted by the concept of topology. For
example, the study of partition strategies in Yan et al. (2018), channel-wise topology re-
finement in Chen et al. (2021), etc.. Our simpler model offers a freedom for variations.

• Attention-Free Most modern GCNs are entangled with dynamic connections between
joints via attention or similar mechanisms, whereas our pure fully-connected model
achieves state-of-the-art results. Thus our ToANet serves as a clean baseline for further
development. It is likely that our model can be the basis of even better performing ap-
proaches, when equipped with attention or similar mechanisms.

4 EXPERIMENTS

In this section, we first analyze the role of topology information in GCN-based models for action
recognition, following our intuition that topology actually plays a minor role in these models. Then,
we conduct an ablation study for a deeper understanding of the proposed ToANet. Finally, we
compare ToANet to other state-of-the-art approaches on skeleton-based human action recognition
benchmarks and show results on par with the state of the art Cheng et al. (2020); Chi et al. (2022).
While Chi et al. (2022) show that further improvements can be achieved by adopting an improved
loss, we base our experiments on the standard cross entropy loss. This allows for an evaluation of
our architecture as such and for direct comparability to most previous work.

4.1 SETTINGS

We evaluate ToANet on three commonly used benchmark datasets NTU-RGB+D Shahroudy et al.
(2016), NTU-RGB+D120 Liu et al. (2019) and Northwestern-UCLA Wang et al. (2014).

4.1.1 DATASETS

NTU RGB+D NTU-RGB+D Shahroudy et al. (2016) contains 56880 samples which are conducted
by 40 volunteers and categorized into 60 classes. The skeleton-data is captured by three Microsoft
Kinect v2 depth sensors from different horizontal views. The authors suggest two benchmarks:

• Cross-subject (X-sub): the subjects in the training and test subsets are different.
• Cross-view (X-view): the training set contains 37920 samples captured by the sensors at
0◦ and 45◦, and the testing set includes 18960 sequences captured by the sensor at −45◦.

NTU RGB+D 120 NTU-RGB+D120 Liu et al. (2019) is extended from NTURGB+D with extra
57367 skeleton sequences over 60 additional action classes. It contains 32 setups, each of which
denotes a specific location and background. The authors suggest two evaluation protocols:

• Cross-subject (X-sub): the subjects in the training and test subsets are different.
• Cross-setup (X-setup): the samples in the training and test subsets have different setup IDs.

UCLA Northwestern-UCLA Wang et al. (2014) dataset is captured by three Kinect cameras from
different viewpoints. Following Wang et al. (2014): we construct the training data using samples
from the first two cameras, and the testing data using samples from the other camera.

4.1.2 IMPLEMENTATION

All experiments are conducted on a single Tesla V100 GPU with the PyTorch Paszke et al. (2019)
deep learning framework. A total number of 110 epochs is chosen for all the experiments and the
warmup method in He et al. (2016) is adopted in the first 5 epochs for a more stable training process.
We train the model using Stochastic Gradient Descent (SGD) with Nesterov momentum (0.9) and
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Figure 4: Effect of the number of layers.

weight decay (0.0004 for NTU RGB+D and NTU RGB+D 120, 0.0001 for Northwestern-UCLA) for
optimization. We apply cross-entropy loss as the objective function. The learning rate is initialized
to 0.1 for NTU RGB+D and NTU RGB+D 120 and is reduced by a factor of 10 at epoch 90 and 100,
following Chi et al. (2022). For Northwestern-UCLA, we adopt a smaller learning rate of 0.05 and
the same decay schedule. For NTU RGB+D and NTU RGB+D 120, the batch size is set to 64, each
sample is resized to 64 frames, and we follow the data pre-processing in Zhang et al. (2020). For
Northwestern-UCLA, we use a batch size of 16, and adopt the data pre-processing as in Cheng et al.
(2020); Chen et al. (2021). Our code is based on the official implementation of Chen et al. (2021)
and Zhang et al. (2020).

4.2 PRELIMINARIES

The inspiration of ToANet is drawn from the following experiments, analysing the role of topology.

Initialization of Adjacency Matrix Acc(%)

Physical Connections Chen et al. (2021) 83.9
Identity Matrix 84.0
Ones 83.8
Normal Distribution 83.6

Table 1: The effect of the initialization of adjacency matrix on the X-sub benchmark of NTU
RGB+D 120. The GCN baseline proposed by Chen et al. (2021) is used for comparison. Note
that our reproduced result of 83.9 is indeed higher than their reported 83.7.

To validate our analysis that the concept of topology is of little significance for GCN-based methods,
we compare different ways of initializing the adjacency matrix, from the special initialization using
physical connections as in Chen et al. (2021) to topology agnostic ones. For this experiment, we
take a strong baseline model proposed in Chen et al. (2021) which established top performance on
the X-sub benchmark of NTU RGB+D 120, using basic GCN layers with a learnable topology. The
experimental setup except for the initialization is kept exactly the same as in Chen et al. (2021).
Our results indicate that the special initialization of the adjacency matrix according to physical
connections is not needed for recent GCN models with learnable topologies.

4.3 ABLATION ANALYSIS

In this section, we compare our approach with other methods designed for multi-relation modeling.
For ablation study, all the experiments are conducted on the X-sub setup of NTU RGB+D 120 using
a single modality of joint coordinates as input.
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Method Groups Channels layers Parameters Acc(%)

Fully-Connected Baseline (FCB) 1 128 12 3.7M 84.9
FCB (Ours) 3 128 12 6.0 M 85.5
+ Partition Yan et al. (2018) 6 128 12 9.4M 85.3

FCB (Ours) 4 128 12 3.7M 84.8

+ Decoupling Cheng et al. (2020) 8 128 12 3.7M 85.2
16 128 12 3.8M 85.3

ToANet (ours)
4 128 12 2.1M 85.4
8 128 12 2.0M 85.7 (+0.8)

16 128 12 2.0M 85.3

Table 2: Ablation of multi-relational approaches on the X-sub benchmark of NTU RGB+D 120. For
a fair comparison, we adapt the GCN-based methods including Spatial Configuration Partitioning
Yan et al. (2018) and Decoupling Aggregation Cheng et al. (2020) for our Fully-Connected Baseline.

4.3.1 COMPARING TO OTHER MULTI-RELATION MODELING METHODS

As the core feature of our proposed ToANet, its multi-relation modeling design raises the clas-
sification accuracy by an absolute percentage of 0.8% over the Fully-Connected Baseline, with
significantly reduced parameters. To show the effectiveness of our ToANet, we compare to other
approaches including Spatial Configuration Partitioning Yan et al. (2018) and Decoupling Aggrega-
tion Cheng et al. (2020) for modeling multi-relational data (see Sec. 2 and Sec. 3.1). Moreover, we
apply these two techniques to our Fully-Connected Baseline for a fair comparison. From Tab. 2, we
see that ToANet achieves the best performance, outperforming Decoupling Aggregation by 0.4%
and Spatial Configuration Partitioning by 0.2%. In addition, the partition strategy brings extra pa-
rameters and memory usage, as opposed to the Decoupling Aggregation and our method ToANet.

4.4 VISUALIZATION OF LEARNED WEIGHTS

We have visualized the learned weights of our ToANet at the 12th spatial FC layer in Fig. 1. It can
be seen that ToANet automatically learns to focus on relations with a specific group of joints at each
path. Many of the joint pairs with large weights are indeed those which interact intensively with
one another. This validates our intuition that joint interactions can be learned by topology-agnostic
architectures and explains the excellent performance of our ToANet.

4.5 COMPARISON TO THE STATE-OF-THE-ART

To utilize the complementary information between different modalities, many state-of-the-art ap-
proaches employ a multi-stream fusion strategy. For a fair comparison, we follow the same multi-
stream fusion strategy as Cheng et al. (2020); Ye et al. (2020); Chen et al. (2021); Chen et al. (2021),
i.e., we utilize 4 streams taking joint, bone, joint motion and bone motion as input respectively. Joint
refers to the original skeleton coordinates, and bone is represented by the relative coordinates be-
tween all naturally connected joint pairs. The joint motion and bone motion takes the difference
between two temporally adjacent frames of corresponding data as input. The fusion is simply ap-
plied on the final scores of those four streams.

The comparison is conducted on NTU RGB+D, NTU RGB+D 120 and Northwestern-UCLA in
Tab. 3 and Tab. 4 respectively. Note that the recently published Chi et al. (2022) and Duan et al.
(2022) are not directly comparable to our method. Duan et al. (2022) improve results using addi-
tional RGB input which requires heavy computation. InfoGCN Chi et al. (2022) proposed an extra
loss which is orthogonal to architecture design. We can however compare to their model without
this loss referring to the results they report in the main text for NTU-RGB+D 120. Yet, even this
number refers to the ensemble of 6 modalities, which provides an additional advantage over the 4
modalities used in other models including ours.

Our ToANet exceeds 89% accuracy on the most challenging NTU-RGB+D 120 Cross-Subject
benchmark in Tab. 3, improving over Cheng et al. (2020) and Chi et al. (2022) with the novel loss. It
performs slightly worse than the state-of-the-art GL-CVFD Gao et al. (2022) on the smaller dataset
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Method NTU-RGB+D NTU-RGB+D 120
X-Sub(%) X-View(%) X-Sub(%) X-Set(%)

VA-LSTM Zhang et al. (2017) 87.7 79.2 - -
2s-AGCN Shi et al. (2019) 88.5 95.1 82.9 84.9
4s-shift-GCN Cheng et al. (2020) 90.7 96.5 85.9 87.6
DC-GCN+ADG Cheng et al. (2020) 90.8 96.6 86.5 88.1
MS-G3D Liu et al. (2020) 91.5 96.2 86.9 88.4
PA-ResGCN-B19 Song et al. (2020) 90.9 96.0 87.3 88.3
Dynamic GCN Ye et al. (2020) 91.5 96.0 87.3 88.6
MST-GCN Chen et al. (2021) 91.5 96.6 87.5 88.8
EfficientGCN-B4 Song et al. (2021) 91.7 95.7 88.3 89.1
CTR-GCN Chen et al. (2021) 92.4 96.8 88.9 90.6
Ta-CNN+ Xu et al. (2022) 90.7 95.1 85.7 87.3
InfoGCN Chi et al. (2022) w/o (w/) MMD losses - (92.7) - (96.9) 89.1 (89.4) - (90.7)
GL-CVFD Gao et al. (2022) 92.4 97.1 88.9 90.8
ToANet 92.3 96.5 89.2 90.6

Table 3: Classification results of our ToANet and state-of-the-art methods on NTU RGB+D and
NTU RGB+D 120.

NTU-RGB+D 60. However, note that GL-CVFD Gao et al. (2022) is three times larger than our
model (6.5M vs. 2.0M) and they rely on a two-stage training strategy which requires much heavier
computation. Keep in mind that many GCN-based approaches including CTR-GCN and InfoGCN
also rely on mechanisms generating dynamic weights (attention or similar), whereas our ToANet is
purely based on FC layers.

The Northwestern-UCLA dataset is particularly challenging since it only contains few training se-
quences. Thus, prior knowledge on the topology might have a bigger impact here. In comparison
to Ta-CNN+ Xu et al. (2022), our model performs slightly worse on Northwestern-UCLA but sig-
nificantly better on NTURGB+D and NTURGB+D 120. In comparison, our model is much smaller
which fits the small datasets better, while Xu et al. (2022) can leverage the additional capacity on
larger datasets. Moreover, Ta-CNN+ has used their proposed data augmentation technique called
SkeletonMix..

Method Northwestern-UCLA
Top-1 (%)

Ensemble TS-LSTM Lee et al. (2017) 89.2
2s-AGC-LSTM Si et al. (2019) 93.3
4s-shift-GCN Cheng et al. (2020) 94.6
DC-GCN+ADG Cheng et al. (2020) 95.3
CTR-GCN Chen et al. (2021) 96.5
Ta-CNN+ Xu et al. (2022) 97.2
InfoGCN w/o (w/) MMD losses - (96.6)
ToANet 96.6

Table 4: Classification results of our ToANet and state-of-the-art methods on Northwestern-UCLA.

5 CONCLUSION

In this paper, we revisit the concept of topology in skeleton-based human action recognition. With
ToANet, we propose the first topology-agnostic model purely based on fully-connected layers that is
able to compete with state-of-the-art results by GCNs on skeleton-based human action recognition
benchmarks. Theoretically, this gives us a better understanding of the potential of models with less
inductive biases. More importantly, we believe these results open new possibilities in this field,
beyond the limitations of established GCN-based methods.
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Reproducibility Statement To ensure reproducibility, we provide all training details and hyperpa-
rameters in Appendix B as well as the code for our model in the supplementary material.
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A BROADER IMPACT

The study of skeleton-based human action recognition is of great practical significance. It is not
only computationally more efficient to use skeletons instead of raw videos, but it also resolves the
special concern for privacy in the applications of human action recognition. For example, our model
can be deployed for violence detection, at the same time keeping the crowds’ identities anonymous.

B REPRODUCIBILITY - EXPERIMENT DETAILS

In order to ensure reproducibility, we provide all training hyperparameters for our method for all
datasets in the following.

All experiments are conducted on a single Tesla V100 GPU with the PyTorch deep learning frame-
work. A total number of 110 epochs is chosen for all the experiments and the warmup method in He
et al. (2016) is adopted in the first 5 epochs for a more stable training process. We train the model
using Stochastic Gradient Descent (SGD) with Nesterov momentum (0.9) and weight decay (0.0004
for NTU RGB+D and NTU RGB+D 120, 0.0001 for Northwestern-UCLA) for optimization. We
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apply cross-entropy loss as the objective function. The learning rate is initialized to 0.1 for NTU
RGB+D and NTU RGB+D 120 and is reduced by a factor of 10 at epoch 90 and 100, following
InfoGCN Chi et al. (2022). For Northwestern-UCLA, we adopt a smaller learning rate of 0.05 and
the same decay schedule. For NTU RGB+D and NTU RGB+D 120, the batch size is set to 64, each
sample is resized to 64 frames, and we follow the data pre-processing in Zhang et al. (2020). For
Northwestern-UCLA, we use a batch size of 16, and adopt the data pre-processing as in Cheng et al.
(2020); Chen et al. (2021). Our code is based on the official implementation of Chen et al. (2021)
and Zhang et al. (2020) and will be fully released upon acceptance.

We show in Tab. 5 the default hyperparameters for training our ToANet on NTU RGB+D, NTU
RGB+D 120 and Northwestern-UCLA.

Config. NTU RGB+D and NTU RGB+D 120 Northwestern-UCLA
random choose False True
random rotation True False
window size 64 52
weight decay 4e-4 1e-4
base lr 0.1 0.05
lr decay rate 0.1 0.1
lr decay epoch 90, 100 90, 100
warm up epoch 5 5
batch size 64 16
num. epochs 110 110
optimizer Nesterov Accelerated Gradient Nesterov Accelerated Gradient

Table 5: Default hyperparameters for our ToANet on NTU RGB+D, NTU RGB+D 120 and
Northwestern-UCLA.

C MORE EXPERIMENT RESULTS

We also provide the experiment results for each modality on different benchmarks in detail, see
Tab. 6 and Tab. 7.

Modality NTU-RGB+D 120 NTU-RGB+D
X-Sub(%) X-Set(%) X-Sub(%) X-View(%)

Joint 85.7 87.3 90.2 94.6
Bone 86.6 88.6 90.4 95.6
Motion 82.7 84.2 88.2 92.9
Bone Motion 82.6 84.1 88.1 92.5

Table 6: Classification accuracy of our ToANet using different modalities on the NTU RGB+D and
NTU RGB+D 120 dataset.
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Modality Northwestern-UCLA (%)

Joint 93.3
Bone 92.0
Motion 92.0
Bone Motion 90.3

Table 7: Classification accuracy of our ToANet using different modalities on the Northwestern-
UCLA dataset.
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