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Abstract

Understanding the comparative performance of Ly and L; models is crucial for developing
accurate and efficient machine learning systems, particularly in noisy, real-world settings.
The current understanding in the literature is that L;-penalized linear models perform bet-
ter than Lo models as noise increases. However, prior studies have largely relied on small
and synthetic datasets and limited comparisons between differing optimizers, leaving prac-
tical implications for diverse applications underexplored. We fill these gaps in analysis by
testing multiple different Ly and L; based optimizers on a larger variety of real datasets,
and demonstrate that performance differences between Ly and L; models depend signifi-
cantly on the choice of optimizer and dataset characteristics. In many cases, the difference
in performance by changing the optimization algorithm, while leaving the regularization
penalty constant, is larger than the differences in changing the penalty. Additionally, we
demonstrate cases where an Ly-penalized model can be both sparser and more accurate than
the Li-penalized variants. Together, our results show that even convex L; models can vary
significantly in performance according to optimizer implementation, and that L penalized
models are more viable for many smaller real-world and noisy situations than previously
recognized.

1 Introduction

Methods for sparse regression and classification are useful for a multitude of reasons, especially when con-
fronting problems with a large number of features. Induced sparsity can be important for reducing overfitting
and improving model generalization on unseen data. The regularization reduces the variance of the model
predictions, and this has been demonstrated to improve model generalization on real-world datasets. More-
over, sparsity can reduce required resources, and improve model interpretability. These are some of the
reasons why methods for sparse linear and logistic regression are among the most commonly used tools in
the toolbox for machine learning Hastie et al.| (2015)).

The LASSO [Tibshirani| (1996) is a widely used and highly successful regularization method for regression
and classification problems and induces both coefficient sparsity as well as coefficient shrinkage. If we denote
by f(0) the loss function of a regression or classification problem, the LASSO in its primal form is given by

min  /(6) (1)
st. 0|1 < k. (2)
Being convex, it can equivalently be solved via its Lagrangian dual,

min - £(6) + A1 (3)

Solutions to the constrained optimization problem naturally induce sparsity — some subset of the coefficients
6 will be zero. In addition, the L; constraint (or penalty) on

p
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induces shrinkage of the coefficient magnitudes.

The Best Subset Selection regularization scheme instead uses the Ly pseudo-norm. Therefore, it induces
sparsity but without any shrinkage of the coefficient magnitudes. In primal form,

i £(6) 5)
st. 10]lo <k, (6)

where ,
16110 = > 1(6: # 0). (7)

This presents a mixed-integer optimization problem. Exact solutions for regression problems via the leaps
and bounds algorithm [Furnival & Wilson| (1974) were available in the leaps and bestglm packages, but
could only solve problems with p ~ 30 features. Recent advances enabled mixed-integer optimizers such as
Bertsimas et al.| (2016)) to tackle problem sizes roughly having a number of samples n ~ 10? and a number
of features p ~ 10%.

One can also construct feasible solutions via a Lagrangian dual,
min (6) + o610 (8)

However, such feasible solutions are not guaranteed equivalence with those of the primal equation. There also
exist first order methods Blumensath & Davies| (2009); Bahmani et al.| (2013) and second-order methods|Yuan
& Liul (2017); [Zhou et al.| (2021); Wang et al.| (2021) for approximately solving the Best Subset Selection
problem for regression and classification.

In this manuscript, we revisit and challenge earlier findings by comparing several Best Subset Selection and
LASSO optimizers on an extensive selection of datasets, with varying amounts of feature and label noise.
We demonstrate that the choice of optimizer can be equally as important as the choice of regularization
class under large levels of noise, and certain Best Subset Selection optimizers retain stable performance at
moderate levels of noise.

2 Related Studies

Having coeflicient shrinkage, the LASSO was believed to be superior to Best Subset Selection for datasets
for data with lower signal-to-noise ratio (SNR) Hastie| (2001). Some evidence was presented to this effect in
previous studies for regression |Hastie et al.| (2020) and classification Dedieu et al. (2021). However, these
studies primarily demonstrated results on simulated data and had very limited results on real datasets.
Hastie et al.| (2020) compared Best Subset Selection and LASSO for regression problems, and only used the
mixed-integer optimization method provided by Bertsimas et al.[(2016|) for the Best Subset Selection. They
concluded that LASSO gave better test accuracy in the low SNR regime, and worse accuracy in the high
SNR regime, and the transition point in SNR depended on the problem dimensions: the number of training
samples n and number of features p. This work only studied regression problems, rather than classification
problems which are the focus of this manuscript. Moreover, this work performed comparisons exclusively on
simulated /synthetic data, where the underlying data-generating process is known.

On the other hand, |[Dedieu et al. (2021) studied binary classification problems, which are also the focus
of this manuscript, and compared their optimizer designed to solve the combined Ly + aL, penalty with
LASSO. They found that combined Ly+aLs penalty could outperform LASSO, with the Lo penalty inducing
coeflicient shrinkage and reducing variance. Unfortunately, their study did not share any results for the pure
(Lo-only) best subset selector, which would have been highly relevant and informative. At a high level,
their conclusions were largely similar to |Hastie et al.| (2020), however, these conclusions were based mostly
on simulated datasets with very limited real datasets. The simulated data were generated as multivariate
Gaussian features with various correlation strengths. For comparison on real datasets, they showed only
three (Arcene, Dexter, and Dorothea) taken from the NIPS 2003 Feature Selection Challenge |Guyon et al.
(2004)).
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In contrast, in this study, we compare the performance of Best Subset Selection and LASSO methods
for a wide set of binary classification problems. In addition, we compare a variety of optimizers within
each regularization class. We compare four optimizers for the Best Subset Selection. In Iterative Hard
Thresholding (THT) Blumensath & Davies| (2009): the weights are updated at each iteration by a projected
gradient descent method,

0141 =1k (0: —nVef(6:)), (9)
where 7 is a learning rate, and the operator II; projects the weights onto the nearest point of the Ly ball
|60 < k. This projection is accomplished by sorting the weights @ by their magnitude and keeping the
k-largest while zeroing the rest:

0; if 10;] > |0]

) (10)
0 if |9i| < ‘Q[kﬂ,

I1,(0) = 0’ where 0, = {

where ;) denotes the k-th largest element in the sorted list of |¢;| values.

We also extend the Iterative Hard Thresholding method to include a proposal vector given by gradient
descent with momentum (IHTM),
011 =11 (0, — nvy), (11)
where
v = fui_1 + Vo f(6:)), (12)

with momentum decay parameter g = 0.9.

We also compare the Best Subset Selection optimizers given by the coordinate descent plus local combinatorial
search method described in Dedieu et al|(2021) and implemented in [Hazimeh et al.| (2023), which we refer
to as LOLearn. We compare their optimizer with both the pure best subset Lj selector as well as a mixed
selector which has both Ly and Lo penalties. For LASSO, we compare two optimizers: LIBLINEAR |[Fan
et al.| (2008]) and SAGA Defazio et al.| (2014).

Additionally, we compare the empirical and practical performance of the methods on a wide variety of binary
classification datasets from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
at variable SNR. We perform this extensive experimentation on real datasets to give guidance that applies
to real-world classification problems in which the ground truth data-generating process is not known. Addi-
tionally, these experiments are performed to mimic a typical machine learning workflow for real-world data:
models are optimized on training data, hyper-parameters are optimized on held-out validation data, and
expected performance in-distribution is estimated by performance on held-out testing data. Our experi-
ments challenge the simple story that the relative strengths and weaknesses of Best Subset Selection and
LASSO are mostly a function of the signal-to-noise ratio. Moreover, by comparing multiple optimizers for
Best Subset Selection and LASSO, we also challenge the idea that the cost functions alone are predictive of
performance as SNR is varied. Instead, we will show that differences between different optimizers can be as
significant and relevant in determining performance.

3 Experimental Method and Results

In this section, we present comparisons between variants of the Iterative Hard Thresholding [Blumensath &
Davies| (2009) and LOLearn [Dedieu et al. (2021); Hazimeh et al.| (2023) Best Subset Selection optimizers,
the optimizer with mixed Ly and Lo penalty from LOLearn, and two LASSO optimizers: LIBLINEAR |Fan
et al| (2008)) and SAGA Defazio et al.| (2014)). Their performance is compared on a wide variety of binary
classification datasets from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
as well as three datasets from the NIPS 2003 feature selection challenge, that are listed in Table [I

The datasets are first balanced by label via undersampling. We add noise to the data by two different
methods which are plotted separately:

1. we add Gaussian noise with standard deviation ox to the normalized features of each dataset,
allowing us to explicitly vary the amount of noise present in the features not associated with the
true label, or


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 1: All the datasets included in comparisons between Ly and Lq optimizers studied.

ala arcene
australian  breast-cancer
cod-rna colon-cancer
dexter diabetes
dorothea german.numer
gisette heart

ijennl ionosphere
leukemia liver-disorders
madelon phishing

sonar splice

svmguidel wla

2. we flip the binary labels in the dataset with probability p,,.

We hold out separate validation and test data from the training data. Following a practical/real-world
scenario, each model is optimized on the training data with a hyperparameter controlling sparsity. This is
an integer k for Best Subset Selection, and real numbers A\; for the LASSO penalty or A for the Lo penalty.
The hyperparameters are optimized via fifty trials of optuna [Akiba et al.| (2019).

For Figs. through the top 10% of trials according to validation set accuracy are selected, and their mean
and standard deviation on the separate test set is shown. To facilitate more easy visual comparison, we point
out that all Ly methods have markers that are ‘+’, while all L1 methods have markers that are diamonds. We
first discuss the optimizer behaviors on individual datasets with varying feature noise. Interestingly, only two
out of twenty-one datasets, ala (Fig. and dexter (Fig. , show the behavior of Best Subset Selection
compared to LASSO that we would expect based on prior studies as feature noise increases. Namely, for
these datasets, there is clear degradation in the performance of all Best Subset Selection methods as noise
is increased, with significantly lesser degradation in the performance of the LASSO methods.

For the cod-rna (Fig. and ijcnni (Fig. [Ld)the performance of all methods degrades systematically
at large levels of added noise. However, there is no statistically significant increase in the performance gap
between the L and Ly methods as noise increases when one includes all possible Ly optimizers (Lj - LOLearn
performs as well as both Lasso methods at the highest level of noise). Perhaps more interestingly, certain
datasets such as leukemia (Fig. and madelon (Fig. datasets exhibit performance that is contrary to
prior studies themes, with the performance of certain Ly - methods initially increasing as noise is increased,
sometimes closing the performance gap or even overtaking the performance of some L; methods.

Now, we discuss the behaviors on individual datasets as the label noise is increased. Certain datasets exhibit
what we would likely suspect, that as label noise is increased, test performance systematically decreases.
This includes the ala (Fig. and gisette (Fig. datasets among others. For certain datasets such as
arcene (Fig. , the divergence between the performance of the two LASSO optimizers grows significantly,
again highlighting that the specific optimizer can be as important a choice as the regularization penalty
(LASSO vs best subset) in test performance.

Perhaps the easiest conclusion to draw from these comparisons is the absence of a simple pattern or ‘story’
between Best Subset Selection and LASSO as it pertains to the effect of coefficient shrinkage; on the contrary,
the performance differences among the different Best Subset Selection optimization methods IHT, IHTM,
and LOLearn, or between LIBLINEAR and SAGA LASSO optimizers, are often as large or larger than the
differences between Lo and L; methods. And, similarly for the differences between the LASSO optimizers.

In Fig. [2al we show plots demonstrating the performance of each optimizer over all datasets studied as feature
noise is varied. At the very largest levels of added feature noise (ox = 0.5), the previous understanding
seems to hold well. That is, both LIBLINEAR and SAGA L; optimizers have test performance which is
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systematically slightly higher than all of the Ly optimizers, including LOLearn’s mixed Lo + Lo penalty.
However, that the Lo+ Lo penalty (with coefficient shrinkage) does not systematically improve performance
at the largest levels of noise w.r.t. pure Lo methods is surprising, and contrary to the LOLearn GitHub page,
which ‘strongly recommends’ using the mixed penalty, justified by the same concerns regarding signal-to-
noise ratio and overfitting without shrinkage Hazimeh et al| (2023). However, we see that the situation is
more nuanced. Both the LIBLINEAR and SAGA L; methods actually showed increases in performance at
small to intermediate feature noise levels. Evidently, small amounts of feature noise act as regularizations for
some L; methods and actually increase generalization. Additionally, the LOLearn optimizer showed stable
performance across noise levels without a systematic decrease.

In Fig. [2b]l we show plots demonstrating the performance of each optimizer over all datasets studied as label
noise is varied. In this case, we see that all optimizers, either Ly or Ly, have similar trends, where degradation
is only significant at the largest amount of label noise (10%). Importantly, we see that the SAGA L; method
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Figure 2: The test accuracy performance (the median taken over datasets) for each optimizer as a function
of added feature noise (a) and label noise (b).

has a moderate advantage over all pure L optimizers at this noise level, but the LIBLINEAR solver does
not.
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Figure 3: Model sparsity (measured by the number of nonzero weights, median over datasets) and optimizer
performance as a function of added feature noise (a) and label noise (b).

In Fig. [3a] we show plots demonstrating the sparsity, measured by the number of nonzero weights, of each
optimizer over all datasets studied as feature noise is varied. Overall, we see that Ly methods tend to
produce sparser (fewer nonzero weights) models than both L; methods. The sparsest models are produced
by the LOLearn L optimizer, which is significantly sparser than even the other Ly optimizers. But even the
iterative hard thresholding method produces sparser models than either L; solver.
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In Fig. we show plots demonstrating the sparsity, measured by the number of nonzero weights, of each
optimizer over all datasets studied as label noise is varied. Overall, the situation is similar to the previous
one. Ly methods are sparser on average, with LOLearn’s optimizer producing the sparsest models. However,
there is considerable variation in the sparsity of different Ly models, with LOLearn’s Ly + Lo optimizer
producing models with comparable sparsity to the LIBLINEAR L; optimizer.
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Figure 4: Comparison of the best-performing Ly and L, optimizers in terms of sparsity and test performance.
(a) Results for datasets without added noise. (b) Results for datasets with the largest amount of added feature
noise.

In Fig. [4a] we plot the relative (dis)advantages of LASSO methods and Best Subset Selection methods from
a typical model selection perspective. This is calculated as follows. For each dataset (without any added
noise), we take the top-performing Ly method by validation accuracy and the top-performing L; method by
validation accuracy. The test accuracy and number of nonzero weights for each are saved. Then we compute
ratios: the Ly sparsity advantage w.r.t. Lo is given NNZr /NNZr, (less nonzero weights is more sparse
and more desirable), and the L; accuracy advantage w.r.t. Lo is given Test Acc.r, /Test Acc.r,. We can
read this plot as follows: In the left half, the best L; method produces a less sparse model than the best
Ly method, while in the right half, it produces a more sparse model than L. In the top half, the best L,
method is more accurate than the best Ly method, while in the bottom half, it is less accurate. We see that
for all datasets but one when L; is more accurate (top half), it is also less sparse or equivalently sparse.
Therefore, there is sometimes a tradeoff between accuracy and sparsity. On the other hand, when Lg is more
accurate, it can be either more or less sparse roughly equally often. In such cases that the best Ly method
is more accurate and more sparse, it is a Pareto-optimal choice over the best L; method.

Similarly, in Fig. we plot the relative (dis)advantages of LASSO methods and Best Subset Selection
methods from a typical model selection perspective, but now on the datasets with the largest amount of
added feature noise ox = 0.5. In this case, we see that LASSO methods, when they are more accurate (top
half) can also be more sparse (right half). However, we see that there are still several datasets for which the
best subset selector has both the sparsity and accuracy advantage even at these large levels of noise (lower
signal-to-noise).

4 Conclusion

This manuscript provides a thorough evaluation of sparse learning techniques, challenging common assump-
tions about LASSO and Best Subset Selection across real-world datasets. Our experiments show that the
strengths and weaknesses of these methods vary significantly, especially under different noise levels.

A key insight is that optimizer-specific behaviors can heavily influence performance, both in terms of test
accuracy and model sparsity, sometimes more than the choice between L, and Ly regularization. This
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underscores the importance of considering the interactions of both the regularization and the optimization
strategy with noise in the data in practice.

Our results indicate that the traditional view linking sparse learning performance primarily to signal-to-noise
ratio and coefficient shrinkage is overly simplistic. The choice of optimizer plays a critical role, with varied
performance under the same noise conditions. Notably, iterative hard thresholding Ly methods demonstrate
small but systematic performance gains at low to moderate noise levels. Also, the SAGA L; method has
a moderate advantage over the best L optimizer (IHT) at large levels of label noise, but the LIBLINEAR
L1 solver does not. For all datasets but one, when the best L; optimizer is more accurate, it is also less
or equivalently sparse. This study offers actionable insights through a thorough comparison across multiple
datasets and optimizers.
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