Presupposition Projection Theories Through The Lens of English and Mandarin Large Language Models

Anonymous ACL submission

Abstract

Presupposition projection remains a critical 002 area of linguistic research, particularly in understanding how meaning is inferred beyond explicit assertion. This study explores the processing of presuppositions in conditional sentences by large language models (LLMs) in both English and Mandarin, evaluating their alignment with established linguistic theories such as Satisfaction Theory (ST) and Discourse Representation Theory (DRT). Through controlled experiments inspired by Romoli's (2011) human subject study, we reveal considerable variation across models, both within and across lan-013 guages, challenging the assumption that LLMs uniformly approximate human-like pragmatic competence. While some models exhibited patterns aligning with ST, others diverged significantly, suggesting that LLMs can produce contextually appropriate text without a structured, human-like understanding of presupposition.

Introduction 1

007

011

017

019

024

While much research probed syntactic, semantic, and more recently pragmatic knowledge of LLMs (Hong et al., 2024) (Sieker and Zarrieß, 2023), there has been little examination of the fit between LLMs' behaviour and specific linguistic theories, and even less cross-linguistic work in this domain. However, linguistic theories can provide a valuable source of insight for the goal of explainability in LLMs (Zhao et al., 2024).

This paper considers how modern English and Mandarin LLMs process presuppositions, comparing their behavior to a human baseline and exploring fit with two major theories drawn from the linguistic literature. Strikingly, language models both within and across languages vary considerably in their fit with theoretical models and in their approximation to human behavior in this domain. This fact suggests that LLMs can generate convincingly human-like text while lacking the human-like

understanding of pragmatic elements, such as pre-	041
supposition.	042
2 Related Work	043
2.1 Presuppositions	044
Presuppositions are assumptions that must hold for	045
an utterance to make sense (Beaver et al., 2024).	046

047

048

051

052

054

060

061

062

063

064

065

067

068

069

070

071

072

073

074

075

077

078

an For example, "I turned in my dissertation" presupposes the existence of a dissertation, that it is the speaker's, and so forth. These assumptions can be triggered by specific words (e.g., "my") or arise pragmatically (e.g., that the speaker speaks English).

A key property of presuppositions is projection: they often survive under negation and conditionals. For instance, "I completed my essay in time" presupposes an essay exists; this remains even in "I didn't complete my essay in time" or "If I completed my essay in time..." Linguists have offered two main theoretical accounts to model this phenomenon: Satisfaction Theory (ST) (Heim, 2002) and Discourse Representation Theory (DRT) (Kamp, 1981) (Geurts, 1996). Both offer broad computational-level accounts of semantic and pragmatic interpretation, differing in a number of respects. For our purposes, the crucial differences involve predictions about conditionals.

- If Jack killed the man, the weapon he used (1)is hard to find.
- If Jack killed the man, his friend was in-(2)volved.

ST predicts conditional presuppositions here as a default: "If Jack killed the man, he (used a weapon/has a friend)". The former seems correct, while the latter seems too weak (Geurts, 1996). By contrast, DRT predicts unconditional presuppositions for both ("Jack (used a weapon/has a friend)"), with the mirror-image problem. (1) does not intuitively presuppose "Jack used a weapon" as DRT

predicts as a default.

079

880

089

100

101

102

103

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

127

ST theorists have claimed that the strengthened presupposition of (2) is the result of additional pragmatic reasoning, due to the lack of a causal or inferential connection between "Jack killed the man" and "Jack has a friend". Romoli (2011) compare the competing theories in a human subjects experiment, manipulating the presence of a causal connection, with results support ST for human pragmatic processing.

2.2 Large Language Models Probing

Recent LLM research has shifted from syntactic and semantic probing to pragmatics, particularly implicatures and presuppositions. Datasets such as ImpPress (Jeretic et al., 2020), ProPress (Asami and Sugawara, 2023), and NOPE (Parrish et al., 2021) assess presupposition understanding, with PUB (Sravanthi et al., 2024) integrating these into broader benchmarks. Findings suggest advanced LLMs increasingly mirror human intuition.

However, one key problem still remains: do LLMs exhibit genuine linguistic structure or replicate training data? Blevins et al. (Blevins et al., 2023) showed structured prompting enables abstraction beyond memorization. Studies on Maximize Presupposition! (Sieker and Zarrieß, 2023) and causal inference (Hong et al., 2024) highlight model variability. Both shows that there is a type of structure in LLMs – they are not merely replicating what they have seen.

LLMs also inform linguistic theory. Cho et al. (Cho and Kim, 2024) found GPT-2 and BERT favor pragmatic scalar implicatures, with GPT-2 relying more on context. Tsvilodub et al. (Tsvilodub et al., 2024) replicated human studies on disjunctions, aligning LLM results with human data. This paper examines LLM processing of presuppositions in consequents, crucial for human-like discourse. Following the practice of Tsvilodub, this paper will replicate the Romoli paper mentioned in section 2.1. Many benchmarks assess presuppositions, making it a key area in NLP advancement.

3 Methodology

3.1 Overview of Romoli's Experiments' Methodology

The previous section introduced Romoli's paper's results and prerequisite background information. Since the experiments I conduct will replicate Romoli's, it is worth reviewing Romoli's methodology.

The two experiments Romoli conducted share similar procedures. Both experiments asked the participants to read a short description with the format "If A, then B. And A." or "If, then B. But not A". In experiment 1, the participants were asked to select a picture that fit the description the most from four pictures. Each picture can be summarized with three binary categories: whether A is true, whether the presupposition of B is true, and whether B is true. Using this, the four pictures shown are always TTT, TTF, FTF, and FF-.

The descriptions are sorted into two categories – dependent/independent and control/critical. Dependent descriptions exhibit a probable causal relation between A and B, whilst independent descriptions don't. Control descriptions end with "And A.", while critical descriptions end with "But not A". Apart from these, there also exists filler descriptions in which B does not have a relevant presupposition.

Participants were shown 4 control descriptions, 4 critical descriptions, and 8 filler descriptions. The filler and control descriptions were used to verify that the participants do indeed understand the instructions, while the critical descriptions are the actual important measures Romoli wants to measure.

Experiment 2 has the exact same format, though with one important difference – the FTF picture is replaced by a blank picture, and participants were told to choose that if none of the other pictures matched with the description. This is to eliminate the flaw that the FTF picture can match to both types of presuppositions.

3.2 General Method

Translating a person-to-person linguistic experiment into a person-to-LLM experiment in another language is complex. This subsection outlines the general process and the specific LLMs used, while experiment details are covered in their respective sections.

First, all research prompts must be converted into text. While multimodal LLMs exist, they are less common and costly, making text a more practical format. The original experiment must be reviewed to extract essential information. For instance, in Romoli's experiment, the images encode three key pieces of information (see Section 3.1), which must be preserved in text form.

Once all non-text information is transcribed, a

177

178

128

129

130

131

132

133

prompt mirroring the one given to human subjects
is created—usually a simple rewording. The full
prompt is provided in Appendix 1.

To ensure methodological rigor, variables should be modified incrementally. Directly translating prompts, images, and subjects into Mandarin for AI processing would introduce multiple confounding variables. Instead, multiple experiments should be conducted, each altering only one key variable at a time.

This study follows a two-step experimental design for each set of experiments. The first replicates Romoli's experiment using English-language LLMs with text-based prompts. The selected models—Gemma 2 9B Instruct, Llama-3.2-3B-Instruct-GGUF, GPT-40, and Mistral Nemo Instruct—were chosen based on memory efficiency and performance. The second experiment replaces Englishlanguage LLMs with Mandarin-based ones, using prompts translated via machine translation and human editing. The Mandarin LLMs tested are glm-4-9b-chat, Spark, Qwen 2.5 Coder 14B, and DeepSeek V2 Lite.

4 Experiments

4.1 Experiment 1a: English LLMs

4.1.1 Setup

183

184

185

186

188

190

191 192

193

194

195

196

197

198

199

201

203

207

209

210

212

213

214

215

216

217

218

221

222

225

226

As per Romoli, I have written 32 different tests that are of the following format:

(3) Description: If Googlemorph is A, then B. But Googlemorph is not A. Choice:
A. A creature that is A, p(B) and B.
B. A creature that is A, p(B) and not B.
C. A creature that is not A, is p(B) and not B.
D. A creature that is not A and not p(B).
where p(B) represents the presupposition of B.

Within the 32 tests, 16 tests have a causal relationship between A and B (dependent), and 16 tests do not (independent). Apart from this, I have also designed 4 tests with "If Googlemorph is A, then B. And Googlemorph is A." to confirm the logical robustness of the LLMs. The specific 32 prompts will be detailed in Appendix 1 – the following is one example.

> (4) Description: If Googlemorph pecks wood, then its beak is sharp. But Googlemorph isn't pecking wood.

Choice:	227
A. A creature that is pecking wood, has a	228
beak, and the beak is sharp.	229
B. A creature that is pecking wood, has a	230
beak, and the beak is round.	231
C. A creature that is not pecking wood, has	232
a beak, and the beak is round.	233
D. A creature that is not pecking wood and	234
doesn't have a beak.	235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

The tests are conducted with a preamble prompt that details what the LLM agent needs to do – see Appendix 1 for details. All tests are conducted in LMStudio in a Windows 11 environment, and the temperature of all LLMs is set to 0.8, with the exception of ChatGPT 40, which is conducted on its own website. All analyses were performed using R Statistical Software (R Core Team, 2021).

4.1.2 Rationale For Methodology

This experiment tests the behaviors of the English LLMs in the environment of a presupposition hidden inside a conditional.

I will hereby give an example to demonstrate. Consider example (4). The presupposition "Googlemorph has a beak" is contained within the consequent of the premise "If Googlemorph pecks wood, then its beak is sharp". This can be interpreted in two ways: that there exists a nonconditional presupposition "Googlemorph has a beak", or that there exists a conditional presupposition "If Googlemorph pecks wood, then Googlemorph has a beak".

Now consider choice (D); since in choice (D), the presupposition of "Googlemorph has a beak" is rejected, choice (D) contradicts having an unconditional presupposition. Choice (C) claims the opposite – that "Googlemorph has a beak" is not rejected, and thus is more aligned to the unconditional presupposition.

Of course, choosing choice (C) does not mean that the model isn't forming a conditional presupposition: "If Googlemorph pecks wood, then Googlemorph has a beak. Googlemorph does not peck wood." does not logically link to "Googlemorph doesn't have a beak". This inference, however, would be present in humans because of cognitive bias – specifically, the bias of negating the antecedent. We can, therefore, infer that by choosing (C), the participant is likely to have created a nonconditional presupposition, though we cannot rule out a conditional one. This conundrum will be rectified in Experiment 2. For now, it would be interesting to see how these factors interact. In order to take this into account, Romoli calculated the percentages of conditional and non-conditional presuppositions based on the assumption that people creating a conditional presupposition will randomly choose between (C) and (D).

4.1.3 Results and Discussion

277

278

279

290

295

296

297

301

303

307

309

311

Table 1 consists of the results, after being converted into percentages and adjust accordingly based on the method in the section above.

Model	C-D	NC-D	C-I	NC-I
Gemma	25%	68.75%	12.5%	85%
Mistral	87.5%	12.5%	87.5%	12.5%
GPT	50%	50%	100%	0%
Llama	0%	81.25%	37.5%	12.5%
Human	71.2%	26.3%	39%	58.2%

Table 1: Experiment 1a Data. C = Conditional, NC = Non-conditional, D = Dependent, I = Independent.

The results are surprising given Romoli's findings. While Gemma shows fewer conditional presuppositions for independent descriptions-matching Romoli-none of the other models do; in fact, two show the opposite pattern. For non-conditional presuppositions, GPT and LLaMa diverge from human behavior, Gemma aligns with it, and Mistral remains unchanged. This therefore suggests that it is the most "humanlike," while GPT and LLaMa diverge the most, and Mistral shows no distinction between dependent and independent descriptions. This is curious, as it means that even though English LLMs trained using humangenerated data, they still arrived at a conclusion unlike humans when it comes to presupposition generation, if Romoli's paper is to be considered. The varied behaviors make it difficult to form a unified theory of how English LLMs handle conditional and non-conditional presuppositions, leaving open the question of whether they align with satisfaction theory, DRT, or any single framework.

4.2 Experiment 1b: Mandarin LLMs

4.2.1 Setup

The prompts used in Experiment 1a have been translated through ChatGPT and proofread by a native Mandarin speaker to ensure accuracy. A similar setup is used in Experiment 1a. As mentioned in Section 3.2, the 4 selected LLMs used are glm-4-9b-chat, Spark, Qwen 2.5 Coder 14B, and317DeepSeek V2 Lite. Qwen and DeepSeek are tested318under the environment given by LMStudio, whilst319GLM and Spark are tested using their given APIs320in their website.321

322

324

325

326

327

328

329

330

331

332

333

334

335

337

338

339

340

341

342

343

344

345

346

347

349

350

4.2.2 Results and Discussion

The results are shown in the graph below.

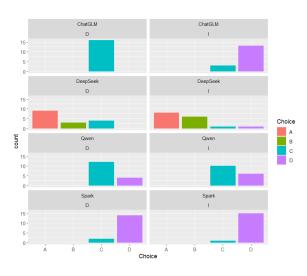


Figure 1: Experiment 1b Model Data

We should be able to employ the same method to transform the data in Experiment 1b to conditional/non-conditional presuppositions. However, this has an issue with any data with a higher count of choice (D) than choice (C). This is because if one considers that there is an equal chance of choosing both (C) and (D) while creating a conditional presupposition, and (C) only when there is a non-conditional presupposition, then (C) should be greater than (D), no matter the exact percentage. However, this is clearly not the case here, as shown in the behaviour of ChatGLM and Spark. Therefore, we can deduce that there must be a preference for choosing (D) when forming conditional presuppositions; this means that the actual conditional presupposition percentage would be smaller than if people were choosing by chance, but bigger than the percentage of choice (D) (as analyzed above, choice (C) includes the possibility of a conditional presupposition). This would not affect the analysis done in Section 4.1.5, apart from introducing uncertainty of the "humanness" of Gemma and the neutrality of Mistral.

To account for this, I will instead use ">" to indicate that the actual percentage is higher than the number shown, and "<" to indicate lower. Thus, we can interpret the data from Section 4.2.2 as

4

356

367

368

371

373 374

375

379

381

386

387

388

391

follows:

Model	C-D	NC-D	C-I	NC-I
ChatGLM	>0%	<100%	>81.2%	<18.8%
DeepSeek	>0%	<25%	>6.3%	<6.3%
Qwen	>25%	<75%	>37.5%	<62.5%
Spark	>87.5%	<12.5%	>93.8%	<6.3%
Human	71.2%	26.3%	39%	58.2%

Table 2: Experiment 1b Data. C = Conditional, NC = Non-conditional, D = Dependent, I = Independent.

Though we cannot be sure what proportion models are choosing (C) versus (D) when forming a conditional presupposition, they should maintain consistency throughout the experiment; thus, we can use the numbers shown to get an approximate value of the actual proportions of conditional/nonconditional presuppositions.

All four Mandarin LLMs diverged from the human baseline by producing more conditional presuppositions for independent descriptions. This pattern aligns with GPT and LLaMa among the English LLMs, though the degree of difference varies by model. ChatGLM shows the largest percentage shift, but uncertainty prevents precise comparison between conditional and non-conditional counts.

Unfortunately, the uncertainty makes it impossible to provide an exact comparison between conditional and non-conditional presupposition counts. However, by looking at the actual choices, only Qwen matches human behavior by choosing option (C) most often for both dependent and independent descriptions; the other models do not. Overall, Mandarin LLMs consistently produce higher conditional presuppositions for independent descriptions, suggesting a more unified pattern across these models—yet one that still contrasts with human benchmarks.

4.3 Experiment 2a: English LLMs With Covered Box

4.3.1 Setup

The same 32 tests have been modified slightly for the second experiment. The following format is used:

- (5) Description: If Googlemorph is A, then B. But Googlemorph is not A. Choice:
 A. A creature that is A, p(B) and B.
 B. A creature that is A, p(B) and not B.
 C. A creature that is not A and not p(B).
- D. None of the above.

As per Romoli, the LLMs are instructed to only select D if there is a better description of the creature than the three choices shown above. 392

393

394

395

396

397

398

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

The preamble is detailed in Appendix 1. All tests are conducted in LMStudio in a Windows 11 environment, and the temperature of all LLMs are set to 0.8, with the exception of ChatGPT 40, which is conducted in its own website.

4.3.2 Rationale For Methodology

The methodology is similar to Experiment 1a and 1b, with the exception of "None of the above", which is the equivalence of the "Covered Box" in Romoli's experiment. Since, as said in Section 4.1.2, rejecting the presupposition in the premise only corresponds to forming a conditional presupposition, replacing the choice of accepting the presupposition to "None of the above" allows the participant to choose said choice only if they have formed a non-conditional presupposition. Thus, by doing so, we can eliminate the effect of accepting the presupposition as an instance of potentially conditional and non-conditional presuppositions.

4.3.3 Results and Discussion

The results are shown in the table below, converted into percentages. The "Human" row refers to Romoli's results; as the covered box solve the issue of converging the two types of presupposition together, we can directly convert responses into percentages.

Model	C-D	NC-D	C-I	NC-I
Gemma	31.25%	68.75%	75%	25%
GPT	100%	0%	100%	0%
LLaMa	37.5%	0%	6.25%	0%
Mistral	18.75%	81.25%	0%	100%
Human	86%	11%	77%	21%

Table 3: Experiment 2a Data. C = Conditional, NC = Non-conditional, D = Dependent, I = Independent.

Experiment 2a showed notable shifts from Experiment 1. Gemma, which previously aligned with human behavior, now increases conditional presuppositions for independent descriptions—opposite of human patterns but consistent with most models in Experiment 1. Mistral now matches humanlike variation, reducing conditional presuppositions for independent descriptions and increasing nonconditional ones, a change from its earlier neutrality. Meanwhile, GPT became "neutral," generating only conditional presuppositions regardless of description type. LLaMa similarly changed its

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

non-conditional presuppositions and showed higher error rates when facing independent descriptions.

This drastic behaviour flip between Experiment 1a and 2a could be accounted for by the difference in choices in these two experiments. In Experiment 1a, the choices are explicit; there are no "other possibilities" expressed in them. In Experiment 2a, however, the covered box option is the "catch-all" option that the models can choose if they feel like all three other options do not describe the creature. This may have caused inflation of nonconditional presupposition data, as the models may have thought that none of the three options accurately depict the creature, regardless of whether or not a conditional or a non-conditional presupposition is formed. The drop in conditional presuppositions in Mistral thus may account for this inflation. However, this inflation cannot explain the differences between Gemma, GPT, and LLaMa across experiments.

Section 5 will discuss a proposed solution combining the data of both experiments. Experiment 2b will explore whether this change is consistent cross-linguistically.

4.4 Experiment 2b: Mandarin LLMs With Covered Box

4.4.1 Setup

The prompts used in Experiment 2a have been translated through ChatGPT and proofread by me, a native Mandarin speaker, to ensure accuracy. A similar setup is used in Experiment 2a. As mentioned in Section 3.2, the 4 selected LLMs used are glm-4-9b-chat, Spark, Qwen 2.5 Coder 14B, and DeepSeek V2 Lite. Qwen and DeepSeek are tested under the environment given by LMStudio, whilst GLM and Spark are tested using their given APIs in their website.

4.4.2 Results and Discussion

The results are shown in the table below.

Model	C-D	NC-D	C-I	NC-I
ChatGLM	93.75%	6.25%	6.25%	93.75%
DeepSeek	0%	100%	0%	100%
Qwen	81.25%	18.75%	0%	100%
Spark	0%	50%	0%	75%
Human	86%	11%	77%	21%

Table 4: Experiment 2b Data. C = Conditional, NC = Non-conditional, D = Dependent, I = Independent.

Like English LLMs in Experiment 2a, Mandarin LLMs behave more similarly to human participants

from Romoli's experiments. ChatGLM and Qwen, for example, exhibited the behaviour of conditional presuppositions being more prominent in dependent descriptions compared to independent descriptions. Both models also have a higher number of conditional presuppositions than non-conditional presuppositions in dependent descriptions, like that of human behaviour. All models also do not exhibit the opposite behaviour demonstrated in Experiment 1b. 474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

However, there are still some stark differences between human behaviour and Mandarin LLM behaviours. Specifically, there exists a disproportionally high amount of choice (D) in independent descriptions. The "inflation" discussed in Experiment 2a could be the cause of this behaviour. This makes sense, as independent descriptions often include sentences that do not make logical sense, and therefore harder for LLMs to derive more information. This thus caused the LLMs to have to choose (D) much more frequently for independent descriptions due to it being the "catch-all" choice. DeepSeek might have extended this behaviour to even dependent descriptions, thus resulting in the 100% responses choosing (D) in both description types.

This may undermine the percentages of responses signaling a non-conditional presupposition, but I will argue that this would not undermine the overall behaviour of Mandarin LLMs behaving more humanlike in Experiment 2b than in 1b. The reason is that, in the prompt, I have explicitly asked the models to only consider the None of the Above choices if the other three prompts do not fit the description; in other words, the covered box choice is a "last resort". Though there may be responses that ignored this order, the majority of the responses should still follow my prompt. If the covered box choice is considered a "last resort," then models that generate conditional presuppositions will still choose choice (C), as a choice (C) does not run counter to the description in the questions. Thus, though the actual percentage of non-conditional presupposition generation may be lower, it still remains that in Experiment 2b, Mandarin LLMs behave more like humans than in Experiment 1b.

5 Overall Discussion

5.1 Synthesis of Results

Combining the results found in the 4 experiments, one can see that the LLMs have quite a variety of

625

626

627

576

behaviours, whether in Mandarin or English. When 524 an explicit choice of a choice derived from a condi-525 tional presupposition and a non-conditional one is 526 given, most LLMs generated conditional presuppositions more when facing independent descriptions 528 - however, when there is only an explicit choice of 529 a conditional presupposition-derived choice and a 530 "None of the Above" choice, most LLMs, especially the Mandarin ones, swapped behaviours, observing a lower percentage of conditional presuppositions 533 in independent descriptions, and correspondingly a 534 higher percentage of non-conditional presupposi-535 tions. 536

537

541

542

545

546

547

548

551

552

554

557 558

559

560

562

563

564

565

571

573

575

This result is quite unusual, as Experiment 1 runs counter-intuitive with what we expected. As said in section 4.1.5, humans tend to expect a conditional presupposition when facing dependent descriptions, unlike what is exhibited here. What is more surprising is that this behaviour is mitigated by simply hiding the option of non-conditional presuppositions in both languages, as shown in Experiment 2. Clearly, the hidden choice created a behaviour change – and though a tentative explanation of "inflation" is discussed in the discussion portions of Experiment 2, it is hard to believe that alone can drastically change the behaviours that much.

A proposed explanation is shown as follows: the key difference between Experiment 1 and 2 is that 1 gives the choice of selection between FF- and FTF – i.e., an explicit selection between conditional and non-conditional presuppositions. Experiment 2, however, does not; one only needs to consider whether the FF- choice, or the conditional presupposition choice, is valid for the description.

In conditional presupposition theory, which DRT is mapped upon, detailed in Section 2.1, conditional presupposition remains the "default choice" in presupposition generation. Only when there is enough justification would a language user choose to defer to a non-conditional presupposition, according to this theory. Here, Occam's Razor and the denying of the antecedent fallacy come into play again – the FF- choice assumes that the presupposition in the consequent of the premise is incorrect, and that is assuming something that cannot be arrived through a conditional presupposition. One cannot arrive from "If Googlemorph can fly, then it has wings" and "Googlemorph cannot fly" to get "It does not have wings" – thus, the covered box choice is selected to avoid the fallacy. In Experiments 1a and 1b, however, the covered box is made explicit – the choice now assumed that the presupposition is true.

Thus, since one cannot avoid the fallacy, unless there is other evidence that suggests the presupposition is true – for example, the causality between the antecedent and the consequent of the premise in dependent descriptions – it is best to default to not assuming the truth of the presupposition, hence the increase in FF- choices in independent descriptions in Experiment 1a and 1b.

Since the majority of the tested LLMs' behaviour is straightforwardly explained through conditional presupposition theory, which maps to satisfaction theory, one can thus conclude that the tested LLMs are more likely to subscribe to satisfaction theory, corroborating with the human results of Romoli's paper. However, this does not translate to the idea that **all** LLMs follow the satisfaction theory, especially considering the sheer amount of variation we see in both Experiments.

Why is it that there are so many variations on the presupposition behaviours of LLMs, as we have observed above? The observed variations in presupposition behaviours among LLMs can be attributed to a combination of implicit influences stemming from differences in training data, model architectures, fine-tuning strategies, and linguistic processing mechanisms. While these variations might initially seem unpredictable, they are rooted in systematic factors that govern how each model encodes and interprets linguistic structures.

The most immediate source of variation is the training data itself. Different LLMs are trained on distinct corpora, ranging from structured datasets such as books, academic papers, and formal articles to more unstructured, conversational data such as social media posts and forum discussions. A model that has been exposed to a large amount of structured text is more likely to follow formal linguistic principles, whereas a model trained on noisier, informal data may exhibit less predictable presuppositional behavior.

Architectural differences also play a crucial role. Tokenization strategies, such as Byte-Pair Encoding or SentencePiece, determine how models segment words and phrases, directly influencing how they process presuppositional triggers. Some architectures prioritize syntactic dependencies, allowing them to recognize linguistic structures more explicitly, while others rely more on semantic embeddings, making them more sensitive to meaning rather than rigid grammatical frameworks. Transformer depth and the number of attention layers also impact linguistic reasoning, with larger mod-

642

657

670

674

675

678

628

els generally performing more consistently than smaller ones. However, even among large models, differences in training objectives and internal representations can lead to variations in how presuppositional content is interpreted.

Ultimately, the wide range of presuppositional behaviors observed in LLMs is a reflection of the diversity in training methodologies, architectural design, and linguistic reasoning strategies. While some models demonstrate greater consistency with human-like presupposition projection, others diverge due to differences in how they internalize and retrieve linguistic knowledge. This shows that while LLMs can create convincingly accurate human-like text, this does not mean that they process said text like humans, or even the same between models. This finding is increasingly important as LLM technology becomes more advanced it is very possible that we would see an increase in the humanness of the generated text, while seeing no change in how LLMs process said text. This disparity between processing and generation should raise alarm and create further research towards resolving said disparity.

5.2 AI As Participants of Linguistic Research

As LLMs become more human-like, it is not a stretch to wonder if they can be analyzed in a human-like way as well—this is one of the motives for the research demonstrated here. I have shown that interesting results can come from using AI as participants in experimental linguistic research, both from verifying the robustness of past linguistic research and from gaining insight into how LLMs work from a linguistic perspective.

Indeed, the usage of LLMs in linguistic research has been explored by other researchers as well. In the paper "Large Language Models and the Wisdom of Small Crowds," Trott demonstrated that LLMs could indeed be useful in linguistic research, specifically as a representation of the aggregate behaviour of many humans ((Trott, 2024)). Though individual variations are less easy to model using LLMs, this lends credibility to the methods used in this paper, as this paper is trying to contribute to the proviso problem debate in a computational manner.

The idea of LLM participants is linked to the "humanness" of LLMs, or how closely they behave like humans. If the humanness of LLM is high, then theoretically, using LLMs in linguistic research would be similar to using humans in linguistic research. Thus, studies like this paper can also act as a benchmark or an evaluation of how much LLMs have evolved. We can see here that Mandarin LLMs are less human-like than English LLMs, given that they exhibit less consistent behaviour than English LLMs, as evidenced by the long explanation given in the previous subsection compared to the relatively simple explanation given for English LLMs. Indeed, the human-likeness benchmark proposed by Duan et al. used 10 psycholinguistic experiments as a basis to assess the humanness of LLMs ((Duan et al., 2024)). Thus, papers like these provide insight not only to linguistics but to the advancement of LLMs as a whole. 679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

6 Conclusion

This dissertation explored the processing of presupposition projection in both English and Mandarin LLMs, drawing comparisons to established linguistic theories - satisfaction theory and Discourse Representation Theory. By adapting experimental methods originally developed for human participants, specifically the paper by Romoli, it was revealed that both English and Mandarin LLMs demonstrate a preference for conditional presuppositions when explicitly tested, aligning them more closely with the Satisfaction Theory framework. However, this generalization is weak, at best, as there exist significant variations among all 8 models tested. This suggests that LLMs can generate convincingly human-like text while lacking the human-like understanding of pragmatic elements, such as pragmatics.

These results contribute to the ongoing debate on LLMs' linguistic capabilities, specifically exploring the potential of using LLMs as participants in experimental linguistic research, both to test theoretical models and to gain insights into the inner workings of AI systems. It is the author's wish that this paper can demonstrate a practical example of LLMs' usefulness in linguistic research.

7 Limitations and Further Research

Because of limitations in computational power and access to LLMs, there are many opportunities for future research following the same vein as this paper. In more detail, the language models used in this paper are not the most powerful, nor do they have the most amount of tokens. As said in Section 3, the choice of language models is also built on whether the experiment can actually be conducted

830

831

832

833

with a Windows 11 system computer with moderate memory and no GPU. Therefore, there is a wide opportunity for new and more powerful LLMs to be tested using this methodology, since they, in theory, would be more in line with human intuition and thus exhibit more human-like behaviours. Specifically, I would like to see how the most recent LLMs, such as GPT o1, Claude Sonnet, and a more powerful version of Qwen, fare with Romoli's experiments.

728

729

731

733

734

737

739

740

741

742

743

744

745

746

747

748

751

754

758

759

762

763

765

770

771

772

773

774

775

776

777

778

Moreover, Romoli's paper uses pictures instead of text-based choices. The reason this paper uses text-based choices is the lack of image recognition on several models tested here. It would be interesting to explore how presupposition interacts with multimodal LLMs that can process images so as to more closely replicate Romoli's experiments.

Time constraints also forbid me from conducting multiple trials of a model in testing. Further research can replicate the experiment to verify the results in this paper, either through multiple testing of models using my prompts or alternate prompts from other researchers.

To that end, this paper shows a possible methodology to conduct, evaluate, and possibly improve the underlying linguistic elements of pragmatics in LLMs – not only in English but in other languages as well. I can foresee that this methodology may be used to put LLM participants through already-done psycholinguistic or experimental pragmatics experiments to either verify or investigate said LLMs. This would open up a wide range of further research topics and hopefully help the advancement of not only pragmatics and computational linguistics but also the understanding and high-level explainability of large language models as well.

References

- Daiki Asami and Saku Sugawara. 2023. PROPRES: Investigating the Projectivity of Presupposition with Various Triggers and Environments. In *Proceedings* of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 122–137, Singapore. Association for Computational Linguistics.
- David I. Beaver, Bart Geurts, and Kristie Denlinger. 2024. Presupposition. In Edward N. Zalta and Uri Nodelman, editors, *The Stanford Encyclopedia of Philosophy*, Fall 2024 edition. Metaphysics Research Lab, Stanford University.
- Terra Blevins, Hila Gonen, and Luke Zettlemoyer. 2023. Prompting Language Models for Linguistic Structure. In *Proceedings of the 61st Annual Meeting of the*

Association for Computational Linguistics (Volume 1: Long Papers), pages 6649–6663, Toronto, Canada. Association for Computational Linguistics.

- Ye-eun Cho and Seongmook Kim. 2024. Pragmatic inference of scalar implicature by LLMs. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)*, pages 10–20.
- Xufeng Duan, Bei Xiao, Xuemei Tang, and Zhenguang G. Cai. 2024. Hlb: Benchmarking llms' humanlikeness in language use. *ArXiv*, abs/2409.15890.
- Bart Geurts. 1996. Local Satisfaction Guaranteed: A Presupposition Theory and Its Problems. *Linguistics and Philosophy*, 19(3):259–294. Publisher: Springer.
- Irene Heim. 2002. On the Projection Problem for Presuppositions. In *Formal Semantics*, pages 249–260. John Wiley & Sons, Ltd.
- Xudong Hong, Margarita Ryzhova, Daniel Biondi, and Vera Demberg. 2024. Do large language models and humans have similar behaviours in causal inference with script knowledge? In *Proceedings of the 13th Joint Conference on Lexical and Computational Semantics* (*SEM 2024), pages 421–437, Mexico City, Mexico. Association for Computational Linguistics.
- Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and Adina Williams. 2020. Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 8690–8705, Online. Association for Computational Linguistics.
- H. Kamp. 1981. A theory of truth and semantic representation, 277-322, jag groenendijk, tmv janssen and mbj stokhof, eds. In Jeroen A. G. Groenendijk, editor, *Formal methods in the study of language*. U of Amsterdam.
- Alicia Parrish, Sebastian Schuster, Alex Warstadt, Omar Agha, Soo-Hwan Lee, Zhuoye Zhao, Samuel R. Bowman, and Tal Linzen. 2021. NOPE: A Corpus of Naturally-Occurring Presuppositions in English. In Proceedings of the 25th Conference on Computational Natural Language Learning, pages 349–366, Online. Association for Computational Linguistics.
- R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Jacopo Romoli. 2011. An experimental investigation of presupposition projection in conditional sentences. *Semantics and Linguistic Theory*, 21:592–608.
- Judith Sieker and Sina Zarrieß. 2023. When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-Presuppositions and the Maximize Presupposition! Principle. In *Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting*

834 835	<i>Neural Networks for NLP</i> , pages 180–198, Singapore. Association for Computational Linguistics.	C. A creature that is green, without scales. D. A creature that is green, with scales, and the	886 887
836 837 838	Settaluri Sravanthi, Meet Doshi, Pavan Tankala, Rudra Murthy, Raj Dabre, and Pushpak Bhattacharyya. 2024. PUB: A Pragmatics Understanding Bench-	scales are rough. Answer: D	888 889
839 840	mark for Assessing LLMs' Pragmatics Capabilities. In <i>Findings of the Association for Computational Lin</i> -	A.2 Experiment 1a Prompts	890
841	guistics ACL 2024, pages 12075–12097, Bangkok,	1. Description: If Googlemorph is flying, then	891
842	Thailand and virtual meeting. Association for Com-	his wings are big and strong. But Google-	892
843	putational Linguistics.	morph is not flying.	893
844	Sean Trott. 2024. Large language models and the wis-		
845	dom of small crowds. Open Mind, 8:723–738.	Choice:	894
846	Polina Tsvilodub, Paul Marty, Sonia Ramotowska, Ja-	A. A creature that is flying, with wings, and	895
847	copo Romoli, and Michael Franke. 2024. Exper-	the wings are big.	896
848	imental Pragmatics with Machines: Testing LLM	B. A creature that is flying, with wings, and	897
849	Predictions for the Inferences of Plain and Embed- ded Disjunctions. <i>arXiv preprint</i> . ArXiv:2405.05776	the wings are small.	898
850 851	[cs].	C C	000
		C. A creature that is on the ground, with	899
852	Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,	wings, and the wings are small.	900
853 854	Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, and Mengnan Du. 2024. Explainability for large	D. A creature that is on the ground, without	901
855	language models: A survey. ACM Trans. Intell. Syst.	wings.	902
856	Technol., 15(2).	C C	
	A Decements	2. Description: If Googlemorph is drinking or-	903
857	A Prompts	ange juice, then his wings are big and strong.	904
858	A.1 Experiment 1a Preamble	But Googlemorph is not drinking orange	905
859	I will present to you two pieces of data; the first	juice.	906
860	one is labeled "Description" and the second one is	Choice:	907
861	labeled "Choice". The description describes one of		001
862	the creatures shown in the possible choices. Please	A. A creature that is drinking orange juice,	908
863	read the following description. Depending on the	with wings, and the wings are big.	909
864	description, select the best creature that fits this	B. A creature that is drinking orange juice,	910
865	description. You do not need justification.	with wings, and the wings are small.	911
866	The following snippets are examples. Descrip-	C. A creature that is drinking water, with	010
867	tion: If Googlemorph is diving, then his scales are	wings, and the wings are small.	912 913
868	sleek. But Googlemorph is not diving.	c c	915
869	Choice:	D. A creature that is drinking water, without	914
870	A. A creature that is diving, with scales, and the	wings.	915
871	scales are sleek.	2 Descriptions If Constant and the share to the	
872	B. A creature that is diving, with scales, and the	3. Description: If Googlemorph has sharp teeth,	916
873	scales are rough.	then he is eating meat. But Googlemorph	917
874	C. A creature that is on the ground, with scales,	doesn't have sharp teeth.	918
875	and the scales are rough.	Choice:	919
876	D. A creature that is on the ground, without	A. A creature that has sharp teeth, is eating,	920
877	scales.	and the food is meat.	921
878	Answer: C		011
879	Description: If Googlemorph is blue, then his	B. A creature that has sharp teeth, is eating,	922
880	scales are sleek. But Googlemorph is not diving.	and the food is plants.	923
881	Choice:	C. A creature that doesn't have sharp teeth, is	924
882	A. A creature that is blue, with scales, and the scales are sleek.	eating, and the food is plants.	925
883		-	000
884	B. A creature that is blue, with scales, and the scales are rough.	D. A creature that doesn't have sharp teeth, and is not eating.	926 927
885	scales ale lough.	and is not caung.	921

928 929	4	. Description: If Googlemorph is green, then he is eating meat. But Googlemorph is not		C. A creature that doesn't breathe fire, has a snout, and the snout is not fireproof.	971 972
930 931		green. Choice:		D. A creature that doesn't breathe fire, and doesn't have a snout.	973 974
932 933		A. A creature that is green, is eating, and the food is meat.	8.	Description: If Googlemorph is pink, then its snout is fireproof. But Googlemorph isn't	975 976
934 935		B. A creature that is green, is eating, and the food is plants.		pink. Choice:	977 978
936 937		C. A creature that is blue, is eating, and the food is plants.		A. A creature that is pink, has a snout, and the snout is fireproof.	979 980
938	_	D. A creature that is blue, and is not eating.		B. A creature that is pink, has a snout, and the snout is not fireproof.	981 982
939 940 941	5	. Description: If Googlemorph is underwater, then its gills are functioning. But Google- morph is not underwater.		C. A creature that is purple, has a snout, and the snout is not fireproof.	983 984
942		Choice:		D. A creature that is purple, and doesn't have a snout.	985 986
943 944		A. A creature that is underwater, has gills, and the gills are functioning.	9.	Description: If Googlemorph runs, then its	987
945 946		B. A creature that is underwater, has gills, and the gills are not functioning.		legs are strong. But Googlemorph isn't run- ning.	988 989
947 948		C. A creature that is on the ground, has gills, and the gills are not functioning.		Choice: A. A creature that is running, has legs, and the	990 991
949 950		D. A creature that is on the ground and doesn't have gills.		legs are strong. B. A creature that is running, has legs, and the	992 993
951 952	6	. Description: If Googlemorph is green, then its gills are functioning. But Googlemorph is		legs are not strong. C. A creature that is still, has legs, and the legs are not strong.	994 995 996
953 954		not green. Choice:		D. A creature that is still and doesn't have legs.	997 998
955 956		A. A creature that is green, has gills, and the gills are functioning.	10.	Description: If Googlemorph is orange, then	999
957 958		B. A creature that is green, has gills, and the gills are not functioning.		its legs are strong. But Googlemorph isn't orange.	1000 1001
959 960		C. A creature that is blue, has gills, and the gills are not functioning.		Choice: A. A creature that is orange, has legs, and the	1002 1003
961 962		D. A creature that is blue and doesn't have gills.		legs are strong. B. A creature that is orange, has legs, and the	
963	7	. Description: If Googlemorph breathes fire,		legs are not strong.	1005 1006
964 965		then its snout is fireproof. But Googlemorph isn't breathing fire.		C. A creature that is red, has legs, and the legs are not strong.	1007 1008
966		Choice:		D. A creature that is red and doesn't have legs.	1009
967 968		A. A creature that breathes fire, has a snout, and the snout is fireproof.	11.	Description: If Googlemorph sees far, then its eyes are large. But Googlemorph isn't seeing	1010 1011
969 970		B. A creature that breathes fire, has a snout, and the snout is not fireproof.		far. Choice:	1012 1013

1014 1015		A. A creature that sees far, has eyes, and the eyes are large.	15.	Description: If Googlemorph has a good mem- ory, then its hippocampus is developed. But	1057 1058
1016		B. A creature that sees far, has eyes, and the		Googlemorph doesn't have a good memory.	1059
1017		eyes are not large.		Choice:	1060
1018		C. A creature that doesn't see far, has eyes,		A. A creature that has a good memory, has a	1061
1019		and the eyes are not large.		hippocampus, and the hippocampus is devel-	1062
1020		D. A creature that doesn't see far and doesn't		oped.	1063
1021		have eyes.		B. A creature that has a good memory, has	1064
1022	12	Description: If Googlemorph is blue, then its		a hippocampus, and the hippocampus is not developed.	1065 1066
1023		eyes are large. But Googlemorph isn't blue.		*	
1024		Choice:		C. A creature that doesn't have a good mem- ory, has a hippocampus, and the hippocampus	1067 1068
1025		A. A creature that is blue, has eyes, and the		is developed.	1069
1026		eyes are large.		D. A creature that doesn't have a good mem-	1070
1027		B. A creature that is blue, has eyes, and the		ory and doesn't have a hippocampus.	1071
1028		eyes are not large.			
1029		C. A creature that is yellow, has eyes, and the	16.	Description: If Googlemorph is orange, then	1072
1030		eyes are not large.		its hippocampus is developed. But Google- morph isn't orange.	1073 1074
1031		D. A creature that is yellow and doesn't have		Choice:	
1032		eyes.			1075
1000	10	Description: If Coordanamh was a diarchet		A. A creature that is orange, has a hippocam- pus, and the hippocampus is developed.	1076
1033 1034	15	. Description: If Googlemorph uses a slingshot, then its hands have thumbs. But Googlemorph			1077
1035		isn't using a slingshot.		B. A creature that is orange, has a hippocam- pus, and the hippocampus is not developed.	1078 1079
1036		Choice:			
1037		A. A creature that uses a slingshot, has hands,		C. A creature that is blue, has a hippocampus, and the hippocampus is developed.	1080 1081
1037		and the hands have thumbs.			
1039		B. A creature that uses a slingshot, has hands,		D. A creature that is blue and doesn't have a hippocampus.	1082 1083
1040		and the hands don't have thumbs.		mppooumpust	1000
1041		C. A creature that doesn't use a slingshot. has	17.	Description: If Googlemorph sees in color,	1084
1042		hands, and the hands don't have thumbs.		then its eyes contain three types of cones. But Googlemorph doesn't see in color.	1085 1086
1043		D. A creature that doesn't use a slingshot and			
1044		doesn't have hands.		Choice: A. A creature that sees in color, has eyes, and the eyes contain three types of	1087 1088
10.15	14	Description: If Cooplantamphic and then its		cones.	1089
1045 1046	14	Description: If Googlemorph is red, then its hands have thumbs. But Googlemorph isn't		B. A creature that sees in color, has eyes, and	1090
1047		red.		the eyes don't contain three types of cones.	1091
1048		Choice:		C. A creature that doesn't see in color, has	1092
1049		A. A creature that is red, has hands, and the		eyes, and the eyes don't contain three types of	1093
1049		hands have thumbs.		cones.	1094
1051		B. A creature that is red, has hands, and the		D. A creature that doesn't see in color and	1095
1052		hands don't have thumbs.		doesn't have eyes.	1096
1053		C. A creature that is green. has hands, and the	18	Description: If Googlemorph is white, then	1097
1054		hands don't have thumbs.	10.	its eyes contain three types of cones. But	1098
1055		D. A creature that is green and doesn't have		Googlemorph isn't white.	1099
1056		hands.		Choice:	1100

1101		A. A creature that is white, has eyes, and the		D. A creature that is not eating chocolate and	1147
1102		eyes contain three types of cones.		doesn't have a liver.	1148
1103 1104		B. A creature that is white, has eyes, and the eyes don't contain three types of cones.	22.	Description: If Googlemorph has 37 teeth,	1149
1105		C. A creature that is black, has eyes, and the		then its liver can process theobromine effi-	1150
1105		eyes don't contain three types of cones.		ciently. But Googlemorph doesn't have 37 teeth.	1151 1152
1107		D. A creature that is black and doesn't have			
1108		eyes.		A. A creature that has 37 teeth, has a liver, and the liver process theobromine efficiently.	1153 1154
1109	10	Description: If Googlemorph communicates,		B. A creature that has 37 teeth, has a liver,	1155
1110	17.	then its Broca's area is functioning. But		and the liver doesn't process theobromine ef-	1156
1111		Googlemorph doesn't communicate.		ficiently.	1157
1112		A. A creature that is communicating, has a		C. A creature that has 31 teeth, has a liver,	1158
1113		Broca's area, and the Broca's area is function-		and the liver doesn't process theobromine ef-	1159
1114		ing.		ficiently.	1160
1115		B. A creature that is communicating, has a		D. A creature that has 31 teeth and doesn't	1161
1116 1117		Broca's area, and the Broca's area is not func- tioning.		have a liver.	1162
1118		C. A creature that is not communicating, has	23.	Description: If Googlemorph pecks wood,	1163
1110		a Broca's area, and the Broca's area is not		then its beak is sharp. But Googlemorph isn't	1164
1120		functioning.	pecking wood.	1165	
1121		D. A creature that is not communicating and		A. A creature that is pecking wood, has a beak,	1166
1122		doesn't have a Broca's area.		and the beak is sharp.	1167
1123	20.	Description: If Googlemorph is purple, then		B. A creature that is pecking wood, has a beak, and the beak is round.	1168
1124		its Broca's area is functioning. But Google- morph isn't purple.			1169
1125				C. A creature that is not pecking wood, has a beak, and the beak is round.	1170 1171
1126		A. A creature that is purple, has a Broca's area,			
1127		and the Broca's area is functioning.		D. A creature that is not pecking wood and doesn't have a beak.	1172 1173
1128		B. A creature that is purple, has a Broca's area,			
1129		and the Broca's area is not functioning.	24.	Description: If Googlemorph is gray, then its beak is sharp. But Googlemorph isn't gray.	1174
1130 1131		C. A creature that is gray, has a Broca's area, and the Broca's area is not functioning.			1175
1132		D. A creature that is gray and doesn't have a		A. A creature that is gray, has a beak, and the beak is sharp.	1176 1177
1132		Broca's area.		*	
	21			B. A creature that is gray, has a beak, and the beak is round.	1178 1179
1134 1135	21.	Description: If Googlemorph eats chocolate, then its liver can process theobromine effi-		C. A creature that is purple, has a beak, and	1180
1136		ciently. But Googlemorph doesn't eat choco-		the beak is round.	1181
1137		late.		D. A creature that is purple and doesn't have	1182
1138		A. A creature that is eating chocolate, has a		a beak.	1183
1139		liver, and the liver process theobromine effi-	25		
1140		ciently.	25.	Description: If Googlemorph hears a whale sing, then its ears can hear subsonic sounds.	1184 1185
1141		B. A creature that is eating chocolate, has		But Googlemorph doesn't hear a whale sing.	1186
1142 1143		a liver, and the liver doesn't process theo- bromine efficiently.		A. A creature that hears a whale sing, has ears,	1187
1144		C. A creature that is not eating chocolate, has		and the ears can hear subsonic sounds.	1188
1145		a liver, and the liver doesn't process theo-		B. A creature that hears a whale sing, has ears,	1189
1146		bromine efficiently.		and the ears cannot hear subsonic sounds.	1190

1191 1192		C. A creature that doesn't hear a whale sing, has ears, and the ears cannot hear subsonic		C. A creature that is not eating plants, has teeth, and the teeth is sharp.	1235 1236
1193 1194		sounds. D. A creature that doesn't hear a whale sing		D. A creature that is not eating plants and doesn't have teeth.	1237 1238
1195		and doesn't have ears.		Description: If Googlemorph is pink, then its	1239
1196	26.	Description: If Googlemorph is blue, then its		teeth is flat. But Googlemorph isn't pink.	1240
1197		ears can hear subsonic sounds. But Google-		Choice:	1241
1198		morph isn't blue.			
1199		A. A creature that is blue, has ears, and the		A. A creature that is pink, has teeth, and the teeth is flat.	1242
1200		ears can hear subsonic sounds. B. A crea-			1243
1201		ture that is blue, has ears, and the ears cannot		B. A creature that is pink, has teeth, and the	1244
1202		hear subsonic sounds. C. A creature that is		teeth is sharp.	1245
1203		yellow, has ears, and the ears cannot hear sub-		C. A creature that is purple, has teeth, and the	1246
1204		sonic sounds. D. A creature that is yellow and		teeth is sharp.	1247
1205		doesn't have ears.		D. A creature that is purple and doesn't have	1248
1206	27.	Description: If Googlemorph lives in the Arc-		teeth.	1249
1207		tic, then its fur is thick. But Googlemorph	31	Description: If Googlemorph jumps high,	1250
1208		doesn't live in the Arctic.		then its legs are strong. But Googlemorph	1250
1209		A. A creature that lives in the Arctic, has fur,		doesn't jump high.	1252
1210		and the fur is thick.		Choice:	1253
1211		B. A creature that lives in the Arctic, has fur,		A. A creature that is jumping high, has legs,	
1212		and the fur is thin.		and the legs are strong.	1254 1255
1213		C. A creature that lives in the Equator, has fur,		B. A creature that is jumping high, has legs,	1256
1214		and the fur is thin.		and the legs are weak.	1250
1215		D. A creature that lives in the Equator and		C. A creature that is on the ground, has legs,	1258
1216		doesn't have fur.		and the legs are weak.	1259
1217	28.	Description: If Googlemorph smiles, then its		D. A creature that is on the ground and has no	1260
1218		fur is thick. But Googlemorph isn't smiling.		legs.	1261
1219		A. A creature that is smiling, has fur, and the	32.	Description: If Googlemorph is blue, then its	1262
1220		fur is thick.		legs are strong. But Googlemorph isn't blue.	1263
1221		B. A creature that is smiling, has fur, and the		Choice:	1264
1222		fur is thin.		A. A creature that is blue, has legs, and the	1265
1223		C. A creature that is crying, has fur, and the		legs are strong.	1266
1224		fur is thin.		B. A creature that is blue, has legs, and the	1267
1225		D. A creature that is crying and doesn't have		legs are weak.	1268
1226		fur.		•	
	• •			C. A creature that is pink, has legs, and the legs are weak.	1269 1270
1227	29.	Description: If Googlemorph eats plants, then		•	
1228		its teeth is flat. But Googlemorph isn't eating		D. A creature that is pink and has no legs.	1271
1229		plants.	A.3	Experiment 2a Preamble	1272
1230		Choice:		l present to you two pieces of data; the first	1273
1231		A. A creature that is eating plants, has teeth,		s labeled "Description" and the second one is	1274
1232		and the teeth is flat.		ed "Choice". The description describes one of	1275
1233		B. A creature that is eating plants, has teeth,		reatures shown in the possible choices. Please	1276
1234		and the teeth is sharp.	read	the following description. Depending on the	1277

1278description, select the best creature that fits this1279description. You do not need justification.

1280Note: The prompt in Experiment 2a is modi-1281fied per Section 4.3.1 based on Appendix A.1's1282prompts.