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ABSTRACT

Inspired by the success of pre-training large language models, recent efforts have
explored cross-domain pre-training for time-series foundation models (TSFMs).
However, the distinct data generation dynamics and contextual limitations of time-
series data challenge the direct transferability of LLM strategies to TSFMs. In this
paper, we investigate whether cross-domain pre-training truly benefits TSFMs.
Through systematic experiments, we reveal that while cross-domain pre-training
can enhance performance in certain domains, it may also cause severe negative
transfer in others due to domain disparities in sampling frequencies and evolu-
tion patterns. Surprisingly, transfer effects are often counterintuitive: unrelated
domains can yield significant gains, whereas related domains may induce degra-
dation. These findings highlight the need for tailored pre-training strategies that
address the unique characteristics of time-series data. Our study provides action-
able insights to guide the development of more effective TSFMs.

1 INTRODUCTION

Time-series forecasting is a fundamental need across key domains such as energy, climate, and
commerce. Inspired by the success of pre-training large language models (LLMs) on web-scale
corpora (Brown et al., 2020; Kaplan et al., 2020), recent years have seen growing interest in pre-
training time-series foundation models (TSFMs) using cross-domain data (Woo et al., 2024; Ansari
et al., 2024; Rasul et al., 2023; Liu et al., 2024a; Das et al., 2023).

However, despite the shared sequential nature of time-series and language data, fundamental dif-
ferences between these two types of data challenge the effectiveness of cross-domain pre-training
for TSFMs. The first key difference lies in the underlying data generation dynamics. Language
data, even across different languages and generations, reflects how humans describe the world and
exchange information. In contrast, time-series data from different domains follow fundamentally
distinct evolution patterns. For example, electricity consumption is driven by social and economic
activities (Fan et al., 2022), climate variations are governed by advection mechanics (Verma et al.,
2024), and product sales reflect shifting consumer preferences (Fan et al., 2017). These differences
imply that effective forecasting requires domain-specific modeling, raising concerns about the va-
lidity of cross-domain pre-training. For instance, how would learning from product sales improve
forecasting for humidity?

Even if a sufficiently large TSFM could harmonize these diverse dynamics, a second major chal-
lenge arises: historical observations in time series often lack the necessary contextual information to
fully govern future variations. In language modeling, previous tokens typically constrain text gen-
eration within a limited manifold of plausible continuations—more context usually leads to more
deterministic outcomes. In contrast, while past time-series data provides a foundation for forecast-
ing, many real-world systems depend on external factors that historical time series alone cannot
capture, such as policy changes, product innovations, or climate shifts. Cross-domain pre-training
may further exacerbate this issue, as models trained on similar historical patterns will struggle when
future dynamics diverge significantly across domains (Bergmeir, 2024).

In this study, we take a deeper look at a fundamental research question for TSFMs: Does cross-
domain pre-training truly help? To answer this, we propose a simple yet effective experimental
protocol to systematically evaluate whether—and to what extent—time-series datasets from different
domains enhance or hinder forecasting performance in other domains. Inspired by prior research on
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task-transfer effects in multi-task learning (Standley et al., 2020; Fifty et al., 2021; Song et al.,
2022), our approach aims to disentangle the benefits and limitations of cross-domain pre-training.
We specifically examine both performance gains and negative transfer and provide insights to guide
the development of future TSFMs from a data-centric perspective.

Through preliminary experiments, we provide the following findings and insights:

• While cross-domain pre-training can improve time-series forecasting performance in cer-
tain domains, it may also lead to severe and unexpected performance degradation in other
scenarios, highlighting the impact of domain disparities in forecasting patterns.

• Cross-domain transfer effects appear to be highly data-driven, often counterintuitive and
beyond human-perceived prior knowledge. For example, some seemingly unrelated do-
mains exhibit significant performance gains from cross-domain learning, while closely re-
lated domains may suffer from severe negative transfer effects.

• These findings suggest that to develop more effective TSFMs, we need distinct pre-training
strategies compared to LLMs, considering the challenges posed by domain disparities and
insufficient contextual information in time-series data.

2 EXPERIMENTAL PROTOCOLS FOR CROSS-DOMAIN PRE-TRAINING

Here, we refine our research question more specifically as: Given a target application domain of
interest, what kind of pre-training data is most suitable for building effective TSFMs? Ideally, we
aim to determine the optimal pre-training dataset combination (at the dataset level) that yields the
best generalization performance on the given target domain.

However, this task is highly challenging due to the complexity of interactions between datasets. To
address this, we simplify our study in two key ways. First, we perform a domain-level simplifi-
cation by restricting the search to the domain level instead of considering arbitrary combinations
of datasets. Second, we focus on a pairwise setting by examining only pairwise interactions—i.e.,
for a given target domain, we investigate the effect of adding one auxiliary domain at a time. This
approach allows us to better isolate and understand the impact of cross-domain interactions.

2.1 PROBLEM FORMULATION

Identifying Domain Combinations for Pre-Training. Let {Di : i = 1, . . . , N} denote a col-
lection of domains. For a specified target domain DT , our goal is to identify the most appropriate
pre-training combination D that helps produce a TSFM parameterized by θ∗(D) with optimal gen-
eralization performance on DT

test. This can be formulated as:

D∗ = argmin
D

E(x,y)∼DT
test

[
ℓ
(
f
(
x; θ∗D

)
,y

)]
,where θ∗D = argmin

θ
E(x,y)∼D

[
ℓ
(
f(x; θ),y

)]
.

Here, f(x; θ) denotes the forecasting model with parameters θ, and ℓ(·, ·) is the loss function. The
notation D and DT

test indicate the pre-training data combination and the test set of the target domain,
respectively. x ∈ Rl denotes the historical context vector of length l, and y ∈ Rh represents the
target forecast vector of length h.

Pairwise Simplification. Due to the high complexity of searching over all possible dataset com-
binations, we focus on a pairwise setting. In this case, for a given target domain DT , we study
the effect of incorporating a single auxiliary domain Dj . Specifically, the training set is defined as:
DT,j = DT ∪Dj , where we omit the ”train” subscript for simplicity. The optimal auxiliary domain
is then identified by solving:

j∗ = argmin
j

E(x,y)∼DT
test

[
ℓ
(
f
(
x; θ∗DT,j

)
,y

)]
,

where θ∗DT,j = argminθ E(x,y)∼DT,j

[
ℓ
(
f(x; θ),y

)]
. This formulation allows us to quantify the

benefit of cross-domain pre-training using an auxiliary domain Dj on the performance of the target
domain DT .
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2.2 PROTOCOLS AND BASELINES

Based on the above formulations, our experiments are conducted under three distinct settings: (1)
single-domain pre-training, where each domain Di is trained independently to establish in-domain
baseline performance; (2) all-domain pre-training, wherein a model is pre-trained on the combined
dataset of all domains to assess the overall effect of large-scale cross-domain learning; and (3)
multi-domain (pairwise) pre-training, which focuses on pairwise combinations Di,j to analyze
how incorporating an auxiliary domain improves performance on the target domain.

3 EXPERIMENTAL SETUP

Data. The experiments are conducted on a diverse set of time-series datasets spanning 10 do-
mains, grouped into five sectors, from the LOTSA dataset (Woo et al., 2024). The Energy sector in-
cludes Buildings900K (B900K) (Emami et al., 2023), BuildingsBench (BBench) (Emami
et al., 2023), and ProEnFo (Wang et al., 2023). The Transportation sector consists of LargeST
(Liu et al., 2023) and LibCity (Jiang et al., 2023). The Climate sector includes ERA5 (Nguyen
et al., 2024), CMIP6 (Nguyen et al., 2024), and Subseasonal (Sub) (Mouatadid et al., 2024).
The Cloud Service sector contains a single domain, CloudOps (Woo et al., 2023). Finally, the
Sales sector, which also contains only one domain named Sales, includes datasets such as the M5
competition dataset (Makridakis et al., 2022), Favorita Sales, Favorita Transactions Restaurant, and
Hierarchical Sales datasets (Binkhonain & Zhao, 2023).

For more detailed information and analysis of these domains, see Appendix B. The following ex-
periments are all conducted at the domain level. In subsequent sections, the terms “dataset” and
“domain” may be used interchangeably, but they both refer to the different domains discussed here.

Model. We adopt the MOIRAI-small (Woo et al., 2024) architecture as the backbone model for all
experiments. To ensure consistency across experiments, we set the patch size to 16, following the
same approach as Liu et al. (2024b) and Yao et al. (2025). All other settings remain consistent with
the original paper. Moirai-small is one of the first foundation models designed specifically for time
series forecasting, containing 10.7M trainable parameters. We acknowledge that larger models with
more parameters might exhibit different scaling behaviors. However, due to resource constraints,
we have not yet conducted experiments with larger models, leaving this for future research.

Evaluation. Each domain is split into training and test sets to ensure a fair and reasonable data
distribution for in-domain performance evaluation. The test set is selected by holding out the last
portion of each dataset (details in Appendix C) during the pre-training phase, ensuring these samples
are not used for training. The evaluation metrics include four key measures to comprehensively
assess the in-domain performance (NLL-loss, NMAE, NRMSE, SMAPE; their definitions can be
found in the Appendix C.1).

4 RESULTS AND ANALYSIS

Table 1 presents the averaged NLL-loss of all pre-training experiments following our protocols. We
use NLL-loss as the main evaluation metric here because it directly assesses the predicted probability
distribution, capturing both central tendency and uncertainty. We also report other sampled point
prediction metrics, such as NMAE, NRMSE, and SMAPE, which are included in Appendix C.1.
These metrics exhibit similar patterns to NLL-loss, though the degree of degradation is less severe
in some domains.

All-domain pre-training does not always outperform single-domain pre-training. The “all”
column reports the relative performance when using all-domain pre-training (the default approach
for TSFMs) compared to single-domain pre-training. This result reveals clear sector-specific
trends: in the Energy and Climate sectors, all-domain pre-training consistently outperforms
single-domain pre-training, with the largest improvement observed in the energy sector’s proenfo
dataset, where performance increased by 16.22%. Conversely, for the Transportation, Cloud
Services and Sales sector, all-domain pre-training performs worse than single-domain pre-
training. Notably, for sales data, all-domain pre-training results in the most significant degradation,
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Table 1: NLL-loss of Multi-Domain Pre-training Relative to Single-Domain Pre-training. This table
compares the test Negative Log-Likelihood loss across various domains when models are pretrained on single-
domain data versus multi-domain data. Each row represents a target domain used for test, with the second
column (“single”) showing the single-domain pre-training NLL-loss. The third column (“all”) displays the
relative performance (in percentage) of all-domain pre-training compared to single-domain pre-training. The
subsequent columns present the relative performances (in percentage) when combining the target domain i with
an auxiliary domain j during pre-training. For example, in the B900k target domain, a value of -6.56% for
BBench indicates that incorporating the auxiliary domain BBench during multi-domain pre-training leads to
a 6.56% improvement compared to single-domain pre-training. Diagonal elements are omitted (“-”) as they
align with single-domain pre-training and remain near 0.00%. Results are averaged over five trials.

NLL-loss↓ single all B900k BBench ProEnFo LargeST LibCity ERA5 CMIP6 Sub CloudOps Sales

B900k 3.66 -5.71% – -6.56% -3.56% -0.74% -1.64% -1.29% -0.53% 1.53% -2.23% 1.21%
BBench 3.46 -0.27% -1.17% – -0.01% -0.76% -0.60% -0.30% -0.18% -0.73% -0.92% 1.12%
ProEnFo 8.30 -16.22% -13.52% -13.66% – -9.21% -15.49% -3.68% -3.63% -12.53% -16.80% -11.78%

LargeST 4.51 7.15% 3.20% 4.36% 1.13% – 6.59% 0.98% 0.96% 5.20% 5.92% 9.13%
LibCity 2.34 3.57% 0.58% 0.51% 0.20% -0.63% – -0.12% -0.19% 1.09% 2.52% 3.40%

ERA5 2.42 -12.37% -19.13% -16.54% -17.67% -5.97% -6.01% – -11.71% 5.64% -23.00% 7.31%
CMIP6 2.62 -16.57% -19.77% -15.06% -8.92% -16.22% -11.62% -10.79% – 4.47% -30.56% 72.03%
Sub 3.46 -9.28% -0.49% -2.66% -1.16% -0.23% -6.24% -0.52% 0.97% – -8.52% -9.35%

CloudOps 0.43 23.85% 4.92% 6.51% -1.81% -0.54% -0.96% -0.70% 3.40% 9.08% – 30.62%

Sales 0.67 67.09% -3.14% 1.26% 3.22% 4.04% 43.73% 3.76% -2.21% 5.87% 45.59% –

with performance dropping by 67.09%. Overall, this illustrates that while all-domain pre-training
can deliver substantial benefits for certain datasets, it can also significantly hinder performance in
others, emphasizing the need for tailored pre-training approaches.

Cross-domain transfer effects appear to be highly data-driven, and they are not symmetrical.
Cross-domain transfer effects exhibit either mutual enhancement or conflict, and we hypothesize
that their behavior is influenced by the underlying characteristics of the datasets. For example,
some domains, like CloudOps, significantly enhance performance in seeming unrelated domains
like CMIP6, with an impressive 30.56% improvement over single-domain pre-training — a result
that stands out given differences in sampling frequency and sector. Conversely, certain domains
consistently impair each other’s performance. For example, Sales and Subseasonal datasets,
characterized by their daily sampling frequency, often cause negative transfer when paired with
datasets sampled at finer temporal resolutions (e.g., minute or hourly data). Moreover, these ob-
served transfer effects are not symmetric; CloudOps improves CMIP6, but the reverse effect is not
observed. This asymmetry underlines the complexity of cross-domain transfer effects in time-series
forecasting, highlighting the need for deeper understanding of these dynamics.

Data from the same sector does not always enhance each other. Even within the same sector,
cross-dataset transfer effects vary significantly. Among the three sectors studied, Energy stands
out with consistent positive transfer across datasets, likely due to all datasets in this sector being
uniformly sampled at an hourly rate. In contrast, the Transportation and Climate sector
frequently exhibits mixed results, where combining datasets may lead to degraded performance,
possibly due to heterogeneity in sampling rates or forecasting patterns. These observations suggest
that even within the same sector, pre-training strategies need to carefully account for variations in
data properties such as sampling frequency and pattern similarity.

5 CONCLUSION

In this study, we systematically evaluated the impact of cross-domain pretraining for TSFMs and
uncovered key insights. Our findings show that cross-domain transfer effects are highly data-driven
and sometimes counterintuitive, with unrelated domains occasionally providing significant gains
while closely related ones may cause degradation. These results emphasize the need for tailored
pretraining strategies that account for the unique characteristics of time-series data, rather than di-
rectly adopting approaches from language models. Future work should explore adaptive methods to
mitigate negative transfer and better leverage cross-domain knowledge.
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A RELATED WORK

A.1 TIME SERIES FOUNDATION MODELS

The development of TSFMs has gained momentum (Woo et al., 2024; Ansari et al., 2024; Rasul
et al., 2023; Liu et al., 2024a; Das et al., 2023). These models aim to generalize across diverse time-
series datasets, enabling zero-shot and few-shot forecasting capabilities. Early approaches, such as
Chronos (Ansari et al., 2024) and Lag-LLaMA (Rasul et al., 2023), employed unified architectures
that struggled with the heterogeneity of input patterns, leading to increased learning complexity
and parameter demands. Recent methods like UniTime (Liu et al., 2024a) and MOIRAI (Woo
et al., 2024) have addressed these challenges by incorporating specialization mechanisms, such as
frequency embeddings or dataset-level prompts, to better adapt to specific data characteristics.

Scaling TSFMs has also been a key focus. For example, Time-MoE (Shi et al., 2025) and Moirai-
MoE (Liu et al., 2024b) leverage mixture-of-experts (MoE) architectures to increase model capacity
while maintaining computational efficiency. These studies demonstrate that scaling laws—originally
established for language models—are applicable to time-series forecasting (Yao et al., 2025). How-
ever, significant challenges remain in addressing the heterogeneity of time-series data across do-
mains, such as variations in sampling frequencies and dominant patterns.

A.2 DOMAIN ADAPTATION

Domain adaptation (DA) for time series addresses the challenges posed by distribution shifts be-
tween source and target domains, requiring methods that handle unique temporal dependencies and
dynamic sequence patterns (Wilson et al., 2020; Jin et al., 2022). Unlike traditional DA approaches
in CV and NLP (Rietzler et al., 2020; Gururangan et al., 2020), time series DA must account for these
complexities. Recent advancements include He et al. (2023), which aligns temporal and frequency
features to address feature and label shifts, and Ragab et al. (2022), which uses self-supervised
learning with forecasting as an auxiliary task to improve feature transferability.

However, most existing DA methods remain task-specific and are often evaluated on small-scale
datasets with limited domain pairs, restricting their generalizability to diverse scenarios. Our work
aims to explore the cross-domain transferability of TSFMs on a larger data scale. Instead of adopt-
ing a specific DA method, we follow the common approach used by most current TSFMs, where
tokenization uniformly represents the source and target domains in a shared space.

B DETAILED ANALYSIS OF DIFFERENT DOMAINS

B.1 STATISTICAL ANALYSIS

Although the original LOTSA dataset1 provides a general categorization of different domains, some
domains contain an overwhelming amount of data, some domains contain an overwhelming amount
of data or are mixed with data that does not belong to specific domains. To address this, we refined
the selection process and chose 10 representative domains for our experiments.

The datasets of the ten selected domains cover a wide range of sampling frequencies (e.g., seconds
for transportation data vs. days for sales data). Table 2 summarizes the sampling frequencies cov-
ered by each domain. Overall, the domains tend to align with their respective sectors’ characteristics,

1https://github.com/SalesforceAIResearch/uni2ts
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showing a clustering pattern based on their sampling frequency needs. For instance, the transporta-
tion sector (e.g., LibCity) commonly include high-frequency data (e.g., 2T, 5T, 15T, 30T, where
T represents seconds), reflecting the need to capture rapid changes in urban mobility. By con-
trast, weather and climate sector (e.g., ERA5, CMIP6, Subseasonal) are typically sampled
at lower frequencies (hourly, 6-hourly, or daily) in line with the slower progression of
atmospheric and environmental changes. Similarly, the sales sector operate on a daily frequency,
as sales data evolves relatively slowly compared to other domains. Through the multi-domain pre-
training between these domains with distinct frequencies, further insights can be drawn concerning
the transfer potential across domains with similar or complementary temporal properties.

Table 3 demonstrates that each domain contains a substantial volume of data, ensuring sufficient
resources for training a Time Series Foundation Model (TSFM). For example, large datasets such
as CMIP6 and ERA5 provide over 25 billion target points, while smaller datasets like ProEnFo
(2.21M) still maintain adequate data for effective model training. The sequence lengths also vary
significantly across domains, with some datasets having consistent lengths (Buildings900K,
ERA5, CMIP6) and others showing wide variability (BuildingsBench, LibCity, Sales).

Despite these differences, Table 3 highlights that the diverse range of data points and sequence
lengths reflects the natural characteristics of each domain. This variability leads to practical con-
straints, and we did not enforce equal data volumes across domains due to the workload involved.
Importantly, this diversity allows for robust evaluation of TSFM models across varied temporal and
structural scenarios.

Table 2: Sampling Frequencies Covered by Each Domain. Sampling frequencies: 2T, 5T, 15T,
30T (seconds), H (hours, including subcategories such as H, 6H), and D (days). A checkmark (✓)
indicates that the dataset contains data at the corresponding sampling frequency.

Domain 2T 5T 15T 30T H 6H D

Buildings900K ✓

BuildingsBench ✓

ProEnFo ✓

LargeST ✓

LibCity ✓ ✓ ✓ ✓

ERA5 ✓

CMIP6 ✓

Subseasonal ✓

CloudOps ✓

Sales ✓

Table 3: Summary of Datasets Across Different Domains. The table includes the following met-
rics: Target points (M) (total number of data points in millions), AvgLen (average target length as
an integer), MinLen (minimum target length), and MaxLen (maximum target length).

Domain Target points (M) AvgLen MinLen MaxLen

Buildings900K 15,728.24 8761 8761 8761
BuildingsBench 20.47 14196 193 34,223
CloudOps 2151.01 4304 97 8064
CMIP6 25,355.88 7300 7300 7300
ERA5 25,763.51 8736 8736 8736
LargeST 4452.51 105178 105120 105408
LibCity 388.75 19753 1572 105120
ProEnFo 2.21 25870 17520 39414
Sales 198.09 1441 47 1913
SubSeasonal 66.55 15715 11323 16470

9
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B.2 CALCULATION OF TIME SERIES FEATURES
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(a) Entropy
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(c) Lumpiness
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(d) Stability
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(e) Trend
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(f) Seasonal

Figure 1: Time Series Features of Different Domains.
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In this section, we analyze the distribution of different time series features across datasets from
various domains, as shown in Figure 1. For this analysis, we adopt the methodology proposed
in Aksu et al. (2024) and utilize the tsfeatures library (Garza et al., 2024) to calculate these
features. The diversity of the datasets provides an opportunity to systematically study the impact of
cross-domain pretraining on time series forecasting tasks.

The calculation of time series features involves two main steps: data preparation and feature extrac-
tion. For each dataset, time series are analyzed based on their values, timestamps, and frequencies.
If necessary, the target sequence can be shortened to a specified proportion of its original length
(e.g., 5% or 20%), preserving the most recent information. The prepared data is then processed us-
ing the tsfeatures library to compute statistical properties such as trend, seasonal strength, and
entropy. For datasets with multiple variables, features are calculated separately for each variable,
and the final dataset-level results are obtained by averaging across all variables. This process ensures
that the extracted features summarize the overall characteristics of each dataset effectively.

Below, we introduce each feature and its corresponding definition.

Trend. Time series were decomposed using STL (Seasonal and Trend decomposition using Loess)
into trend ft, multiple seasonal components si,t for i = 1, . . . ,M , and remainder et:

xt = ft + s1,t + · · ·+ sM,t + et.

The strength of the trend is:

trend = 1− Var(et)

Var(ft + et)
.

Values less than 0 are set to 0, and values greater than 1 are set to 1. Higher values indicate stronger
trends.

Seasonal. Seasonal strength for each component is derived as:

seasonal strengthi = 1− Var(et)

Var(si,t + et)
.

Values are clipped between 0 and 1, with non-seasonal series yielding 0.

Entropy. Entropy measures the complexity of the time series using the spectral density estimate
f̂(λ):

Entropy = −
∫ π

−π

f̂(λ) log f̂(λ) dλ.

Lower entropy implies predictable patterns, while higher entropy indicates complexity.

Hurst Exponent. The Hurst exponent (hurst) is computed as:

Hurst = 0.5 + d,

where d is the maximum likelihood estimate of fractional differencing order (Haslett & Raftery,
1989). Higher values (∼ 1.0) reflect smoother trends, less volatility, and less roughness.

Stability. Stability quantifies shifts in mean values across tiles. For N tiles with means x̄i, stability
is:

Stability = Var (x̄1, x̄2, . . . , x̄N ) .

Lower values indicate consistency, while higher values suggest irregularities.

Lumpiness. Lumpiness measures the variability of variances across tiles. For N tiles with variances
s2i , lumpiness is:

Lumpiness = Var
(
s21, s

2
2, . . . , s

2
N

)
.

Higher lumpiness indicates periods of volatility.

B.3 FEATURE ANALYSIS

Figure 1 illustrates the distribution of six key time series features across various domains. The results
reveal distinct patterns and variability among domains:

11
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• Entropy (Figure 1(a)): Higher entropy is observed in domains such as
BuildingsBench and Sales, indicating more complex and less predictable time
series. In contrast, domains like LargeST exhibit lower entropy, suggesting simpler and
more structured patterns.

• Hurst Exponent (Figure 1(b)): Most domains display higher Hurst values, signifying
smoother trends. Conversely, a few datasets in LibCity and Sales show a value of
0, which may be due to a calculation error.

• Lumpiness (Figure 1(c)): High lumpiness, as seen in CloudOps and Sales, suggests
significant variability in volatility across time.

• Stability (Figure 1(d)): CloudOps and Sales demonstrate low stability, indicating no-
table shifts in the mean over time. In contrast, LargeST and climate sector show consis-
tently higher stability with less variation.

• Trend (Figure 1(e)): Strong trends are evident in ProEnfo, ERA5 and CMIP6, indicat-
ing a clear directional component. This aligns with common sense, as weather data often
changes gradually, exhibiting more trend information. Conversely, domains like LibCity
and LargeST have weaker trends and are predominantly driven by other factors.

• Seasonal Strength (Figure 1(f)): Domains such as CloudOps and LibCity display
notable seasonal strength, reflecting regular periodic patterns.

These variations highlight the diversity in time series characteristics across different domains, pro-
viding insight into the challenges and opportunities for cross-domain time series forecasting.

It is worth noting that the calculation of these time-series features involves processing large volumes
of data and intricate pre-processing and data transformations, which may introduce some errors or
inaccuracies. As a result, the insights provided are limited. We plan to further refine these calcula-
tions in future work to ensure accuracy and provide more comprehensive analytical perspectives.

C MORE ON EXPERIMENTAL SETUP

We conducted validation on datasets across all domains, each containing thousands of samples. The
input context length was fixed at 512 time points (equivalent to 32 patches, with a patch size of 16),
while the prediction length varied between 14 and 720 across different tasks.

The MOIRAI-small model (Woo et al., 2024) was trained for 105 steps using a batch size of 256.
The AdamW optimizer was employed with the following hyperparameters: a learning rate (lr) of
1 × 10−3, a weight decay of 1 × 10−1, β1 = 0.9, and β2 = 0.98. A learning rate scheduler was
utilized, incorporating a linear warmup over the initial 10,000 steps, followed by cosine annealing.
The models were trained using NVIDIA V100-32G GPUs with TF32 precision.

Given that Buildings900K is a synthetic dataset specifically designed to enhance
BuildingsBench, we aligned its test set with that of BuildingsBench. Both test sets consist
of the final time series segments from datasets included in BuildingsBench.

For each experiment, test evaluation was performed across all domains. However, we presented
results based on the primary domain of interest. For example, in experiments involving two-domain
combinations (e.g., i + j), the results for domain i were evaluated using the test set of Di, and those
for domain j were evaluated using the test set of Dj .

Following the pre-training stage, the foundation model could potentially undergo fine-tuning on the
target dataset to improve performance on downstream tasks. However, as this paper focuses on
studying in-domain transfer capabilities, we did not perform fine-tuning, leaving it as an avenue for
future research.

C.1 METRICS

We utilize four metrics to evaluate the performance of the model: NLL-loss, NMAE, NRMSE, and
SMAPE. Below are their definitions and formulas:

• Negative Log-Likelihood Loss (NLL-loss):

12
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The Negative Log-Likelihood Loss measures the likelihood of the ground truth under the
predicted probability distribution. For a Gaussian distribution with mean ŷ and variance
σ̂2, it is defined as:

NLL-loss =
1

N

N∑
i=1

[
(yi − ŷi)

2

2σ̂2
i

+
1

2
log(2πσ̂2

i )

]
, (1)

where:
– yi: ground truth value of the i-th sample.
– ŷi: predicted mean value of the i-th sample.
– σ̂2

i : predicted variance for the i-th sample.
– N : total number of samples.

This metric penalizes both inaccurate predictions (mean error) and poor uncertainty esti-
mation (variance error).

• Normalized Mean Absolute Error (NMAE):
NMAE measures the average absolute error between predictions and ground truth, normal-
ized by the sum of the absolute ground truth values:

NMAE =
1
N

∑N
i=1 |yi − ŷi|∑N
i=1 |yi|

. (2)

• Normalized Root Mean Squared Error (NRMSE):
NRMSE is defined as the square root of the mean squared error, normalized by a denom-
inator computed as the squared sum of the absolute target values. Based on the provided
implementation logic, the formula can be expressed as:

NRMSE =

√√√√√ 1
N

∑N
i=1(yi − ŷi)2(∑N
i=1 |yi|

)2 . (3)

Here, the denominator is computed as the square of the sum of the absolute target values.
• Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE is a percentage-based metric that measures the average relative error between pre-
dictions and ground truth. It is symmetric with respect to over-predictions and under-
predictions:

SMAPE =
100%

N

N∑
i=1

|yi − ŷi|
|yi|+|ŷi|

2

. (4)

SMAPE is bounded between 0% and 200%, making it scale-independent and suitable for
comparing datasets with different ranges.

D COMPLETE EXPERIMENTAL RESULTS

In Section 4, we presented the results corresponding to NLL-loss. Here, we also display the results
for the other three metrics: NMAE is shown in Table 4, NRMSE is shown in Table 5, and SMAPE
is shown in Table 6. By comparison, it can be observed that the conclusions of the four metrics
are generally similar. However, the degradation of NLL-loss is more severe, which may be related
to the fact that the other three metrics are point-level and are calculated by taking the median after
sampling.

Figures 2 to 11 present the raw data with error bars for each domain, which further validates the
conclusions discussed in the paper.
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Table 4: NMAE of Multi-Domain relative to Single-Domain Pretraining. The “single” column shows
NMAE for single-domain pretraining on test set of the corresponding domain. The “all” column presents
results using all-domain data. The remaining columns report multi-domain pretraining, combining the current
domain with another. For example, in the first row (b900k), -1.15% for bbench indicates a 1.15% improvement
over single-domain pretraining. Results are averaged over five trials.

NMAE↓ single all b900k bbench proenfo largest city era5 cmip6 sub cloudops sales

b900k 0.18 -1.55% – -1.15% -0.12% 1.12% -1.69% -1.40% -0.28% 1.43% -2.93% 2.05%
bbench 0.18 -1.98% -1.58% – 0.65% -0.14% 1.25% -0.17% 0.11% -0.80% -1.80% 5.05%
proenfo 0.28 -16.95% -4.86% -11.49% – -2.83% -10.89% -1.16% 0.98% -4.67% -15.68% 2.67%
largest 0.20 -17.80% -22.06% -20.46% -4.92% – -15.83% -22.27% -22.00% -20.24% -21.20% -13.87%
city 0.14 3.66% -0.00% -0.18% -0.03% -0.55% – -0.08% -0.69% 0.34% 2.03% 3.48%
era5 1.34 -68.44% -71.45% -73.56% -72.26% -73.04% -70.62% – -57.50% -36.22% -72.85% -74.11%
cmip6 1.15 -59.07% -39.03% -53.07% -48.93% -50.76% -41.28% 27.09% – 24.23% -61.12% -53.83%
sub 0.39 -4.04% -1.19% -2.36% -0.81% -0.51% -4.10% -0.02% 0.06% – -3.66% -5.53%
cloudops 0.10 6.56% 0.25% -0.12% 0.01% 1.55% -0.57% 0.89% 1.30% 2.19% – 8.07%
sales 0.61 -0.44% -0.69% -0.74% 0.04% 0.23% -0.27% 0.02% -0.01% 0.02% 0.18% –

Table 5: NRMSE of Multi-Domain relative to Single-Domain Pretraining. The “single” column shows
NRMSE for single-domain pretraining on test set of the corresponding domain. The “all” column presents
results using all-domain data. The remaining columns report multi-domain pretraining, combining the current
domain with another. For example, in the first row (b900k), 0.64% for bbench indicates a 0.64% degradation
over single-domain pretraining. Results are averaged over five trials.

NRMSE↓ single all b900k bbench proenfo largest city era5 cmip6 sub cloudops sales

b900k 0.26 -0.49% – 0.64% 0.48% 1.49% -0.94% -1.11% -0.18% 0.90% -2.05% 1.70%
bbench 0.26 -2.40% -1.30% – 0.59% -0.16% 0.84% -0.34% 0.22% -0.98% -2.39% 1.78%
proenfo 0.33 -17.01% -6.22% -11.50% – -2.92% -12.14% -1.89% 0.56% -6.16% -16.57% -0.22%
largest 0.35 -31.86% -36.04% -34.21% -12.09% – -29.61% -36.28% -36.16% -33.89% -34.94% -31.32%
city 0.23 3.13% -0.07% -0.27% -0.01% -0.38% – -0.26% -0.92% 0.08% 1.62% 2.78%
era5 1.68 -71.22% -73.97% -75.89% -74.51% -75.28% -73.08% – -60.20% -41.16% -75.27% -76.60%
cmip6 1.44 -59.59% -41.74% -54.80% -50.62% -53.14% -43.01% 25.39% – 23.04% -61.05% -55.83%
sub 0.53 -3.96% -0.76% -1.95% -0.63% -0.50% -3.08% 0.04% 0.24% – -3.85% -5.16%
cloudops 0.14 4.71% -0.08% -0.48% 0.10% 1.04% -0.25% 0.64% 1.13% 1.58% – 5.64%
sales 0.99 -0.48% -0.58% -0.67% 0.03% 0.17% -0.26% -0.05% -0.04% 0.03% 0.12% –

Table 6: SMAPE of Multi-Domain relative to Single-Domain Pretraining. The “single” column shows
SMAPE for single-domain pretraining on test set of the corresponding domain. The “all” column presents
results using all-domain data. The remaining columns report multi-domain pretraining, combining the current
domain with another. For example, in the first row (b900k), -2.49% for bbench indicates a -2.49% improvement
over single-domain pretraining. Results are averaged over five trials.

SMAPE↓ single all b900k bbench proenfo largest city era5 cmip6 sub cloudops sales

b900k 20.08 -0.16% – -2.49% -0.67% -0.67% -0.77% -1.04% 0.07% 0.53% -0.55% 0.76%
bbench 19.89 0.78% -1.58% – 0.12% -1.16% 1.36% -0.47% -0.26% -0.76% 0.83% 5.41%
proenfo 27.86 -20.72% -6.66% -14.04% – -3.19% -13.93% -1.44% 1.67% -6.83% -19.75% -1.54%
largest 17.97 6.53% 0.47% 2.65% -0.65% – 7.53% 0.44% 0.66% 2.88% 2.15% 17.28%
city 16.12 3.12% -0.07% -0.20% -0.27% -0.61% – -0.31% -0.72% 0.03% 2.00% 2.82%
era5 59.68 -14.38% -11.29% -15.60% -13.97% -14.84% -11.62% – -6.29% 0.64% -16.38% -16.42%
cmip6 65.90 -27.39% -9.18% -19.06% -18.58% -16.10% -12.65% -4.82% – -3.40% -29.79% -17.35%
sub 61.97 -2.80% -0.54% -2.13% -0.78% -0.60% -3.01% 0.22% 0.25% – -2.82% -5.05%
cloudops 14.72 3.68% 0.16% -0.18% -0.04% 0.97% -0.43% 0.62% 0.74% 1.38% – 5.56%
sales 79.64 -0.59% -0.35% -0.57% -0.02% 0.45% -0.02% -0.08% -0.05% 0.04% -0.04% –
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Figure 2: Metrics on Buildings900k Across Different Pretraining Domains. This figure evaluates
test performance across models pretrained on the target domain and various auxiliary domains, using four
metrics: (a) NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-
domain pretraining (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary
domain, sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars
showing standard deviations across 5 random trials. Red dashed lines highlight the performance of single-
domain pretraining, while green dashed lines indicate the performance under all-domain pretraining.
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Figure 3: Metrics on BuildingsBench Across Different Pretraining Domains. This figure evaluates
test performance across models pretrained on the target domain and various auxiliary domains, using four
metrics: (a) NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-
domain pretraining (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary
domain, sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars
showing standard deviations across 5 random trials. Red dashed lines highlight the performance of single-
domain pretraining, while green dashed lines indicate the performance under all-domain pretraining.
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Figure 4: Metrics on ProEnFo Across Different Pretraining Domains. This figure evaluates test perfor-
mance across models pretrained on the target domain and various auxiliary domains, using four metrics: (a)
NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pre-
training (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain,
sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing
standard deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pre-
training, while green dashed lines indicate the performance under all-domain pretraining.
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Figure 5: Metrics on LargeST Across Different Pretraining Domains. This figure evaluates test perfor-
mance across models pretrained on the target domain and various auxiliary domains, using four metrics: (a)
NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pre-
training (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain,
sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing
standard deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pre-
training, while green dashed lines indicate the performance under all-domain pretraining.
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Figure 6: Metrics on LibCity Across Different Pretraining Domains. This figure evaluates test perfor-
mance across models pretrained on the target domain and various auxiliary domains, using four metrics: (a)
NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pre-
training (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain,
sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing
standard deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pre-
training, while green dashed lines indicate the performance under all-domain pretraining.
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Figure 7: Metrics on ERA5 Across Different Pretraining Domains. This figure evaluates test performance
across models pretrained on the target domain and various auxiliary domains, using four metrics: (a) NLL-loss,
(b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pretraining
(”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain, sort from
smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing standard
deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pretraining,
while green dashed lines indicate the performance under all-domain pretraining.
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Figure 8: Metrics on CMIP6 Across Different Pretraining Domains. This figure evaluates test performance
across models pretrained on the target domain and various auxiliary domains, using four metrics: (a) NLL-loss,
(b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pretraining
(”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain, sort from
smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing standard
deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pretraining,
while green dashed lines indicate the performance under all-domain pretraining.
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Figure 9: Metrics on Subseasonal Across Different Pretraining Domains. This figure evaluates test per-
formance across models pretrained on the target domain and various auxiliary domains, using four metrics: (a)
NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pre-
training (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain,
sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing
standard deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pre-
training, while green dashed lines indicate the performance under all-domain pretraining.
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Figure 10: Metrics on CloudOps Across Different Pretraining Domains. This figure evaluates test per-
formance across models pretrained on the target domain and various auxiliary domains, using four metrics: (a)
NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pre-
training (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain,
sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing
standard deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pre-
training, while green dashed lines indicate the performance under all-domain pretraining.
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(c) NRMSE
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Figure 11: Metrics on Sales Across Different Pretraining Domains. This figure evaluates test perfor-
mance across models pretrained on the target domain and various auxiliary domains, using four metrics: (a)
NLL-loss, (b) NMAE, (c) NRMSE, and (d) SMAPE. The x-axis in each subplot including: single-domain pre-
training (”single”), all-domain pretraining (”all”), and multi-domain pretraining (any other auxiliary domain,
sort from smallest to largest). The y-axis indicates the corresponding metric values, with error bars showing
standard deviations across 5 random trials. Red dashed lines highlight the performance of single-domain pre-
training, while green dashed lines indicate the performance under all-domain pretraining.
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