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Abstract
Natural language processing (NLP) classification tasks often benefit from predicting a set of possible
labels with confidence scores to capture uncertainty. However, existing methods struggle with
the high-dimensional and sparse nature of textual data. We propose a novel conformal prediction
method designed for NLP that utilizes confidence scores from deep learning models to construct
prediction sets. Our approach achieves the coverage rate while managing the size of the prediction
sets. Through theoretical analysis and extensive experiments, we demonstrate that our method
outperforms existing techniques on various datasets, providing reliable uncertainty quantification
for NLP classifiers. We contribute a novel conformal prediction method, theoretical analysis, and
empirical evaluation. Our work advances the practical deployment of NLP systems by enabling
reliable uncertainty quantification.
Keywords: Conformal Prediction; Natural Language Processing; Uncertainty Quantification;
Ranking; Large Language Models

1. Introduction

Natural language processing (NLP) covers a wide range of classification tasks, including topic
modeling, sentiment analysis and named entity recognition. These problems have been traditionally
approached using discriminative classifiers such as logistic regression, support vector machines and
deep neural networks (Goldberg, 2017; Devlin et al., 2019). While these methods have achieved
good performance, they typically only output a single predicted class label for each input. However,
in many applications, it may be useful to predict a set of possible labels along with confidence scores,
to capture uncertainty and allow for multiple acceptable answers.

The importance of reliable uncertainty quantification in NLP has become increasingly evident
with the rapid proliferation of large language models (LLMs) in real-world applications (Min
et al., 2022). LLMs are prone to issues such as hallucinations (Ji et al., 2023), poor calibration
(Desai and Durrett, 2020; Kong et al., 2020), and biases (Gallegos et al., 2023; Guo et al., 2022).
Conformal prediction (CP) (Vovk et al., 2005) offers a principled and model-agnostic way to address
these challenges by providing theoretically sound coverage guarantees with minimal assumptions
Angelopoulos and Bates (2021). As outlined in the comprehensive survey by Campos et al. (2024),
CP can be combined with any underlying machine learning model to construct prediction sets—a set
of class labels guaranteed to contain the true label with a specified probability—thereby measuring
uncertainty and expressing ambiguity in model predictions.
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In this work, we propose a novel conformal prediction method designed specifically for natural
language classification tasks. Our approach addresses challenges inherent to NLP, such as the
high-dimensional and sparse nature of textual data. The proposed method enables predicting sets
of possible labels for instances where the model is uncertain, as well as abstaining from making
predictions when the model has low confidence.

Our approach differs from existing adaptive prediction set algorithms, such as APS (Romano et al.,
2020), as it does not depend on strong assumptions about the probabilities generated by NLP deep
learning models. Instead, our method utilizes the confidence scores from the deep learning model
and constructs prediction sets by establishing a confidence threshold. This enables us to achieve high
coverage while managing the size of the prediction sets. In comparison to other multiclass prediction
set methods that rely on probability level sets, like the work by Sadinle et al. (2019), our approach is
more streamlined, efficient, and makes fewer assumptions about the probabilities. In Section 2, we
provide a comprehensive overview of existing methods, followed by a detailed description of our
proposed approach in Section 3.

Through extensive experiments on text classification benchmarks spanning topic categorization,
sentiment analysis, and natural language inference, we demonstrate the validity and efficiency of our
proposed method. The results show that our approach substantially outperforms existing conformal
and non-conformal techniques, achieving the specified coverage level with prediction sets that are
often much smaller.

Our key contributions are:

1. A novel conformal prediction method for NLP that combines ideas from existing works.

2. Theoretical analysis on the coverage guarantee of our method.

3. Empirical evaluation to date of conformal prediction for deep learning and LLM-based text
classification.

Our work applies the Conformal Prediction framework to Natural Language Processing tasks,
enabling deep learning classifiers to provide rigorous uncertainty quantification via prediction sets.
This application marks an important step toward the reliable deployment of NLP systems. A full
version detailing the theoretical underpinnings and methodology of this approach is presented in Luo
and Zhou (2025e).

Notations: For a sequence a1, a2, . . . , an, the order statistics are denoted by a(1) ≥ a(2) ≥ · · · ≥
a(n) in a descending order. [n] represents the set {1, 2, . . . , n}. For a set S, |S| is the size (i.e.,
cardinality) of the set.

2. Related Work

Conformal prediction (CP) has been extensively applied to various tasks, including classification
Luo and Colombo (2024) and regression Luo and Zhou (2025f); Bao et al. (2025a); Luo and Zhou
(2025d). Efficiency is a key focus, seen in methods like Conformity Score Averaging Luo and
Zhou (2025c), which enhances efficiency by optimally combining multiple score functions. CP also
extends to specialized domains like segmentation Luo and Zhou (2025a), games Luo et al. (2024);
Bao et al. (2025b), and graph-based applications Luo et al. (2023); Luo and Zhou (2025b); Luo
and Colombo (2025); Tang et al. (2025); Wang et al. (2025); Zhang et al. (2025). In classification
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tasks, CP typically follows a two-step framework: first training a predictive model to estimate
class probabilities, then constructing prediction sets with guaranteed coverage using conformity
scores from a calibration set. Two main approaches have emerged for defining these prediction sets:
the individual threshold approach, exemplified by Threshold Conformal Prediction (THR) Sadinle
et al. (2019), which includes labels exceeding a calibrated probability threshold; and the cumulative
threshold approach, represented by Adaptive Prediction Set (APS) Romano et al. (2020) and its
extensions like RAPS Angelopoulos et al. (2021) and SAPS Huang et al. (2024), which include the
top-ranked labels until their cumulative probability mass reaches a calibrated threshold.

CP Variants and Applications in NLP Several variants of conformal prediction have been
developed to handle different settings, such as Mondrian conformal prediction for category-wise
validity (Vovk et al., 2005), methods for non-exchangeable data (Tibshirani et al., 2019; Podkopaev
and Ramdas, 2021; Gibbs and Candes, 2021), and conformal risk control for multilabel classification
(Angelopoulos et al., 2025). Applications of conformal prediction to diverse NLP tasks are growing,
including sequence labeling (Fisch et al., 2022; Jiang et al., 2023), machine translation (Fomicheva
et al., 2020), question answering (Feng et al., 2022), and natural language generation (Lu et al., 2022).
However, challenges remain in scaling conformal prediction to large datasets and models, handling
distribution shift, and extending coverage guarantees (Angelopoulos and Bates, 2021; Baan et al.,
2023).

Traditional Uncertainty Quantification Existing uncertainty quantification techniques for deep
learning models, such as Platt’s scaling (Platt, 1999), isotonic regression (Niculescu-Mizil and
Caruana, 2005), spline-based probability calibration (Lucena, 2019), and temperature scaling (Guo
et al., 2017) are used for post ad hoc calibration to adjust classifier confidence levels. In addition,
Rahimi et al. (2020) attempt to calibrate the predicted probabilities from deep learning models
while preserving the rank order of the probabilities. However, these techniques do not have formal
guarantees and the resulting probabilities are often not well-calibrated, especially for unlikely classes,
highlighting the advantage of CP’s rigorous guarantees.

Conformal Prediction for Large Language Models Recent advancements in conformal prediction
for LLMs have shown promising results in quantifying uncertainty and providing statistical perfor-
mance guarantees. Quach et al. (2023) propose a novel conformal prediction approach for generative
language models that produces prediction sets with rigorous coverage guarantees by calibrating
stopping and rejection rules to generate high-quality response sets. Similarly, Kumar et al. (2023)
explore how conformal prediction can quantify uncertainty in language models for multiple-choice
question answering, demonstrating a strong correlation between uncertainty estimates and prediction
accuracy, and investigating the importance of the exchangeability assumption. Deutschmann et al.
(2024) introduce two extensions to the beam search algorithm based on conformal predictions to
generate sequence sets with theoretical coverage guarantees, empirically evaluating their methods on
natural language processing and chemistry tasks. Su et al. (2024) address the challenge of quantifying
uncertainty in language models without logit access by introducing a conformal prediction method
that utilizes coarse-grained and fine-grained uncertainty concepts to produce minimal prediction sets
with statistical coverage guarantees.
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Algorithm 1 Rank-based conformal prediction

1: Input: data {(xi, yi)}i∈I , a test sample xn+1, black-box learning algorithm B, level α ∈ (0, 1).
2: Randomly split the indices I into two subsets I1, I2.
3: Train B on all samples in I1 : π̂ ← B({(xi, yi) : i ∈ I1}).
4: n← |I2|. Find the ⌊(n+ 1)α⌋-th largest value in (1), denoted by r∗α.
5: Find the proportion p in (2).
6: Find the ⌈np⌉-th largest value in (3), denoted by π∗.
7: With r∗α and π∗ obtained from Step 4 and Step 6, use the function “C(xn+1) in equation 4 to

construct the prediction set for xn+1.
8: Output: A prediction set “Cα(xn+1).

3. Our Approach

Our approach directly focuses the goal of minimizing the size of the prediction set. In the calibration
set, we evaluate the size of the prediction set required to include the true label. We operate under
the assumption that a higher value of π̂k(xi) indicates a greater likelihood of xi belonging to class
k. Consequently, we impose a constraint on the confidence interval: if class k is included in the
prediction set, then any class k′ such that π̂k′(xi) > π̂k(xi) must also be included in the prediction
set.

Given this constraint, the smallest prediction set that includes the true label will be determined by
the rank of π̂yi(xi) within the sequence {π̂1(xi), . . . , π̂K(xi)}. However, it is common to encounter
multiple samples in the calibration set that have the same prediction set size. In such cases, we need
to establish a preference for breaking ties.

Intuitively, our tie-breaking approach aims to efficiently cover the true label by favoring the
option with the larger predicted probability. When comparing the kth most likely label of xi and xj ,
given the predicted probabilities π̂, we prioritize the inclusion of labels that are more confidently
predicted by the model. This choice aligns with our goal of constructing prediction sets that are
more likely to contain the true label while maintaining a smaller overall size compared to randomly
breaking ties.

We will rigorously summarize the idea above. Our goal is to determine a rank k such that for
the test sample, we include either the top k or k − 1 labels in the prediction set. We also need to
establish a rule to choose between k and k − 1. These rules will be determined using the calibration
set. The method to determine k is straightforward. Let I2 be the calibration set and n = |I2|. For
each i ∈ I2, we define the following rank:

ri = rank of πyi(xi) in {πk(xi) : k ∈ [K]}. (1)

We then find the order statistics of these ranks: r(1) ≥ r(2) ≥ · · · ≥ r(n) and let r∗α = r(⌊(n+1)α⌋).
This ensures that:

|{i ∈ I2 : ri ≤ r∗α − 1}| < ⌊(n+ 1)α⌋
≤ |{i ∈ I2 : ri ≤ r∗α}|.

To construct the prediction set for xn+1, we will include either the top-(r∗α−1) or top-r∗α classes based
on the values of π1(xn+1), . . . , πK(xn+1). The top-r∗α classes refer to the classes corresponding
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to the r∗α largest values among π1(xn+1), . . . , πK(xn+1). To achieve 1 − α coverage, we need to
determine when to include the r∗α-th class and when not to. We start by calculating the proportion p
of instances for which we should include the r∗α-th label:

p :=
n− ⌊(n+ 1)α⌋ − |{i ∈ I2 : ri ≤ r∗α − 1}|

|{i ∈ I2 : ri = r∗α}|
. (2)

Roughly speaking, the numerator of this fraction represents the difference between the number of
samples obtained by selecting all samples with rank ri ≤ r∗ − 1 and the number of samples needed
to achieve a coverage of n(1 − α) in the calibration set. Next, we find the ⌈np⌉-th largest value,
denoted as π∗, in the set of π(r∗α)(xi)’s:

π∗ = ⌈np⌉-th largest value in{π̂(r∗α)(xi) : i ∈ I2}, (3)

where π̂(k)(xi) denotes the k-th order statistics in (π1(xi), . . . , πn(xi)). Finally, for the test sample
xn+1, if π̂(r∗α)(xn+1) ≥ π∗, then the r∗α-th label will be included in the prediction set. Otherwise, it
will not be included. To summarize rigorously, for a test sample xn+1,

“Cα(xn+1) =


{k : π̂k(xn+1) ≥ π̂(r∗α)(xn+1)},
if π̂(r∗α)(xn+1) ≥ π∗;

{k : π̂k(xn+1) ≥ π̂(r∗α−1)(xn+1)},
otherwise.

(4)

This definition implies the following proposition.

Proposition 1 The output “Cα(xn+1) from Algorithm 1 satisfies “Cα(xn+1) ⊂ {ŷ(1), . . . , ŷ(r∗α)}, i.e.,
the subset of labels that have top-r∗α values in {π̂1(xn+1), . . . , π̂K(xn+1)}.

We note that we can define the following conformity score for our method. This will help us
understand why 1− α coverage is guaranteed.

ci = c(xi, yi)

= [rank of π̂yi(xi) in {π̂1(xi), . . . , π̂K(xi)}]− 1

+
1

n
[rank of π̂yi(xi) in {π̂yi(x1), . . . , π̂yi(xn)}].

Let’s define the quantile “Qα as the ⌊(n + 1)α⌋-th largest value among the conformity scores
c1, c2, . . . , cn calculated on the calibration set. To construct a prediction set with 1− α coverage, we
include all samples from the calibration set whose conformity scores ci are less than or equal to the
quantile “Qα. In other words, the procedure for defining the prediction set is equivalent to selecting
the calibration samples that satisfy the condition ci ≤ “Qα, which ensures the desired coverage level
of 1− α.

Example: Let us consider the following example to understand our method better. After applying
a training algorithm to the training samples with K = 10 classes, we obtain the function π̂. By
applying π̂ to the calibration samples {(xi, yi)}i∈I2 , we obtain the ranks of π̂yi(xi) for i ∈ I2, which
represent the ranks of the true class. This forms an empirical distribution on the set {1, 2, . . . , 10}.
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Figure 1: The figure illustrates the construction of a 90% prediction set for a test sample with
sorted probability vector [0.55, 0.2, 0.15, 0.1, 0, 0, 0, 0, 0, 0]. The top three classes are included based
on both the probability of ranks (Top) and the distribution of the 3rd largest probabilities in the
calibration set (Bottom).

Let us consider an example in Figure 1. (0.6, 0.26, 0.06, 0.04, 0.03, 0.01, 0, 0, 0, 0) is the empirical
distribution mentioned above. Suppose we want to construct the prediction set “Cα with α = 0.1, i.e.,
coverage probability equals to 0.9. The rank distribution in the empirical distribution shows that
the top two classes have a cumulative probability of 0.86, which falls short of the desired coverage
of 0.9. Including the top three classes increases the cumulative probability to 0.92, exceeding the
desired coverage. Therefore, the size of the prediction set in this case will be 2 or 3. It takes
value 2 or 3 depending on the result of π̂ applying on the test sample. Applying π̂ on a test
sample xn+1 and obtain a sorted probability vector (π̂(1)(xn+1), π̂(2)(xn+1), . . . , π̂(10)(xn+1)) =
(0.55, 0.2, 0.15, 0.1, 0, 0, 0, 0, 0, 0).

To determine whether the class with rank 3 should be included in the prediction set, we compare
π̂(3)(xi) to the distribution of the 3rd largest probability. The calculation (1−α)−0.86

0.92−0.86 = 2
3 < 0.85

indicates that the class with rank 3 should be included in the prediction set. Another equivalent way
to think of this would be the probability 0.15 is the top 15% among all {π̂(3)(xi) : i = 1, 2, . . . , n},
so the rank 3 class should be included in the prediction set “Cα.

Comparison with existing works: Our method may seem different from the approaches in
Section 2, but there are connections. If π̂1(xi), . . . , π̂K(xi) are nearly identical, the ascending order
of ranks in equation equation 1 is almost equivalent to the descending order of p-values in APS,
suggesting our method makes fewer assumptions about π̂. In tie-breaking, APS uses a uniform
random variable, while we use the THR idea to include labels with sufficiently large π̂ values. Thus,
our method incorporates aspects of both APS and THR.

4. Theoretical Coverage Guarantee

In this section, we will demonstrate that our approach can theoretically achieve 1− α coverage. To
begin, we will define the concept of exchangeability of random variables (See formal definition in
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Section A in the Appendix). This assumption about the dataset is widely used when considering
calibration samples and test samples Romano et al. (2020); Huang et al. (2024). Assuming exchange-
ability, we can demonstrate the following result: for a test sample Xn+1 that has not been seen in the
training or calibration set, the prediction set output by Algorithm 1 will include the true label Yn+1

with a probability of at least 1− α.

Theorem 1 If the samples (Xi, Yi), for i ∈ [n + 1], are exchangeable and B from Algorithm 1 is
invariant to permutations of its input samples, the output of Algorithm 1 satisfies:

P
Ä
Yn+1 ∈ “Cα(Xn+1)

ä
≥ 1− α. (5)

Proof. See Section B in the Appendix.

5. Experiments

This section presents experiments that evaluate the performance of prediction sets generated by
various methods, including APS (Romano et al., 2020), RAPS (Angelopoulos et al., 2021), SAPS
(Huang et al., 2024), and our proposed method (RANK), on natural language processing tasks
involving multiclass classification. The evaluation is conducted on three tasks: Multi-Choice
Question-Answering, Topic Classification, and Emotion Recognition.
Multi-Choice Question-Answering: We evaluate our method on the MMLU benchmark (Hendrycks
et al., 2021) for the Multi-Choice Question-Answering task, following the approach in Kumar et al.
(2023). The datasets are generated using the LLaMA-13B model (Touvron et al., 2023) and consist
of questions from three domains: college medicine (191 questions), marketing (269 questions), and
public relations (123 questions).

Data Coverage Size SSCV
Ours APS RAPS SAPS Ours APS RAPS SAPS Ours APS RAPS SAPS

marketing 0.8962 0.9016 0.8997 0.8987 2.6704 2.8059 2.7920 2.7065 0.0368 0.0421 0.0408 0.0699
medicine 0.9043 0.8993 0.9000 0.9064 3.3550 3.3928 3.3841 3.3723 0.1005 0.1023 0.1032 0.1021
relations 0.8915 0.9048 0.8995 0.9024 3.2260 3.3569 3.3268 3.2903 0.1007 0.1026 0.1011 0.1033
agnews 0.9001 0.8993 0.8997 0.8992 0.9703 1.1654 1.1323 1.1807 0.0048 0.1000 0.0464 0.1000
news20 0.8992 0.9008 0.9004 0.9004 4.0828 3.2626 3.9847 3.4209 0.0093 0.0339 0.0403 0.0894
carer 0.8985 0.8990 0.9015 0.9005 0.9305 1.0390 1.0385 1.1065 0.0110 0.1000 0.0830 0.1000
tweet 0.9013 0.9007 0.8971 0.9007 1.3382 1.4801 1.4290 1.4476 0.0584 0.1000 0.0414 0.1000

Table 1: Evaluation metrics with α = 0.1. Coverage (6): greater than or closer to 1 − α = 0.9
is better. Size (7): smaller is better. SSCV (8): smaller is better. Bold numbers indicate optimal
performance.

Topic Classification: For topic classification, we assess our method on two datasets: AG News
and 20 Newsgroups. AG News is a subset of AG’s corpus of news articles, created by combining
the titles and description fields of articles from the four largest topic classes: "World", "Sports",
"Business", and "Sci/Tech". The AG News dataset contains 30000 training samples and 1900 test
samples per class. The 20 Newsgroups dataset comprises newsgroup posts on 20 topics, split into a
training set of 11314 posts and a test set of 7532 posts.
Emotion Recognition: To evaluate our method’s performance on emotion recognition, we utilize
two datasets: CARER and TweetEval. CARER consists of English Twitter messages labeled with six
basic emotions: anger, fear, joy, love, sadness, and surprise. The dataset has a training set of 15969
tweets and a test set of 2000 tweets. TweetEval, on the other hand, contains tweets categorized into
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Figure 2: Rank distribution plots of the true class ranks for different datasets. The vertical red line
indicates the rank threshold where the cumulative probability exceeds 0.90, corresponding to r∗α
from Algorithm 1. This value aligns with the average prediction set size for α = 0.1 in Table 1.

four emotions: anger, joy, optimism, and sadness. This dataset includes 6838 training tweets and a
test set of 1421 tweets.

Let us denote the test set by I3. We assess the performance of the different methods using the
following three metrics.

Coverage Rate (Coverage): The coverage rate measures the proportion of test instances where
the true label is included in the prediction set. A higher coverage rate indicates better performance.

Coverage =
1

|I3|
∑
i∈I3

1(yi ∈ “C(xi)), (6)

Average Size (Size): The average size refers to the mean number of labels in the prediction sets.
Smaller sizes are consider more precise and informative of the labels in the prediction set.

Size =
1

|I3|
∑
i∈I3

|“C(xi)|. (7)

Size-Stratified Coverage Violation (SSCV): The size-stratified coverage violation evaluates
the consistency of coverage across different prediction set sizes {Sj}sj=1, where S1, S2, . . . , Ss are

partitions of [K]. Let Jj = {i ∈ I3 : |“C(xi)| ∈ Sj} denote the indices of examples stratified by the
prediction set size Sj . Then we define

SSCV(“C, {Sj}sj=1) = sup
j∈[s]

∣∣∣∣∣ |{i ∈ Jj : yi ∈ “C(xi)}|
|Jj |

− (1− α)

∣∣∣∣∣ . (8)

Smaller SSCV indicates more stable coverage.
Throughout the experiments, the split-conformal prediction framework is employed to construct

the prediction sets. Different α values ranging from 0.1 to 0.3 are chosen, and the mean Coverage,
Size, and SSCV metrics are computed across 100 repetitions.

Table 1 presents the results for α = 0.1, while Figures 3 and 4 show the results for α ranging
from 0.1 to 0.3. The left subfigure compares the Size vs. Coverage trade-off. A lower curve indicates
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Figure 3: Results for the Multi-Choice Question-Answering datasets.

that the method can achieve the desired coverage using a smaller prediction set size. The middle
subfigure illustrates the relationship between coverage and α. Methods closer to the theoretical line
1− α are considered better. The right subfigure displays the SSCV vs. α plot. A lower curve means
that the method can achieve 1−α coverage more consistently across different strata of prediction set
sizes.

The experiment result in Table 1, Figures 3 and 4 show that our method (RANK) preforms better
than other completing methods in most NLP classification tasks, when measuring the performance of
by prediction set size versus coverage, except for the dataset news20 with α ≤ 0.15. In the dataset
agnews, carer and tweet, our performance is overwhelmingly better than the others. When comparing
the SSCV metric with other methods, our approach demonstrates remarkably consistent coverage
across most datasets.

To investigate our method’s suboptimal performance on the news20 dataset compared to other
methods, we examine its rank distribution plot in Figure 2. The plot reveals a long-tailed distribution,
with many instances having high ranks. Moreover, this dataset contains 20 classes, which is
significantly more than the other datasets. Our method may be less effective in such cases, as it does
not explicitly minimize the tail probability of the ranks, unlike the APS-type approach, which is
designed to handle these situations more effectively.
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Figure 4: Results for Topic Classification on AG News (agnews), 20 Newsgroups (news20); and
Emotion Recognition on CARER (carer), TweetEval (tweet).

6. Discussion and Future Work

Our proposed conformal prediction method for NLP classification tasks has demonstrated promising
results in achieving high performance. However, there are several areas where further research and
improvements can be made.

Performance on Large Number of Classes. Our approach’s performance may deteriorate when
faced with a very large number of classes, as seen in the news20 dataset results when α ≤ 0.15. A
potential future direction could involve combining our idea of minimizing the prediction set size with
the concept of minimizing the tail probability to improve results in these scenarios.
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Multi-Label Classification. Extending our approach to handle multi-label classification, where
each instance can be assigned multiple labels simultaneously, is an important future research direction.
While most single-label methods can be directly applied to multi-label scenarios, accounting for
label dependence becomes challenging. Using statistical methods to estimate label co-occurrence
could help capture complex label relationships and improve classification performance.

7. Conclusion

We proposed a novel conformal prediction method for NLP classification tasks that effectively
leverages confidence scores from deep learning models to construct prediction sets with desired
coverage and managed size. Rigorous theoretical analysis and extensive experiments demonstrate
our method’s clear superiority over existing techniques, providing reliable uncertainty quantification
for NLP classifiers. In the future, we will work on the development of more reliable uncertainty
quantification methods for large language models.
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Appendix A. Definition of Exchangeability

Definition 2 (Exchangeability) Let Z1, Z2, . . . , Zn be a sequence of random variables. The se-
quence is said to be exchangeable if, for any permutation π of the indices [n], the joint distribution of
the permuted sequence (Zπ(1), Zπ(2), . . . , Zπ(n)) is identical to the joint distribution of the original
sequence (Z1, Z2, . . . , Zn).

Appendix B. Proof of Theorem 1

Proof. By the definition of the prediction set “Cα, Yn+1 ∈ “Cα(Xn+1) is equivalent to the conformity
score cn+1 = c(xn+1, yn+1) < c(⌊(n+1)α⌋). By the exchangeablility of (X1, Y1), . . . , (Xn+1, Yn+1),
c(X1, Y1), . . . , c(Xn+1, Yn+1) is also exchangeable. The rank of c(Xn+1, Yn+1) has a uniform
distribution on {1, . . . , n+ 1}. The rank of c(Xn+1, Yn+1) greater than ⌊(n+ 1)α⌋ with probability
n+1−⌊(n+1)α⌋

n+1 , which is at least 1− α.
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