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ABSTRACT

We study offline reinforcement learning (RL) in partially observable Markov de-
cision processes. In particular, we aim to learn an optimal policy from a dataset
collected by a behavior policy which possibly depends on the latent state. Such
a dataset is confounded in the sense that the latent state simultaneously affects
the action and the observation, which is prohibitive for existing offline RL algo-
rithms. To this end, we propose the Proxy variable Pessimistic Policy Optimization
(P3O) algorithm, which addresses the confounding bias and the distributional shift
between the optimal and behavior policies in the context of general function ap-
proximation. At the core of P3O is a coupled sequence of pessimistic confidence
regions constructed via proximal causal inference, which is formulated as minimax
estimation. Under a partial coverage assumption on the confounded dataset, we
prove that P3O achieves a n−1/2-suboptimality, where n is the number of trajecto-
ries in the dataset. To our best knowledge, P3O is the first provably efficient offline
RL algorithm for POMDPs with a confounded dataset.

1 INTRODUCTION

Offline reinforcement learning (RL) (Sutton and Barto, 2018) aims to learn an optimal policy of
a sequential decision making problem purely from an offline dataset collected a priori, without
any further interactions with the environment. Offline RL is particularly pertinent to applications
in critical domains such as precision medicine (Gottesman et al., 2019) and autonomous driving
(Shalev-Shwartz et al., 2016). In particular, in these scenarios, interacting with the environment
via online experiments might be risky, slow, or even possibly unethical. But oftentimes offline
datasets consisting of past interactions, e.g., treatment records for precision medicine (Chakraborty
and Moodie, 2013; Chakraborty and Murphy, 2014) and human driving data for autonomous driving
(Sun et al., 2020), are adequately available. As a result, offline RL has attracted substantial research
interest recently (Levine et al., 2020).

Most of the existing works on offline RL develop algorithms and theory on the model of Markov
decision processes (MDPs). However, in many real-world applications, due to certain privacy
concerns or limitations of the sensor apparatus, the states of the environment cannot be directly stored
in the offline datasets. Instead, only partial observations generated from the states of the environments
are stored (Dulac-Arnold et al., 2021). For example, in precision medicine, a physician’s treatment
might consciously or subconsciously depend on the patient’s mood and socioeconomic status (Zhang
and Bareinboim, 2016), which are not recorded in the data due to privacy concerns. As another
example, in autonomous driving, a human driver makes decisions based on multimodal information
of the environment that is not limited to visual and auditory inputs, but only observations captured by
LIDARs and cameras are stored in the datasets (Sun et al., 2020). In light of the partial observations
in the datasets, these situations are better modeled as partially observable Markov decision processes
(POMDPs) (Lovejoy, 1991). Existing offline RL methods for MDPs, which fail to handle partial
observations, are thus not applicable.
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In this work, we make the initial step towards studying offline RL in POMDPs where the datasets
only contain partial observations of the states. In particular, motivated from the aforementioned
real-world applications, we consider the case where the behavior policy takes actions based on the
states of the environment, which are not part of the dataset and thus are latent variables. Instead,
the trajectories in datasets consist of partial observations emitted from the latent states, as well as
the actions and rewards. For such a dataset, our goal is to learn an optimal policy in the context of
general function approximation.

Furthermore, offline RL in POMDP suffers from several challenges. First of all, it is known that both
planning and estimation in POMDPs are intractable in the worst case (Papadimitriou and Tsitsiklis,
1987; Burago et al., 1996; Goldsmith and Mundhenk, 1998; Mundhenk et al., 2000; Vlassis et al.,
2012). Thus, we have to identify a set of sufficient conditions that warrants efficient offline RL. More
importantly, our problem faces the unique challenge of the confounding issue caused by the latent
states, which does not appear in either online and offline MDPs or online POMDPs. In particular,
both the actions and observations in the offline dataset depend on the unobserved latent states, and
thus are confounded (Pearl, 2009).

Rh−1 Rh

Sh−1 Sh Sh+1

Oh−1 Oh Oh+1Ah−1 Ah

Figure 1: Causal graph of the data generating pro-
cess for offline RL in POMDP. Here Sh is the state
at step h. Besides, Ah, Rh, and Oh are the action,
immediate reward, and observation, respectively.
The dotted nodes indicate that the variables are not
stored in the offline dataset. Solid arrows indicate
the dependency among the variables. In specific,
the action Ah is specified by the behavior policy
which is a function of Sh (blue arrows). Moreover,
both the observation Oh and reward Rh depend
on the state Sh (red arrows). We remark that Sh

affects both Ah and (Oh, Rh) and thus serves as
an unobserved confounder.

Such a confounding issue is illustrated by a
causal graph in Figure 1. As a result, directly
applying offline RL methods for MDPs will nev-
ertheless incur a considerable confounding bias.
Besides, since the latent states evolve according
to the Markov transition kernel, the causal struc-
ture is thus dynamic, which makes the confound-
ing issue more challenging to handle than that in
static causal problems. Furthermore, apart from
the confounding issue, since we aim to learn
the optimal policy, our algorithm also needs to
handle the distributional shift between the tra-
jectories induced by the behavior policy and the
family of target policies. Finally, to handle large
observation spaces, we need to employ powerful
function approximators. As a result, the coupled
challenges due to (i) the confounding bias, (ii)
distributional shift, and (iii) large observation
spaces that are distinctive in our problem neces-
sitates new algorithm design and theory.

To this end, by leveraging tools from proximal
causal inference (Lipsitch et al., 2010; Tchetgen et al., 2020; Miao et al., 2018b;a), we propose
the Proxy variable Pessimistic Policy Optimization (P3O) algorithm, which provably addresses the
challenge of the confounding bias and the distributional shift in the context of general function
approximation. Specifically, we focus on a benign class of POMDPs where the causal structure
involving latent states can be captured by the past and current observations, which serves as the
negative control action and outcome respectively (Miao et al., 2018a;b; Cui et al., 2020; Singh, 2020;
Kallus et al., 2021; Bennett and Kallus, 2021; Shi et al., 2021). Then the value of each policy can
be identified by a set of confounding bridge functions corresponding to that policy, which satisfy
a sequence of backward moment equations that are similar to the celebrated Bellman equations in
classical RL (Bellman and Kalaba, 1965). Thus, by estimating these confounding bridge functions
from offline data, we can estimate the value of each policy without incurring the confounding bias.

More concretely, P3O involves two components — policy evaluation via minimax estimation and
policy optimization via pessimism. Specifically, to tackle the distributional shift, P3O returns the
policy that maximizes pessimistic estimates of the values obtained by policy evaluation. Meanwhile, in
policy evaluation, to ensure pessimism, we construct a coupled sequence of confidence regions for the
confounding bridge functions via minimax estimation, using function approximators. Furthermore,
under a partial coverage assumption on the confounded dataset, we prove that P3O achieves a
Õ(H

√
log(Nfun)/n) suboptimality, where n is the number of trajectories, H is the length of each

trajectory, Nfun stands for the complexity of the employed function classes (e.g., the covering number),
and Õ(·) hides logarithmic factors. When specified to linear function classes, the suboptimality of
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Offline Partial Obs. Confounded Data Policy Opt.
Xie et al. (2021) ✓ ✘ ✘ ✓

Uehara and Sun (2021) ✓ ✘ ✘ ✓

Jin et al. (2020) ✘ ✓ ✘ ✓
Efroni et al. (2022) ✘ ✓ ✘ ✓

Liu et al. (2022) ✘ ✓ ✘ ✓

Bennett and Kallus (2021) ✓ ✓ ✓ ✘
Shi et al. (2021) ✓ ✓ ✓ ✘

P3O (ours) ✓ ✓ ✓ ✓

Table 1: We compare with most related representative works in closely related lines of research. The
first line of research studies offline RL in standard MDPs without any partial observability. The second
line of research studies online RL in POMDPs where the actions are specified by history-dependent
policies. Thus, the actions does not directly depends on the latent states and thus these works do not
involve the challenge due to confounded data. The third line of research studies OPE in POMDPs
where the goal is to learn the value of the target policy as opposed to learning the optimal policy. As
a result, these works do not to need to handle the challenge of distributional shift via pessimism.

P3O becomes Õ(
√
H3d/n), where d is the dimension of the feature mapping. To our best knowledge,

we establish the first provably efficient offline RL algorithm for POMDP with a confounded dataset.

1.1 OVERVIEW OF TECHNIQUES

To deal with the coupled challenges of confounding bias, distributional shift, and large observational
spaces, our algorithm and analysis rely on the following technical ingredients.

Confidence regions based on minimax estimation via proximal causal inference. To handle the
confounded offline dataset, we use the proxy variables from proximal causal inference (Lipsitch et al.,
2010; Tchetgen et al., 2020; Miao et al., 2018a;b), which allows us to identify the value of each policy
by a set of confounding bridge functions. These bridge functions only depend on observed variables
and satisfy a set of backward conditional moment equations. We then estimate these bridge functions
via minimax estimation (Dikkala et al., 2020; Chernozhukov et al., 2020; Uehara et al., 2021). More
importantly, to handle the distributional shift, we propose a sequence of novel confidence regions
for the bridge functions, which quantifies the uncertainty of minimax estimation based on finite data.
This sequence of new confidence regions has not been considered in the previous works on off-policy
evaluation (OPE) in POMDPs (Bennett and Kallus, 2021; Shi et al., 2021) as pessimism seems
unnecessary in these works. Meanwhile, the confidence regions are constructed as a level set w.r.t.
the loss functions of the minimax estimation for bridge functions. Such a construction contrasts with
previous works on offline RL with confidence regions via maximum likelihood estimation (Uehara
and Sun, 2021; Liu et al., 2022) or least square regression (Xie et al., 2021). Furthermore, we develop
a novel theoretical analysis to show that any function in the confidence regions enjoys a fast statistical
rate of convergence. Finally, leveraging the backwardly inductive nature of the bridge functions, our
proposed confidence regions and analysis take the temporal structure into consideration, which might
be of independent interest to the study on dynamic causal inference (Friston et al., 2003).

Pessimism principle for learning POMDPs. To learn the optimal policy in the face of distributional
shift, we adopt the pessimism principle which is shown to be effective in offline RL in MDPs (Liu
et al., 2020; Jin et al., 2021; Rashidinejad et al., 2021; Uehara and Sun, 2021; Xie et al., 2021; Yin and
Wang, 2021; Zanette et al., 2021; Yin et al., 2022; Yan et al., 2022). Specifically, the newly proposed
confidence regions, combined with the identification result based on proximal causal inference, allows
us to construct a novel pessimistic estimator for the value of each target policy. From a theoretical
perspective, the identification result and the backward induction property of the bridge functions
provide a way of decomposing the suboptimality of the learned policy in terms of statistical errors of
the bridge functions. When combined with the pessimism and the fast statistical rates enjoyed by any
functions in the confidence regions, we show that our proposed P3O algorithm efficiently learns the
optimal policy under only a partial coverage assumption of the confounded dataset. We highlight that
our work firstly extend the pessimism principle to offline RL in POMDPs with confounded data.
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1.2 RELATED WORK

Our work is closely related to the bodies of literature on (i) reinforcement learning POMDPs, (ii)
offline reinforcement learning (in MDPs), and (iii) OPE via causal inference. Compared to the
literature, our work simultaneously involve partial observability, confounded data, and offline policy
optimization simultaneously, and thus involves the challenges faced by (i)–(iii). We summarize and
contrast with most related existing works in Table 1. We defer the detailed discussion to Appendix B.1.

2 PRELIMINARIES

Notations. In the sequel, we use lower case letters (i.e., s, a, o, and τ ) to represent dummy variables
and upper case letters (i.e., S, A, O, and Γ) to represent random variables. We use the variables in
the calligraphic font (i.e., S , A, and O) to represent the spaces of variables, and the blackboard bold
font (i.e., P and O) to represent probability kernels.

2.1 EPISODIC PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

We consider an episodic, finite-horizon POMDP, specified by a tuple (S,O,A, H, µ1,P,O, R). Here
we let S , A, and O denote the state, action, and observation spaces, respectively. The integer H ∈ N
denotes the length of each episode. The distribution µ1 ∈ ∆(S) denotes the distribution of the initial
state. The set P = {Ph}h∈[H] denotes the collection of state transition kernels where each kernel
Ph(·|s, a) : S ×A 7→ ∆(S) characterizes the distribution of the next state sh+1 given that the agent
takes action ah = a ∈ A at state sh = s ∈ S and step h ∈ [H]. The set O = {Oh}Hh=1 denotes the
observation emission kernels where each kernel Oh(·|s) : S 7→ ∆(O) characterizes the distribution
over observations given the current state s ∈ S at step h ∈ [H]. Finally, the set R = {Rh}Hh=1
denotes the collection of reward functions where each function Rh(s, a) : S ×A 7→ [0, 1] specifies
the reward the agent receives when taking action a ∈ A at state s ∈ S and step h ∈ [H].

Different from an MDP, in a POMDP, only the observation o, the action a, and the reward r are
observable, while the state variable s is unobservable. In each episode, the environment first samples
an initial state S1 from µ1(·). At each step h ∈ [H], the environment emits an observation Oh

from Oh(·|Sh). If an action Ah is taken, then the environment samples the next state Sh+1 from
Ph(·|Sh, Ah) and assign a reward Rh given by Rh(Sh, Ah). In our setting, we also let O0 ∈ O
denote the prior observation before step h = 1. We assume that O0 is independent of other random
variables in this episode given the first state S1.

2.2 OFFLINE DATA GENERATION: CONFOUNDED DATASET

Now we describe the data generation process. Motivated by real-world examples such as precision
medicine and autonomous driving discussed in Section 1, we assume that the offline data is generated
by some behavior policy πb which has access to the latent states. Specifically, we let πb = {πb

h}Hh=1

denote a collection of policies such that πb
h(·|s) : S 7→ ∆(A) specifies the probability of taking

action each a ∈ A at state s and step h. This behavior policy induces a set of probability distribution
Pb = {Pb

h}Hh=1 on the trajectories of the POMDP, where Pb
h is the distribution of the variables

at step h when following the policy πb. Formally, we assume that the offline data is denoted by
D = {(ok0 , (ok1 , ak1 , rk1 ), · · · , (okH , akH , rkH))}nk=1, where n is the number of trajectories, and for each
k ∈ [n], (ok0 , (o

k
1 , a

k
1 , r

k
1 ), · · · , (okH , akH , rkH)) is independently sampled from Pb. We highlight

that such an offline dataset is confounded since the latent state Sh, which is not stored in the
dataset, simultaneously affects the control variables (i.e., action Ah) and the outcome variables (i.e.,
observation Oh and reward Rh). Such a setting is prohibitive for existing offline RL algorithms for
MDPs as directly applying them will nevertheless incur a confounding bias that is not negligible.

2.3 LEARNING OBJECTIVE

The goal of offline RL is to learn an optimal policy from the offline dataset which maximizes the
expected cumulative reward. For POMDPs, the learned policy can only depend on the observable
information mentioned in Section 2.1. To formally define the set policies of interest, we first define the
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space of observable history as H = {Hh}H−1
h=0 , where each element τh ∈ Hh is a (partial) trajectory

such that τh ⊆ {(o1, a1), · · · , (oh, ah)}. We use Γh to denote the corresponding random variable.

We denote by Π(H) the class of policies which make decisions based on the current observation
oh ∈ O and the history information τh−1 ∈ Hh−1. That means, a policy π = {πh}Hh=1 ∈ Π(H)
satisfies πh(·|o, τ) : O×Hh−1 7→ ∆(A). The choice of H induces the policy set Π(H) by specifying
the input of the policies. We now introduce three examples of H and the corresponding Π(H).
Example 2.1 (Reactive policy (Azizzadenesheli et al., 2018)). The policy only depends on the current
observation Oh. Formally, we have Hh−1 = {∅} and therefore τh−1 = ∅ for each h ∈ [H].
Example 2.2 (Finite-history policy (Efroni et al., 2022)). The policy depends on the current obser-
vation and the history of length at most k. Formally, we have Hh−1 = (O × A)⊗min{k,h−1} and
τh−1 = ((ol, al), · · · , (oh−1, ah−1)) for some k ∈ N, where the index l = max{1, h− k}.
Example 2.3 (Full-history policy (Liu et al., 2022)). The policy depends on the current observation
and the full history. Formally, Hh−1 = (O ×A)⊗(h−1), and τh−1 = ((o1, a1), · · · , (oh−1, ah−1)).

We illustrate these examples with causal graphs and a more detailed discussion in Appendix C.1.
Now given a policy π ∈ Π(H), we denote by J(π) the value of π that characterizes the expected
cumulative rewards the agent receives by following π. Formally, J(π) is defined as

J(π) := Eπ

[
H∑

h=1

γh−1Rh(Sh, Ah)

]
, (2.1)

where γ ∈ (0, 1] is the discount factor, Eπ denotes the expectation w.r.t. Pπ = {Pπ
h }Hh=1 which is

the distribution of the trajectories induced by π. We define the suboptimality gap of any policy π̂ as
SubOpt(π̂) := J(π⋆)− J(π̂), where π⋆ ∈ arg max

π∈Π(H)

J(π). (2.2)

Here π⋆ is the optimal policy within Π(H). Our goal is to find some policy π̂ ∈ Π(H) that minimizes
the suboptimality gap in (2.2) based on the offline dataset D.

3 ALGORITHM: PROXY VARIABLE PESSIMISTIC POLICY OPTIMIZATION

As is previously discussed, the offline RL problem introduced in Section 2 for POMDPs suffers
from three coupled challenges — (i) the confounding bias, (ii) distributional shift, and (iii) large
observation spaces. In the sequel, we introduce an algorithm that addresses all three challenges
simultaneously. We first introduce the high-level idea for combating these challenges.

Offline RL for POMDPs is known to be intractable in the worst case (Krishnamurthy et al., 2016). So
we first identify a benign class of POMDPs where the causal structure involving latent states can be
captured by only the observable variables available in the dataset D. For such a class of POMDPs, by
leveraging tools from proximal causal inference (Lipsitch et al., 2010; Tchetgen et al., 2020), we then
seek to identify the value J(π) of the policy π ∈ Π(H) via some confounding bridge functions bπ

(Assumption 3.2) which only depend on the observable variables and thus can be estimated using
D (Theorem 3.3). Identification via proximal causal inference will be discussed in Section 3.1.

In addition, to estimate these confounding bridge functions, we utilize the the fact that these functions
satisfy a sequence of conditional moment equations which resembles the Bellman equations in
classical MDPs (Bellman and Kalaba, 1965). Then we adopt the idea of minimax estimation (Dikkala
et al., 2020; Kallus et al., 2021; Uehara et al., 2021; Duan et al., 2021) which formulates the bridge
functions as the solution to a series of minimax optimization problems in (3.11). Additionally, the
loss function in minimax estimation readily incorporates function approximators and thus addresses
the challenge of large observation spaces.

To further handle the distributional shift, we extend the pessimism principle (Liu et al., 2020; Jin
et al., 2021; Rashidinejad et al., 2021; Uehara and Sun, 2021; Xie et al., 2021; Yin and Wang, 2021;
Zanette et al., 2021) to POMDPs with the help of the confounding bridge functions. In specific, based
on the confounded dataset, we first construct a novel confidence region CRπ(ξ) for bπ based on
level sets with respect to the loss functions of the minimax estimation (See (3.12) for details). Our
algorithm, Proxy variable Pessimistic Policy Optimization (P3O), outputs the policy that maximizes
pessimistic estimates the values of the policies within Π(H). The details of P3O is summarized by
Algorithm 1 in Section 3.3.
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3.1 POLICY VALUE IDENTIFICATION VIA PROXIMAL CAUSAL INFERENCE

To handle the confounded dataset D, we first identify the policy value J(π) for each π ∈ Π(H)
using the idea of proxy variables. Following the notions of proximal causal inference (Tennenholtz
et al., 2020; Lipsitch et al., 2010), we assume that there exists negative control actions {Zh}Hh=1 and
negative control outcomes {Wh}Hh=1 satisfying the following independence assumption.

Assumption 3.1 (Negative control). We assume there exist negative control variables {Wh}Hh=1 and
{Zh}Hh=1 measurable with respect to the observed trajectories, such that under Pb, it holds that

Zh ⊥ Oh, Rh,Wh,Wh+1 |Ah, Sh,Γh−1, Wh ⊥ Ah,Γh−1, Sh−1 |Sh. (3.1)

We explain in detail the existence of such negative control variables for all the three different choices
of history H in Examples 2.1, 2.2, and 2.3 respectively in Appendix C.1. Besides Assumption 3.1,
our identification of policy value also relies on the notion of confounding bridge functions (Kallus
et al., 2021; Shi et al., 2021), for which we make the following assumption.
Assumption 3.2 (Confounding bridge functions). For any history-dependent policy π ∈ Π(H), we
assume the existence of the value bridge functions {bπh : A×W 7→ R}Hh=1 and the weight bridge
functions {qπh : A×Z 7→ R}Hh=1 which are defined as the solution to the following equations almost
surely with respect to the measure Pb:

Eπb [bπh(Ah,Wh)|Ah, Zh] = Eπb

[
Rhπh(Ah|Oh,Γh−1)

+ γ
∑
a′

bπh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1)

∣∣∣Ah, Zh

]
, (3.2)

Eπb [qπh(Ah, Zh)|Ah, Sh,Γh−1] =
µh(Sh,Γh−1)

πb
h(Ah|Sh)

. (3.3)

Here bπH+1 is a zero function and µh(Sh,Γh−1) in (3.3) is defined as the importance sampling ratio
µh(Sh,Γh−1) := Pπ

h (Sh,Γh−1)/Pb
h(Sh,Γh−1).

We use “confounding bridge function” and “bridge function” interchangeably throughout the paper.
We remark that in the proximal causal inference literature, the existence of such bridge functions bears
more generality than assuming certain complicated completeness conditions (Cui et al., 2020), as
discussed by Kallus et al. (2021). The existence of such bridge functions is justified by conditions on
the the rank of certain conditional probabilities or singular values of certain conditional expectation
linear operators. See Appendix C.2 for examples of Assmuption 3.2 under previous choice of H.

Now given Assumption 3.1 and 3.2 on the existence of proxy variables and bridge functions, we are
ready to present the main identification result. It represents the true policy value J(π) via the value
bridge functions, as is concluded in the following theorem.
Theorem 3.3 (Identification of policy value). Under Assumption 3.1 and 3.2, for any history-
dependent policy π ∈ Π(H), it holds that

J(π) = F (bπ), where F (bπ) := Eπb

[∑
a∈A

bπ1 (a,W1)

]
. (3.4)

See Appendix E for a detailed proof. Note that although we have assumed the existence of both the
value bridge functions in (3.2) and the weight bridge functions in (3.3), Theorem 3.3 represents J(π)
using only the value bridge functions. In (3.2) all the random variables involved are observed by
the learner and distributed according to the data distribution Pb, which means that the value bridge
functions can be estimated from data. This overcomes the confounding issue.

3.2 POLICY EVALUATION VIA MINIMAX ESTIMATION WITH UNCERTAINTY QUANTIFICATION

According to Theorem 3.3 and Assumption 3.2, to estimate the value J(π) of π ∈ Π(H), it suffices
to estimate the value bridge functions {bπh}Hh=1 by solving (3.2), which is a conditional moment
equation. To this end, we adopt the method of minimax estimation (Dikkala et al., 2020; Uehara et al.,
2021; Duan et al., 2021). Furthermore, in order to handle the distributional shift between behavior
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policy and target policies, we construct a sequence of confidence regions for {bπh}Hh=1 based on
minimax estimation, which allows us to apply the pessimism principle by finding the most pessimistic
estimates within the confidence regions.

Specifically, minimax estimation involves two function classes B ⊆ {b : A × W 7→ R} and
G ⊆ {g : A×Z 7→ R}, interpreted as the primal and dual function classes, respectively. Theoretical
assumptions on B and G are presented in Section 4. In order to find functions that satisfy (3.2), it
suffices to find b = (b1, · · · , bH) ∈ B⊗H such that the following conditional moment

ℓπh(bh, bh+1)(Ah, Zh) := Eπb

[
bh(Ah,Wh)−Rhπh(Ah|Oh,Γh−1)

− γ
∑
a′∈A

bh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1)

∣∣∣Ah, Zh

]
(3.5)

is equal to zero almost surely for all h ∈ [H], where bH+1 is a zero function. Intuitively, the quantity
(3.5) can be interpreted as the “Bellman residual" of the value bridge functions b. Notice that
(3.5) being zero almost surely for all h ∈ [H] is actually a conditional moment equation, which
is equivalent to finding b ∈ B⊗H such that the following residual mean squared error (RMSE) is
minimized for all h:

Lπ
h(bh, bh+1) := Eπb

[(
ℓπh(bh, bh+1)(Ah, Zh)

)2]
. (3.6)

It might seem tempting to directly minimize the empirical version of (3.6). However, this is not viable
as one would obtain a biased estimator due to an additional variance term. The reason is that the
quantity defined by (3.5) is a conditional expectation and therefore RMSE defined by (3.6) cannot
be directly unbiasedly estimated from data (Farahmand et al., 2016). In the sequel, we adopt the
technique of minimax estimation to circumvent this issue. In particular, we first use Fenchel duality
to write (3.6) as

Lπ
h(bh, bh+1) = 4λEπb

[
max
g∈G

ℓπh(bh, bh+1)(Ah, Zh) · g(Ah, Zh)− λg(Ah, Zh)
2

]
, λ > 0, (3.7)

which holds when the dual function class G is expressive enough such that ℓπh(bh, bh+1)/2λ ∈ G.
Then thanks to the interchangeability principle (Rockafellar and Wets, 2009; Dai et al., 2017; Shapiro
et al., 2021), we can interchange the order of maximization and expectation and derive that

Lπ
h(bh, bh+1) = 4λmax

g∈G
Eπb

[
ℓπh(bh, bh+1)(Ah, Zh) · g(Ah, Zh)− λg(Ah, Zh)

2
]
. (3.8)

The core idea of minimax estimation is to minimize the empirical version of (3.8) instead of (3.6),
and the benefit of doing so is a fast statistical rate of Õ(n−1/2) (Dikkala et al., 2020; Uehara et al.,
2021), as we can see in the sequel. For simplicity, in the following, we define Φλ

π,h : B×B×G 7→ R
with parameter λ > 0 as

Φλ
π,h(bh, bh+1; g) := Eπb

[
ℓπh(bh, bh+1)(Ah, Zh) · g(Ah, Zh)− λg(Ah, Zh)

2
]
, (3.9)

and we denote by Φ̂λ
π,h : B× B×G 7→ R the empirical version of Φλ

π,h, i.e.,

Φ̂λ
π,h(bh,bh+1; g) := Êπb

[(
bh(Ah,Wh)−Rhπh(Ah|Oh,Γh−1)

− γ
∑
a′∈A

bh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1)

)
· g(Ah, Zh)− λg(Ah, Zh)

2
]
, (3.10)

where Êπb denotes the empirical version of Eπb based on dataset D described in Section 2.2.

Furthermore, note that the value bridge functions (bπ1 , · · · , bπh) admit a sequential dependence
structure. To handle such dependency, for any π ∈ Π(H), h ∈ [H], and bh+1 ∈ B, we first
define the minimax estimator b̂h(bh+1) as

b̂h(bh+1) := arg min
b∈B

{
max
g∈G

Φ̂λ
π,h(bh, bh+1; g)

}
. (3.11)

Based on (3.11), we propose a confidence region for bπ := (bπ1 , · · · , bπH) ∈ B⊗H as

CRπ(ξ) :=

{
b ∈ B⊗H

∣∣∣∣ max
g∈G

Φ̂λ
π,h(bh, bh+1; g)−max

g∈G
Φ̂λ

π,h(̂bh(bh+1), bh+1; g) ≤ ξ,∀h
}
. (3.12)
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Algorithm 1 Proxy variable Pessimistic Policy Optimization (P3O)
1: Input: confidence parameter ξ > 0, regularization parameter λ > 0, dataset D, classes B and G.
2: Construct minimax estimator confidence region CRπ(ξ) for each π ∈ Π(H) by (3.12).
3: Policy evaluation: pessimistically estimate ĴPess(π) for each π ∈ Π(H) by (3.13).
4: Policy optimization: set π̂ by (3.14).
5: Output: π̂ = {π̂h}Hh=1.

From the above definition1, one can see that CRπ(ξ) is actually a coupled sequence of H confidence
regions, where each single confidence region aims to cover a function bπh. For notational simplicity,
we use a single notation CRπ(ξ) to denote all the H confidence regions. Intuitively, the confidence
region CRπ(ξ) contains all b ∈ B⊗H whose RMSE does not exceed that of (̂bh(bh+1), bh+1) by
too much at each h ∈ [H]. The confidence region takes the sequential dependence of confounding
bridge functions into consideration in the sense that each b ∈ CRπ(ξ) is restricted through the
minimax estimation loss between continuous steps. As we show in Section D, with high probability,
the confidence region CRπ(ξ) contains the true bridge value functions bπ. More importantly, every
b ∈ CRπ(ξ) enjoys a fast statistical rate of Õ(n−1/2).

Now combining the confidence region (3.12) and the identification formula (3.4), for any policy
π ∈ Π(H), we adopt an pessimistic estimate of the value of J(π) as

ĴPess(π) := min
b∈CRπ(ξ)

F̂ (b), where F̂ (b) := Êπb

[∑
a∈A

b1(a,W1)

]
. (3.13)

3.3 POLICY OPTIMIZATION

Given the pessimistic value estimate (3.13), P3O chooses π̂ which maximizes ĴPess(π), that is,

π̂ := arg max
π∈Π(H)

ĴPess(π). (3.14)

We summarize the entire P3O algorithm in Algorithm 1. In Section 4, we show that under some
mild assumptions on the function classes B and G and under only a partial coverage assumption on
the dataset D, the suboptimality (2.2) of Algorithm 1 decays at the fast statistical rate of Õ(n−1/2),
where Õ(·) omits H and factors that characterize the complexity of the function classes.

4 THEORETICAL RESULTS

In this section, we present our theoretical results. For ease of presentation, we first assume that both
the primal function class B and the policy class Π(H) are finite sets with cardinality |B| and |Π(H)|,
respectively. But we allow the dual function class G to be an infinite set. Our results can be easily
extended to infinite B and Π(H) using the notion of covering numbers (Wainwright, 2019), which
we demonstrate with linear function approximation in Section H.1.

We first introduce some necessary assumptions for efficient learning of the optimal policy. To begin
with, the following Assumption 4.1 ensures that the offline data generated by πb has a good coverage
over π⋆. The problem would become intractable without such an assumption (Chen and Jiang, 2019).
Assumption 4.1 (Partial coverage). We assume that the concentrability coefficient for the optimal
policy π⋆, defined as Cπ⋆

:= maxh∈[H] Eπb

[
(qπ

⋆

h (Ah, Zh))
2
]
, satisfies that Cπ⋆

< +∞.

Very importantly, Assumption 4.1 only assumes the partial coverage, i.e., the optimal policy π⋆ is
well covered by πb (Jin et al., 2021; Uehara and Sun, 2021), which is significantly weaker than the
uniform coverage, i.e., the entire policy class Π(H) is covered by πb (Chen and Jiang, 2019) in the
sense that maxπ∈Π(H) C

π < +∞. See Appendix B.1 for more about partial coverage in POMDP.

The next assumption is on the functions classes B and G. We require that B and G are uniformly
bounded, and that G is symmetric, star-shaped, and has bounded localized Rademacher complexity.

1We refer the readers to Appendix B.1 for a detailed comparison of the minimax-typed loss (and confidence
region) with the least-square-typed loss (and confidence region) used by Xie et al. (2021).
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Assumption 4.2 (Function classes B and G). We assume the classes B and G satisfy that: i) There
exist MB,MG < +∞ such that B, G are bounded by supb∈B supw∈W |

∑
a∈A b(a,w)| ≤ MB

2,
supg∈G sup(a,z)∈A×Z |g(a, z)| ≤ MG; ii) G is star-shaped, i.e., for any g ∈ G and λ ∈ [0, 1], it
holds that λg ∈ G; iii) G is symmetric, i.e., for any g ∈ G, it holds that −g ∈ G; iv) For any
step h ∈ [H], G has bounded critical radius αG,h,n which solves inequality Rn(G;α) ≤ α2/MG,
where Rn(G, α) is the localized population Rademacher complexity of G under the distribution of
(Ah, Zh) induced by πb, that is,

Rn(G, α) = Eπb,ϵi

[
sup

g∈G:∥g∥2≤α

∣∣∣∣ 1n
n∑

i=1

ϵig(Ah, Zh)

∣∣∣∣
]
,

with ∥g∥2 defined as (Eπb [g2(Ah, Zh)])
1/2, random variables {ϵi}ni=1 independent of (Ah, Zh) and

independently uniformly distributed on {+1,−1}. Also, we denote αG,n := maxh∈[H] αG,h,n.

Finally, to ensure that the minimax estimation in Section 3.2 learns the value bridge functions
unbiasedly, we make the following completeness and realizability assumptions on the function classes
B and G which are standard in the literature (Dikkala et al., 2020; Xie et al., 2021; Shi et al., 2021).
Assumption 4.3 (Completeness and realizability). We assume that, i) completeness: for any h ∈ [H],
any π ∈ Π(H), and any bh, bh+1 ∈ B, it holds that 1

2λℓ
π
h(bh, bh+1) ∈ G where ℓπh is defined in (3.5);

ii) realizability: for any h ∈ [H], any π ∈ Π(H), and any bh+1 ∈ B, there exists b⋆ ∈ B such that
Lπ
h(b

⋆, bh+1) ≤ ϵB for some ϵB < +∞, i.e., we assume that

0 ≤ ϵB := max
h∈[H],π∈Π(H),bh+1∈B

min
bh∈B

Eπb

[
ℓπh(bh, bh+1)(Ah, Zh)

2
]
< +∞.

Here the completeness assumption means the dual function class G is rich enough which guarantees
the equivalence between Lπ

h(·, ·) and maxg∈G Φλ
π,h(·, ·; g). The realizability assumption means that

the primal function class B is rich enough such that (3.2) always admits an (approximate) solution.

With these technical assumptions, we can establish our main theoretical results in the following
theorem, which gives an upper bound of the suboptimality (2.2) of the policy π̂ output by Algorithm 1.
Theorem 4.4 (Suboptimality). Under Assumptions 3.1, 3.2, 4.1, 4.2, and 4.3, by setting the regular-
ization parameter λ and the confidence parameter ξ as λ = 1 and

ξ = C1 ·M2
BM

2
G · log(|B||Π(H)|H/ζ)/n,

then probability at least 1− 3δ, it holds that

SubOpt(π̂) ≤ C ′
1

√
Cπ⋆H ·MBMG ·

√
log(|B||Π(H)|H/ζ)/n+ C ′

1

√
Cπ⋆MGHϵ

1/4
B ,

where ζ = min{δ, 4c1 exp(−c2nα2
G,n)}. Here Cπ⋆

, αG,n, and ϵB are defined in Assumption 4.1, 4.2,
and 4.3, respectively. And C1, C ′

1, c1, and c2 are some problem-independent universal constants.

We introduce all the key technical lemmas and sketch the proof of Theorem 4.4 in Section D. We
refer to Appendix G for a detailed proof. When it holds that αG,n = Õ(n−1/2) and ϵB = 0, Theorem
4.4 implies that SubOpt(π̂) ≤ Õ(n−1/2), which corresponds to a “fast statistical rate” for minimax
estimation (Uehara et al., 2021). The derivation of such a fast rate relies on a novel analysis for the
risk of functions in the confidence region, which is shown by Lemma D.3 in Section D. Meanwhile,
for many choices of the dual function class G, it holds that αG,n scales with

√
logNG where NG

denotes the complexity measure of the class G. In such cases, the suboptimality also scales with√
logNG, without explicit dependence on the cardinality of the spaces S, A, or O. Finally, we

highlight that, thanks to the principle of pessimism, the suboptimality of P3O depends only on the
partial coverage concentrability coefficient Cπ⋆

, which can be significantly smaller than the uniform
coverage concentrability coefficient supπ∈Π(H) C

π. In conclusion, when αG,n = Õ(
√

logNG/n)

and ϵB = 0, the P3O algorithm enjoys a Õ(H
√
Cπ⋆ logNG/n) suboptimality.

Linear function approximation. Theorem 4.4 can be readily extended to the case of linear function
approximation (LFA) with infinite-cardinality B and Π(H), which yields an Õ(

√
H3d/n) subopti-

mality. Due to space limit, we defer the detailed setup and main results of LFA to Appendix H.1.
2The constant MB might seem to be proportional to |A| due to the summation

∑
a∈A b(a,w), but it is

not. The reason is that the definition of the true confounding bridge function in (3.2) involves a product with
πh(·|Oh,Γh−1) which is a distribution over A. Thus the summation over A is essentially an average over A.
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A TABLE OF NOTATIONS

Table 2: Table of Notations

Notation Meaning

J(π) Policy value Eπ[
∑H

h=1 γ
h−1Rh]

bπh, qπh value bridge function, weight bridge function of π at step h

bπ , qπ value bridge function vector, weight bridge function vector of π

CRπ(ξ) confidence region of bπ , according to (3.12)

b an element in the confidence region CRπ(ξ)

F (b), F̂ (b) a mapping for identification with J(π) = F (bπ), according to (3.4)

ℓπh "Bellman residual" for bridge functions, according to (3.5)

Lπ
h residual mean square loss for ℓπh, according to (3.6)

Φλ
π,h, Φ̂λ

π,h a mapping for minimax estimation, according to (3.9)

b̂h(bh+1) minimax estimator of bπh given bh+1, according to (3.11)

Ĵpess(π) pessimistic estimator of J(π), according to (3.13)

π̂ policy returned by P3O algorithm, according to (3.14)

In this section, we provide a comprehensive clarification on the use of notation in this paper.

We use lower case letters (i.e., s, a, o, and τ ) to represent dummy variables and upper case letters
(i.e., S, A, O, and Γ) to represent random variables. We use the variables in the calligraphic font (i.e.,
S , A, O, and H) to represent the spaces of variables, and the blackboard bold font (i.e., P and O) to
represent probability kernels.

We use H = {Hh}H−1
h=0 to denote the space of observable history, where each element τh ∈ Hh

is a (partial) trajectory such that τh ⊆ {(o1, a1), · · · , (oh, ah)}. We use πb = {πb
h}Hh=1 to denote

the behavior policy, where πb
h : S 7→ ∆(A). We use π = {πh}Hh=1 ∈ Π(H) to denote a history-

dependent policy with πh : O ×Hh−1 7→ ∆(A). Also, we use π⋆ = {π⋆
h}Hh=1 to denote the optimal

history-dependent policy. Offline data D is collected by πb, as described in Section 2.2.

We use Pb = {Pb
h}Hh=1 and Pπ = {Pπ

h }Hh=1 to denote the distribution of trajectories under the policy
πb and π, respectively, where Pb

h and Pπ
h denote the density of corresponding variables at step h.

Also, we use Eπb and Eπ to denote the expectation w.r.t. the distribution Pb and Pπ . We use Êπb to
denote the empirical version of Eπb , which is calculated on data D.

16



Published as a conference paper at ICLR 2023

Through out the paper, we use O(·) to hide problem-independent constants and use Õ(·) to hide
problem-independent constants plus logarithm factors. The following table summaries the notations
we used in our proposed algorithm design and theory.

B FURTHER DISCUSSION

B.1 FURTHER DISCUSSION ON RELATED WORK

Reinforcement learning in POMDPs. Our work is related to the recent line of research on developing
provably efficient online RL methods for POMDPs (Guo et al., 2016; Krishnamurthy et al., 2016;
Jin et al., 2020; Xiong et al., 2021; Jafarnia-Jahromi et al., 2021; Efroni et al., 2022; Liu et al.,
2022). In the online setting, the actions are specified by history-dependent policies and thus the latent
state does not directly affect the actions. Thus, the actions and observations in the online setting
are not confounded by latent states. Consequently, although these work also conduct uncertainty
quantification to encourage exploration, the confidence regions are not based on confounded data and
are thus constructed differently.

Offline reinforcement learning and pessimism. Our work is also related to the literature on offline
RL and particularly related to the works based on the pessimism principle (Antos et al., 2007; Munos
and Szepesvári, 2008; Chen and Jiang, 2019; Buckman et al., 2020; Liu et al., 2020; Min et al.,
2021; Jin et al., 2021; Zanette, 2021; Jin et al., 2021; Xie et al., 2021; Uehara and Sun, 2021; Yin
and Wang, 2021; Rashidinejad et al., 2021; Zhan et al., 2022; Yin et al., 2022; Yan et al., 2022).
Offline RL faces the challenge of the distributional shift between the behavior policy and the family
of target policies. Without any coverage assumption on the offline data, the number of data needed
to find a near-optimal policy can be exponentially large (Buckman et al., 2020; Zanette, 2021). To
circumvent this problem, a few existing works study offline RL under a uniform coverage assumption,
which requires the concentrability coefficients between the behavior and target policies are uniformly
bounded. See, e.g., Antos et al. (2007); Munos and Szepesvári (2008); Chen and Jiang (2019) and
the references therein. Furthermore, a more recent line of work aims to weaken the uniform coverage
assumption by adopting the pessimism principle in algorithm design (Liu et al., 2020; Jin et al., 2021;
Rashidinejad et al., 2021; Uehara and Sun, 2021; Xie et al., 2021; Yin and Wang, 2021; Zanette et al.,
2021; Yin et al., 2022; Yan et al., 2022). In particular, these works proves theoretically that pessimism
is effective in tackling the distributional shift of the offline dataset. In particular, by constructing
pessimistic value function estimates, these works establish upper bounds on the suboptimality of
the proposed methods based on significantly weaker partial coverage assumption. That is, these
methods can find a near-optimal policy as long as the dataset covers the optimal policy. The efficacy
of pessimism has also been validated empirically in Kumar et al. (2020); Kidambi et al. (2020);
Yu et al. (2021); Janner et al. (2021). Compared with these works on pessimism, we focus on the
more challenging setting of POMDP with a confounded dataset. To perform pessimism in the face
of confounders, we conduct uncertainty quantification for the minimax estimation regarding the
confounding bridge functions. Our work complements this line of research by successfully applying
pessimism to confounded data.

OPE via causal inference. Our work is closely related to the line of research that employing tools
from causal inference (Pearl, 2009) for studying OPE with unobserved confounders (Oberst and
Sontag, 2019; Kallus and Zhou, 2020; Bennett et al., 2021; Kallus and Zhou, 2021; Mastouri et al.,
2021; Shi et al., 2021; Bennett and Kallus, 2021; Shi et al., 2022). Among them, Bennett and Kallus
(2021); Shi et al. (2021) are most relevant to our work. In particular, these works also leverage
proximal causal inference (Lipsitch et al., 2010; Miao et al., 2018a;b; Cui et al., 2020; Tchetgen et al.,
2020; Singh, 2020) to identify the value of the target policy in POMDPs. See Tchetgen et al. (2020)
for a detailed survey of proximal causal inference. In comparison, this line of research only focuses
on evaluating a single policy, whereas we focus on learning the optimal policy within a class of target
policies. As a result, we need to handle a more challenging distributional shift problem between the
behavior policy and an entire class of target policies, as opposed to a single target policy in OPE.
However, thanks to the pessimism, we establish theory based on a partial coverage assumption that is
similar to that in the OPE literature. To achieve such a goal, we conduct uncertainty quantification
for the bridge function estimators, which is absent in the the works on OPE. As a result, our analysis
is different from that in Bennett and Kallus (2021); Shi et al. (2021).
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Relations between minimax-typed loss and least-square-typed loss (Xie et al., 2021). During the
preparation of this paper, we find that in the MDP setting, the least-square-typed loss considered
by (Xie et al., 2021) can be reformulated to the minimax-typed loss that we consider in this paper
with a different dual function class. To see this, consider the MDP setting with a single transition
tuple (Sh, Ah, Sh+1). The goal is to estimate the Bellman target (BVh+1) : S ×A → R, where B is
the Bellman operator and Vh+1 : S → R is a fixed state-value function. For each (s, a) ∈ S × A,
(Bπfh+1)(s, a) is given by

(Bfh+1)(s, a) = Rh(s, a) +

∫
S
Ph(ds

′|s, a)Vh+1(s
′).

Here Rh is the reward function and we can assume it is known for now, and Ph : S × A 7→ ∆(S)
is the unknown transition kernel. We use function class F to approximate the bellman target. Then
based on the offline transition data D = {(sτh, aτh, sτh+1)}Nτ=1, the least-square-typed loss function
given in Equation (3.1) of (Xie et al., 2021) becomes

L̂ls
h(fh) = ÊD

[(
fh(Sh, Ah)−Rh − Vh+1(Sh+1

)2]
− min

f ′
h∈F

ÊD

[(
f ′h(Sh, Ah)−Rh − Vh+1(Sh+1

)2]
, (B.1)

where Rh is an abbreviation for Rh(Sh, Ah). Using the equality x2 − y2 = (x+ y)(x− y), we can
rewrite the least-square-typed loss (B.1) as

L̂ls
h(fh) = sup

f ′
h∈F

ÊD

[(
(fh + f ′h)(Sh, Ah)− 2Rh − 2Vh+1(Sh+1)

)(
(fh − f ′h)(Sh, Ah)

)]
.

For derivation, we further rewrite first term as

(fh + f ′h)(Sh, Ah)− 2Rh − 2Vh+1(Sh+1)

=
(
2fh(Sh, Ah)− 2Rh − 2Vh+1(Sh+1)

)
−
(
(fh − f ′h)(Sh, Ah)

)
.

With this, we can then rewrite the least-square-typed loss (B.1) as

L̂ls
h(fh) = sup

f ′
h∈F

ÊD

[(
2fh(Sh, Ah)− 2Rh − 2Vh+1(Sh+1)

)(
(fh − f ′h)(Sh, Ah)

)
−
(
(fh − f ′h)(Sh, Ah)

)2]
.

Now by defining a new function class Gf depending on f as Gf = {f − f ′ : f ′ ∈ F}, we arrive that

1

2
L̂ls
h(fh) = sup

gh∈Gfh

ÊD

[(
fh(Sh, Ah)−Rh − Vh+1(Sh+1)

)
gh(Sh, Ah)−

1

2
gh(Sh, Ah)

2
]
. (B.2)

This shares the same form as the minimax-typed loss supgh∈G Φ̂
1/2
π,h(bh, bh+1; gh) we consider in our

work, see (3.10) in the main text. But still there are differences. In (B.2), the dual function gh lies in
a dual function class Gfh which depends on the primal function fh. While in our minimax-typed loss,
the dual function class does not depends on the primal function.

Finally, we need to point out that even the two losses share the same form, the form of the confidence
region considered by our work is different from that considered by Xie et al. (2021). To see this, still
using the previous notations, the confidence region in Xie et al. (2021) (Equation (3.2)) becomes

CRh(ξ) =
{
fh ∈ F : L̂ls

h(fh) ≤ ξ
}
.

Meanwhile, if we reduce our confidence region to the above MDP setting, our confidence region
should be in the form of

CRh(ξ) =

{
fh ∈ F : L̂mm

h (fh)− min
fh∈F

L̂mm
h (fh) ≤ ξ

}
,

where Lmm
h (fh) denotes the minimax-typed-loss. Our algorithm and theoretical analysis are based

on the second form of confidence region, which is key to the derivation of fast statistical rates for
elements in the confidence region based on minimax estimation.
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B.2 DISCUSSION ABOUT THE PARTIAL COVERAGE

More about the partial coverage (Assumption 4.1). Our work assumes the partial coverage of D
according to Assumption 4.1, where we implicitly requires that Pπ

h (Sh,Γh−1) /Pb
h (Sh,Γh−1) <

+∞ for all π ∈ Π(H) (we call it the finite-ratio condition from here). We note that this finite-ratio
condition can NOT be regarded as the full coverage assumption. Instead, this is a regularity condition
that arises from causal inference.

First of all, the finite-ratio condition is different from the full coverage assumption in standard MDPs.
The Full coverage assumption in standard MDPs usually takes the form that

max
π∈Π

Pπ
h (s, a)

Pb
h(s, a)

< C,

for some fixed C > 0. This condition means the density ratio of the marginal distributions of (s, a)
between any target policy π and the behavior policy πb is uniformly bounded by a constant. This
condition (or some similar form) is a common and widely accepted form of full coverage in the MDP
literature, e.g. (Chen and Jiang, 2019; Xie and Jiang, 2020). Note that this constant C is a uniform
upper bound over the candidate policy class. Very importantly, this constant u′ appears in the final
error bound. The partial coverage assmuption in MDP, on the other hand, is commonly formulated as

Pπ⋆

h (s, a)

Pb
h(s, a)

< C,

This condition means the density ratio of the marginal distributions of (s, a) between only the optimal
policy π⋆ and the behavior policy πb, is bounded by a constant. The form of this assumption is very
close to Assumption 4.1 (Partial coverage) in our paper. In other words, our Assumption 4.1 is a
version of the partial coverage assumption that is tailored to the POMDP case. Notably, this constant
C in the partial coverage assumption also appears in the final error bound.

As a sharp comparison to both the full coverage and partial coverage assumptions, the finite-ratio
condition that the quantity Pπ

h (Sh,Γh−1) /Pb
h (Sh,Γh−1) < +∞ for all π ∈ Π(H) does not result

in any constant factor that appears in the final error bound. In the case of infinite policy class Π(H),
we can allow the ratio to be arbitrarily large and that won’t hurt our final error bound. Therefore,
this is not a coverage assumption. Our finite-ratio condition is a regularity condition that arises from
causal inference. This condition is needed to deal with the extra challenge of the confounding issue
in our POMP setting. In related works studying OPE under confounded POMDP (Shi et al., 2021),
this finite-ratio condition is also needed. Overall, our paper is indeed under partial coverage and the
finite ration condition is not a kind of coverage assumption.

B.3 POTENTIAL APPLICATION: REAL-WORLD EXAMPLE OF PROXIMAL CAUSAL INFERENCE
IN RL.

Let us consider the real-world example of applying the POMDP model to sepsis treatment studied by
Tsoukalas et al. (2015). In such an example, the state, action, observation, and reward of the POMDP
are given by the following:

• State variable Sh refers to the clinical state of the patient, e.g., sepsis, SIRS, Bacteremia, etc.
• Observable variable Oh refers to all the information one can read from a medical device,

such as the heart rate, the respiratory rate, blood pressure, blood test result of infection, etc.
• Action Ah refers to certain treatment given to the patient. For example, each antibiotic

combination can be considered as an action. As mentioned in Tsoukalas et al. (2015), a total
of 48 antibiotics have been included in the patient’s remedy.

• Reward/cost values need to be provided empirically by physicians, based on the severity
of each state. In the example of Tsoukalas et al. (2015), the states and their corresponding
rewards/costs include: Healthy (100,000), No SIRS (50,000), Probable Sepsis (PS, 5000),
SIRS (-50), Bacteremia (-10,000), etc.

• Finally, a history trajectory is the record of antibiotic treatment received by the patient. The
behavior policy is some treatment plans that have been applied to some patients to generate
the dataset.
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When using reactive policies (Example 2.1), the negative control action variable (Zh) is just the
observation variable Oh−1 which reflects the patient’s clinical state at the last treatment time step,
and the negative control outcome variable (Wh) is just the observation variable Oh at the current time
step. Furthermore, when the observation O contains enough information to reflect the underlying
state S, which basically implies a certain full rank assumption, we can then use Example C.1 to
guarantee the existence of the bridge functions (See Appendix C).

C PROXIMAL CAUSAL INFERENCE

In this Section, we complement the discussion of proximal causal inference in Section 3.1.

C.1 ILLUSTRATION OF EXAMPLES

In this subsection, we give detailed discussions for the three examples of history-dependent policies
mentioned in Section 2.3. In particular, we give causal graphs of the POMDP when adopting these
policies. Also, we explain the choice of negative control variables for these policies in Section 3.1.

C.1.1 REACTIVE POLICY (EXAMPLE 2.1 REVISITED)

When the target policy is a reactive policy, it only depends on the current observation Oh. That is,
Hh−1 = {∅} and Γh−1 = ∅ for each h ∈ [H]. The causal graph for such a target policy is shown
in Figure 2. In this case, we choose the negative control action as Zh = Oh−1 (node in green)
and the negative control outcome as Wh = Oh (node in yellow). By this choice, we can check the
independence condition in Assumption 3.1 via Figure 2, i.e., under Pb,

Oh−1 ⊥ Oh, Rh, Oh+1 |Sh, Ah Oh ⊥ Ah, Sh−1 |Sh.

Rh−1 Rh

Sh−1 Sh Sh+1

Oh−1 Oh Oh+1

Ah−1 Ah

Figure 2: Causal graph for reactive policy. The dotted nodes indicate that the variables are not stored
in the offline dataset. Solid arrows indicate the dependency among the variables. Specifically, The
red arrows depict the dependence of the target policy on the observable variables. The blue arrows
depict the dependence of the behavior policy on the latent state. The negative control action and
outcome variables at the h-th step are filled in green and yellow, respectively.

C.1.2 FINITE-HISTORY POLICY (EXAMPLE 2.2 REVISITED)

When the target policy a is finite-length history policy, it depends on the current observation and
history of length at most k. That is, Hh−1 = (O × A)⊗min{k,h−1} for some k ∈ N, Γh−1 =
((Ol, Al), · · · , (Oh−1, Ah−1)) where the index l = max{1, h − k}. The causal graph for such a
target policy is shown in Figure 3. In this case, we choose the negative control action as Zh = Ol−1

(node in green) and the negative control outcome as Wh = Oh (node in yellow). By this choice, we
can check the independence condition in Assumption 3.1 via Figure 3, i.e., under Pb,

Ol−1 ⊥ Oh, Rh, Oh+1 |Sh, Ah, Oh−1, Ah−1, · · · , Ol, Al,

Oh ⊥ Ah, Sh−1, Oh−1, Ah−1, · · · , Ol, Al |Sh.

20



Published as a conference paper at ICLR 2023

Rl−1 Rl Rh

Sl−1 Sl Sh Sh+1

Ol−1 Ol Oh Oh+1

Al−1 Al Ah

. . .

. . .

Figure 3: Causal graph for finite-length history policy. Index l = max{1, h− k}. The dotted nodes
indicate that the variables are not stored in the offline dataset. Solid arrows indicate the dependency
among the variables. Specifically, The red arrows depict the dependence of the target policy on the
observable variables. The blue arrows depict the dependence of the behavior policy on the latent
state. The negative control action and outcome variables at step h are filled in green and yellow.

C.1.3 FULL-HISTORY POLICY (EXAMPLE 2.3 REVISITED)

When the target policy is a full-history policy, it depends on the current observation and the full
history. That is, Hh−1 = (O ×A)⊗(h−1) and Γh−1 = ((O1, A1), · · · , (Oh−1, Ah−1)). The causal
graph for such a target policy is shown in Figure 4. In this case, we choose the negative control action
as Zh = O0 (node in green) and the negative control outcome as Wh = Oh (node in yellow). By
this choice, we can check the independence condition in Assumption 3.1 via Figure 4, i.e., under Pb,

O0 ⊥ Oh, Rh, Oh+1 |Sh, Ah, Oh−1, Ah−1, · · · , O1, A1,

Oh ⊥ Ah, Sh−1, Oh−1, Ah−1, · · · , O1, A1 |Sh.

R1 Rh

O0 S1 Sh Sh+1

O1 Oh Oh+1

A1 Ah

. . .

. . .

Figure 4: Causal graph for full-length history policy. The dotted nodes indicate that the variables
are not stored in the offline dataset. Solid arrows indicate the dependency among the variables.
Specifically, The red arrows depict the dependence of the target policy on the observable variables.
The blue arrows depict the dependence of the behavior policy on the latent state. The negative control
action and outcome variables at step h are filled in green and yellow, respectively.

C.2 EXAMINATION OF ASSUMPTION 3.2

In this subsection, we give concrete examples when the Assumption 3.2 holds, i.e., the confounding
bridge functions exist.
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Example C.1 (Example 2.1 revisited). For the tabular setting (i.e., S, A, and O are finite spaces)
and reactive policies (i.e., πh : O 7→ ∆(A)), the sufficient condition under which Assumption 3.2
holds is that

rank(Pb
h(Oh|Sh)) = |S|, rank(Pb

h(Oh−1|Sh)) = |S|, (C.1)

where Ph(Oh|Sh) denote an |S| × |O| matrix whose (s, o)-th element is Pb
h(Oh = o|Sh = s), and

Pb
h(Oh−1|Sh) is defined similarly.

Proof of Example C.1. Recall that for reactive policies, the history information Γh−1 = ∅. We
first show that under condition (C.1), there exist functions {bπh}Hh=1 and {qπh}Hh=1 which solve the
following equations

Eπb [bπh(Ah, Oh)|Ah, Sh]

= Eπb

[
Rhπh(Ah|Oh) + γ

∑
a′

bπh+1(a
′, Oh+1)πh(Ah|Oh)

∣∣∣Ah, Sh

]
, (C.2)

Eπb [qπh(Ah, Oh−1)|Ah, Sh] =
µh(Sh)

πb
h(Ah|Sh)

, (C.3)

Then we show that the solutions to (C.2) and (C.3) also solve (3.2) and (3.3). The difference between
(C.2) and (3.2) is that in (C.2) we condition on the latent state Sh rather than the observable negative
control variable Zh. In related literature (Bennett and Kallus, 2021; Shi et al., 2021), the solutions to
(C.2) and (C.3) are referred to as unlearnable bridge functions.

We first show the existence of {bπh}Hh=1 in a backward manner. Denote by bπh+1 a zero function.
Suppose that bπh+1 exists, we show that bπh also exists. Since now spaces S, A, and O are discrete,
we adopt the notation of matrix. In particular, we denote by

B ∈ R|A|×|O|, B(a, o) = bh(a, o),

O ∈ R|S|×|O|, O(s, o) = Pb
h(Oh = o|Sh = s),

R ∈ R|A|×|S|, R(s, a) = Eπb

[
Rhπh(Ah|Oh) + γ

∑
a′

bπh+1(a
′, Oh+1)πh(Ah|Oh)

∣∣∣Ah = a, Sh = s
]
.

The existence of bπh satisfying (C.2) is equivalent to the existence of B solving the matrix equation

BO⊤ = R. (C.4)

By condition (C.1), we known that the matrix O⊤ is of full column rank, which indicates that (C.4)
admits a solution B. This proves the existence of bπh. For {qπh}Hh=1, we use a similar method by
considering

Q ∈ R|A|×|O|, Q(a, o) = qh(a, o),

O− ∈ R|S|×|O|, O−(s, o) = Pb
h(Oh−1 = o|Sh = s),

C ∈ R|A|×|S|, C(s, a) =
µh(Sh = s)

πb
h(Ah = a|Sh = s)

.

The existence of qπh satisfying (C.3) is equivalent to the existence of Q solving the matrix equation

QO⊤
− = C (C.5)

By condition (C.1), we known that the matrix O⊤
− is of full column rank, which indicates that (C.5)

admits a solution Q. This proves the existence of qπh . Thus we have shown that there exists {bπh}Hh=1

and {qπh}Hh=1 which solve equation (C.2) and (C.3). Finally, it holds that any solution to (C.2) and
(C.3) also forms a solution to (3.2) and (3.3), which has been shown in Theorem 11 in Shi et al.
(2021). This finishes the proof of Example C.1.

Example C.2 (Example 2.2 revisited). For the tabular setting and finite length policies (i.e., πh :
O × (O × A)min{k,h−1} 7→ ∆(A)), the sufficient condition under which Assumption 3.2 holds is
that, for any action a ∈ A,

rank(Pb
h(Oh|Ah = a,Oh−k−1)) = |O|, rank(Pb

h(Oh−k−1|Ah = a, Sh,Γh−1)) = |O|,
(C.6)

where Pb
h(Oh|Ah = a,Oh−k−1) is a |O| × |O| matrix with (o, o′)-th element is Pb

h(Oh = o|Ah =
a,Oh−k−1 = o′) and Pb

h(Oh−k−1|Ah = a, Sh,Γh−1) is a |S||Hh−1|× |O| matrix defined similarly.
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Proof of Example C.2. To see this, we first prove the existence of {bπn}. For simplicity, we denote by

Pa =
(
Pb
h (Oh |Ah = a,Oh−k−1)

)
∈ R|O|×|O|

for each a ∈ A. Also, we denote that

Ba = (bh (a,Oh)) ∈ R|O|×1,

Ra =

(
Eπb

[
Rhπh (Ah |Oh) + γ

∑
a′

bπh+1 (a
′, Oh+1)πh (Ah |Oh) |Ah = a,Oh−k−1

])
∈ R|O|×1.

Then for each a ∈ A, the existence of bπn(a, ·) is equivalent to the existence of the solution to

PaBa = Ra.

Such a linear equation admits a solution due to our assumption on the matrix Pa. This shows the
existence of {bπh}. For {qπh}, the deduction is similar by considering for each a ∈ A,

Ta =
(
Pb
h (Oh−k−1 |Ah = a, Sh,Γh−1)

)
∈ R|S||Hh−1|×|O|,

Qa = (qh (a,Oh−k−1)) ∈ R|O|×1,

Ca =

(
µh (Sh,Γh−1)

πb (a |Sh)

)
∈ R|S||Hh−1|×1.

By considering the equation that

TaQa = Ca

and using the full rank assumption on matrix Ta, we can obtain the existence of {qπh}. This finishes
the proof of Example C.2.

D PROOF SKETCHES OF MAIN THEORETICAL RESULT

In this section, we sketch the proof of the main theoretical result Theorem 4.4, and we refer to
Appendix G for a detailed proof. For simplicity, we denote that for any π ∈ Π(H) and b ∈ B⊗H ,

F (b) := Eπb

[∑
a∈A

b1(a,W1)

]
, F̂ (b) := Êπb

[∑
a∈A

b1(a,W1)

]
. (D.1)

By the definition (D.1) and Theorem 3.3, for any policy π ∈ Π(H), it holds that J(π) = F (bπ),
where we have denoted by bπ = (bπ1 , · · · , bπH) the vector of true value bridge functions of π which
are given in (3.2).

Our proof to Theorem 4.4 relies on the following three key lemmas. The first lemma relates the
different values of mapping F (·) induced by a true value bridge function bπ and any other functions
b ∈ B⊗H to the RMSE loss which we aim to minimize by algorithm design. This indeed decomposes
the suboptimality (2.2).
Lemma D.1 (Suboptimality decomposition). Under Assumption 3.1, 3.2, for any policy π ∈ Π(H)
and b ∈ B⊗H , it holds that

F (bπ)− F (b) ≤
H∑

h=1

γh−1
√
Cπ ·

√
Lπ
h(bh, bh+1),

where the concentrability coefficient Cπ is defined as Cπ := suph∈[H] Eπb

[
(qπh(Ah, Zh))

2
]
.

Proof of Lemma D.1. See Appendix F.1 for a detailed proof.

The following two lemmas characterize the theoretical properties of the confidence region CRπ(ξ).
Specifically, Lemma D.2 shows that with high probability the confidence region of π contains the true
value bridge function bπ. Besides, Lemma D.3 shows that each bridge function vector b ∈ CRπ(ξ)
enjoys a fast statistical rate (Uehara et al., 2021) for its RMSE loss Lπ

h defined in (3.6). To obtain
such a fast rate, we develop novel proof techniques in Appendix F.3.
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Lemma D.2 (Validity of confidence regions). Under Assumption 3.2 and 4.2, for any 0 < δ < 1, by
setting

ξ = C1(λ+ 1/λ) ·M2
B ·M2

G · log(|B||Π(H)|H/ζ)/n,

for some problem-independent universal constant C1 > 0 and ζ = min{δ, 4c1 exp(−c2nα2
G,n)}, it

holds with probability at least 1− δ that bπ ∈ CRπ(ξ) for any policy π ∈ Π(H).

Proof of Lemma D.2. See Appendix F.2 for a detailed proof.

Lemma D.3 (Accuracy of confidence regions). Under Assumption 3.2, 4.2, and 4.3, by setting the
same ξ as in Lemma D.2, with probability at least 1− δ/2, for any policy π ∈ Π(H), b ∈ CRπ(ξ),
and step h,√

Lπ
h(bh, bh+1) ≤ C̃1MBMG

√
(λ+ 1/λ) · log(|B||Π(H)|H/ζ)/n+ C̃1ϵ

1/4
B M

1/2
G ,

for some problem-independent universal constant C̃1 > 0, and ζ = min{δ, 4c1 exp(−c2nα2
G,n)}.

Proof of Lemma D.3. See Appendix F.3 for a detailed proof.

When αG,n ∈ O(n−1/2) and ϵB = 0, Lemma D.3 implies that Lπ
h(bh, bh+1) ≤ Õ(n−1). Now with

Lemma D.1, Lemma D.2, and Lemma D.3, by the choice of π̂ in P3O, we can show that

J(π⋆)− J(π̂) ≤ Õ(n−1/2) + max
b∈CRπ⋆

(ξ)
F (b)− min

b∈CRπ̂(ξ)
F (b)

≤ Õ(n−1/2) + max
b∈CRπ⋆

(ξ)
F (b)− min

b∈CRπ⋆
(ξ)
F (b)

≤ Õ(n−1/2) + 2 max
b∈CRπ⋆

(ξ)

∣∣∣F (b)− F (bπ⋆

)
∣∣∣

≤ Õ(n−1/2) + 2 max
b∈CRπ⋆

(ξ)

H∑
h=1

γh−1
√
Cπ⋆ ·

√
Lπ⋆

h (bh, bh+1), (D.2)

where the first inequality holds by Lemma D.2, the second inequality holds from the optimality of π̂ in
Algorithm 1, the third inequality holds directly, and the last inequality holds by Lemma D.1. Finally,
by applying Lemma D.3 to the right hand side of (D.2), we conclude the proof of Theorem 4.4.

E PROOF OF THEOREM 3.3

Proof of Theorem 3.3. For any step h, we denote Jh(π) := Eπ[Rh(Sh, Ah)]. We have that

Jh(π) = Eπ[Rh(Sh, Ah)]

= Eπ

[
Eπ[Rh(Sh, Ah)|Oh, Sh,Γh−1]

]
= Eπ

[∑
a∈A

Rh(Sh, a)πh(a|Oh,Γh−1)

]

= Eπ

[
Eπ

[∑
a∈A

Rh(Sh, a)πh(a|Oh,Γh−1)

∣∣∣∣∣Sh,Γh−1

]]
,

where the second and the last equality follows from the tower property of conditional expectation.
Using the definition of density ratio µh(Sh,Γh−1) in Assumption 3.2, we can change the outer
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expectation to Eπb by

Jh(π) = Eπb

[
µh(Sh,Γh−1) · Eπ

[∑
a∈A

Rh(Sh, a)πh(a|Oh,Γh−1)

∣∣∣∣∣Sh,Γh−1

]]
,

= Eπb

[∑
a∈A

Rh(Sh, a) · πh(a|Oh,Γh−1) · µh(Sh,Γh−1)

]

= Eπb

[∑
a∈A

πb
h(a|Sh) ·Rh(Sh, a) ·

πh(a|Oh,Γh−1)

πb
h(a|Sh)

· µh(Sh,Γh−1)

]
(a)
= Eπb

[
Eπb

[
Rh(Sh, Ah) ·

πh(Ah|Oh,Γh−1)

πb
h(Ah|Sh)

· µh(Sh,Γh−1)

∣∣∣∣Sh, Oh,Γh−1

]]
= Eπb

[
Rh(Sh, Ah) · πh(Ah|Oh,Γh−1) ·

µh(Sh,Γh−1)

πb
h(Ah|Sh)

]
,

where step (a) follows from the fact that Ah ∼ πb
h(·|Sh) and satisfies Ah ⊥ Oh,Γh−1|Sh under πb.

Now using the definition (3.3) of weight bridge function qπh in Assumption 3.2, we have that

Jh(π) = Eπb

[
Rh(Sh, Ah) · πh(Ah|Oh,Γh−1) · Eπb [qπh(Ah, Zh)|Sh, Ah,Γh−1]

]
(a)
= Eπb [Rh(Sh, Ah) · πh(Ah|Oh,Γh−1) · qπh(Ah, Zh)]

= Eπb [Eπb [Rh(Sh, Ah) · πh(Ah|Oh,Γh−1) · qπh(Ah, Zh)|Ah, Zh]]

= Eπb [Eπb [Rh(Sh, Ah) · πh(Ah|Oh,Γh−1)·|Ah, Zh] q
π
h(Ah, Zh)] ,

where step (a) follows from the assumption that Zh ⊥ Oh, Rh|Sh, Ah,Γh−1 by Assumption 3.1.
Now using the definition (3.2) of value bridge function bπh in Assumption 3.2, we have that

Jh(π) = Eπb

[
Eπb

[
bπh(Ah,Wh)− γ

∑
a′∈A

bπh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1)

∣∣∣∣∣Ah, Zh

]
qπh(Ah, Zh)

]
= Eπb [f(Sh, Ah, Oh,Wh,Wh+1,Γh−1) · qπh(Ah, Zh)]

= Eπb [Eπb [f(Sh, Ah, Oh,Wh,Wh+1,Γh−1) · qπh(Ah, Zh)|Sh, Ah, Oh,Wh,Wh+1,Γh−1]] ,

= Eπb [f(Sh, Ah, Oh,Wh,Wh+1,Γh−1) · Eπb [qπh(Ah, Zh)|Sh, Ah, Oh,Wh,Wh+1,Γh−1]] ,

(a)
= Eπb [f(Sh, Ah, Oh,Wh,Wh+1,Γh−1) · Eπb [qπh(Ah, Zh)|Sh, Ah,Γh−1]] ,

where for simplicity we have denoted that

f(Sh, Ah, Oh,Wh,Wh+1,Γh−1) = bπh(Ah,Wh)− γ
∑
a′∈A

bπh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1),

and step (a) follows from the assumption that Zh ⊥ Oh,Wh,Wh+1|Sh, Ah,Γh−1 by Assumption
3.1. By the definition (3.3) of weight bridge function qπh in Assumption 3.2 again, we have that

Jh(π) = Eπb

[
f(Sh, Ah, Oh,Wh,Wh+1,Γh−1) ·

µh(Sh,Γh−1)

πb
h(Ah|Sh)

]
(a)
= Eπb

[(
bπh(Ah,Wh)− γ

∑
a′∈A

bπh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1)

)
· µh(Sh,Γh−1)

πb
h(Ah|Sh)

]
,

where step (a) just applies the definition of f . Now sum Jh(π) over h ∈ [H], we have that

J(π) =

H∑
h=1

γh−1Jh(π) = Eπb

[
µ1(S1,Γ0)

πb
1(A1|S1)

bπ1 (A1,W1)

]
︸ ︷︷ ︸

(A)

+

H∑
h=2

γh−1∆h︸ ︷︷ ︸
(B)

, (E.1)

where for simplicity we define ∆h for h = 2, · · · , H as

∆h = Eπb

[
µh(Sh,Γh−1)

πb
h(Ah|Sh)

bπh(Ah,Wh)−
µh−1(Sh−1,Γh−2)

πb
h−1(Ah−1|Sh−1)

·
∑
a′∈A

bπh(a
′,Wh)πh−1(Ah−1|Oh−1,Γh−1)

]
.
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In the sequel, we deal with term (A) and (B) respectively. On the one hand, we have that

(A)
(a)
= Eπb

[
Pπ
1 (S1,Γ0)

Pb
1(S1,Γ0)πb

1(A1|S1)
bπ1 (A1,W1)

]
(b)
= Eπb

[
1

πb
1(A1|S1)

bπ1 (A1,W1)

]
= Eπb

[
Eπb

[
1

πb
1(A1|S1)

bπ1 (A1,W1)

∣∣∣∣S1,W1

]]
(c)
= Eπb

[∑
a∈A

πb
1(a|S1)

πb
1(a|S1)

bπ1 (a,W1)

]

= Eπb

[∑
a∈A

bπ1 (a,W1)

]
,

where step (a) follows from the definition of µ1(S1,Γ0) in Assumption 3.2, step (b) follows from
the fact that at h = 1, Pb

1(S1,Γ0) = Pπ
1 (S1,Γ0), and step (c) follows from the assumption that

A1 ⊥W1|S1 by Assumption 3.1. On the other hand, term (b) in (E.1) is actually 0, which we show
by proving that ∆h = 0 for any h ≥ 2. We denote by ∆h = ∆1

h −∆2
h and we consider ∆1

h and ∆2
h

respectively, where

∆1
h = Eπb

[
µh(Sh,Γh−1)

πb
h(Ah|Sh)

· bπh(Ah,Wh)

]
,

∆2
h = Eπb

[
µh−1(Sh−1,Γh−2)

πb
h−1(Ah−1|Sh−1)

·
∑
a′∈A

bπh(a
′,Wh)πh−1(Ah−1|Oh−1,Γh−1)

]
.

In the sequel, we prove that ∆1
h = ∆2

h for the three cases of Th in Example 2.1, 2.2, and 2.3,
respectively.

Case 1: Reactive policy (Example 2.1). We first focus on the simple case when policy π is
reactive. Since for reactive policies Th = ∅, we can equivalently write µh(Sh,Γh−1) as µh(Sh) =
Pπ
h (Sh)/Pb

h(Sh). Now for ∆1
h, we can rewrite it as

∆1
h = Eπb

[
Pπ
h (Sh)

Pb
h(Sh)πb

h(Ah|Sh)
· bπh(Ah,Wh)

]
(a)
=

∫
S
����Pb

h(sh)dsh
∑
ah∈A

�����
πb
h(ah|sh)

∫
W

Pb
h(wh|sh, ah)dwh · Pπ

h (sh)

����Pb
h(sh)�����πb

h(ah|sh)
bπh(ah, wh)

(b)
=
∑
ah∈A

∫
S
Pπ
h (sh)dsh

∫
W

Pb
h(wh|sh)dwh · bπh(ah, wh).

Here step (a) expands the expectation by using integral against corresponding density functions, and
step (b) follows from cancelling the same terms and the fact that Wh ⊥ Ah|Sh under Assumption
3.1. For ∆2

h, we can also rewrite it as

∆2
h = Eπb

[
Pπ
h−1(Sh−1)πh−1(Ah−1|Oh−1)

Pb
h−1(Sh−1)πb

h−1(Ah−1|Sh−1)
·
∑
a′∈A

bπh(a
′,Wh)

]
(a)
=

∫
S
������Pb

h−1(sh−1)dsh−1

∫
O
Oh−1(oh−1|sh−1)doh−1

∑
ah−1∈A

((((((((
πb
h−1(ah−1|sh−1)

∫
S
Ph(sh|sh−1, ah−1)dsh

∫
W

Pb
h(wh|sh, sh−1, ah−1, oh−1) ·

Pπ
h−1(sh−1)πh−1(ah−1|oh−1)

������Pb
h−1(sh−1)((((((((

πb
h−1(ah−1|sh−1)

∑
ah∈A

bπh(ah, wh)dwh.
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Here step (a) follows from expanding the expectation. It follows that

∆2
h

(b)
=
∑
ah∈A

∫
S
Pπ
h−1(sh−1)dsh−1

∫
O
Oh−1(oh−1|sh−1)doh−1

∑
a∈A

πh−1(ah−1|oh−1)∫
S
Ph(sh|sh−1, ah−1)ds

′
∫
W

Pb
h(wh|sh) · bπh(ah, wh)

(c)
=
∑
ah∈A

∫
S
Pπ
h (sh)dsh

∫
W

Pb
h(wh|sh) · bπh(ah, wh)dwh.

Here step (b) follows from cancelling the same terms and using the fact that Wh ⊥
Sh−1, Ah−1, Oh−1|Sh by Assumption 3.1, and step (d) follows by marginalizing over
Sh−1, Ah−1, Oj−1. Thus we have proved that ∆1

h = ∆2
h for reactive policies and consequently

∆h = ∆1
h −∆2

h = 0.

Case 2: Finite-history policy (Example 2.2). Now we have that Γh−1∪{Ah, Oh} = {Al−1, Ol−1}∪
Th, where the index l = max{0, h− k}. Similarly, we can first rewrite ∆1

h as

∆1
h = Eπb

[
Pπ
h (Sh,Γh−1)

Pb
h(Sh,Γh−1)πb

h(Ah|Sh)
bπh(Ah,Wh)

]
(a)
=

∫
S×Hh−1

Pb
h(sh, τh−1)dshdτh−1

∑
ah∈A

πb
h(ah|sh)

∫
W

Pb
h(wh|sh, ah, τh−1)dwh

· Pπ
h (sh, τh−1)

Pb
h(sh, τh−1)πb

h(ah|sh, τh−1)
bπh(ah, wh)

(b)
=
∑
ah∈A

∫
S×Hh−1

Pπ
h (sh, τh−1)dshdτh−1

∫
W

Pb
h(wh|sh)dwh · bπh(ah, wh).

Here step (a) follows from expanding the expectation, and step (b) follows from cancelling the same
terms and using the fact that Wh ⊥ Ah,Γh−1|Sh under Assumption 3.1. For ∆2

h, we can also rewrite
it as

∆2
h = Eπb

[
Pπ
h−1(Sh−1,Γh−2)πh−1(Ah−1|Oh−1)

Pb
h−1(Sh−1,Γh−2)πb

h−1(Ah−1|Sh−1,Γh−2)

∑
a′∈A

bπh(a
′,Wh)

]
(a)
=

∫
S×Hh−2

(((((((((((
Pb
h−1(sh−1, τh−2)dsh−1dτh−2

∫
O
Oh−1(oh−1|sh−1)doh−1

∑
ah−1∈A

((((((((
πb
h−1(ah−1|sh−1)∫

S
Ph(sh|sh−1, ah−1)dsh

∫
W

Pb
h(wh|sh, sh−1, ah−1, oh−1, τh−2)

·
Pπ
h−1(sh−1, τh−2)πh−1(ah−1|oh−1, τh−2)

((((((((Pb
h−1(sh−1, τh−2)((((((((

πb
h−1(ah−1|sh−1)

∑
ah∈A

bπh(ah, wh)

(b)
=
∑
ah∈A

∫
S×Hh−2

Pπ
h−1(sh−1, τ̃h−2, al, ol)dsh−1dτ̃h−2daldol

∫
O
Oh−1(oh−1|sh−1)doh−1

∑
ah−1∈A

πh−1(ah−1|oh−1, τh−2)

∫
S
Ph(sh|sh−1, ah−1)dsh

∫
W

Pb
h(wh|sh) · bπh(ah, wh)

(E.2)
(c)
=
∑
ah∈A

∫
S×Hh−1

Pπ
h (sh, τh−1)dshdτh−1

∫
W

Pb
h(wh|sh) · bπh(ah, wh),

where the index l = max{1, h− 1− k}. In step (b), we have denoted by τ̃h−2 = τh−2 \ {al, ol} and
it holds that τh−1 = τ̃h−2 ∪ {oh−1, ah−1}. Here step (a) follows from expanding the expectation,
step (b) follows from cancelling the same terms and using the fact that Wh ⊥ Sh−1, Ah−1,Γh−1|Sh

under Assumption 3.1, and step (c) follows by marginalizing Sh−1, Al, Ol. Thus we have proved
that ∆1

h = ∆2
h for finite-length history policies and consequently ∆h = ∆1

h −∆2
h = 0.
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Case 3: Full-history policy (Example 2.3). For full history information Th, we have that Γh−1 ∪
{Ah, Oh} = Th. Following the same argument as in Case 2 (Example 2.2), we can first show that

∆1
h =

∑
ah∈A

∫
S×Hh−1

Pπ
h (sh, τh−1)dshdτh−1

∫
W

Pb
h(wh|sh)dwh · bπh(ah, wh).

Besides, for ∆2, by a similar argument as in Case 2 except that we don’t need marginalize over
Al, Ol in (E.2), we can show that

∆2
h =

∑
ah∈A

∫
S×Hh−2

Pπ
h−1(sh−1, τh−2)dsh−1dτh−2

∫
O
Oh−1(oh−1|sh−1)doh−1

∑
ah−1∈A

πh−1(ah−1|oh−1, τh−2)∫
S
Ph(sh|sh−1, ah−1)dsh

∫
W

Pb
h(wh|sh, sh−1, ah−1, oh−1, τh−2) · bπh(ah, wh)

=
∑
ah∈A

∫
S×Hh−1

Pπ
h (sh, τh−1)dshdτh−1

∫
W

Pb
h(wh|sh)dwh · bπh(ah, wh).

Therefore, we show that ∆1
h = ∆2

h for full history policies and consequently ∆h = ∆1
h −∆2

h = 0.

Now we have shown that term (B) in (E.1) is actually 0 for Example 2.1, Example 2.2, and Example
2.3, respectively, which allows us to conclude that

J(π) = (A) = Eπb

[∑
a∈A

bπ1 (a,W1)

]
.

This finishes the proof of Theorem 3.3.

F PROOF OF LEMMAS IN SECTION D

We first review and define several notations and quantities that are useful in the proof of the lemmas
in Section D. Firstly, we define mapping ℓπh : B× B 7→ {A × Z 7→ R} as

ℓπh(bh, bh+1)(Ah, Zh) := Eπb

[
bh(Ah,Wh)−Rhπh(Ah|Oh,Γh−1)

− γ
∑
a′∈A

bh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1)

∣∣∣Ah, Zh

]
. (F.1)

Furthermore, for each step h ∈ [H], we define a joint space Ih = A×W ×O ×Hh−1 ×W and
define mapping ςπh : B× B 7→ {Ih 7→ R} as

ςπh (bh, bh+1)(Ah,Wh, Oh,Γh−1,Wh+1) := bh(Ah,Wh)−Rhπh(Ah|Oh,Γh−1)

− γ
∑
a′∈A

bh+1(a
′,Wh+1)πh(Ah|Oh,Γh−1). (F.2)

When appropriate, we abbreviate Ih = (Ah,Wh, Oh,Γh−1,Wh+1) ∈ Ih in the sequel. Using
definition (F.1) and (F.2), we further introduce two mappings Φλ

π,h,Φπ,h : B×B×G 7→ R as defined
by (3.9),

Φλ
π,h(bh, bh+1; g) := Eπb

[
ℓπh(bh, bh+1)(Ah, Zh) · g(Ah, Zh)− λg(Ah, Zh)

2
]
,

Φπ,h(bh, bh+1; g) := Φ0
π,h(bh, bh+1; g) = Eπb

[
ℓπh(bh, bh+1)(Ah, Zh) · g(Ah, Zh)

]
,

where we define that Φπ,h = Φ0
π,h. Also, recall from (3.10) that the empirical version of Φλ

π,h,Φπ,h

are defined by Φ̂λ
π,h, Φ̂π,h as

Φ̂λ
π,h(bh, bh+1; g) := Êπb

[
ςπh (bh, bh+1)(Ih) · g(Ah, Zh)− λg(Ah, Zh)

2
]
,

Φ̂π,h(bh, bh+1; g) := Φ̂0
π,h(bh, bh+1; g) = Êπb

[
ςπh (bh, bh+1)(Ih) · g(Ah, Zh)

]
.
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Recall from (3.11) that given function bh+1 ∈ B, the minimax estimator b̂h(bh+1) is defined as

b̂h(bh+1) := arg min
b∈B

max
g∈G

Φ̂λ
π,h(b, bh+1; g).

Meanwhile, we define the following quantity for ease of theoretical analysis as

b⋆h(bh+1) := arg min
b∈B

max
g∈G

Φλ
π,h(b, bh+1; g). (F.3)

By the boundedness assumption on B in Assumption 4.2, we have that |ℓπh|, |ςπh | ≤ 2MB. By the
completeness assumption on G in Assumption 4.3, we also know that ℓπh(bh, bh+1)/2λ ∈ G for any
bh, bh+1 ∈ B. Finally, for notational simplicity, we define for each g ∈ G that,

∥g∥22 := Eπb [g(Ah, Zh)
2],

and we denote by ∥g∥22,n its empirical version, i.e.,

∥g∥22,n := Êπb [g(Ah, Zh)
2].

We remark that we have dropped the dependence of ∥g∥22 on step h since it is clear from the context
when used in the proofs and does not make any confusion.

F.1 PROOF OF LEMMA D.1

Proof of Lemma D.1. By definition (D.1) of F (b), for any policy π ∈ Π(H) and vector of functions
b ∈ B⊗H , it holds that

F (bπ)− F (b)
(a)
= Eπb

[∑
a∈A

bπ1 (a,W1)− b1(a,W1)

]

= Eπb

[∑
a∈A

πb
1(a|S1)

πb
1(a|S1)

(bπ1 (a,W1)− b1(a,W1))

]
(b)
= Eπb

[
Eπb

[
1

πb
1(A1|S1)

(bπ1 (a,W1)− b1(a,W1))

∣∣∣∣S1,W1

]]
= Eπb

[
1

πb
1(A1|S1)

(bπ1 (A1,W1)− b1(A1,W1))

]
where step (a) follows from Theorem 3.3 and (D.1), and step (b) holds since A1 ⊥ W1 |S1 by
Assumption 3.1. Notice that by definition (3.3), at step h = 1, the weight bridge function qπh satisfies
equation

Eπb [qπ1 (A1, Z1)|A1, S1,Γ0] =
Pπ
h (S1,Γ0)

Pπ
h (S1,Γ0)πb

1(A1|S1)
=

1

πb
1(A1|S1)

,

which further gives that

F (bπ)− F (b) = Eπb

[
Eπb [qπ1 (A1, Z1)|A1, S1,Γ0] (b

π
1 (A1,W1)− b1(A1,W1))

]
(a)
= Eπb

[
Eπb [qπ1 (A1, Z1)|A1, S1,W1,Γ0] ·

(
bπ1 (A1,W1)− b1(A1,W1)

)]
= Eπb

[
qπ1 (A1, Z1)

(
bπ1 (A1,W1)− b1(A1,W1)

)]
,

where step (a)holds since Z1 ⊥W1 |A1, S1,H0 by Assumption 3.1. Now we can further obtain that,

F (bπ)− F (b) = Eπb

[
qπ1 (A1, Z1)Eπb [bπ1 (A1,W1)− b1(A1,W1)|A1, Z1]

]
(a)
= Eπb

[
qπ1 (A1, Z1)

{
Eπb

[
R1π1(A1|O1,Γ0) + γ

∑
a′

bπ2 (a
′,W2)π1(A1|O1,Γ0)

∣∣∣∣A1, Z1

]
− Eπb [b1(A1,W1)|A1, Z1]

}]
,
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where step (a) follows from the definition in (3.2) of value bridge function bπ1 in Assumption 3.2.
Now to relate the difference between F (bπ) and F (b) with the RMSE loss Lπ

1 defined in (3.6), we
rewrite the above equation as the following,

F (bπ)− F (b)

= Eπb

[
qπ1 (A1, Z1)

{
Eπb

[
R1πh(A1|O1,Γ0) + γ

∑
a′

bπ2 (a
′,W2)π1(A1|O1,Γ0)

∣∣∣∣A1, Z1

]
− Eπb

[
Rhπ1(A1|O1,Γ0) + γ

∑
a′

b2(a
′,Wh+1)π1(A1|O1,Γ0)

∣∣∣∣A1, Z1

]
+ Eπb

[
R1π1(A1|O1,Γ0) + γ

∑
a′

b2(a
′,W2)π1(A1|O1,Γ0)

∣∣∣∣A1, Z1

]
− Eπb

[
b1(A1,W1)

∣∣∣∣A1, Z1

]}]
= Eπb

[
qπ1 (A1, Z1)

{
γEπb

[∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

∣∣∣∣A1, Z1

]
+ Eπb

[
R1πh(A1|O1,Γ0) + γ

∑
a′

b2(a
′,W2)πh(A1|O1,Γ0)− b1(A1,W1)

∣∣∣∣A1, Z1

]}]
.

(F.4)

We deal with the two terms in the right-hand side of (F.4) respectively. On the one hand, the first term
equals to

γEπb

[
qπ1 (A1, Z1)Eπb

[∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

∣∣∣∣A1, Z1

]]
= γEπb

[
qπ1 (A1, Z1)

∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

]
= γEπb

[
Eπb

[
qπ1 (A1, Z1)

∣∣∣∣S1, A1,Γ0, O1,W2

]∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

]
(a)
= γEπb

[
Eπb

[
qπ1 (A1, Z1)

∣∣∣∣S1, A1,Γ0

]∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

]
(b)
= γEπb

[
µ1(S1,Γ0)

πb
1(A1|S1)

∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

]
,

where step (a) follows from the fact that Z1 ⊥ O1,W2|S1, A1,Γ0 according to Assumption 3.1,
and step (b) follows from the definition (3.3) of weight bridge function qπ1 in Assumption 3.2. Now
following the same argument as in showing ∆h = 0 in the proof of Theorem 3.3, we can show that

Eπb

[
µ1(S1,Γ0)

πb
1(A1|S1)

∑
a′

(
bπ2 (a

′,W2)− b2(a,W2)
)
π1(A1|O1,Γ0)

]

= Eπb

[
qπ2 (A2, Z2)

(
bπ2 (A2,W2)− b2(A2,W2)

)]
. (F.5)

On the other hand, the second term in the R.H.S. of (F.4) can be rewritten and bounded by

Eπb

[
qπ1 (A1, Z1)Eπb

[
R1π1(A1|O1,Γ0) + γ

∑
a′

b2(a
′,W2)π1(A1|O1,Γ0)− b1(A1,W1)

∣∣∣∣A1, Z1

]]

≤
√
CπEπb

[{
Eπb

[
R1π1(A1|O1,Γ0) + γ

∑
a′

b2(a
′,W2)π1(A1|O1,Γ0)− b1(A1,W1)

∣∣∣∣A1, Z1

]}1/2]
=

√
Cπ ·

√
Lπ
1 (b1, b2), (F.6)
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where Cπ is defined as Cπ := suph∈[H] Eπb

[
(qπh(Ah, Zh))

2
]
, the inequality follows from Cauchy-

Schwarz inequality, and the equality follows from the definition of Lπ
1 in (3.6). Combining (F.4),

(F.5) with (F.6), we can obtain that

F (bπ)− F (b)

≤
√
Cπ ·

√
Lπ
1 (b1, b2) + γEπb

[
qπ2 (A2, Z2)

(
bπ2 (A2,W2)− b2(A2,W2)

)]
. (F.7)

Now applying the above argument on the second term in the R.H.S. of (F.7) recursively, we can
obtain that

F (bπ)− F (b) ≤
H∑

h=1

γh−1
√
Cπ ·

√
Lπ
h(bh, bh+1).

This finishes the proof of Lemma D.1.

F.2 PROOF OF LEMMA D.2

Proof of Lemma D.2. By the definition of the confidence region CRπ(α) in (3.12), we need to show
for any policy π ∈ Π(H) and step h ∈ [H], it holds that,

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g)−max

g∈G
Φ̂λ

π,h(̂bh(b
π
h+1), b

π
h+1; g) ≤ ξ. (F.8)

Notice that by Assumption 4.2, the function class G is symmetric and star-shaped, which indicates
that

max
g∈G

Φ̂λ
π,h(̂bh(b

π
h+1), b

π
h+1; g) ≥ Φ̂λ

π,h(̂bh(b
π
h+1), b

π
h+1; 0) = 0.

Therefore, in order to prove (F.8), it suffices to show that

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g) ≤ ξ. (F.9)

To relate the empirical expectation Φ̂λ
π,h(b

π
h, b

π
h+1; g) = Φ̂π,h(b

π
h, b

π
h+1; g)−λ∥g∥22,n to its population

version, we need two localized uniform concentration inequalities. On the one hand, to relate ∥g∥22
and ∥g∥22,n, by Lemma I.1 (Theorem 14.1 of Wainwright (2019)), for some absolute constants
c1, c2 > 0, it holds with probability at least 1− δ/2 that,∣∣∥g∥22,n − ∥g∥22

∣∣ ≤ 1

2
∥g∥22 +

M2
G log(2c1/ζ)

2c2n
, ∀g ∈ G, (F.10)

where ζ = min{δ, 2c1 exp(−c2nα2
G,n/M

2
G)} and αG,n is the critical radius of function class G

defined in Assumption 4.2. On the other hand, to relate Φ̂π,h(bh, bh+1; g) and Φπ,h(bh, bh+1; g)
we invoke Lemma I.2 (Lemma 11 of (Foster and Syrgkanis, 2019)). Specifically, for any given
bh, bh+1 ∈ B, π ∈ Π(H), and h ∈ [H], in Lemma I.2 we choose F = G, X = A × Z , Y = Ih,
and loss function ℓ(g(Ah, Zh), Ih) := ςπh (bh, bh+1)(Ih) · g(Ah, Zh) where ςπh is defined in (F.1),
Ih ∈ Ih is defined in the beginning of Appendix F. It holds that ℓ is L-Lipschitz continuous in the
first argument since for any g, g′ ∈ G, (Ah, Zh) ∈ A× Z , it holds that∣∣ℓ(g(Ah, Zh), Ih)− ℓ(g′(Ah, Zh), Ih)

∣∣ = |ςπh (bh, bh+1)(Ih)| · |g(Ah, Zh)− g′(Ah, Zh)|
≤ 2MB · |g(Ah, Zh)− g′(Ah, Zh)|,

which indicates that L = 2MB. Now setting f⋆ = 0 in Lemma I.2, we have that δn in Lemma I.2
coincides with αG,n in Assumption 4.2. Then we can conclude that for some absolute constants
c1, c2 > 0, it holds with probability at least 1− δ/(2|B|2|Π(H)|H) that∣∣∣Φ̂π,h(bh, bh+1; g)− Φπ,h(bh, bh+1; g)

∣∣∣
=
∣∣∣Êπb [ℓ(g(Ah, Zh), Ih)]− Eπb [ℓ(g(Ah, Zh), Ih)]

∣∣∣
≤ 18L∥g∥2

√
M2

G log
(
2c1|B|2|Π(H)|H/ζ ′

)
c2n

+
18LM2

G log
(
2c1|B|2|Π(H)|H/ζ ′

)
c2n

, ∀g ∈ G,

(F.11)
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where ζ ′ = min{δ, 2c1|B|2|Π(H)|H exp(−c2nα2
G,n/M

2
G)}. Applying a union bound argument over

bh, bh+1 ∈ B, π ∈ Π(H), and h ∈ [H], we then have that (F.11) holds for any bh, bh+1 ∈ B, g ∈ G,
π ∈ Π(H), and h ∈ [H] with probability at least 1 − δ/2. Now using these two concentration
inequalities (F.10) and (F.11), we can further deduce that, for some absolute constants c1, c2 > 0,
with probability at least 1− δ,

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g)

= max
g∈G

{
Φ̂π,h(b

π
h, b

π
h+1; g)− λ∥g∥22,n

}
≤ max

g∈G

{
Φπ,h(b

π
h, b

π
h+1; g)− λ∥g∥22 +

λ

2
∥g∥22 +

λM2
G log(2c1/ζ)

2c2n
,

+ 18L∥g∥2

√
M2

G log(2c1|B|2|Π(H)|H/ζ ′)
c2n

+
18LM2

G log(2c1|B|2|Π(H)|H/ζ ′)
c2n

}
,

where ζ is given as ζ = min{δ, 2c1 exp(−c2nα2
G,n/M

2
G)} and ζ ′ is given as ζ ′ =

min{δ, 2c1|B|2|Π(H)|H exp(−c2nα2
G,n/M

2
G)} for any policy π ∈ Π(H) and step h. Then we

can further bound the right-hand side of the above inequality as

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g)

≤ max
g∈G

Φπ,h(b
π
h, b

π
h+1; g) + max

g∈G

{
− λ

2
∥g∥22 + 18L∥g∥2

√
M2

G · log(2c1|B|2|Π(H)|H/ζ ′)
c2n

}

+
λM2

G · log(2c1/ζ)
2c2n

+
18LM2

G · log(2c1|B|2|Π(H)|H/ζ ′)
c2n

≤ 728L2 ·M2
G · log(2c1|B|2|Π(H)|H/ζ ′)

λn
+
λM2

G · log(2c1/ζ)
2c2n

+
18LM2

G · log(2c1|B|2|Π(H)|H/ζ ′)
c2n

.

Here the last inequality holds from the fact that Φπ,h(b
π
h, b

π
h+1; g) = 0 since bπh and bπh+1 are true

bridge functions, and the fact that sup∥g∥2
{a∥g∥2 − b∥g∥22} ≤ a2/4b for any b > 0. Now according

to the choice of ξ in Lemma D.2, using the fact that ζ < ζ ′ and L = 2MB, we can conclude that,
with probability at least 1− δ,

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g)

≤ 728L2M2
G · log(2c1|B|2|Π(H)|H/ζ ′)

λn
+
λM2

G · log(2c1/ζ)
2c2n

+
18LM2

G · log(2c1|B|2|Π(H)|H/ζ ′)
c2n

≲ O
(
(λ+ 1/λ) ·M2

BM
2
G · log(|B||Π(H)|H/ζ)
n

)
≲ ξ.

This proves (F.9), and thus further indicates (F.8). Therefore, we finish the proof of Lemma D.2.

F.3 PROOF OF LEMMA D.3

We first give the high-level idea for proving Lemma D.3 as following. In order to achieve the fast rate
for the whole confidence region, we took a series of novel proof steps.

We first introduce the following lemma, which claims that for any bh+1 ∈ B, the b⋆(bh+1) defined in
(F.3) satisfies that maxg∈G Φ̂λ

π,h(b
⋆(bh+1), bh+1; g) is well-bounded. The proof of lemma follows

the same argument as in the proof of Lemma D.2, which we defer to Appendix F.4.

Then given any bridge function in the confidence region, we identify a key term (term (⋆) in (F.12))
which is related to the RMSE of this bridge function. By carefully upper & lower bound this term,
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where Lemma F.1 is applied, we eventually obtain a quadratic inequality that the RMSE of this bridge
function satisfies. By solving this inequality, we can derive an upper bound on the RMSE loss which
is uniform over the bridge functions in the confidence region, which is exactly the fast rate of the
whole confidence region.
Lemma F.1. For any function bh+1 ∈ B, policy π ∈ Π(H), and step h ∈ [H], it holds with
probability at least 1− δ/2 that

max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g) ≤ ξ + ϵ

1/2
B MG,

where b⋆(bh+1) is defined in (F.3) and ξ is defined in Lemma D.3.

Proof of Lemma F.1. See Appendix F.4 for a detailed proof.

With Lemma F.1, we are now ready to give the proof of Lemma D.3.

Proof of Lemma D.3. Let’s consider that for any bh, bh+1 ∈ CRπ(ξ), we have that

max
g∈G

Φ̂λ
π,h(bh, bh+1; g) = max

g∈G

{
Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− 2λ∥g∥22,n

+ Φ̂π,h(b
⋆
h(bh+1), bh+1; g) + λ∥g∥22,n

}
.

We further write the above as

max
g∈G

Φ̂λ
π,h(bh, bh+1; g) ≥ max

g∈G

{
Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− 2λ∥g∥22,n

}
+min

g∈G

{
Φ̂π,h(b

⋆
h(bh+1), bh+1; g) + λ∥g∥22,n

}
(a)
= max

g∈G

{
Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− 2λ∥g∥22,n

}
︸ ︷︷ ︸

(⋆)

−max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g). (F.12)

Here step (a) follows from that G is symmetric, Φ̂π,h(bh, hh+1;−g) = −Φ̂π,h(bh, hh+1; g), and that

min
g∈G

{
Φ̂π,h(b

⋆
h(bh+1), bh+1; g) + λ∥g∥22,n

}
= min

g∈G

{
− Φ̂π,h(b

⋆
h(bh+1), bh+1;−g) + λ∥g∥22,n

}
= min

g∈G

{
− Φ̂π,h(b

⋆
h(bh+1), bh+1; g) + λ∥g∥22,n

}
= −max

g∈G

{
Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− λ∥g∥22,n

}
= −max

g∈G
Φ̂λ

π,h(b
⋆
h(bh+1), bh+1; g).

In the sequel, we upper and lower bound term (⋆) respectively.

Upper bound of term (⋆). By inequality (F.12), after rearranging terms, we can arrive that

(⋆) ≤ max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g) + max

g∈G
Φ̂λ

π,h(bh, bh+1; g)

≤ max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g)

+ max
g∈G

Φ̂λ
π,h(bh, bh+1; g)−max

g∈G
Φ̂λ

π,h(̂bh(bh+1), bh+1; g)

+ max
g∈G

Φ̂λ
π,h(̂bh(bh+1), bh+1; g)

On the one hand, by Lemma F.1, we have that with probability at least 1− δ/2,

max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g) ≤ ξ + ϵ

1/2
B MG, (F.13)
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and by the definition of b̂h(bh+1) in (3.11), it holds simultaneously that

max
g∈G

Φ̂λ
π,h(̂bh(bh+1), bh+1; g) ≤ max

g∈G
Φ̂λ

π,h(b
⋆
h(bh+1), bh+1; g) ≤ ξ + ϵ

1/2
B MG. (F.14)

On the other hand, by the choice of CRπ(ξ), it holds that

max
g∈G

Φ̂λ
π,h(bh, bh+1; g)−max

g∈G
Φ̂λ

π,h(̂bh(bh+1), bh+1; g) ≤ ξ. (F.15)

Consequently, by combining (F.13), (F.14), and (F.15), we conclude that with probability at least
1− δ/2,

(⋆) ≤ 3ξ + 2ϵ
1/2
B MG. (F.16)

Lower bound of term (⋆). For lower bound, we need two localized uniform concentration inequalities
similar to (F.10) and (F.11) in the proof of Lemma D.2. On the one hand, by Lemma I.1, for some
absolute constants c1, c2 > 0, it holds with probability at least 1− δ/4 that,∣∣∥g∥22,n − ∥g∥22

∣∣ ≤ 1

2
∥g∥22 +

M2
G log(4c1/ζ)

2c2n
, ∀g ∈ G, (F.17)

where ζ = min{δ, 4c1 exp(−c2nα2
G,n/M

2
G)} and αG,n is the critical radius of G defined in As-

sumption 4.2. On the other hand, following the same argument as in deriving (F.11), for any given
bh, b

′
h, bh+1 ∈ B, π ∈ Π(H), and h ∈ [H], in Lemma I.2 we choose F = G, X = A× Z , Y = I,

and loss function

ℓ(g(Ah, Zh), Ih) := ςπh (bh, bh+1)(Ih)g(Ah, Zh)− ςπh (b
′
h, bh+1)(Ih)g(Ah, Zh),

where ςπh is defined in (F.1) and Ih ∈ Ih is defined in the beginning of Appendix F. It holds that ℓ
is L-Lipschitz continuous in its first argument with L = 2MB. Now setting f⋆ = 0 in Lemma I.2,
we have that δn in Lemma I.2 coincides with αG,n in Assumption 4.2. Then we have that for some
absolute constants c1, c2 > 0, it holds with probability at least 1− δ/(4|B|3|Π(H)|H) that∣∣∣(Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

′
h, bh+1; g)

)
−
(
Φπ,h(bh, bh+1; g)− Φπ,h(b

′
h, bh+1; g)

)∣∣∣
=
∣∣∣Êπb [ℓ(g(Ah, Zh), Ih)]− Eπb [ℓ(g(Ah, Zh), Ih)]

∣∣∣
≤ 18L∥g∥2

√
M2

G · log(4c1|B|3|Π(H)|H/ζ ′)
c2n

+
18L ·M2

G · log
(
4c1|B|3|Π(H)|H/ζ ′

)
c2n

, ∀g ∈ G,

(F.18)

where ζ ′ = min{δ, 4c1|B|3|Π(H)|H exp(−c2nα2
G,n/M

2
G)}. Applying a union bound argument over

bh, b
′
h, bh+1 ∈ B, π ∈ Π(H), and h ∈ [H], we have that (F.18) holds for any bh, b′h, bh+1 ∈ B,

g ∈ G, π ∈ Π(H), and h ∈ [H] with probability at least 1− δ/4. Finally, for simplicity, we denote
that

ιn :=

√
M2

G · log(4c1|B|3|Π(H)|H/ζ ′)
c2n

, ι′n :=

√
M2

G · log(4c1/ζ)
2c2n

(F.19)

Now we are ready to prove the lower bound on term (⋆). For simplicity, given fixed bh, bh+1 ∈ B,
we denote

gπh :=
1

2λ
ℓπh(bh, bh+1) ∈ G,

where ℓπh is defined in (F.1) and gπh ∈ G due to Assumption 4.3. Now consider that

(⋆) = max
g∈G

{
Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− 2λ∥g∥22,n

}
≥ Φ̂π,h(bh, bh+1; g

π
h/2)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g

π
h/2)−

λ

2
∥gπh∥22,n,
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where the inequality follows from the fact that G is star-shaped and consequently gπh/2 ∈ G. Then
by applying concentration inequality (F.17) and (F.18), we have that

(⋆) ≥ Φπ,h(bh, bh+1; g
π
h/2)− Φπ,h(b

⋆
h(bh+1), bh+1; g

π
h/2)− 18Lιn∥gπh∥2 − 18Lι2n

− λ

2

(
3

2
∥gπh∥22 + ι′2n

)
≥ λ∥gπh∥22 − 18Lιn∥gπh∥2 − ϵ

1/2
B MG − 18Lι2n − λ

2

(
3

2
∥gπh∥22 + ι′2n

)
=
λ

4
∥gπh∥22 − 18Lιn∥gπh∥2 − 18Lι2n − λ

2
ι′2n − ϵ

1/2
B MG, (F.20)

where the second inequality follows from that Φπ,h(b
⋆(bh+1), bh+1; g

π
h/2) ≤ ϵ

1/2
B MG (we prove this

inequality by (F.25) in the proof of Lemma F.1) and the fact that

Φπ,h(bh, bh+1; g
π
h/2) =

1

4λ
Eπb [ℓπh(bh, bh+1)(Ah, Zh)

2] = λ∥gπh∥22.

Combining upper bound and lower bound of term (⋆). Now we are ready to combine the upper
bound and lower bound of (⋆) to derive the bound on Lπ

h(bh, bh+1). By combining upper bound
(F.16) and lower bound (F.20), we have that with probability at least 1 − δ, for any bh, bh+1 ∈ B,
π ∈ Π(H), and h ∈ [H],

λ

4
∥gπh∥22 − 18Lιn∥gπh∥2 − 18Lι2n − λ

2
ι′2n − ϵ

1/2
B MG ≤ 3ξ + 2ϵ

1/2
B MG, (F.21)

This gives a quadratic inequality on ∥gπh∥2, i.e.,

λ∥gπh∥22 − 72Lιn︸ ︷︷ ︸
(A)

∥gπh∥2 − 4

(
18Lι2n +

λ

2
ι′2n + 3ξ + 3ϵ

1/2
B MG

)
︸ ︷︷ ︸

(B)

≤ 0.

By solving this quadratic equation, we have that

∥gπh∥2 ≤ 1

2λ
A+

1

2λ

√
A2 + 4B ≤ A

λ
+

√
B

λ
.

Applying the definition of A and B, we conclude that, with probability at least 1− δ,

∥gπh∥2 ≤ 72

λ
Lιn +

2

λ

(
18Lι2n +

λ

2
ι′2n + 3ξ + 3ϵ

1/2
B MG

)1/2

≤ 72

λ
Lιn +

6
√
2

λ
L1/2ιn +

√
2√
λ
ι′n +

2
√
3

λ
ξ1/2 +

2
√
3

λ
ϵ
1/4
B M

1/2
G

Therefore, we can bound the RMSE loss Lπ
h(bh, bh+1) by√

Lπ
h(bh, bh+1) = 2λ∥gπh∥2 ≤ (144L+ 12

√
2L1/2)ιn + 2

√
2λι′n + 4

√
3ξ1/2 + 4

√
3ϵ

1/4
B M

1/2
G .

(F.22)

Plugging in the definition of ιn, ι′n in (F.19), ξ in Lemma D.3, and that L = 2MB, we have that√
Lπ
h(bh, bh+1)

≤ (144L+ 12
√
2L) ·

√
M2

G · log(4c1|B|3|Π(H)|H/ζ ′)
c2n

+ 2
√
2λ ·

√
M2

G · log(4c1/ζ)
2c2n

+ 4
√
3 ·
√
C1(λ+ 1/λ) ·M2

BM
2
G · log(|B||Π(H)|H/ζ ′)
n

+ 4
√
3 · ϵ1/4B M

1/2
G

≤ C̃1MBMG

√
(λ+ 1/λ) · log(|B||Π(H)|H/ζ)

n
+ C̃1ϵ

1/4
B M

1/2
G .

for some problem-independent constant C̃1 > 0 and ζ = min{δ, 4c1 exp(−c2nα2
G,n/M

2
G)}. Here in

the second inequality we have used the fact that ζ < ζ ′. This finishes the proof of Lemma D.3.
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F.4 PROOF OF LEMMA F.1

Proof of Lemma F.1. Following the proof of Lemma D.2, we first relate Φ̂λ
π,h(bh, bh+1; g) =

Φ̂π,h(bh, bh+1; g) − λ∥g∥22,n and its population version Φλ
π,h(bh, bh+1; g) via two localized uni-

form concentration inequalities. On the one hand, to relate ∥g∥22 and ∥g∥22,n, by Lemma I.1 (Theorem
14.1 of Wainwright (2019)), for some absolute constants c1, c2 > 0, it holds with probability at least
1− δ/4 that ∣∣∥g∥22,n − ∥g∥22

∣∣ ≤ 1

2
∥g∥22 +

M2
G · log(4c1/ζ)

2c2n
, ∀g ∈ G, (F.23)

where ζ = min{δ, 4c1 exp(−c2nα2
G,n/M

2
G)} and αG,n is the critical radius of function class G

defined in Assumption 4.2. On the other hand, to relate Φ̂π,h(bh, bh+1; g) and Φπ,h(bh, bh+1; g),
we invoke Lemma I.2 (Lemma 11 of (Foster and Syrgkanis, 2019)). Specifically, for any given
bh, bh+1 ∈ B, π ∈ Π(H), and step h, in Lemma I.2 we choose F = G, X = A × Z , Y = Ih,
and loss function ℓ(g(Ah, Zh), Ih) := ςπh (bh, bh+1)(Ih)g(Ah, Zh) where ℓπh is defined in (F.1) and
Ih ∈ Ih is defined in the beginning of Appendix F. We can see that ℓ is L-Lipschitz continuous in
the first argument since for any g, g′ ∈ G, (Ah, Zh) ∈ A× Z , it holds that∣∣ℓ(g(Ah, Zh), Ih)− ℓ(g′(Ah, Zh), Ih)

∣∣ = |ςπh (bh, bh+1)(Ih)| · |g(Ah, Zh)− g′(Ah, Zh)|
≤ 2MB · |g(Ah, Zh)− g′(Ah, Zh)|,

which indicates that L = 2MB. Now setting f⋆ = 0 in Lemma I.2, we have that δn in Lemma I.2
coincides with αG,n in Assumption 4.2. Then we can conclude that for some absolute constants
c1, c2 > 0, it holds with probability at least 1− δ/(4|B|2|Π(H)|H) that, for all g ∈ G,∣∣∣Φ̂π,h(bh, bh+1; g)− Φπ,h(bh, bh+1; g)

∣∣∣
=
∣∣∣Êπb [ℓ(g(Ah, Zh), Ah, Zh)]− Eπb [ℓ(g(Ah, Zh), Ah, Zh)]

∣∣∣
≤ 18L∥g∥2

√
M2

G · log
(
4c1|B|2|Π(H)|H/ζ

)
c2n

+
18L ·M2

G · log
(
4c1|B|2|Π(H)|H/ζ

)
c2n

,

(F.24)

where ζ = min{δ, 4c1|B|2|Π(H)|H exp(−c2nα2
G,n/M

2
G)}. Applying a union bound argument over

bh, bh+1 ∈ B, π ∈ Π(H), and h ∈ [H], we then have that (F.11) holds for any bh, bh+1 ∈ B, g ∈ G,
π ∈ Π(H), and h ∈ [H] with probability at least 1 − δ/4. Now using these two concentration
inequalities (F.23) and (F.24), we can further deduce that, for some absolute constants c1, c2 > 0,
with probability at least 1− δ/2,

max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), b

π
h+1; g)

= max
g∈G

{
Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− λ∥g∥22,n

}
≤ max

g∈G

{
Φπ,h(b

⋆
h(bh+1), bh+1; g)− λ∥g∥22 +

λ

2
∥g∥22 +

λM2
G log(4c1/ζ)

2c2n
,

+ 18L∥g∥2

√
M2

G · log(4c1|B|2|Π(H)|H/ζ ′)
c2n

+
18L ·M2

G · log(4c1|B|2|Π(H)|H/ζ ′)
c2n

}

≤ max
g∈G

Φπ,h(b
⋆
h(bh+1), bh+1; g) + max

g∈G

{
− λ

2
∥g∥22 + 18L∥g∥2

√
M2

G · log(4c1|B|2|Π(H)|H/ζ ′)
c2n

}

+
λM2

G log(4c1/ζ)

2c2n
+

18L ·M2
G · log(4c1|B|2|Π(H)|H/ζ ′)

c2n

≤ ϵ
1/2
B MG +

728L2 ·M2
G · log(4c1|B|2|Π(H)|H/ζ ′)

λn
+
λM2

G · log(4c1/ζ)
2c2n

+
18L · sM2

G · log(4c1|B|2|Π(H)|H/ζ ′)
c2n

,
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where ζ is given as ζ = min{δ, 4c1 exp(−c2nα2
G,n/M

2
G)} and ζ ′ is given as ζ ′ =

min{δ, 4c1|B|2|Π(H)|H exp(−c2nα2
G,n/M

2
G)} for any policy π ∈ Π(H) and step h ∈ [H]. Here

the last inequality holds from the fact that

max
g∈G

Φπ,h(b
⋆
h(bh+1), bh+1; g) ≤ ϵ

1/2
B MG, (F.25)

and that sup∥g∥2
{a∥g∥2 − b∥g∥22} ≤ a2/4b. Note that inequality (F.25) holds according to Assump-

tion 4.3 and 4.3. In fact, by Assumption 4.3, we can first obtain by quadratic optimization that for
λ > 0,

max
g∈G

Φλ
π,h(bh, bh+1) =

1

4λ
Lπ
h(bh, bh+1),

for any functions bh, bh+1 ∈ B. Thus we can equivalently express b⋆h(bh+1) as

b⋆h(bh+1) = arg min
b∈B

1

4λ
Lπ
h(b, bh+1) = arg min

b∈B
Lπ
h(b, bh+1).

This further indicates the following bound on maxg∈G Φπ,h(b
⋆
h(bh+1), bh+1; g) that

max
g∈G

Φπ,h(b
⋆
h(bh+1), bh+1; g) ≤ max

g∈G

√
Lh(b⋆h(bh+1), bh+1) · Eπb [g(Ah, Zh)2] ≤ ϵ

1/2
B MG,

by Cauchy-Schwarz inequality and Assumption 4.3. Now according to the choice of ξ in Lemma D.2,
using the fact that ζ < ζ ′ and L = 2MB, we can conclude that, with probability at least 1− δ/2,

max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), b

π
h+1; g)

≤ 728L2 ·M2
G · log(4c1|B|2|Π(H)|H/ζ ′)

λn
+
λM2

G · log(4c1/ζ)
2c2n

+
18L ·M2

G · log(4c1|B|2|Π(H)|H/ζ ′)
c2n

+ ϵ
1/2
B MG

≲ O
(
(λ+ 1/λ) ·M2

BM
2
G · log(|B||Π(H)|H/ζ)
n

)
+ ϵ

1/2
B MG ≲ ξ + ϵ

1/2
B MG.

Therefore, we conclude the proof of Lemma F.1.

G PROOF OF THEOREM 4.4

Proof of Theorem 4.4. By the definition of F (b) and F̂ (b) in (D.1) and the fact that J(π) = F (bπ)
according to Theorem 3.3, we first have that

J(π⋆)− J(π̂)

= F (bπ⋆

)− F (bπ̂)

=
(
F (bπ⋆

)− F̂ (bπ⋆

)
)︸ ︷︷ ︸

(i)

+
(
F (bπ⋆

)− F̂ (bπ̂)
)︸ ︷︷ ︸

(ii)

+
(
F̂ (bπ̂)− F (bπ̂)

)︸ ︷︷ ︸
(iii)

.

We can bound term (i) and term (iii) via uniform concentration inequalities, which we present latter.
For term (ii), via Lemma D.2, with probability at least 1 − δ, bπ⋆ ∈ CRπ⋆

(ξ) and bπ̂ ∈ CRπ̂(ξ),
which indicates that

(ii) = F̂ (bπ⋆

)− F̂ (bπ̂) ≤ max
b∈CRπ⋆

(ξ)
F̂ (b)− min

b∈CRπ̂(ξ)
F̂ (b). (G.1)

From (G.1), we can further bound term (ii) as

(ii) ≤ max
b∈CRπ⋆

(ξ)
F̂ (b)− max

π∈Π(H)
min

b∈CRπ(ξ)
F̂ (b)

≤ max
b∈CRπ⋆

(ξ)
F̂ (b)− min

b∈CRπ⋆
(ξ)
F̂ (b)

= max
b∈CRπ⋆

(ξ)
F̂ (b)− F̂ (bπ⋆

) + F̂ (bπ⋆

)− min
b∈CRπ⋆

(ξ)
F̂ (b)

≤ 2 max
b∈CRπ⋆

(ξ)

∣∣∣F̂ (b)− F̂ (bπ⋆

)
∣∣∣ . (G.2)
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Here the first inequality holds because maxπ∈Π(H) minb∈CRπ(ξ) F̂ (b) = minb∈CRπ̂(ξ) F̂ (b) by the
definition of π̂ from (3.14). The second inequality holds because by definition π⋆ is the optimal
policy in Π(H). The third inequality is trivial. Now to further bound (G.2) by the RMSE loss defined
in (3.6), we consider

2 max
b∈CRπ⋆

(ξ)

∣∣∣F̂ (b)− F̂ (bπ⋆

)
∣∣∣

≤ 2 max
b∈CRπ⋆

(ξ)

∣∣∣F̂ (b)− F (b)
∣∣∣︸ ︷︷ ︸

(iv)

+2 max
b∈CRπ⋆

(ξ)

∣∣∣F (b)− F (bπ⋆

)
∣∣∣︸ ︷︷ ︸

(v)

+2
∣∣∣F (bπ⋆

)− F̂ (bπ⋆

)
∣∣∣︸ ︷︷ ︸

(vi)

,

where we can bound term (iv) and term (vi) via uniform concentration inequalities, which we present
latter. For term (v), we invoke Lemma D.1 and obtain that

(v) ≤ 2 max
b∈CRπ⋆

(ξ)

H∑
h=1

γh−1
√
Cπ⋆ ·

√
Lπ⋆

h (bh, bh+1) ≤ 2
√
Cπ⋆

H∑
h=1

γh−1 max
b∈CRπ⋆

(ξ)

√
Lπ⋆

h (bh, bh+1).

Now invoking Lemma D.3, with probability at least 1−δ, maxb∈CRπ⋆
(ξ)

√
Lπ⋆

h (bh, bh+1) is bounded
by

max
b∈CRπ⋆

(ξ)

√
Lπ
h(bh, bh+1) ≤ C̃1MBMG

√
(λ+ 1/λ) log(|B||Π(H)|H/ζ)

n
+ C̃1ϵ

1/4
B M

1/2
G , (G.3)

for each step h ∈ [H], where ζ = min{δ, c1 exp(−c2nα2
G,n)}. In the sequel, we turn to deal with

term (i), (iii), (iv), and (vi), respectively. To this end, it suffices to apply uniform concentration
inequalities to bound F (b) and F̂ (b) uniformly over b ∈ B⊗H . By Hoeffding inequality, we have
that, with probability at least 1− δ,∣∣∣J(π,b)− Ĵ(π,b)

∣∣∣ ≤√2M2
B log(|B|/δ)

n
, ∀π ∈ Π(H), ∀b ∈ B⊗H . (G.4)

Consequently, all of (i), (iii), (iv), and (vi) are bounded by the right hand side of (G.4). Finally, by
combining (G.3) and (G.4), with probability at least 1− 3δ, it holds that

J(π⋆)− J(π̂) ≤ (i) + (iii) + (iv) + (vi) + (v)

≤ 2
√
Cπ⋆

H∑
h=1

γh−1

(
C̃1MBMG

√
(λ+ 1/λ) log(|B||Π(H)|H/ζ)

n
+ C̃1ϵ

1/4
B M

1/2
G

)

+ 4

√
2M2

B log(|B|/δ)
n

≤ C ′
1

√
Cπ⋆ (λ+ 1/λ)

1/2
HMBMG

√
log(|B||Π(H)|H/ζ)

n
+ C ′

1

√
Cπ⋆Hϵ

1/4
B M

1/2
G ,

for some problem-independent constant C ′
1 > 0. We finish the proof of Theorem 4.4 by taking

λ = 1.

H DETAILS FOR LINEAR FUNCTION APPROXIMATION

H.1 MAIN RESULT FOR LINEAR FUNCTION APPROXIMATION

In this subsection, we extend Theorem 4.4 to primal function class B, dual function class G, and
policy class Π(H) with linear structures. The linear structure assumption is commonly considered
in the RL literature (Jin et al., 2021; Xie et al., 2021; Zanette et al., 2021; Duan et al., 2021; Min
et al., 2022a;b; Fei and Xu, 2022; Huang et al., 2023), to mention a few. And it can be viewed as
an extension of linear bandits (Auer, 2002; Dani et al., 2008; Li et al., 2010; Abbasi-Yadkori et al.,
2011; He et al., 2022) to multiple-horizon setting. Note that the exact detail of the linear structure
assumption might change across different works. In our case, we consider linear function classes Blin,
Glin and Πlin, which is characterized by the following definition.
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Definition H.1 (Linear function approximation). Let ϕ : A×W → Rd be a feature mapping for
some integer d ∈ N. We let the primal function class be B = Blin where

Blin :=

{
b

∣∣∣∣∣ b(·, ·) = ⟨ϕ(·, ·), θ⟩, θ ∈ Rd, ∥θ∥2 ≤ Lb, sup
w∈W

|
∑
a∈A

b(a,w)| ≤MB

}
.

Let ψ = {ψh : A×O ×Hh−1 → Rd}Hh=1 be H feature mappings. We let the policy function class
be Π(H) = Πlin where Πlin = {Πlin,h}Hh=1 and each Πlin,h is defined as

Πlin,h :=

{
πh

∣∣∣∣ πh(a|o, τ) = exp (⟨ψh(a, o, τ), β⟩)∑
a′∈A exp(⟨ψh(a′, o, τ), β⟩)

, β ∈ Rd, ∥β∥2 ≤ Lπ

}
.

Finally, let ν : A×Z → Rd be another feature mapping. We let the dual function class be G = Glin
where

Glin :=
{
g
∣∣ g(·, ·) = ⟨ν(·, ·), ω⟩, ω ∈ Rd, ∥ω∥2 ≤ Lg

}
.

Assume without loss of generality that these feature mappings are normalized, i.e.,
∥ϕ∥2, ∥ψ∥2, ∥ν∥2 ≤ 1.

We note that Definition H.1 is consistent with Assumption 4.2. One can see that Blin and Glin is
uniformly bounded, Glin is symmetric and star-shaped. And for other more detailed theoretical
properties of Blin, Glin, and Πlin, we refer the readers to Appendix H.2 for corresponding results.

Under linear function approximation, we can extend Theorem 4.4 to the following corollary, which
characterizes the suboptimality (2.2) of π̂ found by P3O when using Blin, Glin, and Πlin as function
classes.
Corollary H.2 (Suboptimality analysis: linear function approximation). With linear function ap-
proximation (Definition H.1), under Assumption 3.1, 3.2, 4.1, and 4.3, by setting the regularization
parameter λ and the confidence parameter ξ as λ = 1 and

ξ = C2M
2
B ·M2

G · dH · log (1 + LbLπHn/δ) /n,

then with probability at least 1− δ, it holds that

SubOpt(π̂) ≤ C ′
2

√
Cπ⋆HMBLg

√
dH log (1 + LbLπHn/δ) /n+ C ′

2

√
Cπ⋆LgHϵ

1/4
B .

Here C2 and C ′
2 are problem-independent universal constants.

Proof of Corollary H.2. See Appendix H.3 for a detailed proof.

The guarantee of Corollary H.2 is structurally similar to that of Theorem 4.4, except that we can
explicitly compute the complexity of the linear function classes and policy class. When ϵB = 0,
P3O algorithm enjoys a Õ(

√
Cπ⋆H3d/n) suboptimality under the linear function approximation.

Compared to Theorem 4.4, Corollary H.2 does not explicitly assume Assumption 4.2 since it is
implicitly satisfied by Definition H.1.

H.2 AUXILIARY RESULTS FOR LINEAR FUNCTION APPROXIMATION

Here we present results that bound the complexity of certain functions classes in the case of linear
function approximation (Definition H.1).

Recall the definition of the bridge function class B⊗H where B = Blin is defined as

Blin :=

{
b

∣∣∣∣∣ b(·, ·) = ⟨ϕ(·, ·), θ⟩, θ ∈ Rd, ∥θ∥2 ≤ Lb, sup
w∈W

∣∣∑
a∈A

b(a,w)
∣∣ ≤MB

}
.

Denote by N∞
ϵ (B) the ϵ-covering number of B with respect to the ℓ∞ norm. That is, there exists

a collection of functions {bi}Ni=1 with N ≤ N∞
ϵ (B) such that for any b ∈ B, we can find some

b′ ∈ {bi}Ni=1 satisfying

∥b− b′∥∞ := sup
a∈A,w∈W

|b(a,w)− b′(a,w)| ≤ ϵ.
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Recall the policy function class Π(H) = Π⊗H
lin where Πlin is defined as

Πlin :=

{
π

∣∣∣∣ π(a|o, τ) = e⟨ψ(a,o,τ),β⟩∑
a′∈A e

⟨ψ(a′,o,τ),β⟩ , β ∈ Rd, ∥β∥2 ≤ Lπ

}
.

Denote by N∞,1
ϵ (Πlin) the ϵ-covering number of Πlin with respect to the ℓ∞,1 norm, i.e.,

∥π − π′∥∞,1 := sup
o∈O,τ∈H

∑
a∈A

|π(a|o, τ)− π′(a|o, τ)|.

The upper bounds for these covering numbers are given by the following lemma.
Lemma H.3 (Lemma 6 in Zanette et al. 2021). For any ϵ ∈ (0, 1), we have

logN∞
ϵ (B) ≤ d log

(
1 +

2Lb

ϵ

)
,

logN∞,1
ϵ (Πlin) ≤ d log

(
1 +

16Lπ

ϵ

)
.

The ϵ-nets for the product function classes In the rest of Appendix H, due to the proof, we need
to consider ϵ-nets defined for the product function classes B⊗H and Π(H) = Π⊗H

lin . Specifically, for
B⊗H , we consider an ϵ-net of B⊗H defined in the following way: for any b = {bh}Hh=1 ∈ B⊗H ,
there exists an b′ = {b′h}Hh=1 in the ϵ-net, such that

∥bh − b′h∥∞ ≤ ϵ.

By Lemma H.3, the cardinality of this ϵ-net is upper bounded by

logN∞
ϵ (B⊗H) ≤ dH log

(
1 +

2Lb

ϵ

)
.

Similarly, we consider an ϵ-net defined for Π(H) defined as the following: for any π = {πh}Hh=1 ∈
Π(H), there exists an π′ = {π′

h}Hh=1 in the ϵ-net such that

∥πh − π′
h∥∞,1 ≤ ϵ.

Then by Lemma H.3, the cardinality of this ϵ-net is upper bounded by

logN∞,1
ϵ (Π(H)) ≤ dH log

(
1 +

16Lπ

ϵ

)
For the dual function class Glin, recall the definition of the critical radius αG,n in Assumption 4.2.
The next lemma bound the critical radius of the linear dual function class G = Glin.
Lemma H.4 (Lemma D.3 in Duan et al. 2021). For the function class Glin defined in Definition H.1,
its critical radius αG,n satisfies

αG,n =MG

√
2d

n
,

where MG := supg∈Glin
∥g∥∞.

H.3 PROOF OF COROLLARY H.2

We first introduce some lemmas needed for proving Corollary H.2. Their proof is deferred to
Appendix H.4.1 and H.4.2.
Lemma H.5 (Alternative of Lemma D.2 in the linear case). Let the function, policy and dual function
class B = Blin, Π(H) = Πlin and G = Glin be defined as in Definition H.1. Then under Assumption
3.2, 4.2, and 4.3, by setting ξ such that

ξ = C2 ·
(
λ+

1

λ

)
· M

2
BM

2
GdH log (1 + LbLπHn/δ)

n
,

for some problem-independent universal constant C2 > 0, it holds with probability at least 1 − δ
that bπ ∈ CRπ(ξ) for any policy π ∈ Π(H).
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Lemma H.6 (Alternative of Lemma D.3 in the linear case). Under Assumption 3.2, 4.2, 4.3, and
4.3, by setting the same ξ as in Lemma H.5, with probability at least 1− δ, for any policy π ∈ Π(H),
b ∈ CRπ(ξ), and step h,√

Lπ
h(bh, bh+1) ≤ C̃2 · (1 + λ)MBMG ·

√
dH log (1 + LbLπHn/δ) /n+ C̃2 ·M1/2

G ϵ
1/4
B ,

for some problem-independent universal constant C̃2 > 0.

We are now ready to prove Corollary H.2.

Proof of Corollary H.2. We follow the proof of Theorem 4.4 and write

J(π⋆)− J(π̂)

=
(
J(π⋆,bπ⋆

)− Ĵ(π⋆,bπ⋆

)
)︸ ︷︷ ︸

(i)

+
(
Ĵ(π⋆,bπ⋆

)− Ĵ(π̂,bπ̂)
)︸ ︷︷ ︸

(ii)

+
(
Ĵ(π̂,bπ̂)− J(π̂,bπ̂)

)︸ ︷︷ ︸
(iii)

.

(H.1)

We deal with term (ii) first. By Lemma H.5, with probability at least 1− δ/2, bπ⋆ ∈ CRπ⋆

(ξ) and
bπ̂ ∈ CRπ̂(ξ), which indicates that

(ii) = Ĵ(π⋆,bπ⋆

)− Ĵ(π̂,bπ̂) ≤ max
b∈CRπ⋆

(ξ)
Ĵ(π⋆,b)− min

b∈CRπ̂(ξ)
Ĵ(π̂,b).

Then following (G.2), we can upper bound term (ii) by

(ii) ≤ 2 max
b∈CRπ⋆

(ξ)

∣∣∣Ĵ(π⋆,b)− Ĵ(π⋆,bπ⋆

)
∣∣∣

≤ 2 max
b∈CRπ⋆

(ξ)

∣∣∣Ĵ(π⋆,b)− J(π⋆,b)
∣∣∣︸ ︷︷ ︸

(iv)

+2 max
b∈CRπ⋆

(ξ)

∣∣∣J(π⋆,b)− J(π⋆,bπ⋆

)
∣∣∣︸ ︷︷ ︸

(v)

+ 2
∣∣∣J(π⋆,bπ⋆

)− Ĵ(π⋆,bπ⋆

)
∣∣∣︸ ︷︷ ︸

(vi)

. (H.2)

To bound term (v), we invoke Lemma D.1 which holds regardless of the underlying function classes
and obtain that

(v) = 2 max
b∈CRπ⋆

(ξ)

H∑
h=1

γh−1
√
Cπ ·

√
Lπ
h(bh, bh+1) ≤ 2

√
Cπ⋆

H∑
h=1

γh−1 max
b∈CRπ⋆

(ξ)

√
Lπ
h(bh, bh+1).

Now by Lemma H.6, with probability at least 1− δ, maxb∈CRπ⋆
(ξ)

√
Lπ
h(bh, bh+1) is bounded by

max
b∈CRπ⋆

(ξ)

√
Lπ
h(bh, bh+1)

≤ C̃2 · (1 + λ)MBMG ·
√
dH log (1 + LbLπHn/δ)

n
+ C̃2 ·M1/2

G ϵ
1/4
B , ∀h ∈ [H]. (H.3)

Now we deal with the term (i), (iii), (iv), and (vi), respectively. To this end, we apply uniform
concentration inequalities to bound J(π,b) and Ĵ(π,b) uniformly over the ϵ-net of π and b as
described in the proof of Lemma H.5. By Hoeffding’s inequality, we have that, with probability at
least 1− δ, for all π and b in their ϵ-nets,∣∣∣J(π,b)− Ĵ(π,b)

∣∣∣ ≤√2M2
B log(Nϵ,bNϵ,π/δ)

n
,

where Nϵ,π and Nϵ,b are the covering numbers defined in Appendix H.2. Here we use the regularity
assumption that |

∑
a∈A b

π
1 (a,w)| ≤ MB for all w ∈ W and the definition of J(π,b) from (D.1).

Consequently, for all π ∈ Π(H) and b ∈ B⊗H , we have∣∣∣J(π,b)− Ĵ(π,b)
∣∣∣ ≤√2M2

B log(Nϵ,bNϵ,π/δ)

n
+ 2MBϵ. (H.4)
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Next, all of (i), (iii), (iv), and (vi) are bounded by the R.H.S. of (H.4). Finally, by (H.1), (H.2), (H.3)
and (H.4), we have that

J(π⋆)− J(π̂)

≤ (i) + (iii) + (iv) + (vi) + (v)

≤ 2
√
Cπ⋆

H∑
h=1

γh−1

[
C̃2 · (1 + λ)MBMG ·

√
dH log (1 + LbLπHn/δ)

n
+ C̃2 ·M1/2

G ϵ
1/4
B

]

+ 4

[√
2M2

B log(Nϵ,bNϵ,π/δ)

n
+ 2MBϵ

]
.

Finally, by taking ϵ = 1/n2, and plugging in the values of Nϵ,b and Nϵ,π from Lemma H.3, we get

J(π⋆)− J(π̂)

≤ 2
√
Cπ⋆

H∑
h=1

γh−1

[
C̃2 · (1 + λ)MBMG ·

√
dH log (1 + LbLπHn/δ)

n
+ C̃2 ·M1/2

G ϵ
1/4
B

]

+ C3MB

√
dH log(1 + LbLπn/δ)

n
,

where C3 is some problem-independent universal constant. We then simplify the expression and use
the fact that

MG = sup
a,z

|g(a, z)| = sup
a,z

|⟨ν(a, z), ω⟩| ≤ sup
a,z

∥ν(a, z)∥2 · ∥ω∥2 ≤ Lg.

This gives the result of Corollary H.2.

H.4 PROOF OF LEMMAS IN APPENDIX H

H.4.1 PROOF OF LEMMA H.5

Proof of Lemma H.5. First, for any ϵ ∈ (0, 1), consider arbitrary π = {πh}Hh=1 and π′ = {π′
h}Hh=1

in Πlin such that ∥πh − π′
h∥∞,1 ≤ ϵ for all h ∈ [H]. And consider arbitrary b = {bh}Hh=1

and b′ = {b′h}Hh=1 in B⊗H such that ∥bh − b′h∥∞ ≤ ϵ for all h ∈ [H]. Then by definition of
Φλ

π,h(bh, bh+1; g) in (3.9) and Φ̂λ
π,h(bh, bh+1; g) in (3.10), and that Φλ

π,h = Φ0
π,h and Φ̂λ

π,h = Φ̂0
π,h,

one can easily get that∣∣Φπ,h(bh, bh+1; g)− Φπ′,h(b
′
h, b

′
h+1; g)

∣∣ ≤ [2ϵ+ γ · (ϵ+ ϵMB)] ·MG ≤ 4MBMGϵ,∣∣∣Φ̂π,h(bh, bh+1; g)− Φ̂π′,h(b
′
h, b

′
h+1; g)

∣∣∣ ≤ [2ϵ+ γ · (ϵ+ ϵMB)] ·MG ≤ 4MBMGϵ, (H.5)

for all g ∈ G.

Now, same as in the proof of Lemma D.2, we want to show: for any π ∈ Π(H),

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g) ≤ ξ.

The rest of the proof would be very similar to that of Lemma D.2 with an additional covering
argument. To begin with, we again write Φ̂λ

π,h(b
π
h, b

π
h+1; g) = Φ̂π,h(b

π
h, b

π
h+1; g)− λ∥g∥22,n.

Same as (F.10), we have that with probability at least 1− δ/2,∣∣∥g∥22,n − ∥g∥22
∣∣ ≤ 1

2
∥g∥22 +

M2
G log(2c1/ζ)

2c2n
, ∀g ∈ G, (H.6)

where ζ = min{δ, 2c1 exp(−c2nα2
G,n/M

2
G)} and c1, c2 are some universal constants.

Next, we upper bound |Φ̂π′,h(bh, bh+1; g)− Φπ′,h(bh, bh+1; g)| for any π ∈ Π(H), and b ∈ B⊗H .
We first prove this for a fixed ϵ-net of Π(H) and B⊗H . Specifically, choose an ϵ-net of Π(H) such
that for any π = {πh}Hh=1 and π′ = {π′

h}Hh=1 in this ϵ-net, it holds that ∥πh − π′
h∥∞,1 ≤ ϵ for all
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h. Also choose an ϵ-net of B⊗H such that for any b = {bh}Hh=1 and b′ = {b′h}Hh=1 in the ϵ-net, it
holds that ∥bh − b′h∥∞ ≤ ϵ for all h. Denote the cardinality of these two ϵ-net by Nϵ,π and Nϵ,b,
respectively. Then by the same argument behind (F.11), we get that, with probability at least 1− δ/2,
for any π and b in their ϵ-nets, and for any g ∈ G,∣∣∣Φ̂π,h(bh, bh+1; g)− Φπ,h(bh, bh+1; g)

∣∣∣
≤ 18L∥g∥2

√
M2

G log
(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n
+

18LM2
G log

(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n
, (H.7)

where ζ ′ = min{δ, 2c1N 2
ϵ,bNϵ,πH exp(−c2nα2

G,n/M
2
G)}.

Now for any π ∈ Π(H) and b ∈ B⊗H , by our construction of the ϵ-nets, we can find a π′ and b′

in the ϵ-nets such that ∥πh − π′
h∥∞,1 ≤ ϵ and ∥bh − b′h∥∞ ≤ ϵ for all h. Then we have that with

probability at least 1− δ/2, for any π ∈ Π(H) and b ∈ B⊗H , and for any g ∈ G,∣∣∣Φ̂π,h(bh, bh+1; g)− Φπ,h(bh, bh+1; g)
∣∣∣

≤ |Φ̂π,h(bh, bh+1; g)− Φ̂π′,h(b
′
h, b

′
h+1; g)|+ |Φ̂π′,h(b

′
h, b

′
h+1; g)− Φπ′,h(b

′
h, b

′
h+1; g)|

+ |Φπ′,h(b
′
h, b

′
h+1; g)− Φπ,h(bh, bh+1; g)|

≤ 8MBMG · ϵ+ 18L∥g∥2

√
M2

G log
(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n
+

18LM2
G log

(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n
,

(H.8)

where the first step is by the triangle inequality and the second steps is by (H.5) and (H.7).

Now combine (H.6) and (H.8) with a union bound, we conclude that, with probability at least 1− δ,
for any π ∈ Π(H),

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g)

= max
g∈G

{
Φ̂π,h(b

π
h, b

π
h+1; g)− λ∥g∥22,n

}
≤ max

g∈G

{
Φπ,h(b

π
h, b

π
h+1; g)− λ∥g∥22 +

λ

2
∥g∥22 +

λM2
G log(2c1/ζ)

2c2n
,

+ 18L∥g∥2

√
M2

G log
(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n
+

18LM2
G log

(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n

}
+ 8MBMGϵ

≤ max
g∈G

Φπ,h(b
π
h, b

π
h+1; g) + max

g∈G

{
− λ

2
∥g∥22 + 18L∥g∥2

√
M2

G log
(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n

}

+
λM2

G log(2c1/ζ)

2c2n
+

18LM2
G log

(
2c1N 2

ϵ,bNϵ,πH/ζ
)

c2n
+ 8MBMGϵ

≤
728L2M2

G log(2c1N 2
ϵ,bNϵ,πH/ζ

′)

λn
+
λM2

G log(2c1/ζ)

2c2n

+
18LM2

G log(2c1N 2
ϵ,bNϵ,πH/ζ

′)

c2n
+ 8MBMGϵ, (H.9)

with ζ = min{δ, 2c1 exp(−c2nα2
G,n/M

2
G)} and ζ ′ = min{δ, 2c1N 2

ϵ,bNϵ,πH exp(−c2nα2
G,n/M

2
G)}

for any policy π ∈ Π(H) and step h. Here the first inequality is by (H.6) and (H.8), the second
inequality is trivial, and the last inequality holds from the fact that Φπ,h(b

π
h, b

π
h+1; g) = 0 and the fact

that sup∥g∥2
{a∥g∥2 − b∥g∥22} ≤ a2/4b.
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Now by Definition H.1, we apply Lemma H.3 with ∥θh∥2 ≤ Lb and ∥βh∥ ≤ Lπ and get that

logNϵ,π ≤ dH log

(
1 +

16Lπ

ϵ

)
,

logNϵ,b ≤ dH log

(
1 +

2Lb

ϵ

)
. (H.10)

Now we pick ϵ = 1/n2, and together with (H.9) and (H.10), we get that

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g) ≤ C ·

(λ+ 1/λ)M2
BM

2
G
[
dH log (1 + LbLπHn/δ) + nα2

G,n/M
2
G
]

n
+ C · MBMG

n2
,

where C is some universal constant. Here we have plugged in the value of ζ, ζ ′ and L = 2MB.
Finally, by plugging in the value of αG,n from Lemma H.4, we conclude that

max
g∈G

Φ̂λ
π,h(b

π
h, b

π
h+1; g) ≤ C1 ·

(
λ+

1

λ

)
· M

2
BM

2
GdH log (1 + LbLπHn/δ)

n
+ C1 ·

MBMG

n2
,

where C1 is some problem-independent constant. Note that second term on the right hand side is
smaller than the first term. Then the result follows from our choice of ξ in Lemma H.5.

H.4.2 PROOF OF LEMMA H.6

Proof of Lemma H.6. Consider any π ∈ Π(H) and b = {bh}Hh=1 ∈ CRπ(ξ). Same as (F.12), we
have

max
g∈G

Φ̂λ
π,h(bh, bh+1; g)

≥ max
g∈G

{
Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− 2λ∥g∥22,n

}
︸ ︷︷ ︸

(⋆)

−max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g).

We again upper and lower bound term (⋆) respectively.

Upper bound of term (⋆). By the same argument as in the proof of Lemma F.1, we have that: for
any b ∈ B⊗H , π ∈ Π(H), and h ∈ [H], it holds with probability at least 1− δ/2 that

max
g∈G

Φ̂π,h(b
⋆
h(bh+1), bh+1; g) ≤ ξ + ϵ

1/2
B MG,

where b⋆h(bh+1) is defined in (F.3) and ξ is defined in Lemma H.5. We then get

max
g∈G

Φ̂λ
π,h(̂bh(bh+1), bh+1; g) ≤ max

g∈G
Φ̂λ

π,h(b
⋆
h(bh+1), bh+1; g) ≤ ξ + ϵ

1/2
B MG, (H.11)

where the first inequality follows from the definition of b̂h(bh+1) in (3.11). Also note that, by the
construction of the confidence region CRπ(ξ), we have

max
g∈G

Φ̂λ
π,h(bh, bh+1; g)−max

g∈G
Φ̂λ

π,h(̂bh(bh+1), bh+1; g) ≤ ξ. (H.12)

Furthermore, we can write

(⋆) ≤ max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g) + max

g∈G
Φ̂λ

π,h(bh, bh+1; g)

≤ max
g∈G

Φ̂λ
π,h(b

⋆
h(bh+1), bh+1; g)

+ max
g∈G

Φ̂λ
π,h(bh, bh+1; g)−max

g∈G
Φ̂λ

π,h(̂bh(bh+1), bh+1; g)

+ max
g∈G

Φ̂λ
π,h(̂bh(bh+1), bh+1; g).
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Combining with (H.11) and (H.12), we get that, with probability at least 1− δ/2,

(⋆) ≤ 3ξ + 2ϵ
1/2
B MG. (H.13)

Lower bound of term (⋆). First of all, same as (F.17), it holds with probability at least 1− δ/4 that,∣∣∥g∥22,n − ∥g∥22
∣∣ ≤ 1

2
∥g∥22 +

M2
G log(4c1/ζ)

2c2n
, ∀g ∈ G, (H.14)

where ζ = min{δ, 4c1 exp(−c2nα2
G,n/M

2
G)} for some absolute constants c1 and c2, and αG,n is the

critical radius of G defined in Assumption 4.2.

Second, we fix an ϵ-net of Π(H) and an ϵ-net of B⊗H , as described in Appendix H.2. Denote by
Nϵ,π and Nϵ,b their respective covering numbers. Then by the same argument behind (F.18) and a
union bound, we get that, with probability at least 1− δ/4, for all π = {πh}Hh=1, b = {bh}Hh=1 and
b′ = {b′h}Hh=1 in their ϵ-nets, and for all g ∈ G,∣∣∣(Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

′
h, bh+1; g)

)
−
(
Φπ,h(bh, bh+1; g)− Φπ,h(b

′
h, bh+1; g)

)∣∣∣
≤ 18L∥g∥2

√
M2

G log(4c1N 3
ϵ,bNϵ,πH/ζ ′)

c2n
+

18LM2
G log

(
4c1N 3

ϵ,bNϵ,πH/ζ
′)

c2n
, (H.15)

where ζ ′ = min{δ, 4c1N 3
ϵ,bNϵ,πH exp(−c2nα2

G,n/M
2
G)}.

We then use (H.5), and conclude that, with probability at least 1 − δ/4, for all π ∈ Π(H), and b,
b′ ∈ B⊗H , and g ∈ G,∣∣∣(Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

′
h, bh+1; g)

)
−
(
Φπ,h(bh, bh+1; g)− Φπ,h(b

′
h, bh+1; g)

)∣∣∣
≤ 18L∥g∥2

√
M2

G log(4c1N 3
ϵ,bNϵ,πH/ζ ′)

c2n
+

18LM2
G log

(
4c1N 3

ϵ,bNϵ,πH/ζ
′)

c2n
+ 8MBMGϵ.

(H.16)

In the sequel, for simplicity, we denote that

ιn :=

√
M2

G log(4c1N 3
ϵ,bNϵ,πH/ζ ′)

c2n
, ι′n :=

√
M2

G log(4c1/ζ)

2c2n
, (H.17)

where ζ and ζ ′ are same as in (H.14) and (H.15). Furthermore, given fixed bh, bh+1 ∈ B, we denote

gπh :=
1

2λ
ℓπh(bh, bh+1) ∈ G, (H.18)

where ℓπh is defined by (F.1) and gπh ∈ G follows from Assumption 4.3. We then have

(⋆) = max
g∈G

{
Φ̂π,h(bh, bh+1; g)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g)− 2λ∥g∥22,n

}
≥ Φ̂π,h(bh, bh+1; g

π
h/2)− Φ̂π,h(b

⋆
h(bh+1), bh+1; g

π
h/2)−

λ

2
∥gπh∥22,n,

where the inequality holds because gπh/2 ∈ G.

Together with (H.14) and (H.16), we have

(⋆) ≥ Φπ,h(bh, bh+1; g
π
h/2)− Φπ,h(b

⋆
h(bh+1), bh+1; g

π
h/2)− 18Lιn∥gπh∥2 − 18Lι2n

− 8MBMGϵ−
λ

2

(
3

2
∥gπh∥22 + ι′2n

)
≥ λ∥gπh∥22 − 18Lιn∥gπh∥2 − ϵ

1/2
B MG − 18Lι2n − 8MBMGϵ−

λ

2

(
3

2
∥gπh∥22 + ι′2n

)
=
λ

4
∥gπh∥22 − 18Lιn∥gπh∥2 − ϵ

1/2
B MG − 18Lι2n − 8MBMGϵ−

λ

2
ι′2n , (H.19)
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where the second inequality follows from the same reason as in (F.20).

Finally, combine (H.19) and (H.13) and we get
λ

4
∥gπh∥22 − 18Lιn∥gπh∥2 − ϵ

1/2
B MG − 18Lι2n − 8MBMGϵ−

λ

2
ι′2n ≤ 3ξ + 2ϵ

1/2
B MG.

This gives the following quadratic inequality w.r.t. ∥gπh∥2

λ∥gπh∥22 − 72Lιn︸ ︷︷ ︸
A

∥gπh∥2 − 4

[
18Lι2n +

λ

2
ι′n

2
+ 3ξ + 8MBMGϵ+ 3ϵ

1/2
B MG

]
︸ ︷︷ ︸

B

≤ 0.

By the fact that x2 −Ax− B ≤ 0 implies x ≤ (A +
√
A2 + 4B)/2 ≤ A+

√
B, we have

∥gπh∥2 ≤ 72Lιn
λ

+

√
4

λ

[
18Lι2n +

λ

2
ι′n

2 + 3ξ + 8MBMGϵ+ 3ϵ
1/2
B MG

]
.

We then plug in the values of ιn and ι′n from (H.17), ξ from Lemma H.5, ζ and ζ ′ from below (H.14)
and (H.15), Nϵ,b and Nϵ,π from Lemma H.3, αG,n from Lemma H.4, and set ϵ = 1/n2. Simplify
the expression and we get

∥gπh∥2 ≤ C ·
(
1 +

1

λ

)
MBMG ·

√
dH log (1 + LbLπHn/δ)

n
+ C ·

M
1/2
G ϵ

1/4
B

λ
,

where C is some problem-independent universal constant. By (H.18) and (3.6), we have
Lπ
h(bh, bh+1) = ∥2λgπh∥22. It follows that√
Lπ
h(bh, bh+1) = 2λ∥gπh∥2 ≤ C̃2 · (1 + λ)MBMG ·

√
dH log (1 + LbLπHn/δ)

n
+ C̃2 ·M1/2

G ϵ
1/4
B ,

for some constant C̃2. This finishes the proof.

I AUXILIARY LEMMAS

We introduce some useful lemmas for the uniform concentration over function classes. Before we
present the lemmas, we first introduce several notations. For a function class F on a probability
space (X , P ), we denote by ∥f∥22 the expectation of f(X)2, that is ∥f∥22 = EX∼P [f(X)2]. Also,
we denote by

Rn(F , δ) := E

[
sup

f∈F :∥f∥2≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵif(Xi)

∣∣∣∣∣
]

(I.1)

the localized Rademacher complexity of F with scale δ > 0 and size n ∈ N. Here {ϵi}bi=1 and
{Xi}ni=1 are i.i.d. and independent. Each ϵi is uniformly distributed on {+1,−1} and each Xi is
distributed according to P . Finally, we denote by star(F) the star-shaped set induced by set F as

star(F) = {αf : α ∈ [0, 1], f ∈ F} . (I.2)

Now we are ready to present the lemmas for uniform concentration inequalities.
Lemma I.1 (Localized Uniform Concentration 1 (Wainwright, 2019)). Given a star-shaped and
b-uniformly bounded function class F , let δn be any positive solution of the inequality

Rn(F ; δ) ≤ δ2

b
.

Then for any t ≥ δn, we have that∣∣∥f∥2n − ∥f∥22
∣∣ ≤ 1

2
∥f∥22 +

1

2
t2, ∀f ∈ F

with probability at least 1− c1 exp(−c2nt2/b2). If in addition nδ2n ≥ 2 log (4 log (1/δn)) /c2, then
we have that ∣∣∥f∥n − ∥f∥2

∣∣ ≤ c0δn, ∀f ∈ F
with probability at least 1− c′1 exp(−c′2nδ2n/b2).
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Proof of Lemma I.1. See Theorem 14.1 of Wainwright (2019) for a detailed proof.

Lemma I.2 (Localized Uniform Concentration 2 (Foster and Syrgkanis, 2019)). Consider a star-
shaped function class F : X 7→ R with supf∈F ∥f∥∞ ≤ b, and pick any f⋆ ∈ F . Also, consider a
loss function ℓ : R×Y 7→ R which is L-Lipschitz in its first argument with respect to the ∥ · ∥2-norm.
Now let δ2n ≥ 4 log (41 log (2c2n)) /(c2n) be any solution to the inequality:

Rn(star(F − f⋆); δ) ≤ δ2

b
.

Then for any t ≥ δn and some absolute constants c1, c2 > 0, with probability 1− c1 exp(−c2nt2/b2)
it holds that∣∣∣(Ên[ℓ(f(x), y)]− Ên [ℓ (f

⋆(x), y)]
)
−
(
E[ℓ(f(x), y)]− E [ℓ (f⋆(x), y)]

)∣∣∣
≤ 18Lt (∥f − f⋆∥2 + t) , (I.3)

for any f ∈ F . If furthermore, the loss function ℓ is linear in f , i.e., ℓ((f + f ′)(x), y) = ℓ(f(x), y)+
ℓ(f ′(x), y) and ℓ(αf(x), y) = αℓ(f(x), z), then the lower bound on δ2n is not required.

Proof of Lemma I.2. See Lemma 11 of Foster and Syrgkanis (2019) for a detailed proof.

Remark I.3. We remark that in the original Lemma 11 of Foster and Syrgkanis (2019), inequality
(I.3) only holds for δn, and we extend it to any t ≥ δn since according to Lemma 13.6 of Wainwright
(2019) we know that Rn(F ; δ)/δ is a non-increasing function of δ on (0,+∞), which indicates that
t ≥ δn also solves the inequality.
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