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Abstract

Causal reasoning is one of the primary bottlenecks that Large Language Models (LLMs)
must overcome to attain human-level intelligence. Recent studies indicate that LLMs dis-
play near-random performance in extracting causal relations as a primary task of reasoning.
To address this, we introduce the Causal Chain of Prompting (C2P), a causal relation ex-
traction framework that aims to improve current LLMs reasoning capabilities as the first
framework of its kind operating autonomously without relying on external tools or modules
during both the causal learning and reasoning phases. To evaluate the performance of C2P,
we first demonstrate that causal relation extraction accuracy improved by over 30.7% and
25.9% for GPT-4 Turbo and LLaMA 3.1, respectively, when using our framework, compared
to the same models without C2P on a synthetic benchmark dataset. Then, using few-shot
learning of the same LLMs with C2P, the causal relation extraction accuracy increased
by more than 20.05% and 20.89%, respectively, with as few as ten examples, compared to
the corresponding LLMs without C2P on the same dataset. To evaluate C2P in realistic
scenarios, we utilized another benchmark dataset containing natural stories across various
fields, including healthcare, medicine, economics, education, social sciences, environmental
science, and marketing. The results demonstrate improved causal relation extraction ca-
pability when C2P is applied, compared to cases where our framework is not used, which
often leads to random and hallucinated responses. By demonstrating the improved perfor-
mance of few-shot learned GPT-4 Turbo and LLaMA 3.1 with C2P, we demonstrate the
generalizability of our framework.

1 Introduction

Recent advancements in Large Language Models (LLMs) have impacted existing AI paradigms and raised
expectations regarding AI’s capabilities (Achiam et al., 2023; Brown et al., 2020). LLMs generally produce
outputs based on the most likely results learned from vast amounts of training data (Vaswani et al., 2017).
This enables them to acquire extensive knowledge, ranging from common sense to specialized domains such
as mathematics and science (Jiralerspong et al., 2024). In the training of LLMs, numerous examples of
interventions, outcomes, and explanations are included in their training to reduce hallucinations and improve
reasoning. However, despite significant architectural differences, hallucinatory responses still occur and true
causal reasoning remains lacking (Chi et al., 2024; Kalai & Vempala, 2023; Xu et al., 2024). As a result,
although models may appear to reason causally, they do not engage in a genuine causal reasoning process
(Zečević et al., 2023). This deficiency represents a fundamental limitation of LLMs as AI systems compared
to human intelligence, which is based on causal reasoning rather than simple associations for decision making
(Penn & Povinelli, 2007; Anwar et al., 2024). Judea Pearl introduced "The Ladder of Causation" in (Pearl &
Mackenzie, 2018) that easily addresses the reason for this deficiency. This ladder includes three main levels.
At the first level, association, only patterns and dependencies are identified, and why things are related
cannot be answered. The second level, intervention, involves understanding cause-and-effect by predicting
outcomes of actions or changes, asking "What happens if I do this?" The highest level, counterfactuals, deals
with imagining alternative scenarios, asking "What would have happened if...?". This framework illustrates
how reasoning evolves from pattern recognition to understanding and predicting causal relationships, high-
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Premise: In the (co)evolution of supermassive black holes and their host galaxies, the data support the following observations: existing studies 
show that changes in central density do not lead to significant changes in bulge stellar mass. However, black hole mass decreases with higher 
central density. Additionally, when black hole mass is fixed, central density and velocity dispersion vary simultaneously. Conversely, higher 
velocity dispersion or a larger effective radius correlates with lower bulge stellar mass, while velocity dispersion and effective radius do not vary 
simultaneously.
Hypothesis: Central density affects black hole mass.
Ground Truth Answer: Yes

Subtasks of C2P pipeline

Subtask 1: Prompting to extract 
variables and their dependencies

Subtask 2: Prompting to create a fully 
connected adjacency matrix

Subtask 3: Prompting to update the 
adjacency matrix based on Subtask 1

Subtask 4:Prompting to detect colliders 
and updating the adjacency matrix

Subtask 5: Prompting to ask causal 
relation questions based on extracted 

matrix

Variables: CD, BSM, BHM, VD, ER
Dependencies:

CD ⊥ BSM,
CD ⊥ ER,
CD ⊥ VD,

…

CD VD ER

BHM BSM

CD VD ER

BHM BSM

CD VD ER

BHM BSM

Does central density affect black 
hole mass? Yes

Yes, Central density 
affects black hole mass

Figure 1: The 5 successive subtasks of C2P applied to Black Holes and their Host Galexis example presented
in (Pasquato et al., 2023). Central Density(CD), Black Hole Mass(BHM), Velocity Density(VD), Bulge
Stellar Mass(BSM), Effective Radius(ER)

.

lighting the differences at each level. The primary component of causal reasoning is the ability to identify
causal relationships, i.e., x→ y, meaning that x causes y, in response to the question: Does x cause y? This
challenge is explored in Jin et al. (2023b) as "Can Large Language Models Infer Causation from Correlation?"

Recently, studies on the causal reasoning capabilities of LLMs have garnered significant interest. Most
of these focus on evaluating the reasoning abilities of LLMs, while a smaller number aim to enhance this
feature. Additionally, some studies explore the application of LLMs in the field of causality.(Kıcıman et al.,
2023; Zhang et al., 2023; Feder et al., 2024; Khatibi et al., 2024). The inefficiency of LLMs in reasoning
has been extensively studied from various perspectives, as demonstrated in works such as (Xu et al., 2023;
Romanou et al., 2023; Jin et al., 2023a; Liu et al., 2024a; Hobbhahn et al., 2022). Similarly, Jin et al. (2023b)
introduces the CORR2CAUSE dataset, revealing that current models often perform no better than random
chance when answering causal questions. Most recently, simple tasks have been shown to completely break
down the reasoning abilities of state-of-the-art LLMs (Nezhurina et al., 2024). Additionally, studies such as
(Petroni et al., 2019; Jiang et al., 2020) aimed to reason causally based on the knowledge already present in
the training data of LLMs, which is why LLMs are referred to as "causal parrots" in (Zečević et al., 2023).
The reason for these behaviors is discussed in (Wang et al., 2023; Imani et al., 2023; Cai et al., 2023). As one
of the initial attempts to enhance reasoning in LLMs, chain-of-thought prompting is presented in (Wei et al.,
2022b), showing improvement based on the data from the given query. Despite CoT’s potential to enhance
reasoning performance, the analysis in Bao et al. (2024) reveals a pattern: correct answers often follow
incorrect CoTs, and vice versa. As another approach, LLMs have been utilized in conjunction with external
tools to extract causal structures, as demonstrated in (Jiralerspong et al., 2024). More recently, in (Ashwani
et al., 2024), a novel architecture called the Context-Aware Reasoning Enhancement with Counterfactual
Analysis (CARE-CA) framework is presented to enhance causal reasoning and explainability. Their proposed
framework incorporates an external explicit causal detection module with ConceptNet (Speer et al., 2017)
and counterfactual statements, as well as implicit causal detection through LLMs, showing progress in causal
reasoning in short and simple queries. Several other works at the intersection of causal inference and LLMs are
discussed in an extensive survey by Liu et al. (2024b). The main drawbacks of the existing frameworks aiming
to equip LLMs with reasoning are their reliance on external modules, the need for extensive information to
function, and their very low accuracy.
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In this paper, we propose the Causal Chain of Prompting (C2P), a causal relation extraction framework for
LLMs designed to enhance reasoning skills by climbing the causality ladder and answering basic reasoning
questions. Unlike existing methods, C2P operates autonomously, without relying on external tools or modules
during the learning and reasoning phases. It can be easily implemented in the few-shot to improve reasoning
in causal questions. C2P extracts the causal relation based on associations mentioned in a given premise. C2P
is inspired by Pearl’s foundational work, which argues that causal Directed Acyclic Graphs (DAGs), along
with d-separation, enable the investigation of cause-and-effect relationships without relying on structural
equation models in computational studies (Pearl, 1995). Based on this, we demonstrate that by extracting
the adjacency matrix of causal relationships among variables in the premise—equivalent to the use of the
causal DAG in Pearl’s framework—a causation query can be effectively answered. This framework includes
five simple main subtasks, as follows: (1) Prompting to extract random variables from the provided data.
(2) Prompting to extract all conditional and unconditional associations, as well as cause-and-effect relations
specifically mentioned among the random variables. (3) Prompting to create the initial adjacency matrix
with values of 1 for all elements except the diagonal elements and those corresponding to effect-cause relations
(the cause-and-effect elements are also set to 1). (4) Prompting conditional and unconditional independencies
and identification of colliders, step by step, to extract the causal adjacency matrix. (5) Prompting for causal
questions or hypotheses. (Fig. 1). To evaluate the accuracy and reliability of implementing the C2P on
LLMs, we first assess it using publicly available benchmark synthetic and "Natural Story" datasets, such as
those in (Jin et al., 2023b). To show the practical applicability of C2P, we present the results of few-shot
learned LLMs with C2P in both synthetic and real-world scenarios. Subsequently, we evaluate it in more
realistic and complex scenarios found in real-world problems presented in (Pasquato et al., 2023).

Contributions. In this work, we present several contributions to facilitate causal reasoning in large lan-
guage models. Concretely,

1. We introduce the C2P framework as the first causal relation extraction framework to improve rea-
soning of LLMs within real-world scenarios, without relying on external tools.

2. Through extensive experiments with our framework, we demonstrate significant improvements in the
causal reasoning abilities of LLMs across various benchmark datasets, as well as in more complex,
real-world scenarios across multiple domains.

3. We demonstrate the generality of C2P by implementing few-shot learning for both GPT-4 Turbo
and LlaMA 3.1, obtaining significant improvements in reasoning.

The code is publicly available at https://anonymous.4open.science/r/C2P-5C2A.

2 Preliminaries on Causal Learning and Reasoning

In this section, we first introduce the "Ladder of Causation" to clarify the distinction between observation and
intervention, helping to understand how dependencies relate to causation and reasoning. We then present
the key concepts essential for understanding causality, along with the necessary assumptions and methods.
Finally, we introduce the PC algorithm, which serves as the methodological foundation of C2P.

2.1 Ladder of Causation (Pearl & Mackenzie, 2018):

To perform any level of causal reasoning, the Ladder of Causation proposes three main levels: “seeing or
association,” “doing or intervention,” and “imagining or counterfactual”. The questions that can be answered
in Association (Seeing) are mostly similar to "What is happening?" This is the most basic level where we
observe patterns and correlations between variables. At this level, we can only say that two things are related
or tend to occur together, but we cannot explain why. Machine learning models and statistical methods
that rely on pattern recognition (like LLMs) often operate at this level. In the second level, Intervention
(Doing), questions such as "What happens if I do something?" can be addressed. At this level, we can go
beyond mere association and ask about the effect of an action or intervention. This requires understanding
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the cause-and-effect relationships. To reach the third level of the ladder, more information is needed on
the causal structure, which can mainly be provided with structural causal models (SCMs), assuming that
all assumptions are satisfied (Bareinboim et al., 2022). However, studies such as (Spirtes et al., 2001) have
shown that Level 2 can be reached (up to equivalence classes) using only observational data.

2.2 Prerequisite Concepts of Causality

To effectively understand and perform the reasoning steps of LLMs, it is essential to grasp several fundamental
concepts that underpin the field. Table 1 includes the nature of observational data, foundational causal
assumptions, graphical representations, and formal tools for causal reasoning. These concepts collectively
enable the identification and interpretation of causal relationships, distinguishing causation from correlation.
More details on these concepts are presented in Appendix A.1.

Concept Role in Causal Reasoining How It Relates to Others
Observational Data Provides correlations but not causa-

tion; the starting point of causal dis-
covery.

Motivates the need for causal mod-
els since correlation alone is insuffi-
cient for causation.

Common Cause
Principle

Explains how correlations arise: ei-
ther through direct causation or a
common cause.

Justifies the use of DAGs to repre-
sent causal structures.

Directed Acyclic
Graphs (DAGs)

Represent causal relationships using
directed edges and nodes.

Encodes causality, forming the
foundation for d-separation, do-
calculus, and causal inference.

Markov Property Ensures that each variable is in-
dependent of its non-descendants
given its parents.

Defines the independence struc-
ture of DAGs, allowing us to use
d-separation to test relationships.

d-Separation A graphical criterion for determin-
ing conditional independence in a
DAG.

Provides testable implications from
a DAG and is crucial for do-
calculus and causal inference.

Causal Sufficiency Assumes all relevant confounders
(common causes) are measured.

If violated, DAG-based methods
may fail as unobserved con-
founders distort causal infer-
ence.

Faithfulness Assumes that statistical indepen-
dencies in data reflect the true DAG
structure.

If violated, observed dependencies
may mislead causal discovery al-
gorithms.

PC Algorithm A constraint-based algorithm for
learning causal structures from ob-
servational data.

Relies on d-separation, faithful-
ness, and causal sufficiency to
iteratively remove edges and infer
causal relationships.

Markov Equiva-
lence

Shows that multiple DAGs can rep-
resent the same independence rela-
tionships.

Limits what can be inferred from
observational data alone, impacting
methods like the PC Algorithm.

Do-Calculus Provides rules for estimating causal
effects from observational data un-
der certain conditions.

Extends d-separation and DAGs
to determine when interventions can
be estimated from non-experimental
data.

Table 1: Key concepts in causal discovery and their relationships.
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2.3 The PC algorithm

The PC algorithm is developed based on Reichenbach’s common cause principle and the Markov property,
its steps can be described as follows:

(i) Form a complete undirected graph

(ii) Eliminate edges between variables that are unconditionally independent

(iii) For each pair of variables (X1, X2) having an edge between them, and for each variable, X3 with an
edge connected to either of them, eliminate the edge between X1 and X2 if X1 ⊥⊥ X2|X3

(iv) For each pair of variables X1, X2 having an edge between them, and for each pair of variables
{X3, X4} with edges both connected to X1 or both connected to X2, eliminate the edge between X1
and X2 if X1 ⊥⊥ X2|{X3, X4}.

(v) For each triple of variables (X1, X2, X3) such that X1 and X2 are adjacent, X2 and X3 are adjacent,
and X1 and X3 are not adjacent, orient the edges X1 −X2 −X3 as X1 → X2 ← X3, if X2 was not
in the set conditioning on which X1 and X3 became independent and the edge between them was
accordingly eliminated. We call such a triple of variables a V-structure.

(vi) For each triple of variables such that X1 → X2 −X3, and X1 and X2 are not adjacent, orient the
edge X2 −X3 as X2 → X3. This is called orientation propagation.

All the mathematical background and proofs for the PC algorithm are provided in (Spirtes et al., 2001).
Note that the current causal discovery methods are primarily divided into two groups: (i) Constraint-based
algorithms such as the PC algorithm (Spirtes et al., 2001), which has a PDAG as an output, which represents
the MEC of the true underlying graph and is the best outcome that these methods can achieve; (ii) Score-
based methods such as GES (Chickering, 2002), NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020),
DAGMA (Bello et al., 2022), and TOPO (Deng et al., 2023), among many others, which extract a DAG that
mostly fits the data and showed high accuracy in extracting Bayesian networks. Nevertheless, score-based
methods require the solution of a numerical problem, making them impossible to integrate with LLMs.

3 The Causal Chain of Prompting

To develop the Causal Chain of Prompting framework, our goal is to extract the adjacency matrix of variables
from a given premise, serving as an equivalent alternative to the causal DAG in Pearl’s work and enabling
causal relation extraction. To achieve this, the Causal Chain of Prompting is designed to replicate the exact
steps of the PC algorithm for the given premise.

3.1 Causal Chain of Prompting (C2P)

The C2P framework consists of five main subtasks as follows, for learning and reasoning about cause and
effect relations for the given premise:

• Subtask 1: Prompting to extract the random variables in the provided data.

• Subtask 2: Prompting to extract all the cause-and-effect relations along with all conditional and
unconditional relations among the random variables specifically mentioned in the given premise.

• Subtask 3: Prompting to create an initial adjacency matrix where all elements are 1, except
for the diagonal elements and those corresponding to the cause-and-effect relationships specifically
mentioned in the given premise (extracted in subtask 2).

• Subtask 4: Prompting of conditional and unconditional independence evaluation and identification
of colliders to extract the causal PDAG.
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• Subtask 5: Prompting for cause-and-effect questions or hypotheses.

Each subtask in C2P can include one or multiple steps (prompts). In general, to execute the framework,
9 main steps must be completed. Subtask 1 is completed in Step 1. Subtask 2 is accomplished with
Step 2. Subtask 3 is achieved with Step 3. To perform Subtask 4, 5 steps must be applied. Step 4 first
eliminates all unconditional independencies achieved in Subtask 2 and Step 5 then removes all conditional
independencies extracted in Subtask 2. Step 6 identifies potential nodes that can act as colliders. Step 7
confirms whether the nodes identified in Step 6 are colliders. Step 8 updates the adjacency matrix, resulting
in the final adjacency matrix of a causal structure. To perform Subtask 5, the causal question is asked in
Step 9. The exact prompts for all the steps are provided in Appendix A.3 and code repository.

Proposition: Under standard assumptions—faithfulness, causal sufficiency, and the Markov condi-
tion—natural language assertions that encode explicit causal and independence statements impose con-
straints equivalent to those used by observational causal discovery algorithms (e.g., PC algorithm). Conse-
quently, a correct linguistic extraction method (such as our C2P) yields a causal structure consistent with
observational discovery results under these assumptions.

The foundation of the proposed proposition is identical to the mathematical background and proofs of the
PC algorithm, as presented in (Spirtes et al., 2001). Essentially, we propose that C2P is equivalent to the PC
algorithm for language models. It is important to note that steps from other constraint-based methods can
either replace or complement the steps of the PC algorithm in C2P methods, as comprehensively discussed
in (Glymour et al., 2019). For instance, the steps in the FCI method can be used in cases where the causal
sufficiency assumption is violated, i.e., where latent variables and selection bias may be present (Spirtes
et al., 1995). Additionally, the classifiers proposed by Ceraolo et al. (2024) formalize the definition of causal
questions and establish a taxonomy for finer-grained classification. These classifiers can be used before our
framework to identify the causal question as a prerequisite of our method.

3.2 Few-shot learning

LLMs have powerful zero-shot capabilities, yet they struggle with complex tasks because of their engineering
designs and insufficient examples in the training process. In such situations, few-shot learning is an efficient
technique for in-context learning, which can be used to quickly adapt LLMs to new tasks and significantly
enhance their performance (Min et al., 2022; Touvron et al., 2023). This approach involves providing several
examples with desired answers to condition the LLMs to produce correct responses for new instances with
similar patterns. The few-shot learning process of C2P, as described in the previous subsection, is based
on more abstract prompts (due to token limitations). The prompts and an example of the given story
are included in Appendix A.4. Depending on the token limitations of the employed LLMs, the number of
examples (shots) may vary. For GPT-4 Turbo, which has a 30,000 token limit, we were able to include ten
examples. For LLaMA 3.1, we used the same examples in the few-shot learning process as well.

4 Experiments

4.1 Datasets

The experiments are divided into two data groups: a synthetic dataset and a real-world scenarios dataset.

The CORR2CAUSE dataset: Introduced in (Jin et al., 2023b), the CORR2CAUSE dataset serves as
a benchmark to assess the ability of LLMs to respond to reasoning queries. Tab. 2 shows the details of the
samples in this dataset. The process of creating CORR2CAUSE is as follows: First, select the number N of
variables (Step 1) and generate all unique DAGs with N nodes (Step 2). Next, gather all d-separation sets
from these graphs to identify MECs (Step 3). In Step 4, formalize the data by associating each MEC with
its corresponding causal graphs. For each MEC, construct a correlation statement based on the statistical
relations within the MEC, hypothesize a causal relationship between two variables, and assign a validity
"Yes" if the hypothesis holds for all causal graphs in the MEC, or "No" if the hypothesis does not necessarily
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apply to all graphs in the MEC. Finally, introduce the verbalization process. An example of a premise and
its corresponding hypothesis in the CORR2CAUSE dataset is as follows:

Premise: Suppose that there is a closed system of 3 variables, A, B and C. All statistical relations
among these 3 variables are as follows: A correlates with C. B correlates with C. However, A is
independent of B.

Hypothesis: A directly affects C.

The Natural Stories dataset: The Natural Stories dataset is also introduced in (Jin et al., 2023b) to
assess the reasoning capabilities of LLMs in realistic scenarios. This dataset builds upon the CORR2CAUSE
dataset as a foundation for future extensions in various contexts, such as instantiating variables with real-
world phenomena and placing the narratives in more natural settings. For instance, the rule "correlation does
not imply causation" can be illustrated using ice cream sales and swimming pool attendance as variables,
by arguing that ice cream sales do not necessarily impact swimming pool attendance, as both could be
influenced by a third factor, such as hot weather. The Natural Stories data presented in (Jin et al., 2023b)
is not open-source. However, generating such data is straightforward. By providing an example from the
CORR2CAUSE dataset along with the corresponding Natural Stories created by a human or existing example
on the web, GPT-4 can generate realistic, everyday narratives. For more detailed examples of generating
such stories, refer to the code directory accompanying this paper. A natural story generated by GPT-4,
inspired by the previous example, could be:

Premise: Let’s consider three factors: eating junk food, obesity, and watching television. There
is a correlation between eating junk food and obesity, and between watching television and obesity.
However, eating junk food and watching television are independent from each other.

Hypothesis: Eating junk food directly affects obesity.

More details and examples are provided in the code repository of this study.

An example on supermassive black holes. The data and results on the coevolution of supermassive
black holes (SMBHs) and their host galaxies, presented in (Pasquato et al., 2023), are used as a real-world
example in its verbalized form. The verbalized information is as follows:

Premise: In the (co)evolution of supermassive black holes (SMBHs) and their host galaxies, the data
supports the following observations. Existing studies show that with a change in central density, there is
no significant change in bulge stellar mass. However, there is a decrease in black hole mass with higher
central density. Additionally, when black hole mass is fixed, central density and velocity dispersion
change simultaneously. Conversely, higher velocity dispersion or effective radius results in lower bulge
stellar mass, while velocity dispersion and effective radius do not change simultaneously.

Hypothesis: Does central density affect black hole mass?

4.2 Experimental setup

To test existing LLMs on the first synthetic data, we first include two BERT-based NLI models in the
transformers library (Wolf et al., 2020): BART (Lewis et al., 2019), DistilBART (Shleifer & Rush, 2020).
We evaluate LLaMA3-8B (Touvron et al., 2023) and LLaMA3-70B (Taori et al., 2023). We also evaluate
the latest, more efficient models, LLaMA 3.1 8B and LLaMA 3.1 70B released in late September 2024.
We assess the GPT-3.5 (i.e., ChatGPT), and the GPT-4 (Achiam et al., 2023), using the OpenAI API
(https://openai.com/api/). We also used the latest GPT-4o model, released on October 2, 2024. Then, we
evaluate the reliability of C2P on various queries, each with a different number of random variables. Due to
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the limitation of tokens for different versions of GPTs, we employed GP4-Turbo which has a 30000 maximum
token limit. We also used C2P with LLaMA 3.1 70B as well. In all of the models, we set the temperature to
0. Note that various types of LLMs were tested in (Jin et al., 2023b), and the results showed that existing
LLMs perform worse than random, completely random, or only slightly better than random in responding
to such queries. From the models tested in (Jin et al., 2023b), we selected those with the highest accuracies
to avoid duplicating the same results and to stay focused on the main objective of this study.

Table 2: Information on CORR2CAUSE samples, different variable numbers, and responses.

Scenario
Varible 3 varibles 4 varibles 5 varibles 6 varibles Sum

CORR2CAUSE test data
All samples 45 72 518 522 1157
Samples with "No" answers 30 57 449 402 938
Samples with "Yes" answers 15 15 69 120 338

CORR2CAUSE train data
All samples 0 576 7524 197634 205734
Samples with "No" answers 0 529 6542 160615 167686
Samples with "Yes" answers 0 47 982 37019 38048

Table 3: Comparison of applying C2P frameworks in LLMs compared to the existing LLMs with CoT
Models F1 Precision Recall Accuracy

Random Baselines
Random (Proportional) 13.5 12.53 14.62 71.46
Random (Uniform) 20.38 15.11 31.29 62.78

According to Tab. 2, the majority of responses in the CORR2CAUSE test are "No" (81.5%). As reported
in Jin et al. (2023b) that duplicated in Tab. 4, even when responses from their test dataset are selected
randomly, the resulting accuracy is higher than that of random selection. Additionally, most samples involved
in reasoning have six variables (96.06%), a challenging task even for humans. As a result of these biases,
the F1 score is used as the primary metric for evaluating accuracy in CORR2CAUSE simulations. We
resolve these biases, by using 420 samples. First, to ensure a balanced distribution of samples, we select a
population with 60 "Yes" and 60 "No" answers and an equal number of samples for each number of variables.
This sample size is determined based on two main considerations. First, to ensure significant improvements in
both step-by-step prompting and few-shot experiments, we applied the sample size formula for comparing two
proportions as described by (Chow et al., 2017) and the minimum required sample size is 117. Additionally,
to address the limited number of "Yes" responses (only 15 samples), we selected 30 samples for each variable
number to minimize bias, resulting in a total of 120 samples. To ensure that the improvement of the results
remains significant for the higher number of samples, we use 300 samples with 5 random variables with
equal "Yes" and "No" answers. This experimental design enhances the realism and comprehensibility of the
computational metrics, providing a more accurate reflection of the model’s performance. As a result, all
four key metrics—F1 score, precision, recall, and accuracy—are practical, each offering a unique perspective
on the model’s capabilities. These samples explore causal relation extraction within three causal scenarios:
direct cause-and-effect relationships (Fig. 2 i), indirect cause-and-effect relationships (Fig. 2 ii), and the
presence of an effect due to two causes (Fig. 2 iii).

To evaluate the proposed framework for natural stories, we used GPT-4, which excels at story generation. We
crafted instructions in the prompts and generated 30 stories for our case study in fields such as healthcare and
medicine, economics, social sciences, environmental science, and marketing, all highlighting the importance
of causality. This process is similar to the one presented in (Jin et al., 2023b). Our approach can be tested
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(i) (ii) (iii)

𝑋! X"𝑋#𝑋! X"𝑋#X#𝑋!

Figure 2: Three cause and effect scenarios. i. X1 directly causes X2 (X2 is directly effect of X1). ii. X1
indirectly causes X3 (X3 is indirectly effect of X1). iii. X1 and X3 are causes of X2 (X2 is common effect
of X1 and X3)

using the examples of Simpson’s paradox discussed in (Pearl & Mackenzie, 2018). However, since these
examples are already included in the training data of current LLMs, the models simply repeat the correct
answers based on that training data, similar to the parrot study in (Zečević et al., 2023). Consequently,
our generated natural stories replicate these examples in a manner that the LLM cannot address within
its existing training data. We aimed to demonstrate how the symbolic expressions in the CORR2CAUSE
dataset can affect the reasoning of our proposed framework.

Finally, we assess the coevolution of supermassive black holes (SMBHs) and their host galaxies using our
proposed framework, replicating the results from (Pasquato et al., 2023). The goal in (Pasquato et al., 2023)
was to extract a PDAG of SMBHs based on numerical data and then infer causal reasoning questions from
the graph. We use verbalized information on SMBHs to evaluate whether the LLM, enhanced with C2P,
can answer reasoning questions such as, "Does central density affect black hole mass?"

It is important to note that Chain-of-Thought (CoT) prompting is implemented in most existing LLMs,
enhancing their reasoning accuracy, as discussed in (Chung et al., 2024). Consequently, in our experiments,
LLMs are prompted to think step by step when responding to causal relation extraction questions, ensuring
that the CoT mechanism is activated.

4.3 Evaluation of the C2P on synthetic dataset

Results of the C2P on CORR2CAUSE dataset: In Tab. 4, we show the performance of LLMs in
the cause-effect task with and without employment of C2P framework. According to Tab. 4, answering
causal relation extraction tasks remains a significant challenge for existing LLMs, even when prompted to
think step by step, similar to (Wei et al., 2022b). These results show that even more updated models can
sometimes perform worse than older ones in some metrics, for instance, LlaMa 3.1 acts worse than LlaMa
3. Based on the responses presented in the code repository for this study, model hallucination is one of the
major factors contributing to this poor performance, aligning with the findings in Jin et al. (2023b).

Tab. 4 shows that by applying 5 consecutive tasks of C2P on GPT-4 Turbo and LlaMa 3.1, the reasoning
accuracy for the proposed tasks improved by over 30.7% and 25.9%, respectively, compared to the corre-
sponding LLMs without C2P on a synthetic benchmark dataset. Then, using few-shot learning of GPT-4
Turbo and LLaMA 3.1 with C2P, reasoning accuracy increased by over 20.05% and 20.89%, respectively,
with as few as ten examples, compared to the corresponding LLMs without C2P on the same dataset. To
ensure that the improvements are significant in both step-by-step prompting and few-shot experiments, we
applied the sample size formula for comparing two proportions from (Chow et al., 2017). This formula
indicates that even with a sample size of 117, the observed differences are statistically significant we assume
a confidence level of 99% and 80% power. It is important to note that the primary factor contributing to
the discrepancy between the results of LLaMA and GPT, and those reported in (Jin et al., 2023b), is the
distribution of the provided premise. This table shows that when causal relation questions are posed to
GPT models, their responses tend to slightly favor the "No" answer. Interestingly, LLaMA models slightly
tend to answer "Yes" to reasoning questions more frequently. It is important to note that even when LLMs
provide the correct final answer, the reasoning process that leads to that answer can still be incorrect, as
illustrated in A.2, Tab. 8, for the results of GPT-4. This highlights the randomness of their responses more
clearly which is also investigated and shown in Bao et al. (2024) as well. Other prompts that can execute the
algorithm can be used in place of ours, as long as they perform the same subtasks. This supports the idea
presented in the Lu et al. (2024). Furthermore, this becomes particularly evident in the few-shot learning
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Table 4: Comparison of applying C2P frameworks in LLMs compared to the existing LLMs with CoT
Models F1 Precision Recall Accuracy

BERT-Based Models
DistilBART MNLI 26.74 15.92 83.63 30.23
BART MNLI 33.38 31.59 35.38 78.50

LLaMA-Based Models
LLaMA 3-8B 43.37 48.6 43.15 47.5
LLaMA 3-70B 49.41 53.84 62.23 55.77
LLaMA 3.1-8B 53.96 45.94 61.41 46.66
LLaMA 3.1-70B 57.14 48.64 49.15 48.07
C2P with LLaMA 3.1-70B 81.63 83.3 83.3 81.66
C2P Few-shot learned LLaMA 3.1-70B 76 79.1 73.07 76.66

GPT-Based Models
GPT-3.5 47.5 56.2 43.2 52.5
GPT-4 Turbo 51.9 51.92 45 54.2
GPT-4 50.2 54.1 47.1 55
GPT-4O 59.86 61.46 58.33 60.83
C2P with GPT-4 Turbo 91.72 93.47 89.2 91.66
C2P Few-shot learned GPT-4 Turbo 81.6 79.21 77.21 79.28

process, where providing more examples has a significant impact; even more abstract prompts can achieve
the same or even better results.

Robustness and reliability analysis: To assess the robustness of the proposed prompts for each of the 5
subtasks, Tab. 5 shows the computed accuracy computed in each subtask of implementing C2P (subsection
3.1) on GPT-4 Turbo for different numbers of variables in the given premise.

Table 5: Accuracy by number of variables and subtasks
Number of variables Accuracy

First subtask Second
subtask

Third subtask Fourth
subtask

Fifth subtask

3 variables 100% 100% 100% 99.12% 98.7%
4 variables 100% 100% 100% 97.5% 84.1%
5 variables 100% 100% 100% 87.5% 75%
6 variables 100% 100% 100% 78.3% 70%

The sample size formula for comparing two proportions indicates that fewer than 120 samples are sufficient
to demonstrate a significant improvement in reasoning performance when using C2P. Figure 3 shows results
for datasets with sample sizes ranging from 30 to 300. This figure demonstrates that LLMs, such as GPT-4
Turbo, consistently achieve higher performance across all four metrics when C2P is applied, compared to
scenarios where C2P is not used. According to this figure, the C2P framework enhances all metrics across
varying sample sizes.

4.4 Evaluation of the C2P on natural stories

The results of applying the C2P framework, both step-by-step and few-shot learned for GPT-4 Turbo and
LLaMA 3.1, are provided in Tab. 6 and compared to the results of GPTs and LLaMA 3.1.This table, along
with the highlighted sections, clearly demonstrates that the existing methods respond randomly to reasoning
prompts. In contrast, GPT-4 Turbo and LLaMA 3.1 with step-by-step prompting of the C2P framework
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Figure 3: The accuracy metrics for different numbers of samples with 3 different methods.

and few-shot learned C2P, significantly improve accuracy in scenarios involving natural stories. Additionally,
Tab. 7 provides an example of such natural stories and demonstrates the result of applying few-shot learned
GP4-Turbo and LLaMA 3.1 with C2P to them. This showcases how GPT models (including versions 3.5,
4, 4 Turbo, and 4O) fail to respond correctly. It is important to note that the few-shot learning process of
GPT-4 Turbo and LLaMA 3.1 was performed using only ten examples from the CORR2CAUSE dataset,
without including any natural story examples.

Table 6: Comparison of applying C2P frameworks with existing LLMs with CoT in responding to queries
within natural stories, TP: True Positives, FP: False Positives, TN: true negatives, FN: False Negatives.

Models TP FP TN FN

LLMs without C2P
GPT-3.5 5 8 7 10
GPT-4 Turbo 6 7 8 9
GPT-4 7 8 7 8
GPT-4O 8 6 9 7
LLaMA 3-70B 9 9 6 6
LLaMA 3.1-70B 9 10 5 6

Featured LLMs with C2P
C2P on LLaMA 3.1-70B 11 3 12 4
C2P Few-shot learned LLaMA 3.1-70B 10 3 12 5
C2P on GPT-4 Turbo 13 1 14 2
C2P Few-shot learned GPT-4 Turbo 11 3 12 4

4.5 Evaluation of the C2P framework on the (co)evolution of supermassive black holes and their host
galaxies

In astrophysics, interventional experiments are impossible—for example, determining how changing one
variable, such as central density, affects another variable, such as black hole mass. Thus, causal question
answering must be based solely on observational data. Pasquato et al. (2023) computationally studied the
coevolution of supermassive black holes based on numerical data, and a causal graph for the underlying
mechanism is extracted. Then, the causal hypothesis, "central density affects black hole mass", is answered.
Similar to their study, we (co)evolute supermassive black holes (SMBHs) and their host galaxies based on
the verbalized information in (Pasquato et al., 2023). We GPT-4 Turbo with C2P to process the verbalized
information provided in subsection 4.1, obtain a PDAG, and then answer the causal questions.

Fig. 4 illustrates the results of the subtasks of C2P on SMBHs data presented. The first four subtasks aim to
extract the PDAG from the given data. Then, the hypothesis that central density affects black hole mass is
evaluated in subtask 5 and answered. According to the extracted PDAG, many complex reasoning questions
can be answered—questions that existing LLMs struggle with. However, questions requiring numerical data
are still not answered correctly. It is important to note that by implementing C2P, not only many causal
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Table 7: Example of a natural story and the result of few-shot learned GPT-4-Turbo with C2P
Example of true story Results of few-shot learned GPT-4 Turbo with C2P
Premise: eating junk food (A), obesity
(C), and watching television (B) have
relations with each other. There is a
correlation between eating junk food and
obesity, and between watching television
and obesity. However, eating junk food
and watching television are independent
from each other. Hypothesis: Eating
junk food directly affects obesity

Step 1: Number of random variable:3
Names of random variable: A, B, C

Step 2: All of Statistical Relations:{
Dependencies: [[A, C], [B, C]],
Unconditional Independencies: [[A, B]],
Conditional Independencies: []}

Step 3: A: {A: 0, B: 1, C: 1},
B: {A: 1, B: 0, C: 1},
C: {A: 1, B: 1, C: 0}

Step 4: A: {A: 0, B: 0, C: 1},
B: {A: 0, B: 0, C: 1},
C: {A: 1, B: 1, C: 0}

Step 5: A: {A: 0, B: 0, C: 1},
B: {A: 0, B: 0, C: 1},
C: {A: 1, B: 1, C: 0}

Step 6: C: [A, B]

Step 7: C: [A, B]

Step 8: A: {A: 0, B: 0, C: 1},
B: {A: 0, B: 0, C: 1},
C: {A: 0, B: 0, C: 0}

Step 9: Checking matrix[A][C] = 1 and matrix[C][A] = 0.
According to rule 2, this suggests A is a direct
cause of C, or C is a direct effect of A.

questions can be answered with this approach, but it is easy to demonstrate which causal questions can not
be answered based on the given premise and which more information has to be given to be able to causally
reason. The discussion on which questions can and cannot be answered based on PDAG is presented in detail
in studies such as (Hernán & Robins, 2006; Hauser & Bühlmann, 2012; Perkovic, 2020). Importantly, the
inability to answer certain causal reasoning questions based on the PDAG, or its corresponding adjacency
matrix, does not reflect a limitation of the C2P framework. Rather, the identifiablity limitation and any
rational agent needs additional information to effectively address all causal inquiries.

5 Discussion, Challenges and Future Work

Practical insights on simulations and results of C2P: Each part of our study has a specific aim. The
goal of the simulations, where we applied the 9 steps of C2P step by step, is to show what the expected
output would be and how it leads to causal reasoning. However, our investigations demonstrate sensitivity
to the prompts. In few-shot learning, where examples of expected results are provided for each prompt,
the sensitivity to prompts was not significant; instead, the results were primarily dependent on the number
of examples. Interestingly, while the prompt is lengthy —due to the fact that all steps are given to LLMs
as a single prompt —- the results remained highly accurate with as few as ten examples, as reported in
Tab.s 6 and 7. By comparing the prompts in Appendices A.3 and A.4, it is clear that the prompts in
the few-shot learning section do not need to be as detailed and are more abstract than those used in the
step-by-step application of C2P. To generate the prompts to achieve the goal of each step in C2P, we
used GPT4. However, it is important to note that there are countless prompts that can achieve the same
goal for each step, and to the best of our knowledge, there is no systematic method to identify the best
prompt or automate the process. However, GPT itself is quite helpful in generating prompts to accomplish
the goal of each step. However, the number of samples is more important than the prompt, as long as
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Figure 4: Prompts (Q) and results (A) of subtasks application of the C2P framework to real-world complex
scenarios and steps of subtask 3 for the given premise.

the prompt correctly takes the output of the previous step and generates the required format output. For
instance, even for CoT that has no rules to break a task Fu et al. (2025), as stated in the technical report
of the DeepSeek model, more than 600K examples are used to ensure the model enhances causal relation
extraction, while we used only 10 examples in few-shot learning. Therefore, we see some sensitivity to the
prompts; however, if the number of examples increases, similar to what DeepSeek has done, this sensitivity
should decrease. Additionally, it is important to note that the results for natural stories using few-shot
learned C2P were highly accurate (see Table 7), even though the examples in the few-shot learning pro-
cess were synthetic “cause-effect" examples from the CORR2CAUSE dataset rather than real story examples.

The comparison of results between C2P and CoT provides new insights into how LLMs aim to reason
and why C2P and similar frameworks can guide a model to "think" step by step. As demonstrated
in the examples provided in the code repository—under "Sample Responses of LlaMa 3.1 with CoT"
for LlaMa 3.1 and "Sample Responses of GPT-4 Turbo with CoT" for GPT-4 Turbo— both models
attempt to break tasks into multiple subtasks when they are asked to think step by step (sometimes
with more than nine consecutive subtasks). However, they still lack rationality in how they structure
these subtasks, as it is discussed in Wei et al. (2022a). In other words, they struggle to design the
necessary subtasks for reasoning, a task that C2P successfully performs to enhance reasoning. This
challenge is also highlighted in Wei et al. (2022b), where CoT is introduced, and its logical inconsistencies
and poor step alignment are discussed as key limitations of the approach. The Deepseek-R1 model has
also demonstrated improvements in reasoning with addressing the exact same challenge, as mentioned
in their technical report, Guo et al. (2025), "We have filtered out chain-of-thought responses contain-
ing mixed languages, long paragraphs, and code blocks. For each prompt, we sample multiple responses
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and retain only the correct ones. In total, we collect approximately 600k reasoning-related training samples".

Causal reasoning and identifiability: Extracting a PDAG using only observational data is a key step
in learning the true underlying causal mechanism. Based on the extracted PDAG, two main questions
arise: Given a PDAG, under what conditions can we make causal reasoning? This involves determining the
necessary assumptions and data required to address a causal question. This issue is known as identifiability
Spirtes et al. (2001). Essentially, it refers to the limitations on what can be inferred solely from observational
data, regardless of the method used for learning causal structure Peters et al. (2017). It is generally possible
to answer some cause-effect questions based on the PDAG, represented by a causal graph, and lower-level
data. These questions are mainly the ones that are related to the part where we have extracted a collider,
or if the question is just about the existence of a cause-effect relation; in some cases, these questions can
be answered as well. However, it is almost impossible to answer all the causal questions based on the given
information, as discussed in (Bareinboim et al., 2022; Pearl & Bareinboim, 2022). As a result, the second
question is, what else is needed to answer all the causal questions? In such cases, interventional data is
necessary to explicitly extract all the directions of causal relations in a mechanism. To do so, while a naive
baseline approach would require O(n2) interventions, various methods have been proposed, such as those in
(Kocaoglu et al., 2017; Choo & Shiragur, 2023; von Kügelgen et al., 2024; Squires & Uhler, 2023), for cases
in different situations. However, one clear thing is that it is not possible to reason all the causal questions.
For instance,

• Directions cannot be determined: PDAGs typically include both directed and undirected edges. The
undirected edges represent uncertainty about the direction of causality. It is important to note that
this is not a limitation of the reasoning method; rather, due to identifiability limits, it is not possible
to determine the causal direction for these relationships without additional data.

• Full causal path analysis: While PDAGs can indicate possible paths between variables, they may
not fully reveal which paths are indeed causal and which are due to confounding or indirect effects.
Questions about specific causal pathways can thus be hard to answer definitively.

• Predictions under interventions: Questions about the outcomes of hypothetical or actual interven-
tions on one or more variables (do-calculus questions) often require a fully specified causal model.
PDAGs, with their partial specification, might not support detailed predictions under interventions
without resolving the ambiguities in causal direction.

Next Steps for Reasoning in LLMs: The human brain possesses an intrinsic drive to understand
causality. Whether driven by curiosity or the pursuit of specific goals, we continuously seek to understand
why events occur and how they are interconnected. Causal reasoning is a broad and complex task in
AI and LLMs. While current machine learning methods find it difficult to extract causal structures and
subsequently reason causally, this problem can be even more intricate within the context of LLMs. The
primary reason for this complexity is the distinction between association and cause-effect relationships. The
inherent structure of LLMs relies on the attention mechanism presented in (Vaswani et al., 2017), which
is akin to what Pearl refers to as "association" in the ladder of causality (Pearl & Mackenzie, 2018). As
a result, advancing up the ladder of causality is essential for enabling true reasoning. To enable LLMs to
address this fundamental quest for causality, they must be capable of sequentially performing two main
tasks. As demonstrated in our study, C2P has significantly enhanced the reasoning capabilities of LLMs
on the provided datasets, which can be the main task in the reasoning process. However, the first task is
to be able to understand the causal questions, which involves formalizing the definition of causal questions
and establishing a taxonomy for finer-grained classification. The initial effort on this is presented in Ceraolo
et al. (2024). Then, C2P can be employed. However, the first subtask of this framework is to extract
random variables, which requires the models to understand the definition of a random variable to ensure
that the variables in the reasoning process are correctly identified. Failure in this process could undermine
our proposed framework. Another important concept in this process is extracting the dependencies provided
in the premise. In the datasets used for our experiments, these dependencies are explicitly stated in the
given premise; however, in reality, they are often implicit. As a result, LLMs should be able to accurately
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extract these dependencies. Additionally, more comprehensive examples and scenarios need to be generated
to aid in the learning process of an LLM. By overcoming these challenges, the integration of C2P with
LLMs can provide these models with causal reasoning capabilities, similar to the transformative impact of
"Chain-of-Thought" (Wei et al., 2022b), as highlighted by Chung et al. (2024). The main difference between
CoT and C2P is that CoT does not have a specific design for breaking down a task, which can lead to
hallucinations. In contrast, C2P enables the LLM to learn how to break down a reasoning task effectively. It
is also important to note that while our experimental results with few-shot learned LLMs show a significant
increase in accuracy for tasks involving direct cause-and-effect relationships or common cause questions,
the models still struggle with indirect cause-and-effect questions. Based on our experiments, for cases with
five or more variables, there was no significant improvement in reasoning with LLM using C2P for indirect
cause-and-effect questions, even though the extracted adjacency matrix was correct. Moreover, the accuracy
of our framework decreases as the number of random variables increases. As Pearl demonstrated that DAGs
and d-separation are complementary in causal reasoning tasks, more structured subtasks can be introduced
to improve performance in answering indirect causal questions and handling more complex scenarios with
numerous variables. These subtasks would help guide LLMs in performing reasoning tasks more effectively.

The key benefit of few-shot learning is that it demonstrates that pre-trained models can perform causal
reasoning without needing to be retrained from scratch or necessarily fine-tuned, making it more cost-
effective and compute-efficient. This leads to reduced costs and less demanding infrastructure requirements.
Therefore, a model fully trained or fine-tuned with C2P would probably perform even better than few-shot
learned ones, as it can be trained or fine-tuned on thousands of examples instead of the ten examples
used during few-shot learning. This highlights how integrating C2P during the training and fine-tuning of
LLMs can revolutionize existing models. This is also discussed in Chung et al. (2024) as the “scaling law”.
Additionally, Studies like Kaplan et al., 2020 showed that language models benefit from increased data and
computational resources. More data during fine-tuning allows the model to capture better representations,
leading to improved performance in various tasks. This is one of the core principles behind why larger
datasets, would likely boost accuracy compared to just 10 examples. In Brown et al. (2020) with GPT-3,
the authors highlight how performance increases as the model is trained on more examples. In few-shot
learning, the model can generalize from a small set of examples, but fine-tuning with larger datasets usually
leads to more substantial improvements. Devlin (2018) also demonstrates that fine-tuning with more
task-specific examples improves the model’s performance. As a result, by addressing the mentioned chal-
lenges, employing C2P in the fine-tuning process is expected to improve the reasoning accuracy of the models.
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A Appendix

A.1 Details on Preliminaries of Causal Learning and Reasoning

Common cause principle (Reichenbach, 1991): If two random variables X1 and X2 are statistically
dependent, i.e., X1 ⊥̸⊥ X2, then there exists a third variable X3 that causally influences both. (As a special
case, X3 may coincide with either X1 or X2.) Furthermore, this variable X3 screens X1 and X2 from each
other in the sense that given X3, they become independent, X1 ⊥⊥ X2|X3.

Directed Acyclic Graphs: A graph G is called a Partially Directed Acyclic Graph (PDAG) if there is no
directed cycle, that is, if there is no pair (Xj , Xk) with directed paths from Xj to Xk and from k to j. G is
called a Directed Acyclic Graph (DAG) if it is a PDAG and all edges are directed.

Markov Property: The Markov property in a DAG G states that each node Xi is conditionally independent
of its non-descendants, given its parents. In other words, Xi ⊥⊥ NonDe(Xi)|Pa(Xi), where NonDe(Xi)
represents the non-descendants of Xi, excluding itself, and Pa(Xi) represents the parents of Xi. It helps
factorize the distribution of all graph nodes as P (X1, . . . , XN ) =

∏N
i=1 P (Xi|Pa(Xi)).

d-separation (Pearl, 1995): d-Separation is a criterion used in Bayesian network analysis to determine
whether a set of variables X1 is independent of another set of variables X2, given a third set of variables
X3. This concept is foundational in understanding the flow of causal effects in graphical models and helps
in deciding whether a path between two variables is "blocked" or not by conditioning on other variables.
According to the d-separation, a path between two variables is blocked if it includes an intermediate variable
that is a collider and is not conditioned on or a non-collider that is conditioned on. Here, a collider is a
variable that has arrows inward from two other nodes (i.e., X1 → X2 ← X3), whereas a non-collider does
not meet this criterion.

Causal Sufficiency: A set of observed variables V is causally sufficient if, for any pair of variables X1, X2 ∈
V , every common cause X3 of X1 and X2 is also included in V .

Faithfulness: This assumption ensures that all the d-separation sets in the graph can be inferred from the
independence relations in the distribution. In the sequel, we assume faithfulness, a widely used assumption
in causal discovery (Spirtes et al., 2001).

Markov Equivalence of Graphs: Two DAGs are Markov equivalent if they generate the same joint
distribution, P (X). A set of DAGs that are Markov equivalent is referred to as a Markov equivalence class
(MEC). Causal graphs within the same MEC are easily recognizable because they share the same skeleton
(i.e., the same undirected edges) and the same V-structures (i.e., configurations like X1 → X2 ← X3, where
X1 and X3 are not directly connected).

do calculus (Pearl, 1995): do-calculus, developed by Judea Pearl et al., is a set of rules used to transform
and manipulate causal expressions within causal diagrams (or graphical models). do-calculus is a formal tool
used to reason in causal relationships from a mixture of experimental and observational data. do-calculus
consists of three main rules that allow one to rewrite expressions involving interventions (typically represented
as do(x), indicating an intervention to set variable X to value x). These rules are crucial for determining the
identifiability of causal effects from data, allowing researchers to reason about causal relationships using a
combination of experimental and observational data. The three main rules of the do-calculus are as follows:

1. Insertion/deletion of observations: If a variable X2 is independent of X1 given a set of other
variables X3, then the conditional distribution of X2 given do(X1) and X3 is the same as the
conditional distribution of X2 given X3 alone. This rule can be applied when X1 and X2 are
d-separated by X3 in the graph modified by removing all arrows pointing into X1.

2. Action/observation exchange: If X2 is independent of X1 given X3 and another set W where
X1 is intervened, then the graph can be modified to reflect this exchange.

3. Insertion/deletion of actions: This rule states that if intervening on X1 does not affect X2 after
accounting for X3, the intervention can be ignored in the expression.
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A.2 Example of comparison in responding to causal queries

For the given example in Subsection 4.1, Tab. 8 demonstrates that while GPT-4 arrives at the correct final
answer, the reasoning process is flawed, providing further evidence of the random behavior of existing models
in causal reasoning.

Table 8: An example of the correct final answer with GPT-4 Turbo while the reasoning process leading is
incorrect and results of C2P Few-shot learned GPT-4 Turbo

GPT-4 Turbo with CoT C2P Few-shot learned GPT-4 Turbo
The hypothesis that A directly affects
C could be possible. The premise states
that A correlates with C, which means
there is a relationship between them.
However, correlation does not necessarily
imply causation. It could be that A
affects C, C affects A, or that both A and
C are affected by a separate, unmentioned
variable. However, since the premise does
not provide any information contradicting
the hypothesis, it is possible that A
directly affects C. Final Answer: "Yes"

According to the adjacency matrix,
matrix["A"]["C"] = 1 and matrix["C"]["A"]
= 0 indicates that A directly cause C.
Therefore, the hypothesis that A causes
C or C is effect of A is correct. Final
Answer: "Yes"

A.3 Prompts for C2P frameworks

The proposed steps (prompts) for step-by-step proceeding with 5 main subtasks of C2P are as follows:

1. Prompting for extracting the random variables from the provided data.

• Step 1: Please give the number of random variables in the given premise and write the names
of all random variables.

2. Prompting to extract all the cause and effect relations along with all conditional and
unconditional relations among the random variables specifically mentioned in the given
premise

• Step 2: If 2 random variables, for instance, R1 and R2, are independent, write it in this form:
"R1 is independent of R2". If there exist 2 random variables, for instance, R1 and R2, are
conditionally independent given a third random variable, for instance, R3, write it in this form:
"R1 and R2 are independent given R3". If two random variables, for instance, R1 and R2, are
specially mentioned to have cause and effect relation, write it in this form: "R1 is the cause of
R2".

3. Prompting to create an adjacency matrix where all elements are 1, except for the
diagonal elements and the elements corresponding to the cause-and-effect relationships
specifically mentioned in the given premise.

• Step 3: In this phase, each random variable is treated as a node within a fully connected
undirected graph. Then, for each pair, for instance, R1 and R2, presented in the form: "R1 is
the cause of R2", set the element in ["R2", "R1"] in the adjacency matrix to 0.

4. Prompting of the conditional and unconditional independency valuation and identifying
the colliders, step by step, to extract the causal PDAG.

• Step 4: Update the adjacency matrix based on the specified unconditional independencies
between random variables. Each pair of variables that is declared independent should have
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their corresponding value set to zero in the adjacency matrix. The initial adjacency matrix and
the list of independencies are provided below. Please ensure all independencies are correctly
reflected in the updated matrix. Instructions: - For each pair of variables listed as independent,
set their corresponding entries in the adjacency matrix to 0.

• Step 5: Update the adjacency matrix based on the specified conditional independencies be-
tween random variables. Each pair of variables that is declared independent should have their
corresponding value set to zero in the adjacency matrix. The initial adjacency matrix and the
list of independencies are provided below. Please ensure all independencies are correctly re-
flected in the updated matrix. Instructions: - For each pair of variables listed as independent
given other variable(s), set their corresponding entries in the adjacency matrix to 0.

• Step 6: Task: Given an initial adjacency matrix, follow these steps: Step 1: Identify all rows
(key values) in the matrix where there are two or more than two columns with the value "1" in
them. For each identified row, find all pairs of different columns where the values are "1".Ensure
to exclude rows that do not contain any pairs from the results. Step 2: Display these pairs, "All
Pairs", where each row name is key, and the value is a list of column names that are identified
in Step 1.

• Step 7: Given the "All Pairs" and the list of independencies, follow these instructions step by
step: Instruction: For each key in "All Pairs", delete all the pairs that are not mentioned as
independent in the "independencies" list and return other with all their values. The "All Pairs"
contains pairs of elements associated with each key. The goal is to update this by removing
pairs that are not mentioned as independent. The list of independencies provides information
about which pairs are independent of each other.

• Step 8: Given the initial adjacency matrix represented and the "All Pairs" list, for each key-
value pair ("R") in "All Pairs", modify the initial adjacency matrix as follows: 1- Set the value
in the "C1" row and "R" column to 0: ("C1", "R") = 0. 2- Set the value in the "C2" row and "R"
column to 0: ("C2", "R") = 0.

5. Prompting for cause-and-effect questions or hypotheses

• Step 9: To extract and understand causal relations in the adjacency matrix: For each specified
variable "R" and "C", for instance, that are listed in the adjacency matrix: - If matrix entry at [
"R", "C"] = 1 and ["C", "R"] = 1, then the causal direction between "R" and "C" is undetermined.
- If matrix entry at ["R", "C"] = 1 and ["C", "R"] = 0, then "R" is a direct cause of "C" or "C"
is a direct effect of "R". - If matrix entry at ["R", "C"] = 0 and ["C", "R"] = 1, then "C"
is a direct cause of "R" or "R" is a direct effect of "C". If two variables directly affect a third
variable, the first two variables are common causes, and the third variable is a collider. Evaluate
the hypothesis based on the given partially presented as an adjacency matrix with the given
Instruction.

A.4 Prompts for few-shot learning of C2P

An example of given prompts for the few-shot learning process of C2P is as follows:

Premise: Suppose there is a closed system of 5 variables, A, B, C, D, and E. All the statistical relations
among these 5 variables are as follows: A correlates with C. A correlates with D. A correlates with E.
B correlates with D. B correlates with E. C correlates with D. C correlates with E. D correlates with E.
However, A is independent of B. A and B are independent given C. B is independent of C. B and C are
independent given A. C and E are independent given A, B, and D.

Hypothesis: There exists at least one collider (i.e., common effect) of A and B.

• "Subtask 1"- The number of random variables and their names in the given premise in JSON
format:
Output: "number of random variables: 5, "names of random variables": ["A", "B", "C", "D", "E"]
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• "Subtask 2"- All the dependencies, conditional and unconditional independencies between all ran-
dom variables extracted in "subtask 1":
Output: {"All of Statistical Relations": {"Dependencies": [["A", "C"], ["A", "D"], ["A", "E"], ["B",
"D"], ["B", "E"], ["C", "D"], ["C", "E"], ["D", "E"]], "Unconditional Independencies": [["A", "B"], ["B",
"C"]], "Conditional Independencies": [["A", "B"], ["B", "C"], ["C", "E"]]}}

• "Subtask 3"- The adjacency matrix of all random variables extracted in "subtask 1" where each
random variable is treated as a node within a fully connected undirected graph:
Output: {"A": {"A": 0, "B": 1, "C": 1, "D": 1, "E": 1}, "B": {"A": 1, "B": 0, "C": 1, "D": 1, "E":
1}, "C": {"A": 1, "B": 1, "C": 0, "D": 1, "E": 1}, "D": {"A": 1, "B": 1, "C": 1, "D": 0, "E": 1}, "E":
{"A": 1, "B": 1, "C": 1, "D": 1, "E": 0}}

• "Subtask 4"- Update the adjacency matrix extracted in the output of "subtask 3" based on the
specified unconditional independencies between random variables. Each pair of variables that are
declared independent should have their corresponding value set to zero in the adjacency matrix. - For
each pair of variables listed as unconditional independent in "subtask 2", we set their corresponding
entries in the adjacency matrix to 0. - We do not change any other entries except those specified by
the independence.
Output: {"A": {"A": 0, "B": 0, "C": 1, "D": 1, "E": 1}, "B": {"A": 0, "B": 0, "C": 0, "D": 1, "E":
1}, "C": {"A": 1, "B": 0, "C": 0, "D": 1, "E": 1}, "D": {"A": 1, "B": 1, "C": 1, "D": 0, "E": 1}, "E":
{"A": 1, "B": 1, "C": 1, "D": 1, "E": 0}}

• "Subtask 5"- Update the adjacency matrix in the output of "Subtask 4" based on the specified
conditional independencies between random variables extracted in "subtask 2". Each pair of variables
that are declared conditional independent should have their corresponding value set to zero in
the adjacency matrix. - For each pair of variables listed as conditionally independent given other
variable(s), we set their corresponding entries in the adjacency matrix to 0. - We do not change any
other entries except those specified by the conditional independence.
Output: {"A": {"A": 0, "B": 0, "C": 1, "D": 1, "E": 1}, "B": {"A": 0, "B": 0, "C": 0, "D": 1, "E":
1}, "C": {"A": 1, "B": 0, "C": 0, "D": 1, "E": 0}, "D": {"A": 1, "B": 1, "C": 1, "D": 0, "E": 1}, "E":
{"A": 1, "B": 1, "C": 0, "D": 1, "E": 0}}

• "Subtask 6": In this subtask, for each key value in the "Adjacency Matrix" mentioned in the output
of "Subtask 5", the task is to extract only pairs of columns with values "1" step by step according
to the provided steps and put it in "Candidates" dictionary: follow these steps: Step 1: Identify all
rows (key values) in the matrix where there are at least two or more columns with the value "1". For
each identified row, find all pairs of different columns where the values are "1". Ensure to exclude
rows that do not contain any pairs from the results. Make sure to check each row individually and
include all valid pairs for every row. Step 2: Display these pairs in a simplified JSON format, where
each row name is a key, and the pair values are a list of column names that are identified in step
1. If there are no such rows, show an empty JSON object. Step 3: Do not include any rows with
one or zero columns with "1" values in the output. Example output format: Candidates: { "row1
name": [["1value column1 name", "1value column2 name"], ["1value column1 name", "1value column3
name"], ["1value column2 name", "1value column3 name"]], "row2 name": [["1value column5 name",
"1value column6 name"]], ... } The values in each row have to be pairs and the output cannot be
as follows: { "row1 name": [["1value column1 name"], ["1value column1 name"], ["1value column2
name", "1value column3 name"]], "row2 name": [["1value column5 name"]], ... } Please provide only
the desired output formatted exactly as shown in the example without any further explanation.
Output: {"A": [["C", "D"], ["C", "E"], ["D", "E"]], "B": [["D", "E"]], "C": [["A", "D"]], "D": [["A", "B"],
["A", "C"], ["A", "E"], ["B", "C"], ["B", "E"], ["C", "E"]], "E": [["A", "B"], ["A", "D"], ["B", "D"]]}

• "Subtask 7"- In this subtask, given the output of "Subtask 6", "Candidates", and "Unconditional
Independencies" in "Subtask 2", the task is to identify and extract all the pairs in the "Candidates"
that are also present in the "Unconditional Independencies" step by step according to the provided
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steps. follow these steps: 1- For each pair in the "Candidates" list, check if it is present in the "Un-
conditional Independencies" list. 3-Only keep all the pairs from "Candidates" that are also present in
"Unconditional Independencies". If a pair in "Candidates" is found in "Conditional Independencies",
keep it. 4-Remove any pairs in "Candidates" that are not found in "Conditional Independencies".
If a pair in "Candidates" is not found in "Unconditional Independencies", remove it. 5-Output the
result as the modified "Candidates" dictionary without any additional text or explanation. Only the
updated "Candidates" dictionary and nothing else.
Output: {"D": [["A", "B"], ["B", "C"]], "E": [["A", "B"]]}

• "Subtask 8"- Given the adjacency matrix in the output of "Subtask 5" and the "All Pairs" list in
the output of "Subtask 7", for each key-value pair ("R") in "All Pairs", we modify the adjacency
matrix as follows: -For each key "R" and pair ("C1", "C2") in the candidates, change the values in
key "R" and pairs ("C1", "C2") to zero. -Ensure that only the specified modifications are made, and
all other entries in the adjacency matrix remain unchanged.
Output: {"A": {"A": 0, "B": 0, "C": 1, "D": 1, "E": 1}, "B": {"A": 0, "B": 0, "C": 0, "D": 1, "E":
1}, "C": {"A": 1, "B": 0, "C": 0, "D": 1, "E": 0}, "D": {"A": 0, "B": 0, "C": 0, "D": 0, "E": 1}, "E":
{"A": 0, "B": 0, "C": 0, "D": 1, "E": 0}}

• "Subtask 9"- In this subtask, given the "Adjacency Matrix" mentioned in the output of "Subtask
8", evaluate the correctness of the hypothesis step by step according to the provided rules. Rules:
1- If matrix["R"]["C"] = 1 and matrix["C"]["R"] = 1, then the causal direction between "R" and "C"
is undetermined. 2- If matrix["R"]["C"] = 1 and matrix["C"]["R"] = 0, then "R" is a direct cause of
"C", or "C" is a direct effect of "R". 3- If matrix["R"]["C"] = 0 and matrix["C"]["R"] = 1, then "C" is a
direct cause of "R", or "R" is a direct effect of "C". 4- Test each variable in the matrix, for instance,
"R", "R" is a collider if the matrix entries in ["R", "C1"] = 0, ["C1", "R"] = 1, ["R", "C2"] = 0, and
["C2", "R"] = 1 Perform it step by step and provide the final "Yes" or "No" answer.
Output: Step 1: According to the rules, a node is a collider (common effect) if the matrix entries
in ["R", "C1"] = 0, ["R","C2"] = 0, ["C1", "R"] = 1 and ["C2", "R"] = 1.
Step 2: According to rule 4, "R" is a collider if the matrix entries in ["R", "D"] = 0, ["R", "E"] = 0,
["D", "R"] = 1 and ["E", "R"] = 1.
Step 3: Checking each variable in the matrix
Node C: ["C", "A"] = 1 and ["A", "C"] = 1, so C is not a common effect of A and B.
Node D: ["D", "A"] = 0 and ["A", "D"] = 1, and ["D", "B"] = 0 and ["B", "D"] = 1, so D is a common
effect of A and B.
Node E: ["E","A"] = 0 and ["A","E"] = 1, and ["E","B"] = 0 and ["B", "E"] = 1, so E is a common
effect of A and B.
Step 4: So, the hypothesis that there exists at least one collider (i.e., common effect) of A and B is
correct. The answer is "Yes".
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