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ABSTRACT

In preference-based Reinforcement Learning (PbRL), aligning rewards with human
intentions often necessitates a substantial volume of human-provided labels. Fur-
thermore, the expensive preference data from prior tasks often lacks reusability for
subsequent tasks, resulting in repetitive labeling for each new task. In this paper, we
propose a novel zero-shot cross-task preference-based RL algorithm that leverages
labeled preference data from source tasks to infer labels for target tasks, eliminating
the requirement for human queries. Our approach utilizes Gromov-Wasserstein dis-
tance to align trajectory distributions between source and target tasks. The solved
optimal transport matrix serves as a correspondence between trajectories of two
tasks, making it possible to identify corresponding trajectory pairs between tasks
and transfer the preference labels. However, direct learning from these inferred la-
bels might introduce noisy or inaccurate reward functions. To this end, we introduce
Robust Preference Transformer, which considers both reward mean and uncertainty
by modeling rewards as Gaussian distributions. Through extensive empirical valida-
tion on robotic manipulation tasks from Meta-World and Robomimic, our approach
exhibits strong capabilities of transferring preferences between tasks in a zero-shot
way and learns reward functions from noisy labels robustly. Notably, our approach
significantly surpasses existing methods in limited-data scenarios. The videos of
our method are available on the website: https://sites.google.com/view/pot-rpt.

1 INTRODUCTION

Recent years have witnessed remarkable achievements in Reinforcement Learning (RL), particularly
in addressing sequential decision-making problems given a well-defined reward function (Mnih
et al., 2013; Silver et al., 2016; Vinyals et al., 2019; Berner et al., 2019). Nevertheless, the practical
application of RL algorithms is often impeded by the considerable effort and time required for reward
engineering, along with the unexpected and potentially unsafe outcomes of reward hacking, where
RL agents exploit reward functions in unanticipated ways. Furthermore, infusing RL learners with
societal norms or human values via crafted reward functions remains a great challenge in certain
practical deployment.

As a promising alternative, preference-based RL (Christiano et al., 2017) introduces a paradigm shift
from traditional RL by learning reward functions based on human preferences between trajectories
rather than manually designed reward functions. By directly capturing human intentions, preference-
based RL has demonstrated an ability to teach agents novel behaviors that align more closely with
human values. However, while the strides made in preference-based RL are significant (Park et al.,
2022; Liang et al., 2022; Liu et al., 2022), current algorithms come with their own set of challenges.
First, they are heavily reliant on a vast number of online queries to human experts for preference
labels for reward and policy learning. This dependency not only increases the time and cost associated
with training but also results in data that cannot be recycled or repurposed for new tasks. Each new
task encountered demands its own set of human preference labels, creating a cycle of labeling that
is both resource-intensive and inefficient. While Hejna III & Sadigh (2023) leverages prior data to
pre-train reward functions via meta-learning and adapts quickly with new task preference data, the
need for millions of pre-collected preference labels and further online queries makes this approach
impractical in many scenarios.

Recently, Gromov-Wasserstein (GW) distance (Mémoli, 2011) has shown effectiveness in a variety
of structured data matching problems, such as graphs (Xu et al., 2019) and point clouds (Peyré et al.,
2016). Gromov-Wasserstein distance measures the relational distance and finds the optimal transport
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Figure 1: Diagram of POT. The circle⃝ represents a trajectory segment in each task. (a) POT uses
Gromov-Wasserstein distance as a relational distance metric to align trajectory distributions between
source and target tasks. (b) The optimal transport matrix is solved by optimal transport, with each
element representing the correspondence between trajectories of two tasks. (c) The preference labels
of trajectory pairs of the target task are computed based on trajectory correspondence by Equation 6.

plan across different domains. Inspired by this, we consider using Gromov-Wasserstein distance as
an alignment tool between the trajectories of source and target tasks. Given two sets of trajectories
from source and target tasks respectively, we can identify the corresponding trajectory pairs between
tasks based on the solved optimal transport matrix. Hence, a zero-shot cross-task preference-based
RL algorithm can be developed that utilizes previously annotated preference data to transfer the
preference labels across tasks.

In this work, we aim to leverage data collected from existing source tasks to reduce the human
labeling cost. We propose to use Gromov-Wasserstein distance to find the correspondence between
trajectories from source tasks and target tasks and compute preference labels according to trajectory
alignment, as shown in Figure 1. Our method only requires a small number of preference labels from
source tasks, then obtaining abundant preference labels for the target task. However, the transferred
labels may contain a proportion of incorrect labels, which significantly affect reward and policy
learning. To learn robustly from POT labels, we introduce a novel distributional reward modeling
approach, which not only captures the average reward but also factors in the reward uncertainty.

In summary, our contributions are three-fold. First, we introduce Preference Optimal Transport (POT),
the first zero-shot cross-task preference-based RL approach that utilizes small amount of preference
data from similar tasks to infer pseudo labels via optimal transport. Second, we propose Robust
Preference Transformer (RPT) to ensure robust learning from POT labels. Last, we validate the
effectiveness of our approach through experiments on several robotic manipulation tasks of Meta-
World (Yu et al., 2020) and Robomimic (Mandlekar et al., 2022). The empirical results the strong
abilities of our method in zero-shot preference transfer. Moreover, it is shown that our method
significantly outperforms current methods when there is a lack of human preference annotations.

2 RELATED WORK

Preference-based Reinforcement Learning. Preference-based RL algorithms have achieved great
success by aligning with human feedback (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021a;
Ouyang et al., 2022; Bai et al., 2022). The main challenge of preference-based RL is feedback
efficiency and many recent preference-based RL works have contributed to tackle this problem. To
improve feedback efficiency, PEBBLE (Lee et al., 2021b) proposes to use unsupervised exploration
for policy pre-training. SURF (Park et al., 2022) infers pseudo labels based on reward confidence
to take advantage of unlabeled data, while RUNE (Liang et al., 2022) facilitates exploration guided
by reward uncertainty. Meta-Reward-Net (Liu et al., 2022) further improves the efficiency by
incorporating the performance of the Q-function during reward learning. However, most current
preference-based RL methods still requires a large number of human preference labels for training
new tasks, and the data cannot be utilized for learning other tasks. To leverage preference data on
source tasks and reducing the amount of human feedback, Hejna III & Sadigh (2023) leverages meta
learning to pre-train the reward function, achieving fast adaptation on new tasks with few human
preferences. Despite the success of Hejna III & Sadigh (2023) in reducing human cost, it still needs
1.5 million labels for pre-training and further online querying for the new task. Recently there is
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attention on the offline setting. Preference Transformer (PT) (Kim et al., 2023) proposes to use
Transformer architecture to model non-Markovian rewards and outperforms previous methods that
model Markovian rewards. IPL (Hejna & Sadigh, 2023) learns policies without reward functions.
Nonetheless, PT and IPL still require hundreds of human labels. Our method differs from prior
methods that we only need a small number of human labels from source tasks and can obtain extensive
preference labels for the new task.

Optimal Transport. Optimal Transport (OT) has been widely studied in domain adapta-
tion (Damodaran et al., 2018; Shen et al., 2018), graph matching (Titouan et al., 2019; Xu et al.,
2019), recommender systems (Li et al., 2022), and imitation learning (Fickinger et al., 2022). For
example, GWL (Xu et al., 2019) is proposed to jointly learn node embeddings and perform graph
matching. Li et al. (2022) transfers the knowledge from the source domain to the target domain by
using Gromov-Wasserstein distance to align the representation distributions. In the context of RL,
there are several imitation learning methods that utilize OT to align the agent’s and expert’s state-
action distributions (Dadashi et al., 2021; Cohen et al., 2021; Haldar et al., 2023a; Luo et al., 2023;
Haldar et al., 2023b). For cross-task imitation learning method, GWIL (Fickinger et al., 2022) aligns
agent states between source and target tasks and computes pseudo rewards based on solved optimal
transport plan. POT is the first preference-based RL algorithm that leverages optimal transport for
cross-task learning. POT does not perform representation space alignment, which requires additional
gradient computation. It directly uses Gromov-Wasserstein distance to align trajectory distributions
between tasks and compute preference labels for the target tasks according to the transport matrix.

Distributional Modeling for Robust Learning from Noisy Samples. Traditional representation
learning techniques extract features as fixed points. However, such modeling fails to adequately
capture data uncertainty, leading to suboptimal performance with noisy data. A series of studies
have proposed modeling features as distributions to enhance robustness, seen in person Re-ID (Yu
et al., 2019), face recognition (Chang et al., 2020), scene graph generation (Yang et al., 2021),
Vision-Language Pre-training (VLP) (Ji et al., 2022). Specifically, these methods utilize Gaussian
distributions rather than fixed points to model features, interpreting variance as uncertainty. In
preference-based RL, Xue et al. (2023) proposes an encoder-decoder architecture for reward modeling,
which encodes state-action features as Gaussian distributions. Consequently, the features can be
manipulated in a latent space and they are constrained to be close to a prior distribution to stabilize
reward learning process. In our work, we model reward distributions rather than feature distributions
and we are the first to model reward distribution in preference-based RL to the best of our knowledge.

3 PROBLEM SETTING & PRELIMINARIES

Problem Setting. In this paper, we consider preference transfer between tasks share the same action
space. We assume there exists a task distribution p(T ), with each task T corresponding to a distinct
Markov Decision Process (MDP). MDP is defined by the tuple (S,A,P,R, γ) consisting of a state
space S , an action spaceA, a transition function P : S ×A → S , a reward functionR : S ×A → R,
and a discount factor γ ∈ (0, 1). While the action space A remain identical across these MDPs, the
state space S, the transition function P , the reward functionR, and the discount factor γ can differ.

In this context, our paper introduces the problem of zero-shot preference transfer. We consider a
source task S ∼ p(T ) and a target task T ∼ p(T ), which means that S and T have the same action
space. Assume we have M trajectories xi of task S, i = 1, · · · ,M , along with preference labels of
all combinations of trajectory pairs (xi, xi′) where i, i′ = 1, · · · ,M, i < i′. For task T , there are N
trajectories yj , j = 1, · · · , N . The goal of our method is to learn a policy π(a | s) for task T with
preference labels transferred from task S.

Preference-based Reinforcement Learning. Preference-based RL is assumed to have no access
to the ground-truth reward function and learns a reward function r̂ψ from human preferences. A
trajectory segment of lengthH is represented as x = {s1,a1, · · · , sH ,aH}. Given a pair of segments
(x0, x1), a human provides a preference label z ∈ {0, 1, 0.5}, where 0 indicates that x0 is preferred
over x1 (denoted as x0 ≻ x1), 1 denotes the reverse preference, and 0.5 indicates the two segments
are equally preferable. The preference predictor formulated via the Bradley-Terry model (Bradley &
Terry, 1952) is:

Pψ[x
0 ≻ x1] = exp

∑
t r̂ψ(s

0
t ,a

0
t )

exp
∑
t r̂ψ(s

0
t ,a

0
t ) + exp

∑
t r̂ψ(s

1
t ,a

1
t )
. (1)
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With a dataset containing trajectory pairs and their labels D = {(x0, x1, z)}, the parameters of the
reward function can be optimized using the following cross-entropy loss:

Lce(ψ) = − E
(x0,x1,z)∼D

[
(1− z) logPψ[x0 ≻ x1] + z logPψ[x

1 ≻ x0]
]
. (2)

By aligning the reward function with human preferences, the policy can be learned from labeled
transitions by r̂ψ via RL algorithms.

Optimal Transport. Optimal Transport (OT) aims to find the optimal coupling of transporting one
distribution into another with minimum cost. Unlike Wasserstein distance, which measures absolute
distance, Gromov-Wasserstein distance is a relational distance metric incorporating the metric
structures of the underlying spaces (Mémoli, 2011; Peyré et al., 2016). Besides, Gromov-Wasserstein
distance measures the distance across different domains, which is beneficial for cross-domain learning.
The mathematical definition of Gromov-Wasserstein distance is as follows:

Definition 1. (Gromov-Wasserstein Distance (Peyré et al., 2016)) Let (X , dX , µX ) and (Y, dY , µY)
denote two metric measure spaces, where dX and dY represent distance metrics measuring similarity
within each task, and µX and µY are Borel probability measures on X and Y , respectively. For
p ∈ [1,∞), the p-Gromov-Wasserstein distance is defined as:

GW(µX , µY) =

(
inf

γ∈Π(µX ,µY)

∫∫
X×Y,X×Y

L(x, x′, y, y′)pdγ(x, y)dγ(x′, y′)

) 1
p

, (3)

where L(x, x′, y, y′) = |dX (x, x′)− dY(y, y′)| denotes the relational distance function, and
Π(µX , µY) is the set of joint probability distributions with marginal distributions µX and µY .

4 METHOD

In this section, we present Preference Optimal Transport (POT), a zero-shot offline preference-based
RL algorithm that transfers preferences between tasks via optimal transport. First, we propose to
align the trajectories of source and target tasks using optimal transport and computes preference
labels according to the solved optimal alignment matrix. Second, we introduce Robust Preference
Transformer (RPT), which additionally incorporates the reward uncertainty by modeling the rewards
from a distributional perspective, enabling robust learning from noisy labels.

4.1 PREFERENCE OPTIMAL TRANSPORT

Gromov-Wasserstein distance shows great abilities in aligning structural information, such as corre-
spondence of edges between two graphs. Therefore, we consider using Gromov-Wasserstein distance
as an alignment metric between the trajectories of source and target tasks, finding the alignment of
paired trajectories between tasks, and inferring preference labels based on the correspondence and
preference labels of the source trajectory pairs.

POT aims to identify the correspondence between two sets of trajectories and transfer the preferences
based on accordingly. In this paper, we consider preference transfer problem from a source task S to a
target task T , with their distributions denoted as µ and ν, respectively. Assume we have M segments
with pairwise preference labels {xi}Mi=1 from the source task and N segments {yj}Nj=1 from the
target task. The trajectories can be represented by the probability measures µ =

∑M
i=1 uiδxi and

ν =
∑N
j=1 vjδyj , where δx denotes the Dirac function centered on x. The weight vectors {ui}Mi=1 and

{vj}Nj=1 satisfy
∑M
i=1 ui = 1 and

∑N
j=1 vj = 1, respectively. The empirical Gromov-Wasserstein

distance for aligning trajectories between source and target tasks is expressed as:

GW2(µ,ν) = min
T∈Π(µ,ν)

M∑
i=1

M∑
i′=1

N∑
j=1

N∑
j′=1

|ds(xi, xi′)− dt(yj , yj′)|2 TijTi′j′ , (4)

where the optimal transport matrix is T = [Tij ], Π(µ,ν) denotes the set of all couplings between
µ and ν, Π(µ,ν) = {T ∈ RM×N | T1N = µ,T⊤1M = ν}, 1M denotes a M -dimensional
vector with all elements equal to one, and ds, dt represent the distance function in each task, such as
Euclidean function or Cosine function.

Upon solving Equation 4, we obtain the optimal transport matrix T representing the correspondence
between the trajectories of the two tasks. Each element, Tij , indicates the probability that trajectory
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Figure 2: Different types of reward modeling. (a) Scalar reward modeling, which only considers
scalar rewards. This modeling type is widely used in preference-based RL algorithms (Christiano
et al., 2017; Lee et al., 2021b; Kim et al., 2023). (b) Distributional reward modeling, which adds a
branch for modeling reward uncertainty in addition to reward mean.

xi matches trajectory yj , and the j-th column represents the correspondence between yj and all
source trajectories. Therefore, for a pair of trajectories (yj , y′j), we can identify the paired relations
based on the optimal transport matrix. We define the trajectory pair matching matrix Ajj′ for each
(yj , y

′
j) by multiplying the j-th column T·j and the transpose of j′-th column T⊤

·j′ :

Ajj′ = T·jT
⊤
·j′ , (5)

where Ajj′ ∈ RN×N , and each elementAjj
′

ii′ of the matrix represents the correspondence of trajectory
pair (yj , y′j) with trajectory pair (xi, x′i) from the source task. If we denote the preference label of
(xi, x

′
i) as z(xi, xi′), then the POT label of (yi, yi′) is computed as follows:

z(yj , yj′) =
∑
i

∑
i′ ̸=i

Ajj
′

ii′ z(xi, xi′), (6)

where i′ ̸= i because the same segments are equally preferable. In Equation 6, the preference labels
of source task trajectory pairs are weighted by the trajectory pair correspondence. This means that
the preference labels of matched trajectory pairs contribute more to the preference transfer. The full
procedures for computing POT labels are shown in Algorithm 1 in Appendix A.

4.2 ROBUST PREFERENCE TRANSFORMER

Obtaining preferences labels transferred according to the optimal transport matrix, we can utilize
preference-based RL approaches, such as the offline preference-based RL algorithm PT (Kim et al.,
2023), to learn reward functions. However, the labels may include some noise and learning from
such data using previous methods will influence the accuracy of the rewards and eventually the
performance of the policy.

Prior preference-based RL methods represent the rewards as fixed scalar values (Christiano et al.,
2017; Lee et al., 2021b; Kim et al., 2023). However, this type of reward modeling is vulnerable
to noisy labels. Given a preference dataset comprising trajectory pairs and their preference labels,
altering one preference label z of a pair (x0, x1) into 1− z will dramatically shift the optimization
direction of the reward function on the pair. Thus, if we respectively learn two reward models from
the clean dataset and the data with an inverse label, the two reward models will predict distinct values
for that trajectory pair. Subsequent, the inaccurate rewards will affect the performance of the policy.
Therefore, a robust preference-based RL algorithm capable of learning from noisy labels is necessary.

Distributional Reward Modeling. To improve the robustness of preference-based RL in the
presence of noisy labels, we incorporate reward uncertainty and model the rewards from a distribu-
tional perspective. Specifically, the rewards are modeled as Gaussian distributions, where the mean
represents the estimated reward and the variance signifies the reward uncertainty.
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As shown in Figure 2, we design two branches for modeling reward mean and variance concurrently.
Given the extracted embedding of a trajectory segment represented as {xt}, we split {xt} into
two tensors of the same shape along the embedding dimension. These split tensors are separately
processed by the mean and variance branches, ultimately yielding reward mean {r̂t} and variance
{σ2

t }. With reward mean and variance, we then construct the preference predictor Pψ and derive the
loss function for distributional reward learning based on Equation 2:

Lce = E
(x0,x1,z)∼D

[
CE

(
Pψ({r̂0t }, {r̂1t }), z

)
+λ ·Eβ0

t∼p(β0
t ),β

1
t∼p(β1

t )
CE

(
Pψ({β0

t }, {β1
t }), z

)]
, (7)

where λ balances the reward mean {r̂t} and the stochastic term {βt}, {r̂0t } and {β0
t } respectively

denote the reward mean and reward samples of trajectory segment x0 (and {r̂1t } and {β1
t } for x1),

preference predictor Pψ in the first term takes the reward mean of two segments as inputs while the
second Pψ uses sampled rewards of two segments as inputs, and CE denotes the cross-entropy loss.
In practical, the second expectation in Equation 7 is approximated by the mean of K samples from
the distribution of β.

Regularization Loss. The sampled rewards with large variance will make the second term of Equa-
tion 7 a large value. If we directly optimize Equation 7, the variance of all samples will decrease, and
eventually close to zero. Therefore, to avoid the variance collapse, we introduce a regularization loss
to force the uncertainty level to maintain a level η:

Lreg = max(0, η − h(N (r̂, σ2))), (8)

where h(N (r̂, σ2)) = 1
2 log(2πeσ

2) computes the entropy of the Gaussian distribution. Combing
the cross-entropy loss in Equation 7 and regularization loss in Equation 8, the total loss for RPT
training is as follows:

L(ψ) = Lce + α · Lreg, (9)
where α is a trade-off factor between the two terms.

Reparameterization Trick. Directly sampling β from N (r̂, σ2) will prevent the back propagation
process. Hence, we use the reparameterization trick to first sample a noise ϵ from standard Gaussian
distribution N (0, 1), and computes the sample by:

β = r̂ + σ · ϵ. (10)

Therefore, the reward mean and variance can be learned without the influences of sampling operation.

4.3 PRACTICAL ALGORITHM

The entire algorithm mainly comprises three stages. First, our approach computes POT labels based on
Gromov-Wasserstein distance alignment and the procedures are shown in Algorithm 1 in Appendix A.
In Algorithm 1, we use Sinkhorn algorithm (Peyré et al., 2016) to solve the optimal transport matrix,
which is implemented by Python Optimal Transport (Flamary et al., 2021). Second, the RPT is
trained by POT labels obtained from the first step. Last, we relabel the transitions in the offline
dataset using the trained reward function and train offline RL algorithms, such as Implicit Q-Learning
(IQL) (Kostrikov et al., 2022). The full procedures are shown in Algorithm 2 in Appendix A.

5 EXPERIMENTS

In this section, we first conduct experiments to evaluate our proposed method on several pairs of
robotic manipulation tasks from Meta-World (Yu et al., 2020) and Robomimic (Mandlekar et al.,
2022) in zero-shot setting. Then we demonstrate our approach significantly surpasses existing
methods in limited-data scenarios. Last, we evaluate our algorithm with different choice of cost
functions and noise levels.

5.1 COMPARED METHODS AND TRAINING DETAILS

The following methods are included for experimental evaluation:

• PT (Kim et al., 2023): The original PT algorithm trained from the preference labels computed
by the ground-truth rewards.

• PT+Semi: This baseline combines PT with semi-supervised learning, which is proposed in the
online feedback-efficient preference-based RL algorithm SURF (Park et al., 2022). The method
infers pseudo preference labels of unlabeled data based on the reward confidence.
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• IPL (Hejna & Sadigh, 2023): An offline preference-based RL algorithm that learns policies
without modeling reward functions.

• PT+Dis: The baseline is a cross-task preference-based RL algorithm that calculates transferred
preference labels simply based on the trajectory similarity between tasks.

• PT+POT (Ours): The method is a zero-shot preference-based RL algorithm that learns PT from
preference labels transferred by POT.

• RPT+POT (Ours): The method robustly learns RPT from POT labels by modeling reward
distribution.

• IPL+POT (Ours): The method learns from POT labels without reward functions.

Implementation Details. All methods are implemented based on the officially released code of PT 1

and IPL 2. RPT is implemented by replacing the preference attention layer of PT with two branches,
each comprising a two-layer Multi-layer Perceptrons (MLP), with the other settings identical to PT.
Both PT and PT+Semi utilize scripted labels computed according to ground-truth rewards, which is
a common way for the evaluation of preference-based RL algorithms (Lee et al., 2021b; Liu et al.,
2022; Kim et al., 2023). PT+POT, RPT+POT and IPL+POT are trained with computed POT labels
(zero-shot) or a mixture of POT labels and scripted labels (few-shot). All PT-based methods initially
train reward models using the preference data, and the offline RL algorithm IQL (Kostrikov et al.,
2022) is used for policy learning following PT. For IPL-based method, policies are directly learned
from preferences.

For the Meta-World benchmark, Button Press and Faucet Close serve as source tasks, while Window
Open, Door Close, Drawer Open, and Sweep Into are evaluated as target tasks. For Robomimic,
we set Square-mh as the source task, and Can-mh and Lift-mh as target tasks. The used tasks and
datasets are detailed in Appendix C. We set the segment length as 50 for Meta-World tasks and
100 for Robomimic tasks. For the number of target task preference labels, we provide 100 for
Window Open and Door Close, 500 for Drawer Open, Can-mh and Lift-mh, and 1000 for Sweep
Into. The Euclidean function is employed as the cost function in the Gromov-Wasserstein distance
alignment, with different cost functions discussed in Section 5.4. Regarding RPT learning, the
margin η in Equation 8 is set to 100 for all experiments, with different margin effects evaluated
in Appendix D. The number of samples K in Equation 7 is consistently set to 5. The weight λ
in Equation 7 is 0.3 for Door Close with Button Press as the source task, and 0.1 for the other task
pairs. The trade-off α in Equation 9 is set to 0.02 for Drawer Open with Button Press as the source
task, and 0.01 for all other experiments. Detailed network architectures and hyperparameters of all
methods and IQL are presented in Appendix C.

The tasks of Meta-World and Robomimic are evaluated through success rate. Each task is conducted
with five random seeds, with the mean and standard deviation of success rates reported. Each run
evaluates the policy by rolling out 50 episodes at every evaluation step, calculating performance as
the mean success rate over these 50 episodes. All experiments are run on NVIDIA GeForce RTX
3080 and NVIDIA Tesla V100 GPUs with 8 CPU cores.

5.2 RESULTS OF ZERO-SHOT PREFERENCE LEARNING

Table 1 shows the results on robotic manipulation tasks of Meta-World and Robomimic with different
pairs of source and target tasks 34. For the baselines that use scripted preference labels, PT, PT+Semi
and IPL yield outstanding performance on the majority of tasks, where PT achieves a mean success
rate of 91.7% on Meta-World Tasks and 83.8% across all tasks. The performance of PT+Semi is
almost the same with that of PT on Meta-World tasks, but has a drop on Robomimic tasks. For IPL,
it outperforms PT and PT+Semi on Robomimic, while its performance on Meta-World is worse than
that of them. By transferring preference via OT, POT attains a mean accuracy of 74.9% in computing
preference labels across all tasks. PT trained with POT labels realizes a 71.2% success rate, equating
to 85.0% of oracle performance (i.e., the performance of PT trained with scripted labels). RPT,

1https://github.com/csmile-1006/PreferenceTransformer
2https://github.com/jhejna/inverse-preference-learning
3PT, PT+Semi and IPL do not require preference data from source tasks, so the their results are solely depend

on the target tasks.
4PT+Sim cannot work by transferring preferences from Square-mh to Lift-mh because the state dimension of

these two tasks are different.
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Table 1: Success rate of our method against the baselines on robotic manipulations tasks of Meta-
World and Robomimic benchmark. The results are reported with mean and standard deviation across
five random seeds.

Source Task Target Task PbRL with Scripted Labels PbRL with Transferred Labels POT
Acc.PT PT+Semi IPL PT+Sim PT+POT RPT+POT IPL+POT

Button Press Window Open 89.2 ±5.4 86.4 ±3.0 91.6 ±6.2 44.0 ±26.3 85.6 ±17.1 88.0 ±11.6 91.2 ±5.9 87.0
Button Press Door Close 94.8 ±4.8 94.8 ±7.6 75.6 ±32.6 63.6 ±24.5 59.6 ±49.1 78.4 ±29.5 46.8 ±30.7 78.0
Button Press Drawer Open 96.6 ±6.1 96.8 ±3.3 91.2 ±4.1 18.0 ±33.0 80.8 ±21.0 84.0 ±16.0 76.8 ±10.4 76.6
Button Press Sweep Into 86.0 ±8.7 88.4 ±5.2 73.2 ±6.4 48.8 ±34.9 77.2 ±11.0 80.0 ±6.8 76.8 ±7.6 69.5

Faucet Close Window Open 89.2 ±5.4 86.4 ±3.0 91.6 ±6.2 21.2 ±17.2 84.8 ±10.9 88.8 ±6.7 88.4 ±11.5 87.0
Faucet Close Door Close 94.8 ±4.8 94.8 ±7.6 75.6 ±32.6 38.8 ±44.8 72.8 ±40.9 86.4 ±8.2 41.6 ±31.5 72.0
Faucet Close Drawer Open 96.6 ±6.1 96.8 ±3.3 91.2 ±4.1 56.4 ±23.4 79.2 ±8.8 90.8 ±12.0 70.4 ±11.6 77.0
Faucet Close Sweep Into 86.0 ±8.7 88.4 ±5.2 73.2 ±6.4 14.0 ±20.0 71.6 ±17.4 75.2 ±6.6 81.6 ±7.1 68.4

Square-mh Can-mh 35.6 ±11.6 30.8 ±12.7 50.8 ±12.2 − 32.8 ±5.9 34.8 ±12.1 45.6 ±8.2 70.0
Square-mh Lift-mh 68.8 ±19.2 60.8 ±7.3 92.4 ±3.3 − 62.0 ±19.1 74.4 ±23.1 81.6 ±6.1 63.2

Average (without Robomimic) 91.7 91.6 82.9 38.1 76.5 84.0 71.7 76.9
Average (all settings) 83.8 82.4 80.6 − 71.2 78.1 70.1 74.9

incorporating reward uncertainty in reward modeling, enhances performance to 78.1% across all
tasks when trained with POT labels, equivalent to 93.2% oracle performance. Also, IPL+POT
achieves 70.1% success rate across all tasks, which is equal to 87.0% oracle performance. We can
conclude that RPT+POT can achieve competitive performance compared with baselines trained with
scripted preference labels. Both PT+POT and RPT+POT outperforms PT+Sim by a large margin,
and RPT+POT even exceeds PT on the Lift-mh task, demonstrating the powerful capabilities of POT
and RPT in zero-shot preference transfer and robust learning.

5.3 RESULTS OF FEW-SHOT PREFERENCE LEARNING

The results in Table 1 have shown strong zero-shot transfer ability of POT. To further balance the
human labeling cost and algorithm performance, we are interested in how well does RPT+POT
perform when there are a small number of preference labels. For fair comparison, we evaluate
our method and PT with the same number of scripted preference labels of the target task, across
Foracle ∈ {0, 5, 10, 15, 20}. Our method additionally obtains FPOT = 100 − Foracle POT labels
by transferring from the source task. The results in Figure 3 show that RPT+POT significantly
outperforms PT when lacking oracle preference labeling, and the advantage becomes more obvious
when the number of labels is smaller. Moreover, RPT+POT even exceeds the Oracle PT (i.e., PT with
100 scripted labels) on Window Open task when Foracle ∈ {5, 10, 15, 20}. The results demonstrate
the excellent performance of our method when oracle labels are hard to obtain, and POT can be used
to significantly to reduce extensive human labeling.
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Figure 3: Success rate of Door Close and Window Open with different scripted preference labels.

5.4 ABLATION STUDY

Different Cost Functions. The sensitivity of POT to the cost function is examined by evaluating
PT+POT and RPT+POT performance with varying cost functions, including the Euclidean and Cosine
functions. Table 2 demonstrates that POT performs robustly with either cost function. Notably, POT
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Table 2: Success rates on three pairs of source and target tasks with different cost functions. The
results are reported with mean and standard deviation of success rate across five runs.

Source Task Target Task Euclidean Cosine

RPT+POT POT Acc. RPT+POT POT Acc.

Button Press Sweep Into 80.0 ±6.8 69.5 79.2 ±5.4 65.0
Faucet Close Window Open 88.8 ±6.7 87.0 92.4 ±3.6 91.0
Square-mh Lift-mh 74.4 ±23.1 63.2 69.3 ±9.5 66.0

Average 81.1 73.2 80.3 74.0

with the Cosine function even attains 91.0% accuracy in computing POT labels on the Window Open
task, with its success rate (92.4%) surpassing PT with scripted labels on this task (89.2%).

Different Noise Levels. To evaluate the performance of PT and RPT under different noise levels,
we conduct experiments with 10%, 20%, 30% noisy labels induced by flipping scripted labels. The
results in Figure 4 reveal the enhanced robustness of RPT to label noise, with RPT significantly
outperforming PT at higher noise levels.
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Figure 4: Success rate of Sweep Into and Window Open under different noise levels.

6 CONCLUSION

In this paper, we present POT, a novel cross-task preference-based RL algorithm, which leverages
Gromov-Wasserstein distance for aligning trajectory distributions across different tasks and transfers
preference labels through optimal transport matrix. POT only needs small amount of preference
data from prior tasks, eliminating the need for a substantial amount pre-collected preference data or
extensive human queries. Furthermore, we propose Robust Preference Transformer, which models
reward uncertainty rather than scalar rewards to robustly learn from POT labels. Empirical results
on various robotic manipulation tasks of Meta-World and Robomimic demonstrate the effectiveness
of our method in zero-shot transferring accurate preference labels and improves the robustness of
learning from noisy labels. Additionally, our method significantly surpasses the current method when
there are a few preference labels. By minimizing human labeling costs to a great extent, POT paves
the way for the practical applications of preference-based RL algorithms.

Limitations Our method does present certain limitations. Firstly, our method is not well-suited
for high-dimensional inputs due to the potential for slower processing speeds when working with
high-dimensional inputs in optimal transport. Secondly, the efficiency of our algorithm rely on the
same action space between source and target tasks. So our method is not suitable for the tasks
like those have completely different state and action spaces. A potential solution may be utilizing
representation learning methods to obtain trajectory representations and using Gromov-Wasserstein
distance to align in the representation space (Chen et al., 2020; Li et al., 2022). We recognize these
limitations and view the mitigation of these issues as important directions for future exploration and
development.
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REPRODUCIBILITY STATEMENT

The source code will be provided in an anonymous repository and we will post it as a comment in
the discussion phase. If the paper is accepted, we will open source the code on our website. The
experimental details are included in Section 5.1 and Appendix C.
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A ALGORITHM

The algorithm of computing POT labels and the full algorithm of our approach is shown in Algorithm 1
and Algorithm 2, respectively.

Algorithm 1 Computing POT Labels

Input: source trajectory set {xi}Mi=1, target trajectory set {yj}Nj=1, regularization parameter ω
1: Initialize T ← 1

MN 1M1⊤
N , p← 1

M 1M , q← 1
N 1N

2: Compute Cs, Ct with [Cs]ij = |xi − xj |2 and [Ct]ij = |yi − yj |2
3: Compute Cst with Cst ← C2

sp1
⊤
Tt

+ 1Ts
q⊤(C2

t )
⊤

4: for each step do
5: Compute C ← Cst − 2CsT (Ct)

⊤

6: Set u← 1
M 1M , v← 1

N 1N , K ← exp(−C/ω)
7: for k = 1, 2, · · · do
8: u← p

Kv , v← q
K⊤u

9: end for
10: T ← diag(u)K diag(v)
11: end for
12: for each j do
13: for each j′ ̸= j do
14: Compute trajectory pair matching matrix A with Equation 5
15: Compute transferred preference label of (yj , yj′) with Equation 6
16: end for
17: end for
Output: POT labels

Algorithm 2 Robust Preference-based RL from POT Labels

Input: Source task preference dataset Ds, target task dataset B, reward model learning rate of ρ,
robust term’s weight coefficient λ, regularization weight coefficient α, RPT margin η, number of
reward samples K

1: Initialize reward model r̂ψ , policy πϕ, preference dataset of target task Dt ← ∅
2: Perform K-means clustering and group the trajectories of the target dataset into 2 clusters
3: for each step do
4: Sample N

2 trajectories from each cluster within B
5: Compute POT labels with Algorithm 1 and store Dt ← Dt ∪ {(yj , yj′ , zj)}Nj=1
6: end for
7: for each gradient step do
8: Sample minibatch preference data from Dt
9: Sample K rewards from the reward distribution computed by the outputs of RPT

10: Update ψ using Equation 9 with learning rate ρ
11: end for
12: Label rewards of the transitions in B using trained r̂ψ
13: for each gradient step do
14: Sample minibatch transitions from B
15: Update policy πϕ through offline RL algorithms
16: end for
Output: policy πϕ

B PREFERENCE TRANSFORMER

Preference Transformer (Kim et al., 2023) applies Transformer architecture to model non-Markovian
rewards. For a pair of trajectory segments (x0, x1), the non-Markovian preference predictor is given
by:

Pψ[x
0 ≻ x1] = exp

(∑
t w

0
t · r̂ψ({(s0i ,a0i )}ti=1)

)
exp

(∑
t w

0
t · r̂ψ({(s0i ,a0i )}ti=1)

)
+ exp

(∑
t w

1
t · r̂ψ({(s1i ,a1i )}ti=1)

) , (11)
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where wjt = w({(sji ,aji )}Hi=1)t, j ∈ {0, 1} represents the importance weight. PT introduces a
preference attention layer that models the weighted sum of rewards using the self-attention mechanism.
Assume the trajectory embedding is xt, xt is projected into a key kt, query qt and value r̂t. The
output zi of self-attention is calculated as:

zi =

H∑
t=1

softmax({⟨qi,kt′⟩}Ht′=1)t · r̂t. (12)

The weighted sum of non-Markovian rewards is computed as:

1

H

H∑
i=1

zi =
1

H

H∑
i=1

H∑
t=1

softmax({⟨qi,kt′⟩}Ht′=1)t · r̂t =
H∑
t=1

wtr̂t. (13)

Obtaining a dataset containing D = {(x0, x1, z)}, the parameters of PT can be optimized by Equa-
tion 2.

C EXPERIMENTAL DETAILS

C.1 TASKS

The used tasks are shown in Figure 5 and the task descriptions are listed as follows:

(a) Button Press (b) Window Open (c) Drawer Open

(d) Faucet Close (e) Door Close (f) Sweep Into

(g) Square (h) Lift (i) Can

Figure 5: Nine robotic manipulation tasks used for experiments. (a-f) Meta-World tasks. (g-i)
Robomimic tasks.

Meta-World.

• Button Press: The objective is to manipulate a robotic arm to press a button. The button’s initial
position is arbitrarily placed.

• Faucet Close: The goal is to control a robotic arm to close a faucet. The initial faucet location is
randomly assigned.
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• Window Open: The task entails commanding a robotic arm to open a window. The window’s
starting position is randomly chosen.

• Door Close: The task involves guiding a robotic arm to close a door. The door’s starting position
is selected randomly.

• Drawer Open: The objective is to operate a robotic arm to open a drawer. The drawer’s initial
placement is arbitrary.

• Sweep Into: The task involves manipulating a robotic arm to propel a ball into a cavity. The
ball’s initial position is random.

Robomimic.

• Square: The goal is to manipulate a robotic arm to lift a square nut and position it on a rod.

• Lift: The task is to operate a robotic arm to elevate a cube to a predefined height.

• Can: The objective is to guide a robotic arm to reposition a can from one container to another.

C.2 DATASETS

Meta-World. For Meta-World tasks, the source preference datasets are collected by ground-truth
policies and random policies, with the number of trajectories M = 4. For each task, both a ground-
truth policy and a random policy are utilized to roll out and obtain 2 trajectories of length 50.

To generate offline dataset for target tasks, we collect the replay buffer and feedback buffer using
the preference-based RL algorithm PEBBLE (Lee et al., 2021b). For Window Open and Door Close
tasks, PEBBLE is run with 120000 steps and 2000 scripted preference labels. For Drawer Open, we
run PEBBLE with 400000 steps and 4000 scripted labels, and for Sweep Into, PEBBLE is run with
400000 steps and 8000 scripted labels.

Robomimic. The source dataset of Robomimic tasks is obtained from the Multi-Human (MH)
offline dataset of each task, with the number of trajectories M = 4. The MH dataset is collected
by 6 operators across 3 proficiency levels, with each level comprising 2 operators. Each operator
collect 50 demonstrations, resulting in a total of 300 demonstrations. For each task, the source dataset
consists of the best 2 trajectories from the offline dataset and 2 random trajectories, and trajectory’s
length is 100. The offline dataset also serves as the target dataset.

C.3 IMPLEMENTATION DETAILS

For all task pairs, we first perform K-means clustering and categorize trajectories segments in the
feedback buffer into 2 categories, setting N = 4. Then we sample 2 trajectories from each category
and employ Algorithm 1 to compute POT labels. The detailed hyperparameters of PT and IQL are
presented in Table 3 and Table 4, respectively.

Table 3: Hyperparameters of PT.

Hyperparameter Value
Number of layers 1
Number of attention heads 4
Embedding dimension 256
Batch size 256
Optimizer AdamW
Optimizer betas (0.9, 0.99)
Learning rate 0.0001
Learning rate decay Cosine decay
Weight decay 0.0001
Dropout 0.1

D ADDITIONAL RESULTS

In this section, we conduct additional experiments to evaluate the sensitivity of our method to
several critical hyperparameters, which include the robust term’s weight coefficient λ in Lce, the
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Table 4: Hyperparameters of IQL.

Hyperparameter Value
Network (Actor, Critic, Value network) (256, 256)
Optimizer (Actor, Critic, Value network) Adam
Learning rate (Actor, Critic, Value network) 0.0003
Discount 0.99
Temperature 3.0 (Meta-World), 0.5 (Robomimic)
Expectile 0.7
Dropout None (Meta-World), 0.1 (Robomimic)
Soft target update rate 0.005

regularization weight coefficient α, and the RPT margin η. The following experiments use Button
Press as the source task for Sweep Into, Faucet Close for Window Open, and Square-mh for Lift-mh.

Robust Term’s Weight Coefficient λ in Lce. The hyperparameter λ balances the effects of mean
and sampled rewards in Equation 7. To assess the sensitivity of our method to the weight λ, we
perform supplementary experiments with different λ = {0.001, 0.01, 0.1, 1}. The results in Figure 6
demonstrate our method’s robustness against λ variations.
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Figure 6: Success rate variations of Sweep Into, Window Open and Lift-mh tasks across different λ
values.

Regularization Weight Coefficient α. To examine the influence of the weight coefficient α
in Equation 9, we evaluate our approach with α = {0.001, 0.01, 0.1, 1}. As Figure 7 shows, our
method retains high success rate with small α values. Conversely, a larger α slightly reduce the
performance, as it diminish the contribution of Lce to reward learning, which further affects the
accuracy of the reward function.

RPT Margin η. η serves as a variance constraint in Equation 8. Further experiments are conducted
to evaluate this parameter’s influence. For Sweep Into, η = {50, 100, 200} are used for evaluation,
while η = {0.1, 1, 10} are used for Window Open and Lift-mh tasks. The results in Figure 8
demonstrate that our method is not sensitive to the changes of η.

Number of Source Task Trajectories M . We additionally conduct experiments to evaluate the
effect of the number of source task trajectories to our method, across M ∈ {4, 8, 16}. The results in
Table 5 show that our method is not sensitive to the number of source trajectories.

Videos and Demos. We provide supplementary videos showcasing the trajectories of agents trained
using our method for each task pair. Furthermore, we offer several demos illustrating the computation
of POT labels on our website. Please visit the website for details.
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Figure 7: Success rate variations for Sweep Into, Window Open, and Lift-mh tasks across different α
values.
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Figure 8: Success rate variations for Sweep Into, Window Open, and Lift-mh tasks across different η
values.

Table 5: Success rate and accuracy of POT labels on different numbers of source task trajectories.
The results are reported with mean and standard deviation of success rate across five runs.

Source Task Target Task M = 4 M = 8 M = 16

RPT+POT POT Acc. RPT+POT POT Acc. RPT+POT POT Acc.

Button Press Drawer Open 84.0 ±16.0 76.6 82.6 ±17.7 77.6 85.2 ±15.8 76.6
Faucet Close Window Open 88.8 ±6.7 87.0 85.2 ±9.4 85.0 88.4 ±11.0 87.0

Average 86.4 81.8 83.9 81.3 86.8 81.8
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