
Generating Heavy-Tailed Synthetic Data with Normalizing Flows

Saba Amiri1 Eric Nalisnick1 Adam Belloum1 Sander Klous1 Leon Gommans2

1Informatics Institute, University of Amsterdam
2Air France - KLM

Abstract

Heavy-tailed data is commonly encountered but
difficult to model well. We experimentally com-
pare the ability of three different normalizing flows
to model data with varying tail behavior. The flows
are parameterized using base densities with dif-
fering tail properties. We report results on both
simulations and a real-world data synthesis task.

1 INTRODUCTION

There are often challenges that come along with training
models on real data. For instance, privacy concerns may
require that the original observations be obscured. Or per-
haps the original data set is extremely large, storing and
transporting it may be prohibitively costly. Data synthesis
[Rubin, 1993] aims to address these problems by producing
proxy data from which nearly identical inferences can be
drawn. This proxy data is often generated by a model, which
forms a compact representation of the original data and can
produce additional data on demand.

We turn our attention to a particularly challenging sub-
problem in data synthesis: generating heavy-tailed data.
Many real-world settings produce heavy-tailed data—such
as traffic in communication networks, risk in actuarial analy-
sis, and cumulative damage in survival analysis—but unfor-
tunately, fitting the appropriate models can be difficult. For
instance, the Cauchy distribution has undefined moments.
Moreover, we would like our models to be tail-adaptive
in the sense that they can automatically adjust themselves
to have the appropriate tail behavior—anywhere between
Cauchy-like and sub-Gaussian tails.

In this work, we investigate the ability of normalizing flows
(NFs) [Tabak and Turner, 2013] to perform heavy-tailed
data synthesis. NFs provide an attractive model class for
this exploration since (i) they have demonstrated powerful

generative abilities (e.g. on high-resolution images and au-
dio) and (ii) admit some analytical understanding of their
tail properties [Jaini et al., 2020]. We experimentally com-
pare NFs with normal, generalized normal, Student’s t, and
mixture (of normals) base densities, finding that the mixture
performs the best, possibly due to its more stable optimiza-
tion.

2 BACKGROUND

Notation We denote random variables with bold letters
and observations with non-bold letters. We denote data by x
and its observation by x. The kth component of x is denoted
by xk.

Normalizing Flows Normalizing flows (NFs) [Tabak and
Turner, 2013, Rezende and Mohamed, 2015, Papamakarios
et al., 2021] are deep generative models built from the prin-
ciple of reparameterization. A random variable, usually fol-
lowing a simple distribution (e.g. normal), is pushed through
a series of bijective, neural-network-based transformations.
The resulting transformed random variable follows a much
richer distribution (compared to the one pre-transformation)
while still having a tractable density function. We denote
the N -step transformation Tϕ = TN−1 ◦ . . . ◦ T0, where
ϕ denotes the neural network parameters. Let u ∼ pu(u)
denote the base density that will undergo the transformation
x = T (u). We assume x denotes the data, and thus given an
observation x, we can evaluate its density using the change
of variables formula:

pϕ(x) = pu

(
T−1
ϕ (x)

) ∣∣∣det JT−1
ϕ

(x)
∣∣∣

where JT−1
ϕ

is the Jacobian matrix of inverse transformation.
Training the model parameters ϕ can be done via maximum
likelihood estimation using the same density function. After
training, samples can be drawn using the forward transform:
û ∼ pu, x̂ = Tϕ(û).

Accepted for the 5th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2022).

mailto:<s.amiri@uva.nl>?Subject=Your UAI 2022 paper

Related Work on Data Synthesis Much of the previous
work on using deep generative models for data synthesis has
focused on generative adversarial networks (GANs) [Good-
fellow et al., 2014]. While this work has shown promise,
we believe that GANs are not appropriate for heavy-tailed
data since there is no known way to understand or control
their tail behavior. Moreover, GANs are prone to underesti-
mate the support of the target distribution (“mode collapse”),
and this behavior would only be exacerbated by heavy tails.
NFs have been previously explored for data synthesis by
Kamthe et al. [2021], but they did consider the specific case
of heavy-tailed data.

Related Work on Heavy-Tailed Flows Jaini et al. [2020]
analyzed the tail behavior of NFs. They show that NFs
built from Lipschitz-continuous transforms will always have
a target density with the same tail properties as the base
distribution. This limitation applies to many popular NF
architectures (e.g. RNVP [Dinh et al., 2017], Glow [Kingma
and Dhariwal, 2018]), and Jaini et al. [2020] propose making
the NF tail-adaptive by estimating parameters in the base
density—in particular, the degrees of freedom of a Student’s
t. Jaini et al. [2020]’s contribution is mainly theoretical, and
they did not investigate how best to implement tail-adaptive
NFs in practice.

3 HEAVY-TAILED NORMALIZING
FLOWS

We now summarize the three types of heavy-tailed NFs we
will use in the experiments. In all cases, we use the real
non-volume preserving (RNVP) architecture: a series of
affine coupling layers interleaved with permutation opera-
tions (over dimensions). RNVP is a Lipschitz-continuous
function, and thereby the resulting density function has the
same tail properties as the base distribution. Thus, we con-
sider a range of base densities:

1. Student’s t: Following Jaini et al. [2020]’s recom-
mendation, we consider the multivariate Student’s t-
distribution, which has the density function:

pu(u) =
Γ((ν + 1)/2)√
νπ Γ(ν/2)

(
1 +

u2

ν

) ν+1
2

where ν is the degree of freedom parameter. The ν
parameter allows the Student’s t to interpolate between
the Cauchy (ν = 1) and normal (ν → ∞) distributions,
with the former having the heaviest tails.

2. Generalized Normal: We consider a variant of the nor-
mal distribution that includes a parameter that controls
tail behavior. The generalized normal distribution has
the desnity function:

pu(u) =
β

2αΓ(1/β)
exp

{
−
(
|u|
α

)β
}

where α ∈ R+ is the scale, and β ∈ R+ is the shape.
The shape β controls the tail behavior. As β approaches
0, the tails become heavy, and as β approaches infin-
ity, the density converges to the continuous uniform
on (±α). When β = 2, the normal is recovered, and
when β = 1, the density is that of the Laplace dis-
tribution. There are two primary differences between
the Student’s t and generalized normal. The first is the
generalized normal can represent sub-Gaussian tails
(β > 2) whereas the t cannot. The second is that, while
both can have heavy-tails, the generalized normal be-
gins to form a cusp as the origin (as β → 0) whereas
the t remains smooth.

3. Mixture of Normals: Lastly, we consider a mixture of
normal distributions:

pu(u) =

K∑
k=1

πk N(u;µk, σk)

where k is the component index, πk ∈ [0, 1] is the
weight of the kth component, and (µk, σk) are the
parameters of the kth component. This choice was
motivated by previous work that successfully used mix-
tures to model heavy-tailed distributions [Feldmann
and Whitt, 1998, Okada et al., 2020]. There is also the-
oretical justification: while the components themselves
do not have heavy-tails, the mixture can approximate
any smooth density arbitrarily well (but perhaps re-
quiring an exponentially large number of components).
Lastly, Hagemann and Neumayer [2021] showed that
NF training can be stabilized in cases (e.g. discrep-
ancy in support between base and target distributions)
by using a mixture for pu(u). We suspect that train-
ing on heavy-tailed data will introduce optimization
difficulties that may only be exacerbated by having
a base density with wide-ranging tail behavior (like
the generalized normal). The mixture’s tail will adapt
much more gradually, possibly improving the stability
of gradient descent.

We do not consider multivariate versions of these distribu-
tions, instead always assuming they factorize across dimen-
sions. We also do not consider mixtures of t- or general-
ized normal distributions due to it being difficult to control
the tail behavior. For such a mixture, the ν or β param-
eters might favor light tails for the components, but the
overall density could still have heavy tails. For the mix-
ture of normals, we know that tail behavior will be directly
controlled by the number of components and their disper-
sion. The choice of divergence function used for optimiza-
tion (e.g. forward vs reverse Kullback–Leibler divergence
(KLD)) will also have an effect on the model’s ability to cap-
ture heavy-tailed data. In the experiments, we exclusively
use the KLD that corresponds to maximum likelihood es-
timation: KL[p∗(x)||pϕ(x)], where p∗ represents the true
density and pϕ the NF. This KLD formulation should per-

2

form the best for heavy tails since the model should be
penalized for underestimating the support of p∗.

4 EXPERIMENTS

We test the three base densities (Student’s t, generalized
normal, mixture of normals) in two distinct settings: two-
dimensional density estimation and generation of tabular
data. As a baseline in both settings, we use a NF whose base
is a multivariate normal distribution.

4.1 NEAL’S FUNNEL

Data For our first experiment, we consider a two-
dimensional simulation. We follow Jaini et al. [2020], set-
ting the target distribution to be a bi-variate Neal’s funnel:

xi =

{
xi,1 ∼ N(γ, 1),

xi,2 ∼ N(0, exp{xi,1/2}).

In a slight deviation from Jaini et al. [2020]’s setup, we
modify Neal’s funnel by adding a log-normal prior over the
variance of the second variable via a parameter γ ∈ R≥0,
which further controls the tail behavior. Density plots for
γ ∈ {0, 2, 4} are shown in the first column of Figure 1. The
funnel is stretched to the left as γ grows.

Model We train an RNVP flow [Dinh et al., 2017] with a
depth of 16 using the four aforementioned base distributions.
We use the Adam optimizer with a learning rate of 10−4.
We train the model for 104 iterations with a batch size of
1024 samples.

Results Figure 1 shows 20,000 samples from each NF,
colored according to their density under the NF. Figure 2
contains the quantile plots for each NF, choice of base, and
target distribution. For the standard Neal’s funnel (γ = 0),
all base distributions perform well, even the multivariate nor-
mal. Yet in the heavier-tailed cases (γ = 2 and γ = 4), the
multivariate normal obviously fails. The generalized normal
performs well for γ = 2, but we encountered optimization
pathologies for γ = 4. The Student’s t, on the other hand,
remains stable but was unable to capture the tails, as is made
clear in the quantile plots. Lastly, we found the mixture to
perform the best, remaining stable and matching the density
well even for γ = 4. We conjecture that the mixture’s per-
formance is partially due to the flexibility of the base and
partially due to optimization stability. Regarding the former,
the quantile plots show that the mixture is reasonably close
to the target in all cases. The Student’s t base is similarly
close, but does not enjoy the same performance. Thus, we
suspect the t’s failure might be due to optimization, not
expressivity of the base.

4.2 SYNTHETIC DATA GENERATION

Data and Model We next apply the NFs to a real-world
tabular data set: Credit Fraud1. This dataset contains trans-
actions as features and a label identifying each as fraud
or legitimate. The dataset is quite challenging: it has ex-
treme class imbalance—284,315 legitimate transactions,
492 fraudulent ones—and contains heavy-tailed features.
We again train an RNVP NF with the same architecture as
the Neal’s funnel experiment but with a depth of 12 due to
memory limitations. The rest of the parameters are set as
our previous experiment.

Evaluation To evaluate the models, we test whether the
synthetic data can be distinguished from the real data. We
formulate this task as a supervised learning problem. Syn-
thetic and real data are labeled as such, and a classifier is
trained on the combined data with the goal of predicting
if an observation is real or synthetic. We use a logistic re-
gressor and a support vector machine as the classifiers. We
generated 20,000 samples from the flow and combined them
with a stratified sample of 20,000 observations from the ac-
tual credit dataset. We use 5-fold cross validation and report
the average area under the ROC curve.

Results Table 1 reports the AU-ROC curve results for the
two classifiers and for the two data classes (legitimate vs
fraudulent). Legitimate transactions comprise 99.8% of the
total records, and the multivariate normal and mixture of
normals performed best. We conjecture that this was due to
the Student’s t and generalized normal having too heavy of
tails, resulting in their data being easily distinguished. For
fraudulent transactions, again the Student’s t and general-
ized normal performed poorly, possibly due to optimization
difficulties. The mixture of normals again performed well,
leading us to conclude the model was able to adapt to both
light- and heavy-tailed situations.

5 CONCLUSIONS AND FUTURE WORK

We empirically studied the effect of the choice of base dis-
tribution on a NF’s ability to model heavy-tailed data. We
found that the mixture of normals, while naive, afforded
stable training and seemed to adapt well to both heavy-
and light-tailed settings—as demonstrated on a dataset of
fraudulent vs legitimate transactions.

In future work, we wish to further understand why the mix-
ture model performs best—whether that be due to optimiza-
tion or expressivity. We will also perform experiments on
additional datasets. Lastly, we also will look to imbue tail-
index-specific information into the NF, to make it easier to
capture nuanced tail behavior.

1https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

3

Figure 1: Density plots for RNVP with different bases. We observe that for the heavier-tailed cases the mixture bases
performs consistently well while the rest fail in some or all cases.

Figure 2: Quantile plots for RNVP with different bases for the second variable of the Neal’s funnel x2. We illustrate the
inability of non-mixture bases in capturing the tail behavior of the target distribution for the heavier-tailed cases.

Area Under ROC Curve (%)
Legitimate Fraudulent

Base Distribution Logistic Regression Support Vector Machine Logistic Regression Support Vector Machine
Multivariate Normal 89 87 57 59
Student’s t 100 100 100 100
Generalized Normal 100 100 100 100
Mixture of Normals 66 98 30 41

Table 1: Identifying Real vs Synthetic Data. The table reports the area under the ROC curve for two classifiers, a logistic
regressor and a support vector machine. Thus, lower scores are better since it means the classifier had difficulty distinguishing
real from synthetic. The mixture performed the best in three out of four cases.

4

Acknowledgements

This research has been performed as part of the Enabling
Personalized Intervention (EPI) project. The EPI project
is funded by the Dutch Science Foundation in the Com-
mit2Data program, grant number 628.011.028.

References

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. International Confer-
ence on Learning Representations, 2017.

Anja Feldmann and Ward Whitt. Fitting mixtures of ex-
ponentials to long-tail distributions to analyze network
performance models. Performance evaluation, 31(3-4):
245–279, 1998.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Neural
Information Processing Systems (NIPS), 2014.

Paul Hagemann and Sebastian Neumayer. Stabilizing in-
vertible neural networks using mixture models. Inverse
Problems, 37(8):085002, 2021.

Jonathan B Hill. On tail index estimation for dependent,
heterogeneous data. Econometric Theory, 26(5):1398–
1436, 2010.

Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus
Brubaker. Tails of lipschitz triangular flows. In Inter-
national Conference on Machine Learning, pages 4673–
4681. PMLR, 2020.

Sanket Kamthe, Samuel Assefa, and Marc Deisenroth. Cop-
ula flows for synthetic data generation. arXiv preprint
arXiv:2101.00598, 2021.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. Advances in Neural
Information Processing Systems, 31, 2018.

Makoto Okada, Kenji Yamanishi, and Naoki Masuda. Long-
tailed distributions of inter-event times as mixtures of
exponential distributions. Royal Society open science, 7
(2):191643, 2020.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic mod-
eling and inference. Journal of Machine Learning Re-
search, 22(57):1–64, 2021. URL http://jmlr.org/
papers/v22/19-1028.html.

Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International conference on
machine learning, pages 1530–1538. PMLR, 2015.

Donald B Rubin. Statistical disclosure limitation. Journal
of official Statistics, 9(2):461–468, 1993.

Esteban G Tabak and Cristina V Turner. A family of non-
parametric density estimation algorithms. Communica-
tions on Pure and Applied Mathematics, 66(2):145–164,
2013.

A APPENDIX

5

http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html

(a) "Legitimate transactions" class

(b) "Fraudulent transactions" class

Figure 3: Delta of real and estimated tail indices [Hill, 2010] for each feature - tail index is an indicator of how long or short
tailed the distribution of a certain random variable is. Negative difference means underestimation of the tail length while
positive difference means overestimation. We observe that while the tail with mixture base performs best in capturing the
tail behavior of features, other examined base distributions fail to properly capture the tail behavior to various degrees. It is
especially apparent for the case of Studentś t distribution with underestimation of most of the tail indices

6

	Introduction
	Background
	Heavy-Tailed Normalizing Flows
	Experiments
	Neal's Funnel
	Synthetic Data Generation

	Conclusions and Future Work
	Appendix

