
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL LOGICAL INDEX FOR FAST KNOWLEDGE
GRAPH COMPLEX QUERY ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex Query Answering (CQA) over knowledge graphs is a crucial multi-
hop reasoning task aimed at addressing first-order logical queries within large
and incomplete knowledge graphs. Direct traversal search methods rely solely
on graph topology and often miss answers due to the incompleteness of the
graph, thus neural models have been proposed to generalize the neglected an-
swers from observed facts. There are primarily two lines of research tackling the
challenges of CQA. Query embedding models learn representations for complex
queries, offering fast speed but often providing only generic performance. In
contrast, neural symbolic search methods deliver better performance, although
they tend to be computationally more expensive. In this paper, we propose an
efficient and scalable search framework that combines the precision of symbolic
methods with the speed of embedding techniques. Our model utilizes embed-
ding methods to compute Neural Logical Indices (NLI) to reduce the search
domain for each variable in advance, followed by an approximate symbolic search
for fine ranking. The search is precise for tree-form queries and approximates
cyclic queries (which are NP-complete) in quadratic complexity with respect
to the search domain, matching the complexity of tree-form queries. Experi-
ments on various CQA benchmarks show that our framework reduces computation
by 90% with a minimal performance loss, alleviating both efficiency and scal-
ability issues for symbolic search methods. Our code is provided in https:
//anonymous.4open.science/r/efficient_CQA/README.md.

1 INTRODUCTION

Knowledge Graphs (KGs) are knowledge bases that represent relational facts in graph form. Although
KGs have an interpretable structure supporting many real-world applications (Ji et al., 2021), they
often suffer from incompleteness (Safavi & Koutra, 2020; Hu et al., 2020). Recently, complex
query answering (CQA) (Ren et al., 2023; Wang et al., 2022) over knowledge graphs has attracted
significant interest because this practical task performs logical reasoning with new knowledge inferred
from observed knowledge graphs. Currently, the CQA task mainly focuses on answering existential
first-order logic queries (Ren & Leskovec, 2020; Yin et al., 2023), involving logical operations such
as conjunction, negation, disjunction, and the existential quantifier. Due to the incompleteness of
KGs, many answers are overlooked in direct traversal searching.

There are primarily two lines of research to address the challenge of CQA. One is query embed-
ding methods which represent the query’s answer set using representations like vector, box, beta
distribution of low dimensional space (Hamilton et al., 2018; Ren et al., 2020; Ren & Leskovec,
2020). In this approach, logical operations are transformed into set operations within an operator
tree (Wang et al., 2021; Ren et al., 2023), modeled by neural networks in alignment with their seman-
tics in the low-dimensional space. Although the representational capabilities have been thoroughly
explored (Zhang et al., 2021; Choudhary et al., 2021), current query embedding methods still face
limitations in both performance and expressiveness (Yin et al., 2024). The second line of research,
neural-symbolic search methods (Arakelyan et al., 2020; Zhu et al., 2022; Bai et al., 2023; Yin et al.,
2024), utilizes knowledge graph completion methods (Bordes et al., 2013; Sun et al., 2018; ?) as a
backbone to predict missing facts and model logical operations using fuzzy logic inference. Though
symbolic search methods usually have both strong performance and interpretability, they typically
suffer from high complexity and lack scalability, as shown in Fig 1.

1

https://anonymous.4open.science/r/efficient_CQA/README.md
https://anonymous.4open.science/r/efficient_CQA/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

20 40 60 80 100
Queries Per Seconds (QPS)

0.14

0.16

0.18

0.20

M
ea

n
Re

cip
ro

ca
l R

an
k

(M
RR

)

The effciency and performace on BetaE

Our methods
FIT
CQD-CO
LMPNN
ConE

0 20 40 60 80 100
Queries per Second (QPS)

0.18

0.20

0.22

0.24

M
ea

n
Re

cip
ro

ca
l R

an
k

(M
RR

)

The effciency and performace on Real EFO1

Our methods
FIT
CQD-CO
LMPNN
ConE

Figure 1: The performance and efficiency on the BetaE (Ren & Leskovec, 2020) and Real EFO1 (Yin
et al., 2024) benchmarks. We use Mean Reciprocal Rank (MRR) and Queries Per Second (QPS) as
metrics for performance and efficiency, with higher values indicating better results. Our proposed
framework flexibly reduces the search domain for symbolic methods, and strikes a good balance
between performance and efficiency. We present the results of the search domain as 1000, 2000, 3000,
and 4000 for the FB15K-237 knowledge graph with 14,951 entities. With a reduced search domain,
our method can achieve significant improvements in efficiency with a slight decrease in performance.

The differences between the embedding-based approach and the neural-symbolic search approach
are not just empirical but fundamentally related to query syntax and complexity (Yin et al., 2024).
From a syntactical aspect, the widely used operator tree in query embedding methods is limited to
representing a subset of Existential First Order queries with single free variable (EFO1 queries),
denoted as tree-form queries (Yin et al., 2024). The tree-form queries in previous datasets (Ren
et al., 2020; Ren & Leskovec, 2020; Wang et al., 2021) are solvable with quadratic complexity
concerning |E|, where |E| is denoted as the number of entities in KG (Bai et al., 2023; Yin et al.,
2024). Consequently, the real EFO1 dataset (Yin et al., 2024) that includes multigraphs and cyclic
graph patterns has been proposed, further underscoring the complexity issues. When answering
the EFO1 query with n variable, the existing precise symbolic search method (Yin et al., 2024)
exhibits a worst-case computational complexity O(|E|n) which grows polynomially with the size of
the knowledge graph but increases exponentially with the number of variables. The query embedding
methods can only approximate the general EFO1 query by operator tree but the complexity is
polynomial with respect to its dimension.

Despite the fundamental differences between these two types of methods, we design a synergistic
way to integrate them together in a mutually beneficial way, thereby delivering a new frontier of
performance and efficiency, as shown in Fig 1. Inspired from the arc consistency (Chen et al., 2011)
in constraint satisfaction problem (Gottlob et al., 2000; Tönshoff et al., 2022)1, it is unnecessary to
use all entities of the KG as the search domain for symbolic search methods. Instead, we can leverage
the surrounding constraints of each variable to reduce the corresponding search domain in advance,
thereby decreasing the computational cost required for originally slow but accurate symbolic searches.
Our first contribution is the Neural Logical Index (NLI), which models the surrounding constraints
with fast but not accurate embedding-based methods. In terms of the extent of the constraints utilized,
we propose two specific strategies, as illustrated in Fig. 2. The local constraints strategy uses the
relations directly connected with the variable, with a relation tail prediction task formulated to assist
in computing the local constraints. The global constraints strategy considers broader constraints
across the entire query to further reduce the search domain. Further details are presented in Section 3.

The second technical contribution of this work is that we propose a scalable framework, Neural
Logical Index for Search Approximately (NLISA) addressing the cyclic query in quadratic complexity
with respect to the search domain. In particular, this approximate search framework can be parallelized
and is exact in tree-form queries similar to QTO (Bai et al., 2023) and FIT (Yin et al., 2024).
Combining the approximate search framework with neural logical indices, our method can efficiently
answer the general EFO1 queries, including the cyclic queries. Experiments on various CQA
benchmarks show that our framework reduces computation by 90% with a minimal performance loss,
alleviating both efficiency and scalability issues. Additionally, we demonstrate that our framework
can execute neural-symbolic methods on a KG with an order of magnitude more entities than before,
highlighting the scalable nature of our approach.

1The complex query answering can be reduced as the constraint satisfaction problem by treating each atom
in the logical query as constraints.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Married

(a) Query graph of cyclic (b) The local constraints (c) The global constraints

Graduate

Not Graduate

𝑥!

𝑥"

𝑦 Graduate𝑥!

𝑥"

𝑦 Graduate

Not Graduate

𝑥!

𝑥"

𝑦

Married Married

Figure 2: Left is the query graph of a given query “Find someone who is married to a person
who graduated from a different institution.” The formal language is ∃x1, x2.¬Graduate(x1, x2) ∧
Graduate(x1, y) ∧Married(x2, y). This cyclic query can not be modeled by an operator tree. The
middle is the presentation of the used constraints in the local strategy for free variable y. The right is
the presentation of the used constraints in the global strategy for the free variable y.

2 BACKGROUND

2.1 KNOWLEDGE GRAPH

Definition 1 (Knowledge Graph). Let E be the finite set of entities andR be the finite set of relations,
a knowledge graph is a collection of factual triples G = {(si, ri, oi)}, where si and oi are entity
objects, and ri is a relation predicate.

We augment the facts by adding reverse relations and denote r+ as the original relation r and r− as
its reverse, where each original triple (h, r, t) will result in two triples: (h, r+, t) and (t, r−, h). The
knowledge graph can be represented as a first-order logic knowledge base, where each triple (s, r, o)
denotes an atomic formula r(s, o), with r ∈ R a binary predicate and s, o ∈ E its arguments.

2.2 LOGICAL QUERIES AND ANSWER SET

Complex Query Answering (CQA) on knowledge graphs aims to derive the answer set of the multi-
hop logical query using the KG as the knowledge base. The existential first order logic queries with
single free variable (EFO1) involving the existential quantifiers (∃), conjunction (∧), disjunction (∨),
and negation (¬), are of particular interest in Disjunctive Normal Form (DNF).
Definition 2 (EFO1 Query). The EFO1 query is defined as :

ψ(y;x1, · · · , xn) = ∃x1, · · ·xn.(c11 ∧ · · · ∧ c1n1
) ∨ · · · ∨ (ck1 ∧ · · · ∧ cknk

), (1)

where cij is the atomic formula r(h, t) or its negation ¬r(h, t), r is a relation predict fromR, h and t
are entity belong to E or a variable ranging from E .

To simplify notation, we sometimes denote ψ(y;x1, · · · , xn) as ψ(y) or ψ. Given a variable x or y
in query ψ, and any entity s ∈ E , the substitution involves replacing all occurrences of the variable in
ψ with s, denote the process as s/x or s/y. Then we can define the answer set of the logical query.
Definition 3 (Answer set). Given an EFO1 query ψ(y), the answer set is defined by

A[ψ(y)] = {s ∈ E|ψ(s/y) = TRUE}. (2)

By the DNF, the answer set of EFO1 query ψ can be the union of decomposed conjunctive query’s
answer set (Ren et al., 2020), and we denote ϕ for conjunctive query. The conjunctive query can be
reduced as the constraint satisfaction problem by treating each atom as constraints (Yin et al., 2024).

2.3 OPERATOR TREE AND QUERY GRAPHS

By replacing logical operations with their corresponding set operations, some logical queries can be
represented in the operator tree (Ren et al., 2020). Notably, the existential quantifier introduces a new
set operation, set projection, which corresponds to logic skolemization (Luus et al., 2021).

As illustrated in Fig. 2, cyclic queries cannot be modeled using operator trees; thus, we follow Yin
et al. (2023) in using query graphs to represent general EFO1 queries. Each conjunctive query ϕ is
represented as a query graph, then the DNF can be represented as the disjoint query graphs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 4 (Query Graph). Let ϕ be a conjunctive query. Its query graphGϕ = {(hi, ri, ti,NEGi)}
consists of quadruples, where each quadruple corresponds to an atomic formula or its negation.
This representation defines an edge with two endpoints h and t, along with two attributes: r, which
denotes the relation, and NEGi, which is the bool variable indicating whether the atom is positive.
Definition 5 (Neighbor Subgraph). Let Gϕ be a conjunctive query graph and x be the variable in Gϕ,
the edges of neighbor subgraph for xi is Ne(xi, Gϕ) = {(hi, ri, ti,NEGi) ∈ Gϕ|hi = x or ti = x},
formed from the neighbor constraints of xi. The Nn(xi, Gϕ) is the corresponding node set.

We present an example of a query graph in Fig. 2. The concept of query graph is also similar to the
constraint graph (Vardi, 2000), as explored in constraint programming problems.

2.4 KNOWLEDGE GRAPH COMPLETION AND KNOWLEDGE GRAPH EMBEDDING

The task of knowledge graph completion addresses the issue of missing edges in a knowledge graph
by predicting the tail entity given the head entity and relation (s, r, ?) as the query.

To tackle this task, knowledge graph embedding models are developed by learning representations
of entities and relations within an embedding space. Given an atomic formula r(s, o) from the
knowledge graph with r ∈ R and s, o ∈ E , we denote es, eo, er ∈ Rd as the embedding vectors
corresponding to the entities and relation. The estimated embedding of (s, r, ?) is first computed by
ft(es, er), where f(·, ·) : Rd × Rd → Rd is the transformation function. Then, the likelihood of
r(s, o) is computed by the scoring function fs(ft(er, es), eo), where fs(·, ·) : Rd×Rd → [−∞,+∞]
is the scoring function related to the embedding space.

2.5 NEURAL SYMBOLIC SEARCH WITH FUZZY LOGIC

The t-norm ⊤ : [0, 1]× [0, 1]→ [0, 1] is the continuous relaxation of logical conjunction ∧, which
aims to generalize classical two-valued logic by allowing intermediary truth values between 1 (truth)
and 0 (falsity). A common example of a T-norm is the product-norm, defined as a⊤P b = a ∗ b.
Following the fuzzy logic, the negation can be relaxed as 1− x : [0, 1]→ [0, 1]. The T-conorm is the
dual to t-norm for disjunction and is defined by ⊥(x, y) : 1− (1− x)⊤(1− y). Details of t-norm
can refer to Appendix G. Then we can define the truth value function T as the following:
Definition 6 (Truth value function). Let ϕ and ψ be existential formulas, ⊤ and ⊥ are t-norms and
t-conorms, ⊥⋆ is another t-conorm, and r ∈ R, a, b ∈ E , with Pr(a, b) representing the truth value
of r(a, b). The truth value function T , whose range is [0, 1], is defined as follows:

(i) T (r(a, b)) = Pr(a, b)
(ii) T (¬ϕ) = 1− T (ϕ)

(iii) T (ϕ ∧ ψ) = T (ϕ)⊤T (ψ), T (ϕ ∨ ψ) = T (ϕ)⊥T (ψ)
(iv) T (∃xϕ(x)) = ⊥⋆

a∈ET (ϕ(a))

Combining fuzzy logic operations with the KG embedding models and using the max operation as
another t-conorm ⊥⋆ (Yin et al., 2024), verifying whether s is the answer to a query involving many
existential variables can be viewed as a multi-variable optimization problem:

T (q(s)) = max
xi∈E,1≤i≤n

T (c1)⊤ · · ·⊤T (ck). (3)

The maximum truth value of the answer a ∈ A[ϕ(y)] should be 1. Conversely, the maximum truth
value of an incorrect candidate entity should be 0.

3 NEURAL LOGICAL INDICES REDUCES THE SEARCH DOMAIN

We define the search domain D as the set of candidate entities when the symbolic search algorithm
operates over the variables. We denote Dx and Dy as the search domain for x and y, respectively. We
argue treating the entire entity set E , as done by previous search algorithms (Bai et al., 2023; Yin
et al., 2024), is unnecessary because each variable must maintain consistency with its surrounding
constraints (Chen et al., 2011). Overall, for each variable, our framework extracts the surrounding
subgraph as constraints and computes the neural logical indices by these constraints to reduce the
search domain.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 NEURAL LOGICAL INDICES

Given a query with the variable set V = {x1, · · · , xn, y} over KG, neural logical indices are defined
as a mapping from a variable in V to a subset of the entity set E : I(x) : V → 2E . To compute the I(x)
for each variable, we conceptually define the constraints as the subgraph pattern GS

x from the query
graph Gϕ. Then we propose the strategy to apply neural embedding models h to identify the entities
that satisfy the constraints represented by h(GS

x)). Let h(GS
x)) denote the ranking of the entities, we

determine I(x) by selecting the top k entities from this ranking: I(x) = Topk(h(GS
x), k). Thus,

I(x) serves as our reduced search domain Dx, which can accelerate symbolic search algorithms.

By using neural logical indices as the search domain for variables, we can narrow down the search
space, thereby simplifying the optimization problem in Equation 3 as follows:

T (ϕi(c/y;x1, · · · , xn)) = max T (c1)⊤ · · ·⊤T (ck) (4)
s.t. xi ∈ Di, 1 ≤ i ≤ n, (5)

where c ∈ Dy and the domain Dxi is simply denoted by Di.

The realizations of neural logical indices involve flexible choices for selecting subgraphs as constraints
and methods for computing them. We introduce two strategies: local and global. An example in
Fig. 2 illustrates these two types of constraints. We define the computation of neural logical indices
as the CUTDOMAIN function, which can be easily integrated with symbolic search algorithms.

3.2 LOCAL CONSTRAINTS STRATEGY: RELATION TAIL PREDICTION TASK

The local constraints strategy only includes the first-order neighbor of the variable, where GS
y =

Nn(xi, Gϕ), as illustrated in Fig. 2. We only consider the information from relations. It is evident that
since y must be the tail of the “Graduate” relation and the head of the “Married” relation, searching
the variable y within these entities is equivalent to searching the entire space E .

To utilize the relations to prune the search domain, we propose the relation tail prediction task which
predicates the tail only given the relation. 2 To address the incompleteness of this task, we adopt the
knowledge graph embedding framework, as they share similar characteristics. Instead of starting
from scratch, we train a hyper-network (Ha et al., 2016) to generate new embeddings h based on old
KG embedding models (Trouillon et al., 2016; Chen et al., 2021). Given the entity embedding eo and
relation embedding er in pre-trained knowledge graph embeddings, we have

êo = RELU(W1eo + b1), êr = RELU(W2er + b2).

Then the likelihood of relation tail pair fs(êr, êt) is computed by the same scoring function in
Section 2.4. For a possible entity eo, we employ the T-norm to calculate the scores as follows:
σ(fs(ˆMarried, êo)⊤σ(fs(ˆGraduate, êo)), wherer σ(·) is the sigmoid activate function.

3.3 GLOBAL CONSTRAINTS STRATEGY: QUERY EMBEDDING

The global constraints strategy extends the constraints to encompass the entire query graph. As
illustrated in Fig. 2, the utilized constraints represent the whole graph, which means that GS

y = Gϕ

for y. Although the problem formulation has become more complex, we can leverage the ability of
query embedding h to directly address. Following this, the two-stage coarse-to-fine ranking process
is implemented, similar to the coarse-to-fine ranking used in information retrieval (Liu et al., 2019).

4 SEARCH WITH NEURAL LOGIC INDEX

In this section, we introudce an efficient framework called Neural Logical Index for Search Approxi-
mately (NLISA). We begin by reviewing relevant results from FIT (Yin et al., 2024). Next, we explain
how to accelerate the existing steps using neural logical indices. Following this, we discuss the
appropriate approach for searching cyclic queries in sub-problem optimization. Finally, we present
the complexity analysis and discuss the differences compared to existing approximate methods.

2Predicting the head of relation r+ can be modeled as the tail of reverse relation r−.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 RECAP OF NEURAL SYMBOLIC SEARCH METHOD

Definition 7 (Leaf node). A leaf node is a variable node connecting to only one other variable node.

Definition 8 (Fuzzy vector). Given the domain D and a membership function µ : D → [0, 1], we
represent the fuzzy set of D as vector form D with Di = µ(s,D), where s ∈ D.

The key technique of FIT (Yin et al., 2024) is that constant nodes and leaf nodes can be removed,
with the corresponding constraints stored in fuzzy vectors. The complexity of removing constant
nodes and leaf nodes are O(|E|) and O(|E|2), respectively. By continuously removing constant and
leaf nodes, FIT can handle acyclic queries. For cyclic queries, FIT enumerates one variable within
the cycle as a constant node, which results in exponential complexity.

4.2 SUB-PROBLEM REDUCTION WITH NEURAL LOGICAL INDICES

We observe that the truth values of the atomic formula in previous works (Bai et al., 2023; Yin et al.,
2024) can be interpreted as normalization using the average, as shown following. Denoting observed
KG as Gtrain and the observed tail set as T r

s = {t|(s, r, t) ∈ Gtrain}, the truth value Pr(s, o) ∈ [0, 1]
can be obtained from the normalization:

Pr(s, o) =
exp(fs(ft(er, es), eo))∑

oi∈T r
s
exp(fs(ft(er, es), eoi))/|T r

s |
. (6)

The normalization can be adjusted as needed; further details are provided in Appendix D.

Then we can solve the problem in Equation 4 by brute force, which involves the n+ 1 order tensor
Tϕ, where Tϕ

i1,i2,··· ,in,in+1
= T (ϕi(y

in+1 ;xi11 , · · · , xinn)) and xi11 denote the i1 entity in Di. Though
the search domain is reduced, the complexity is also huge. We sequentially optimize the problem for
given xi and the sub-problem can be extracted by the following:

max
xi∈Di

[T (c1)⊤ · · ·⊤T (ck)] = max
xi∈Di

[⊤ci∈N (xi)T (ci)]⊤[⊤cj /∈N (xi)T (cj)]. (7)

Denote the number of totally involved variables in this sub-problem as k, the involved tensor is k
order. When xi is a leaf variable, only the second-order tensor is computed to solve the sub-problem
and the second tensor is necessary when computing atoms with two variables as arguments. Then
eliminated constraints are stored in the fuzzy vectors.

Proposition 1 (REMOVELEAFNODE). The leaf node in Gϕ can be removed in O(|Dx|2+ |Dx||Dy|).

It’s clear that our realization for removing nodes has lower complexity when |D| < |E|. The details
of implementation for REMOVELEAFNODE function can refer to Appendix C. And we also have
similar results REMOVECONSTNODE for constant node (Yin et al., 2024).

Proposition 2 (REMOVECONSTNODE). The constant node inGϕ can be removed inO(|Dx|+ |Dy|).

4.3 APPROXIMATE SEARCH FOR CYCLIC QUERIES

The cyclic queries can not be addressed by removing constant nodes and leaf nodes (Yin et al.,
2024), and it encounters exponential complexity. To tackle this, we propose local search over local
constraints and autoregressively search the assignment for variables. With the xi as an example, we
optimize the most likely entity for every o ∈ Dy over the remaining constraints and fuzzy vectors as
follows:

max
xi

[⊤ci∈Ne(xi)T (ci)]⊤[⊤x∈Nn(xi)µ(x,Cx)]. (8)

Specifically, we treat the other existential nodes {xj} in Nn(xi) as dummy nodes, respectively
applying the max operation to {xj} to eliminate the variables. Then we take max operation over the
target variable xi to determine its assignment. This approach effectively exploits information from
local constraints and breaks the cycle while maintaining quadratic complexity with respect to the
search domain. Once all remaining variable assignments are obtained, we use t-norm and t-conorm
to integrate the truth values of the logical query under the given variable assignments.

Realization of the above approximate search induces a function LOCALOPTIMIZE.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Neural logical Index enhanced Search Approximately (NLISA)
Require: Input query graph Gϕ and initial fuzzy vectors for existential variables and free variable as
Cx and Cy , the size of the reduced domain |Dx| and |Dy|.

Ensure: Output answer vector T (Gϕ, {Cx}, Cy)
({Dx},Dy)← CUTDOMAIN(Gϕ, |Dx|, |Dy|)
(Gϕ, {Cx}, , Cy)← REMOVECONSTNODE(Gϕ, {Cx}, Cy)
while Gϕ contains a leaf node xi do
(Gϕ, {Cx}, Cy)← REMOVELEAFNODE(xi, Gϕ, {Cx}, Cy)

end while
for each remaining node xj in Gϕ do
(Gϕ, {Cx}, Cy) = LOCALOPTIMIZE(xj , Gϕ, {Cx}, Cy)

end for
return T ((Gϕ, {Cx}, Cy))

4.4 ALGORITHM AND COMPLEXITY ANALYSIS

Finally, we present the complete procedure of our method, as shown in Algorithm 1. Our objective is
to propose an efficient symbolic search method for general EFO1 queries. The key aspect is that we
can flexibly reduces the search domain. Additionally, our appropriate search reduces the complexity
of answering cyclic queries from exponential to quadratic with respect to the search domain.

The space complexity of our method isO((|E|+ |R|+dh) ∗d), where d is the embedding dimension
of the KG embedding model and dh is the hidden dimension of hyper-network. This complexity is the
same as the knowledge graph embedding and scales linearly with the sizes of entities and relations.

The time complexity is given by O((|Dx||Dy|+ |Ex|2 + |Dx|+ |Dy|)d), where |Dx| and |Dy| are
the size of search domain of the existential and free variable, respectively. It is evident that our
algorithm exhibits quadratic complexity for any EFO1 query and can flexibly reduce the complexity
by adjusting the size of the search domain.

Compared to other approximate symbolic search methods, such as CQD-beam (Arakelyan et al.,
2020) and CQD-CO (Arakelyan et al., 2020), CQD-beam is constrained by the operator tree and only
utilizes partial constraints to retain consistent entities as intermediate variables. On the other hand,
CQD-CO optimizes the representation of existential variables in continuous space, which may limit
expressiveness and result in slower performance. Notably, both methods do not reduce the search
domain; instead, they only decrease the amount of information retained for intermediate variables.

5 EXPERIMENTS SETTING

In this section, we conduct a comprehensive evaluation of our method across diverse tasks to
investigate its effectiveness and efficiency. In terms of query structure, we consider tree-form queries
and general EFO1 queries. Regarding the scale of the knowledge graph, we consider graphs with
15,000, 60,000, and 400,000 entities.

5.1 BENCHMARKS

The BetaE benchmark (Ren & Leskovec, 2020) is the standard benchmark for complex question
answering (CQA), primarily containing tree-form queries. The benchmark is comprised of three
knowledge graphs (KGs): FB15k (Bordes et al., 2013), FB15k-237 (Toutanova et al., 2015), and
NELL995 (Xiong et al., 2022). Specifically, the BetaE benchmark contains 14 distinct query types,
with 5 types involving negation operations. It is important to note that the "pni" query type in BetaE
is a universal first-order logic query, and is therefore excluded from the evaluation.

The Real EFO1 benchmark (Yin et al., 2024) proposes 10 new query types beyond the tree-from
queries, with the same KGs as BetaE. In particular, the Real EFO1 benchmark introduces new
patterns, including multi-graph, and cyclic graphs. The visualization of these query structures of
BetaE and Real EFO1 benchmark is presented in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The Smore benchmark (Ren et al., 2022) considers the same tree-form queries as BetaE benchmark,
but the queries are sampled from a much larger-scale KG. Since only the FB400K dataset with
40,0000 entities has been released, we select this KG as the large-scale benchmark.

5.2 EVALUATION PROTOCOL

To evaluate the effectiveness over incomplete knowledge graphs (KGs), we adopt the evaluation
scheme from (Ren & Leskovec, 2020), distinguishing the answers to each query into easy and hard
sets. Hard queries are defined as non-trivial queries that cannot be answered by direct traversal along
the edges of the KG and require predicting at least one missing link in the test and validation splits.
We assess the CQA models on these non-trivial queries by calculating the rank r for each hard answer
against non-answers, and we compute the Mean Reciprocal Rank (MRR) and HIT@k.

To evaluate the efficiency, we experimentally measure the speed and running memory required to
answer complex queries. We sample 100 queries for different query types in each benchmark and
calculate the average queries per second (QPS). We record both the model memory and the maximum
running memory during evaluations. For a fair comparison between models that support batching and
those that do not, the running memory is calculated by excluding the model memory from the total
running memory and then dividing the result by the batch size.

5.3 BASELINES

We consider various state-of-the-art CQA methods as baselines. In particular, we compare our
approach with strong baselines from symbolic search methods, including CQD-CO (Arakelyan
et al., 2020), CQD-Beam (Arakelyan et al., 2020),QTO (Bai et al., 2023), and FIT (Yin et al., 2023).
Additionally, we include ConE and LMPNN as baselines for comparison with query embedding
methods. We also examine the GNN-QE method, which combines graph neural networks with
symbolic methods. To ensure fairness, we use the same checkpoint for those methods requiring
a pre-trained neural link predictor, including CQA, QTO, FIT, and our method. For the FB15K,
FB15K-237, and NELL datasets, we utilize the checkpoints provided by CQD-CO (Arakelyan et al.,
2020). For FB400K, the details for the pretrained checkpoint are provided in Appendix F. Since FIT
is equivalent to QTO in tree-form queries (Yin et al., 2024), we don’t distinguish them in this case.

6 RESULTS

Our experimental results reveal two key insights. First, the search domain can be significantly
reduced with minimal performance loss, thereby alleviating efficiency and scalability issues. Second,
in addressing cyclic queries, our proposed approximate search exhibits quadratic complexity with
respect to the search domain and achieves performance comparable to that of precise symbolic search
methods. To simplify the analysis, we set |Dx| = |Dy| as approximately 10% of the corresponding
entity size. Specifically, we set Dx as 2000, 2000, and 6000 for FB15k-237, FB15k, and NELL,
respectively. We present the results of three benchmarks in the following three sections. The first
insight is demonstrated across all three benchmarks, while the second insight is illustrated on the Real
EFO1 benchmark in Section 6.2. In the implementation, both NLISA (Local) and NLISA (Global)
utilize the local constraints strategy for existential variables. However, NLISA (Local) applies the
local constraints strategy for free variables, while NLISA (Global) employs the global constraints.

6.1 TREE FORM QUERIES: BETAE BENCHMARK

We present the results of efficiency and performance on BetaE benchmark in Table 1 and Table 2,
respectively. Table 1 shows that symbolic search methods, including CQD-CO and FIF, exhibit
remarkably low QSP, while FIT suffers from rapid CUDA memory usage as the size of the knowledge
graph (KG) increases. In contrast, our methods, which utilize neural logical indices, significantly
reduce the search domain, improving QSP and decreasing CUDA memory usage. Table 2 demon-
strates that our method with the global constraint strategy achieves an average performance of 90%
of symbolic search method across three KGs, nearly surpassing all baselines except for the precise
search methods. Our method with the local constraint strategy does not rely on query embedding
methods, achieving lower performance but demonstrating higher QSP compared to those methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Efficiency results of the Tree-Form queries on BetaE benchmark (Ren & Leskovec, 2020).
KG Metric ConE LMPNN CQD-CO FIT NLISA(local) NLISA(global)

FB15k-237
Queries per Second ↑ 100 105 14 31 115 86

CUDA Memory of Running (M) ↓ 458 355 176 1208 232 337

FB15K
Queries per Second ↑ 97 101 10.1 20 109 79

CUDA Memory of Running (M) ↓ 338 365 189 2068 255 381

NELL
Queries per Second ↑ 23 24 7 3 35 20

CUDA Memory of Running (M) ↓ 1635 1955 760 15324 774 953

Table 2: MRR results(%) of the Tree-Form queries on BetaE benchmark (Ren & Leskovec, 2020).
The scores of the baselines are taken from their papers. We differentiate the methods that have
complexity concerning |E|. We highlight the best results in red and the second-best results in blue.

Method 1p 2p 3p 2i 3i ip pi 2u up AVG.(P) 2in 3in inp pin AVG.(N)

FB15K-237

CQD-CO 46.7 9.6 6.2 31.2 40.6 16.0 23.6 14.5 8.2 21.9
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 23.4 5.4 8.6 7.8 4.0 5.9

LMPNN 45.9 13.1 10.3 34.8 48.9 17.6 22.7 13.5 10.3 24.1 8.7 12.9 7.7 4.6 8.5

CQD-Beam 46.7 13.3 7.9 34.9 48.6 20.4 27.1 17.6 11.5 25.3
GNN-QE 42.8 14.7 11.8 38.3 54.1 18.9 31.1 16.2 13.4 26.8 10.0 16.8 9.3 7.2 8.5
FIT/QTO 46.7 14.6 12.8 37.5 51.6 21.9 30.1 18.0 13.1 27.4 14.0 20.0 10.2 9.5 13.4

NLISA(Local) 46.6 14.0 12.2 32.1 44.4 20.2 26.4 16.9 11.7 24.9 11.4 14.7 9.3 8.0 10.9
NLISA(Global) 46.6 14.3 12.3 36.2 50.0 21.2 29.3 17.6 12.5 26.7 12.4 17.1 9.3 8.3 11.8

FB15K

CQD-CO 89.2 25.6 13.6 77.4 78.3 44.2 33.2 41.7 22.1 46.9
ConE 75.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 49.8 17.9 18.7 12.5 9.8 14.8

LMPNN 85.0 39.3 28.6 68.2 76.5 43.0 46.7 36.7 31.4 50.6 29.1 29.4 14.9 10.2 20.9

CQD-Beam 89.2 65.3 29.7 77.1 80.6 71.6 70.6 72.3 59.4 68.5
GNN-QE 88.5 69.3 58.7 79.7 83.5 70.4 69.9 74.1 61.0 72.8 44.7 41.7 42.0 30.1 39.6
FIT/QTO 89.4 65.6 56.9 79.1 83.5 71.8 73.1 73.9 59.0 72.5 40.2 38.9 34.8 28.1 35.5

NLISA(local) 87.2 61.0 53.1 67.6 75.4 66.2 65.0 52.6 42.6 63.4 44.8 39.9 36.8 33.0 38.6
NLISA(Global) 89.4 64.7 55.4 76.4 82.3 71.1 71.1 71.9 57.5 71.1 48.3 44.4 37.9 34.5 41.3

NELL

CQD-CO 60.4 17.8 12.8 39.3 46.6 22.1 30.1 17.3 13.2 28.8
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 27.2 5.7 8.1 10.8 3.5 6.4

LMPNN 60.6 22.1 17.5 40.1 50.3 24.9 28.4 17.2 15.7 30.8 8.5 10.8 12.2 3.9 8.9

CQD-Beam 60.4 22.6 13.6 43.6 53.0 25.6 31.2 19.9 16.7 31.8
GNN-QE 53.3 18.9 14.9 42.4 52.5 18.9 30.8 15.9 12.6 28.9 9.9 14.6 11.4 6.3 10.6
FIT/QTO 60.8 23.8 21.2 44.3 54.1 26.6 31.7 20.3 17.6 33.4 12.6 16.4 15.3 8.3 13.2

NLISA(Local) 60.3 23.2 19.9 43.2 53.5 26.6 32.3 20.3 17.2 32.9 10.3 14.3 13.9 6.5 11.3
NLISA(Global) 60.8 23.3 19.8 44.0 53.8 26.8 32.6 20.3 17.3 33.2 10.2 14.2 14.0 6.5 11.3

6.2 GENERAL EFO1 QUEIRES: REAL EFO1 BENCHMARK

Here, we present our results in Table 3 on the real EFO1 benchmark, which contains general EFO1
queries beyond tree-form queries. For baselines QTO and ConE relied on the operator tree, the
new queries cannot be represented by an operator tree and can only be syntactically approximated.
Table 3 shows that our methods achieve nearly 95% of the performance of symbolic search methods,
outperforming all other baselines. This result indicates that our reduction framework is superior to
the tree-structure approximation used by QTO. Regarding cyclic queries, including “3c” and “3m”,
our approximate search framework achieves an average performance of almost 95% compared to
FIT, validating our second insight. Our method even outperforms over “2il” and “3il”, which we
hypothesize is due to the half-precision used in FIT to reduce memory usage. In terms of efficiency,
our method demonstrates significantly higher QSP compared to FIT, as shown in Fig. 1.

6.3 LARGE SCALE TREE-FORM QUERIES: SMORE BENCHMARK

Since training query embeddings on large-scale knowledge graphs (KGs) is challenging, we can only
consider existing query embedding methods and symbolic search using knowledge graph embeddings
as baselines. For the FB400K dataset, which contains 400,000 entities, we set |Dx| = |Dy| = 8000,
representing only 2% of the total. Table 4 demonstrates that precise symbolic search methods face out-
of-memory issues due to their quadratic complexity with respect to |E|. This can be anticipated based
on the rapid increase in CUDA memory usage as the number of entities grows, as shown in Table1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: MRR results(%) of the queries on the real EFO1 benchmark (Yin et al., 2024). The scores
of the baselines are directly taken from Yin et al. (2024). We differentiate the methods that have
complexity concerning |E|. We highlight the best results in red and the second-best results in blue.

Method pni 2il 3il 2m 2nm 3mp 3pm im 3c 3cm AVG.

FB15K-237

CQD-CO 7.7 29.6 46.1 6.0 1.7 6.8 3.3 12.3 25.9 23.8 16.3
ConE 10.8 27.6 43.9 9.6 7.0 9.3 7.3 14.0 28.2 24.9 18.3
LMPNN 10.7 28.7 42.1 9.4 4.2 9.8 7.2 15.4 25.3 22.2 17.5

QTO 12.1 28.9 47.9 8.5 10.7 11.4 6.5 17.9 38.3 35.4 21.8
FIT 14.9 34.2 51.4 9.9 12.7 11.9 7.7 19.6 39.4 37.3 23.9
NLISA(Local) 12.3 34.2 51.0 9.8 10.0 10.3 7.4 18.1 34.7 34.7 22.3
NLISA(Global) 14.0 34.6 51.8 10.0 9.3 10.7 7.5 18.4 35.7 35.7 22.8

FB15K

CQD-CO 7.7 29.6 46.1 6.0 1.7 6.8 3.3 12.3 25.9 23.8 16.3
ConE 37.0 40.1 57.3 33.3 11.5 23.9 27.6 38.7 35.0 36.3 34.1
LMPNN 38.7 43.2 57.8 40.3 7.9 24.0 30.5 48.4 32.2 30.9 35.4

QTO 48.2 49.5 68.2 64.6 19.4 48.5 53.7 73.9 53.3 54.9 53.4
FIT 57.9 70.4 77.6 73.5 39.1 57.3 64.0 79.4 63.8 65.4 64.8
NLISA(local) 55.9 69.1 70.5 66.0 38.3 49.1 55.2 76.0 57.9 59.7 59.8
NLISA(Global) 60.7 70.4 76.1 68.8 36.2 51.0 57.0 79.9 60.3 61.5 62.2

NELL

CQD-CO 7.9 48.7 68.0 31.7 1.5 12.9 13.8 33.9 38.8 35.9 29.3
ConE 10.3 42.1 65.8 32.4 7.0 12.6 16.8 34.4 40.2 38.2 30.0
LMPNN 11.6 43.9 62.3 35.6 6.2 15.9 19.3 38.3 39.1 34.4 30.7

QTO 12.3 48.5 68.2 38.8 12.3 22.8 19.3 41.1 45.4 43.9 35.3
FIT 14.4 53.3 69.5 42.1 12.5 24.0 22.8 41.5 47.5 45.3 37.3
NLISA(Local) 13.9 53.1 71.6 40.6 11.9 23.1 23.0 40.6 46.0 44.1 36.8
NLISA(Global) 14.0 53.4 72.1 41.0 10.7 22.7 23.1 40.6 46.0 44.1 36.8

Table 4: Averaged MRR results(%) on large KGs with different methods. The results of GQE, Q2B,
and BetaE are taken from Ren et al. (2022). The CQD-CO and NLISA(Local) use the same backbone
of knowledge graph embedding.

GQE Q2B BetaE CQD-CO FIT/QTO NLISA(Local)

FB400K 36.0 51.7 50.5 43.3 OOM 58.9

Our method, which employs a local constraints strategy, outperforms both the query embedding
methods and CQD-CO. This underscores the scalability challenges encountered by precise symbolic
search methods and highlights the importance of effective pruning techniques.

7 CONCLUSION

Complex query answering over knowledge graphs is a crucial multi-hop reasoning task aimed at
addressing first-order logical queries within large and incomplete knowledge graphs. Although sym-
bolic search methods exhibit strong performance and expressiveness, they face efficiency challenge
that hinders further development and application. Query embedding models learn representations for
complex queries, offering fast speed but often providing only generic performance. In this paper, we
integrate their advantage together in a mutually beneficial way and propose an approximate search
framework combined with flexible neural logical indices to address these efficiency issues. The
neural logical indices can be computed rapidly using embedding methods, significantly reducing the
search domain of symbolic methods. In particular, the approximate search framework can handle
cyclic queries well with a quadratic complexity. Our approximate search is precise for acyclic
queries. Experiments on various benchmarks show that, with a 10% reduced search domain, our
method achieves 90% performance, including for cyclic queries, while the QSP assess efficiency
is improved to be comparable to that of query embedding methods. Additionally, we demonstrate
that our framework can execute neural-symbolic methods on a KG with an order of magnitude more
entities than before, highlighting the scalable nature of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex Query Answering
with Neural Link Predictors. In International Conference on Learning Representations, 2020.

Erik Arakelyan, Pasquale Minervini, and Isabelle Augenstein. Adapting Neural Link Predictors for
Complex Query Answering, January 2023. URL http://arxiv.org/abs/2301.12313.
arXiv:2301.12313 [cs].

Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2Particles: Knowledge Graph
Reasoning with Particle Embeddings. In Findings of the Association for Computational Linguistics:
NAACL 2022, pp. 2703–2714, 2022.

Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering Complex Logical Queries on Knowl-
edge Graphs via Query Computation Tree Optimization. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, pp. 1472–1491. PMLR, July 2023. URL https:
//proceedings.mlr.press/v202/bai23b.html. ISSN: 2640-3498.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://papers.nips.cc/paper_files/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

Hubie Chen, Víctor Dalmau, and Berit Grußien. Arc consistency and friends. J. Log. Comput., 23:
87–108, 2011. URL https://api.semanticscholar.org/CorpusID:16561863.

Xuelu Chen, Ziniu Hu, and Yizhou Sun. Fuzzy logic based logical query answering on knowledge
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3939–
3948, 2022. Issue: 4.

Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction
as an auxiliary training objective for improving multi-relational graph representations. In 3rd
Conference on Automated Knowledge Base Construction, 2021. URL https://openreview.
net/forum?id=Qa3uS3H7-Le.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy. Prob-
abilistic entity representation model for reasoning over knowledge graphs. Advances in Neural
Information Processing Systems, 34:23440–23451, 2021.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural CSP decompo-
sition methods. Artificial Intelligence, 124(2):243–282, December 2000. ISSN 0004-3702. doi:
10.1016/S0004-3702(00)00078-3. URL https://www.sciencedirect.com/science/
article/pii/S0004370200000783.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. ArXiv, abs/1609.09106, 2016. URL
https://api.semanticscholar.org/CorpusID:208981547.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. Advances in neural information processing systems, 31, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and
learning systems, 33(2):494–514, 2021.

Hongyu Liu, Shumin Shi, and Heyan Huang. Coarse-to-fine document ranking for multi-document
reading comprehension with answer-completion. 2019 International Conference on Asian Lan-
guage Processing (IALP), pp. 407–412, 2019. URL https://api.semanticscholar.
org/CorpusID:214596446.

11

http://arxiv.org/abs/2301.12313
https://proceedings.mlr.press/v202/bai23b.html
https://proceedings.mlr.press/v202/bai23b.html
https://papers.nips.cc/paper_files/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://api.semanticscholar.org/CorpusID:16561863
https://openreview.net/forum?id=Qa3uS3H7-Le
https://openreview.net/forum?id=Qa3uS3H7-Le
https://www.sciencedirect.com/science/article/pii/S0004370200000783
https://www.sciencedirect.com/science/article/pii/S0004370200000783
https://api.semanticscholar.org/CorpusID:208981547
https://api.semanticscholar.org/CorpusID:214596446
https://api.semanticscholar.org/CorpusID:214596446

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-answering logical
queries on knowledge graphs. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, KDD ’21, pp. 1087–1097, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467375. URL
https://doi.org/10.1145/3447548.3467375.

Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang
Lebese, and Alexander Gray. Logic embeddings for complex query answering. arXiv preprint
arXiv:2103.00418, 2021.

H Ren, W Hu, and J Leskovec. Query2box: Reasoning Over Knowledge Graphs In Vector Space
Using Box Embeddings. In International Conference on Learning Representations (ICLR), 2020.

Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing Systems, 33:19716–19726, 2020.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schuurmans.
Smore: Knowledge graph completion and multi-hop reasoning in massive knowledge graphs. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
1472–1482, 2022. URL http://arxiv.org/abs/2110.14890. arXiv:2110.14890 [cs].

Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, and Jure Leskovec. Neural Graph
Reasoning: Complex Logical Query Answering Meets Graph Databases, March 2023. URL
http://arxiv.org/abs/2303.14617. arXiv:2303.14617 [cs].

Tara Safavi and Danai Koutra. Codex: A comprehensive knowledge graph completion benchmark.
arXiv preprint arXiv:2009.07810, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embedding by
Relational Rotation in Complex Space. In International Conference on Learning Representations,
2018.

Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One Model, Any CSP: Graph
Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction, August 2022. URL
http://arxiv.org/abs/2208.10227. arXiv:2208.10227 [cs].

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings of the
2015 conference on empirical methods in natural language processing, pp. 1499–1509, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Moshe Y. Vardi. Constraint satisfaction and database theory: a tutorial. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS
’00, pp. 76–85, New York, NY, USA, May 2000. Association for Computing Machinery. ISBN
978-1-58113-214-4. doi: 10.1145/335168.335209. URL https://dl.acm.org/doi/10.
1145/335168.335209.

Zihao Wang, Hang Yin, and Yangqiu Song. Benchmarking the Combinatorial Generalizability
of Complex Query Answering on Knowledge Graphs. Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks, 1, December 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html.

Zihao Wang, Hang Yin, and Yangqiu Song. Logical Queries on Knowledge Graphs: Emerging
Interface of Incomplete Relational Data. Data Engineering, pp. 3, 2022.

Zihao Wang, Weizhi Fei, Hang Yin, Yangqiu Song, Ginny Y Wong, and Simon See. Wasserstein-
Fisher-Rao Embedding: Logical Query Embeddings with Local Comparison and Global Transport.
arXiv preprint arXiv:2305.04034, 2023.

12

https://doi.org/10.1145/3447548.3467375
http://arxiv.org/abs/2110.14890
http://arxiv.org/abs/2303.14617
http://arxiv.org/abs/2208.10227
https://dl.acm.org/doi/10.1145/335168.335209
https://dl.acm.org/doi/10.1145/335168.335209
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Xiong, Nico Potyka, Trung-Kien Tran, Mojtaba Nayyeri, and Steffen Staab. Faithful Embeddings
for $$$\backslash$mathcal ${$e$}$$\backslash$mathcal ${$l$}$^${$++$}$ $$ Knowledge Bases.
In International Semantic Web Conference, pp. 22–38. Springer, 2022.

Dong Yang, Peijun Qing, Yang Li, Haonan Lu, and Xiaodong Lin. GammaE: Gamma Embeddings
for Logical Queries on Knowledge Graphs, October 2022. URL http://arxiv.org/abs/
2210.15578. arXiv:2210.15578 [cs].

Hang Yin, Zihao Wang, and Yangqiu Song. On Existential First Order Queries Inference on Knowl-
edge Graphs, April 2023. URL http://arxiv.org/abs/2304.07063. arXiv:2304.07063
[cs].

Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking existential first order queries and their infer-
ence on knowledge graphs. In The Twelfth International Conference on Learning Representations,
2024.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for
multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing Systems,
34:19172–19183, 2021.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for Logical
Queries on Knowledge Graphs. arXiv preprint arXiv:2205.10128, 2022.

13

http://arxiv.org/abs/2210.15578
http://arxiv.org/abs/2210.15578
http://arxiv.org/abs/2304.07063

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 QUERY EMBEDDING METHODS

Answering complex logical queries over knowledge graphs is naturally extended from link prediction
and aims to handle queries with complex conditions beyond simple link queries. This task gradually
grows by extending the scope of complex logical queries, ranging from conjunctive queries (Hamilton
et al., 2018) to Existential Positive First-Order (EPFO) queries (Ren et al., 2020), Existential First-
Order (EFO) queries (Ren & Leskovec, 2020), real Existential First-Order queries (Yin et al., 2024).
The primary method is query embedding, which maps queries and entities to a low-dimensional
space. The form of embedding has been well investigated, such as vectors (Hamilton et al., 2018;
Chen et al., 2022; Bai et al., 2022), geometric regions (Ren et al., 2020; Zhang et al., 2021; Liu et al.,
2021), and probabilistic distributions (Ren & Leskovec, 2020; Choudhary et al., 2021; Yang et al.,
2022; Wang et al., 2023). These methods not only explore knowledge graphs embedding but also
leverage neural logical operators to generate the embedding of complex logical queries.

A.2 SYMBOLIC METHODS

Neural-symbolic CQA models represent variables as fuzzy sets with vector forms µ ∈ [0, 1]E and
apply fuzzy logic to model the logic operations naturally. Built on the operator tree, GNN-QE (Zhu
et al., 2022) represents the intermediate variable as a fuzzy vector, and simultaneously adapts graph
neural network from KG completion to execute relation projection and models the logical operations
with fuzzy logic. In particular, the neural symbolic search method combining the knowledge graph
embedding with symbolic search is of particular interest. CQD-beam (Arakelyan et al., 2020; 2023)
uses beam search during the execution of operator tree, maintaining only a beam width of entities for
intermediate variables. CQD-CO uses gradient optimization to estimate the embedding of existential
variables (Arakelyan et al., 2020). Unlike previous approximate search methods, QTO is a precise
symbolic search method because it finds that the tree-form queries can be solved onO(|E|2). FIT (Yin
et al., 2024) extends its scope to general EFO1 by using the enumeration to handle cyclic queries.
However, the complexity is |E|n (Yin et al., 2024), where n is the variable number of query. In
general, the above two precise methods constantly remove nodes and preserve results with fuzzy
vectors corresponding to variables.While symbolic methods demonstrate good performance and
strong interpretability, they struggle with high computational complexity.

There are many other models and datasets proposed to enable answering queries with good perfor-
mance and additional features, see the comprehensive survey Ren et al. (2023).

B DETAILS OF CONSTRAINTS STRATEGIES

For local constraints, when the variable involves logical disjunction, we use the T-conorm to handle
it.

For global constraints, the computation of existential variables should treat them as free variables,
while the original free variables are converted into existential variables. This allows us to use query
embedding to compute the global constraints for the existential variables.

C DETAILS OF FUNCTIONS

REMOVCONSTNODE(Gϕ, |Dx|, |Dy|) removes the constant nodes based on the given domain of
variables. We consider the simplest case where (s, r, e,NEG = FALSE), with s as the constant node,
r as the relation, e as the existential variable, and NEG = FALSE indicating that this edge is positive.
We first construct the symbolic representation of this edge: s = [Pr(s, e

i)] ∈ R|De|, ei ∈ De.
We then update this representation into the fuzzy vector of the existential variable e by t-norm:
µ(e,D) = µ(e,D)⊤s. Consequently, we can remove this edge while preserving its constraints in the
fuzzy vector of e. The above method can be generalized to other cases, such as when the variable is a
free variable y and the edge is negative. A similar update approach can be used, and specific details
can be found in Yin et al. (2024).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

REMOVCONSTNODE(Gϕ, |Dx|, |Dy|) removes one leaf node based on the given domain of variables.
We consider the most difficult case where (e1, r, e2,NEG = FALSE), with s as the constant node, r
as the relation, e as the existential variable, and NEG = FALSE indicating that this edge is positive.
The symbolic representation of this edge results in a matrix: S = [Pr(e

i
1, e

j
2)] ∈ R|De1

|×|De2
|, ei1 ∈

De1 , e
i
2 ∈ De2 . We then update this representation into the fuzzy vector of the existential variable e by

t-norm and max operation: µ(e,D) = µ(e,D)⊤max(S, axis = 0). The proof of the effectiveness
of the above update can be found in Yin et al. (2024), and this update can be easily extended to other
cases, such as when the variable is a free variable y and the edge is negative.

D DETAILS OF TRUTH VALUES

The symbolic representation in the previous symbolic search method QTO and FIT is constructing
the set of truth values matrix for the whole knowledge graph To convert real number scores computed
by knowledge graph embedding modes to truth value that falls into [0, 1], QTO/FIT use the softmax
function: P ⋆

r,a(b) =
exp(s(a,r,b))

Σc∈Eexp(s(a,r,c))
. Next, QTO and FIT scale the results of the softmax function

using a factor based on the observed edges in the training graph since softmax outputs a vector that
sums to 1: Go.

Qa,b =

{
|{d|(a,r,d)∈Go}|

Σc∈{d|(a,r,d)∈Go}P⋆
r,a(c)

, if |{d|(a, r, d) ∈ Go}| > 0

1, if |{d|(a, r, d) ∈ Go}| = 0
(9)

where Ea,r = {b | (a, r, b) ∈ Go} represents the set of observed edges. Then the a-th row of r-th
matrix is got by clamping the value for each element:

Pr(a, b) = min(1, P ⋆
r,a(b)×Qa,b) (10)

They then mark the observed edges and set the truth value for these edges to 1. The scaling and
marking operations are performed on a case-by-case basis for each fact, which cannot be parallelized.

We demonstrate that these scaling operations can be parallelized through caching. For cases where
|{d|(a, r, d) ∈ Go}| > 0: the truth value is computed by the following normalization:

Qa,b =
exp(fr(a, b))∑

{d|(a,r,d)∈Go} exp(fr(a, d))
. (11)

To simplify the calculations, we use log-scale operations

log(Qa,b) = fr(a, b)− log(
∑

{d|(a,r,d)∈Go}

exp(fr(a, d))). (12)

If we cache Sr
a = log(

∑
{d|(a,r,d)∈Go} exp(fr(a, d))) with |E| × |R| size, we can parallel index the

cached values to optimize the computation of Equation 12. For cases where |{d|(a, r, d) ∈ Go}| > 0,
we have:

Sr
a = log(

∑
{d∈E}

exp(fr(a, d))), (13)

which allows the scaling operation to yield the softmax result. In general: the cached values
S ∈ RE|×|R are defined as follows:

Sr
a =

{
log(

∑
{d|(a,r,d)∈Go} exp(fr(a, d))), if |{d|(a, r, d) ∈ Go}| > 0

log(
∑

{d∈E} exp(fr(a, d))), if |{d|(a, r, d) ∈ Go}| = 0
(14)

This caching mechanism grows linearly with the size of the knowledge graph. By utilizing this
caching strategy, we can perform parallel computations for the scaling operations, facilitating efficient
dynamic symbolic representation construction. However, when it comes to listing the marked training
facts, our symbolic representation may exhibit slightly lower performance compared to the original
construction.

We formula the constructing process in the following three steps For the case that |{d|(a, r, d) ∈
Go}| > 0, the above derivation is equivalent with Equation 6.

However, the mask created based on the training facts cannot be completed in parallel. Therefore,
we rely on previous steps by caching. This is a key issue that may lead to a drop in our method’s
performance in experiments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

3P1P 2P 2I 3I

2IN 3IN INP PNI PIN

PI

IP

2U

UP

P I U N

Figure 3: 14 query types propsed in BetaE benchmark (Ren & Leskovec, 2020). These query types
are modeled by the operator tree.

Figure 4: 10 query types propsed in Real EFO1 benchmark (Yin et al., 2024). These query types are
modeled by query graph.

E DETAILS OF QUERY STRUCTURES

We present the visualization of query types BetaE benchmark (Ren & Leskovec, 2020) and Real
EFO1 benchmark (Yin et al., 2023) in Fig. 3 and Fig. 4, where the visualization of BetaE benchmark
is taken from Wang et al. (2023) and the visualization of Real EFO1 benchmark is taken from Yin
et al. (2024).

F DETAILS OF IMPLEMENTATION

F.1 KNOWLEDGE GRAPH COMPLETION

We reproduce the results from previous work (Chen et al., 2021) to train the embedding and hyper-
network. For the FB400K dataset, we search the hyperparameters with the following settings:
learning rates of [1 × 10−1, 1 × 10−2], embedding dimensions of [100, 200, 400], and λ values of
[0.0005, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 0]. We utilize the ComplEx model with the N3 regularizer. The
embedding initialization is set to 1× 10−3, and we employ the Adagrad optimizer.

F.2 RELATION TAIL PREDICTION

Why Use Hypernet?

Relation tail prediction is fundamentally similar to knowledge graph completion (KGC) tasks, as
both involve inferring missing tails from a knowledge graph. In KGC, the query is presented as
(h, r, ?), to predict the tail t. In contrast, relation tail prediction aims to predict the tail t given
the relation r. This similarity makes the embedding methods used in KGC equally applicable to
relation tail prediction. Hypernet is employed to generate weights dynamically, allowing the model
to automatically adjust representations for new tasks. This facilitates the sharing and adaptation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: MRR results for the trained Hypernet.
FB15K-237 FB15K NELL FB400K

MRR 1.0 0.998 0.99 1.0

of weights across different tasks. By adopting the embeddings from KGC, Hypernet enhances
the utilization of existing knowledge and enables quicker adaptation to relation tail prediction.
Additionally, Hypernet requires only a few parameters, improving performance while reducing
training costs and storage needs.

How Is Hypernet Trained?

The training process is similar to that of KGC, where each triple (h,r,t)(h,r,t) is replaced with (r,t)(r,t).
This requires only minor modifications compared to the existing KGC framework.

What Is the Performance of Hypernet?

For the hypernet used for relation tail prediction, we set the learning rate to 1 × 10−2 and search
the hidden dimensions [100, 200, 400] also using the ComplEx model with the N3 regularizer. The
embedding initialization remains at 1× 10−3, and the optimizer is Adagrad. The performance of our
method is quite impressive, as demonstrated in Table 5. The results indicate a strong capability of the
hypernet in addressing relation tail prediction tasks.

G t-NORM INTRODUCTION

Definition 9 (t-norm). A t-norm ⊤ is a function: [0,1] x [0,1]→ [0,1] that satisfies the following
properties:

(i) Communitavity: a⊤b = b⊤a

(ii) Monotonicity: (a⊤b) ≤ (c⊤b) if a ≤ c

(iii) Associativity: (a⊤b)⊤c = a⊤(b⊤c)

(iv) Neutrality: a⊤1 = a

Then the t-conorm ⊥ is directly defined by a⊥b = 1 − (1 − a)⊤(1 − b), which follows the De
Morgan’s law.

Finally, we introduce some common t-norms which are of interest:

(i) Godel: a⊤Gb = min(a, b)
(ii) Product: a⊤P b = a ∗ b

(iii) Łukasiewicz: a⊤LKb = max(a+ b− 1, 0)

In the main paper, we mainly focus on the Godel and Product t-norm.

17

	Introduction
	Background
	Knowledge Graph
	Logical queries and Answer set
	Operator tree and query graphs
	Knowledge graph Completion and Knowledge graph embedding
	Neural symbolic search with fuzzy logic

	Neural Logical Indices Reduces the Search domain
	Neural Logical indices
	Local constraints strategy: relation tail prediction task
	Global constraints strategy: query embedding

	Search with Neural Logic Index
	Recap of neural symbolic search method
	Sub-problem reduction with neural logical indices
	Approximate Search for Cyclic Queries
	Algorithm and Complexity Analysis

	Experiments Setting
	Benchmarks
	Evaluation Protocol
	Baselines

	Results
	Tree Form Queries: BetaE benchmark
	General EFO1 queires: real EFO1 benchmark
	Large scale Tree-Form Queries: Smore benchmark

	Conclusion
	Related Work
	Query Embedding methods
	Symbolic methods

	Details of constraints strategies
	Details of functions
	Details of truth values
	Details of query structures
	Details of implementation
	Knowledge graph completion
	Relation tail prediction

	t-norm introduction

