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ABSTRACT

Complex Query Answering (CQA) over knowledge graphs is a crucial multi-
hop reasoning task aimed at addressing first-order logical queries within large
and incomplete knowledge graphs. Direct traversal search methods rely solely
on graph topology and often miss answers due to the incompleteness of the
graph, thus neural models have been proposed to generalize the neglected an-
swers from observed facts. There are primarily two lines of research tackling the
challenges of CQA. Query embedding models learn representations for complex
queries, offering fast speed but often providing only generic performance. In
contrast, neural symbolic search methods deliver better performance, although
they tend to be computationally more expensive. In this paper, we propose an
efficient and scalable search framework that combines the precision of symbolic
methods with the speed of embedding techniques. Our model utilizes embed-
ding methods to compute Neural Logical Indices (NLI) to reduce the search
domain for each variable in advance, followed by an approximate symbolic search
for fine ranking. The search is precise for tree-form queries and approximates
cyclic queries (which are NP-complete) in quadratic complexity with respect
to the search domain, matching the complexity of tree-form queries. Experi-
ments on various CQA benchmarks show that our framework reduces computation
by 90% with a minimal performance loss, alleviating both efficiency and scal-
ability issues for symbolic search methods. Our code is provided in https:
//anonymous.4open.science/r/efficient_CQA/README.md.

1 INTRODUCTION

Knowledge Graphs (KGs) are knowledge bases that represent relational facts in graph form. Although
KGs have an interpretable structure supporting many real-world applications (Ji et al., 2021), they
often suffer from incompleteness (Safavi & Koutra, 2020; Hu et al., 2020). Recently, complex
query answering (CQA) (Ren et al., 2023; Wang et al., 2022) over knowledge graphs has attracted
significant interest because this practical task performs logical reasoning with new knowledge inferred
from observed knowledge graphs. Currently, the CQA task mainly focuses on answering existential
first-order logic queries (Ren & Leskovec, 2020; Yin et al., 2023), involving logical operations such
as conjunction, negation, disjunction, and the existential quantifier. Due to the incompleteness of
KGs, many answers are overlooked in direct traversal searching.

There are primarily two lines of research to address the challenge of CQA. One is query embed-
ding methods which represent the query’s answer set using representations like vector, box, beta
distribution of low dimensional space (Hamilton et al., 2018; Ren et al., 2020; Ren & Leskovec,
2020). In this approach, logical operations are transformed into set operations within an operator
tree (Wang et al., 2021; Ren et al., 2023), modeled by neural networks in alignment with their seman-
tics in the low-dimensional space. Although the representational capabilities have been thoroughly
explored (Zhang et al., 2021; Choudhary et al., 2021), current query embedding methods still face
limitations in both performance and expressiveness (Yin et al., 2024). The second line of research,
neural-symbolic search methods (Arakelyan et al., 2020; Zhu et al., 2022; Bai et al., 2023; Yin et al.,
2024), utilizes knowledge graph completion methods (Bordes et al., 2013; Sun et al., 2018; ?) as a
backbone to predict missing facts and model logical operations using fuzzy logic inference. Though
symbolic search methods usually have both strong performance and interpretability, they typically
suffer from high complexity and lack scalability, as shown in Fig 1.
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Figure 1: The performance and efficiency on the BetaE (Ren & Leskovec, 2020) and Real EFO1 (Yin
et al., 2024) benchmarks. We use Mean Reciprocal Rank (MRR) and Queries Per Second (QPS) as
metrics for performance and efficiency, with higher values indicating better results. Our proposed
framework flexibly reduces the search domain for symbolic methods, and strikes a good balance
between performance and efficiency. We present the results of the search domain as 1000, 2000, 3000,
and 4000 for the FB15K-237 knowledge graph with 14,951 entities. With a reduced search domain,
our method can achieve significant improvements in efficiency with a slight decrease in performance.

The differences between the embedding-based approach and the neural-symbolic search approach
are not just empirical but fundamentally related to query syntax and complexity (Yin et al., 2024).
From a syntactical aspect, the widely used operator tree in query embedding methods is limited to
representing a subset of Existential First Order queries with single free variable (EFO1 queries),
denoted as tree-form queries (Yin et al., 2024). The tree-form queries in previous datasets (Ren
et al., 2020; Ren & Leskovec, 2020; Wang et al., 2021) are solvable with quadratic complexity
concerning |E|, where |E| is denoted as the number of entities in KG (Bai et al., 2023; Yin et al.,
2024). Consequently, the real EFO1 dataset (Yin et al., 2024) that includes multigraphs and cyclic
graph patterns has been proposed, further underscoring the complexity issues. When answering
the EFO1 query with n variable, the existing precise symbolic search method (Yin et al., 2024)
exhibits a worst-case computational complexity O(|E|n) which grows polynomially with the size of
the knowledge graph but increases exponentially with the number of variables. The query embedding
methods can only approximate the general EFO1 query by operator tree but the complexity is
polynomial with respect to its dimension.

Despite the fundamental differences between these two types of methods, we design a synergistic
way to integrate them together in a mutually beneficial way, thereby delivering a new frontier of
performance and efficiency, as shown in Fig 1. Inspired from the arc consistency (Chen et al., 2011)
in constraint satisfaction problem (Gottlob et al., 2000; Tönshoff et al., 2022)1, it is unnecessary to
use all entities of the KG as the search domain for symbolic search methods. Instead, we can leverage
the surrounding constraints of each variable to reduce the corresponding search domain in advance,
thereby decreasing the computational cost required for originally slow but accurate symbolic searches.
Our first contribution is the Neural Logical Index (NLI), which models the surrounding constraints
with fast but not accurate embedding-based methods. In terms of the extent of the constraints utilized,
we propose two specific strategies, as illustrated in Fig. 2. The local constraints strategy uses the
relations directly connected with the variable, with a relation tail prediction task formulated to assist
in computing the local constraints. The global constraints strategy considers broader constraints
across the entire query to further reduce the search domain. Further details are presented in Section 3.

The second technical contribution of this work is that we propose a scalable framework, Neural
Logical Index for Search Approximately (NLISA) addressing the cyclic query in quadratic complexity
with respect to the search domain. In particular, this approximate search framework can be parallelized
and is exact in tree-form queries similar to QTO (Bai et al., 2023) and FIT (Yin et al., 2024).
Combining the approximate search framework with neural logical indices, our method can efficiently
answer the general EFO1 queries, including the cyclic queries. Experiments on various CQA
benchmarks show that our framework reduces computation by 90% with a minimal performance loss,
alleviating both efficiency and scalability issues. Additionally, we demonstrate that our framework
can execute neural-symbolic methods on a KG with an order of magnitude more entities than before,
highlighting the scalable nature of our approach.

1The complex query answering can be reduced as the constraint satisfaction problem by treating each atom
in the logical query as constraints.
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Figure 2: Left is the query graph of a given query “Find someone who is married to a person
who graduated from a different institution.” The formal language is ∃x1, x2.¬Graduate(x1, x2) ∧
Graduate(x1, y) ∧Married(x2, y). This cyclic query can not be modeled by an operator tree. The
middle is the presentation of the used constraints in the local strategy for free variable y. The right is
the presentation of the used constraints in the global strategy for the free variable y.

2 BACKGROUND

2.1 KNOWLEDGE GRAPH

Definition 1 (Knowledge Graph). Let E be the finite set of entities andR be the finite set of relations,
a knowledge graph is a collection of factual triples G = {(si, ri, oi)}, where si and oi are entity
objects, and ri is a relation predicate.

We augment the facts by adding reverse relations and denote r+ as the original relation r and r− as
its reverse, where each original triple (h, r, t) will result in two triples: (h, r+, t) and (t, r−, h). The
knowledge graph can be represented as a first-order logic knowledge base, where each triple (s, r, o)
denotes an atomic formula r(s, o), with r ∈ R a binary predicate and s, o ∈ E its arguments.

2.2 LOGICAL QUERIES AND ANSWER SET

Complex Query Answering (CQA) on knowledge graphs aims to derive the answer set of the multi-
hop logical query using the KG as the knowledge base. The existential first order logic queries with
single free variable (EFO1) involving the existential quantifiers (∃), conjunction (∧), disjunction (∨),
and negation (¬), are of particular interest in Disjunctive Normal Form (DNF).
Definition 2 (EFO1 Query). The EFO1 query is defined as :

ψ(y;x1, · · · , xn) = ∃x1, · · ·xn.(c11 ∧ · · · ∧ c1n1
) ∨ · · · ∨ (ck1 ∧ · · · ∧ cknk

), (1)

where cij is the atomic formula r(h, t) or its negation ¬r(h, t), r is a relation predict fromR, h and t
are entity belong to E or a variable ranging from E .

To simplify notation, we sometimes denote ψ(y;x1, · · · , xn) as ψ(y) or ψ. Given a variable x or y
in query ψ, and any entity s ∈ E , the substitution involves replacing all occurrences of the variable in
ψ with s, denote the process as s/x or s/y. Then we can define the answer set of the logical query.
Definition 3 (Answer set). Given an EFO1 query ψ(y), the answer set is defined by

A[ψ(y)] = {s ∈ E|ψ(s/y) = TRUE}. (2)

By the DNF, the answer set of EFO1 query ψ can be the union of decomposed conjunctive query’s
answer set (Ren et al., 2020), and we denote ϕ for conjunctive query. The conjunctive query can be
reduced as the constraint satisfaction problem by treating each atom as constraints (Yin et al., 2024).

2.3 OPERATOR TREE AND QUERY GRAPHS

By replacing logical operations with their corresponding set operations, some logical queries can be
represented in the operator tree (Ren et al., 2020). Notably, the existential quantifier introduces a new
set operation, set projection, which corresponds to logic skolemization (Luus et al., 2021).

As illustrated in Fig. 2, cyclic queries cannot be modeled using operator trees; thus, we follow Yin
et al. (2023) in using query graphs to represent general EFO1 queries. Each conjunctive query ϕ is
represented as a query graph, then the DNF can be represented as the disjoint query graphs.
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Definition 4 (Query Graph). Let ϕ be a conjunctive query. Its query graphGϕ = {(hi, ri, ti,NEGi)}
consists of quadruples, where each quadruple corresponds to an atomic formula or its negation.
This representation defines an edge with two endpoints h and t, along with two attributes: r, which
denotes the relation, and NEGi, which is the bool variable indicating whether the atom is positive.
Definition 5 (Neighbor Subgraph). Let Gϕ be a conjunctive query graph and x be the variable in Gϕ,
the edges of neighbor subgraph for xi is Ne(xi, Gϕ) = {(hi, ri, ti,NEGi) ∈ Gϕ|hi = x or ti = x},
formed from the neighbor constraints of xi. The Nn(xi, Gϕ) is the corresponding node set.

We present an example of a query graph in Fig. 2. The concept of query graph is also similar to the
constraint graph (Vardi, 2000), as explored in constraint programming problems.

2.4 KNOWLEDGE GRAPH COMPLETION AND KNOWLEDGE GRAPH EMBEDDING

The task of knowledge graph completion addresses the issue of missing edges in a knowledge graph
by predicting the tail entity given the head entity and relation (s, r, ?) as the query.

To tackle this task, knowledge graph embedding models are developed by learning representations
of entities and relations within an embedding space. Given an atomic formula r(s, o) from the
knowledge graph with r ∈ R and s, o ∈ E , we denote es, eo, er ∈ Rd as the embedding vectors
corresponding to the entities and relation. The estimated embedding of (s, r, ?) is first computed by
ft(es, er), where f(·, ·) : Rd × Rd → Rd is the transformation function. Then, the likelihood of
r(s, o) is computed by the scoring function fs(ft(er, es), eo), where fs(·, ·) : Rd×Rd → [−∞,+∞]
is the scoring function related to the embedding space.

2.5 NEURAL SYMBOLIC SEARCH WITH FUZZY LOGIC

The t-norm ⊤ : [0, 1]× [0, 1]→ [0, 1] is the continuous relaxation of logical conjunction ∧, which
aims to generalize classical two-valued logic by allowing intermediary truth values between 1 (truth)
and 0 (falsity). A common example of a T-norm is the product-norm, defined as a⊤P b = a ∗ b.
Following the fuzzy logic, the negation can be relaxed as 1− x : [0, 1]→ [0, 1]. The T-conorm is the
dual to t-norm for disjunction and is defined by ⊥(x, y) : 1− (1− x)⊤(1− y). Details of t-norm
can refer to Appendix G. Then we can define the truth value function T as the following:
Definition 6 (Truth value function). Let ϕ and ψ be existential formulas, ⊤ and ⊥ are t-norms and
t-conorms, ⊥⋆ is another t-conorm, and r ∈ R, a, b ∈ E , with Pr(a, b) representing the truth value
of r(a, b). The truth value function T , whose range is [0, 1], is defined as follows:

(i) T (r(a, b)) = Pr(a, b)
(ii) T (¬ϕ) = 1− T (ϕ)

(iii) T (ϕ ∧ ψ) = T (ϕ)⊤T (ψ), T (ϕ ∨ ψ) = T (ϕ)⊥T (ψ)
(iv) T (∃xϕ(x)) = ⊥⋆

a∈ET (ϕ(a))

Combining fuzzy logic operations with the KG embedding models and using the max operation as
another t-conorm ⊥⋆ (Yin et al., 2024), verifying whether s is the answer to a query involving many
existential variables can be viewed as a multi-variable optimization problem:

T (q(s)) = max
xi∈E,1≤i≤n

T (c1)⊤ · · ·⊤T (ck). (3)

The maximum truth value of the answer a ∈ A[ϕ(y)] should be 1. Conversely, the maximum truth
value of an incorrect candidate entity should be 0.

3 NEURAL LOGICAL INDICES REDUCES THE SEARCH DOMAIN

We define the search domain D as the set of candidate entities when the symbolic search algorithm
operates over the variables. We denote Dx and Dy as the search domain for x and y, respectively. We
argue treating the entire entity set E , as done by previous search algorithms (Bai et al., 2023; Yin
et al., 2024), is unnecessary because each variable must maintain consistency with its surrounding
constraints (Chen et al., 2011). Overall, for each variable, our framework extracts the surrounding
subgraph as constraints and computes the neural logical indices by these constraints to reduce the
search domain.
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3.1 NEURAL LOGICAL INDICES

Given a query with the variable set V = {x1, · · · , xn, y} over KG, neural logical indices are defined
as a mapping from a variable in V to a subset of the entity set E : I(x) : V → 2E . To compute the I(x)
for each variable, we conceptually define the constraints as the subgraph pattern GS

x from the query
graph Gϕ. Then we propose the strategy to apply neural embedding models h to identify the entities
that satisfy the constraints represented by h(GS

x )). Let h(GS
x )) denote the ranking of the entities, we

determine I(x) by selecting the top k entities from this ranking: I(x) = Topk(h(GS
x ), k). Thus,

I(x) serves as our reduced search domain Dx, which can accelerate symbolic search algorithms.

By using neural logical indices as the search domain for variables, we can narrow down the search
space, thereby simplifying the optimization problem in Equation 3 as follows:

T (ϕi(c/y;x1, · · · , xn)) = max T (c1)⊤ · · ·⊤T (ck) (4)
s.t. xi ∈ Di, 1 ≤ i ≤ n, (5)

where c ∈ Dy and the domain Dxi is simply denoted by Di.

The realizations of neural logical indices involve flexible choices for selecting subgraphs as constraints
and methods for computing them. We introduce two strategies: local and global. An example in
Fig. 2 illustrates these two types of constraints. We define the computation of neural logical indices
as the CUTDOMAIN function, which can be easily integrated with symbolic search algorithms.

3.2 LOCAL CONSTRAINTS STRATEGY: RELATION TAIL PREDICTION TASK

The local constraints strategy only includes the first-order neighbor of the variable, where GS
y =

Nn(xi, Gϕ), as illustrated in Fig. 2. We only consider the information from relations. It is evident that
since y must be the tail of the “Graduate” relation and the head of the “Married” relation, searching
the variable y within these entities is equivalent to searching the entire space E .

To utilize the relations to prune the search domain, we propose the relation tail prediction task which
predicates the tail only given the relation. 2 To address the incompleteness of this task, we adopt the
knowledge graph embedding framework, as they share similar characteristics. Instead of starting
from scratch, we train a hyper-network (Ha et al., 2016) to generate new embeddings h based on old
KG embedding models (Trouillon et al., 2016; Chen et al., 2021). Given the entity embedding eo and
relation embedding er in pre-trained knowledge graph embeddings, we have

êo = RELU(W1eo + b1), êr = RELU(W2er + b2).

Then the likelihood of relation tail pair fs(êr, êt) is computed by the same scoring function in
Section 2.4. For a possible entity eo, we employ the T-norm to calculate the scores as follows:
σ(fs( ˆMarried, êo)⊤σ(fs( ˆGraduate, êo)), wherer σ(·) is the sigmoid activate function.

3.3 GLOBAL CONSTRAINTS STRATEGY: QUERY EMBEDDING

The global constraints strategy extends the constraints to encompass the entire query graph. As
illustrated in Fig. 2, the utilized constraints represent the whole graph, which means that GS

y = Gϕ

for y. Although the problem formulation has become more complex, we can leverage the ability of
query embedding h to directly address. Following this, the two-stage coarse-to-fine ranking process
is implemented, similar to the coarse-to-fine ranking used in information retrieval (Liu et al., 2019).

4 SEARCH WITH NEURAL LOGIC INDEX

In this section, we introudce an efficient framework called Neural Logical Index for Search Approxi-
mately (NLISA). We begin by reviewing relevant results from FIT (Yin et al., 2024). Next, we explain
how to accelerate the existing steps using neural logical indices. Following this, we discuss the
appropriate approach for searching cyclic queries in sub-problem optimization. Finally, we present
the complexity analysis and discuss the differences compared to existing approximate methods.

2Predicting the head of relation r+ can be modeled as the tail of reverse relation r−.
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4.1 RECAP OF NEURAL SYMBOLIC SEARCH METHOD

Definition 7 (Leaf node). A leaf node is a variable node connecting to only one other variable node.

Definition 8 (Fuzzy vector). Given the domain D and a membership function µ : D → [0, 1], we
represent the fuzzy set of D as vector form D with Di = µ(s,D), where s ∈ D.

The key technique of FIT (Yin et al., 2024) is that constant nodes and leaf nodes can be removed,
with the corresponding constraints stored in fuzzy vectors. The complexity of removing constant
nodes and leaf nodes are O(|E|) and O(|E|2), respectively. By continuously removing constant and
leaf nodes, FIT can handle acyclic queries. For cyclic queries, FIT enumerates one variable within
the cycle as a constant node, which results in exponential complexity.

4.2 SUB-PROBLEM REDUCTION WITH NEURAL LOGICAL INDICES

We observe that the truth values of the atomic formula in previous works (Bai et al., 2023; Yin et al.,
2024) can be interpreted as normalization using the average, as shown following. Denoting observed
KG as Gtrain and the observed tail set as T r

s = {t|(s, r, t) ∈ Gtrain}, the truth value Pr(s, o) ∈ [0, 1]
can be obtained from the normalization:

Pr(s, o) =
exp(fs(ft(er, es), eo))∑

oi∈T r
s
exp(fs(ft(er, es), eoi))/|T r

s |
. (6)

The normalization can be adjusted as needed; further details are provided in Appendix D.

Then we can solve the problem in Equation 4 by brute force, which involves the n+ 1 order tensor
Tϕ, where Tϕ

i1,i2,··· ,in,in+1
= T (ϕi(y

in+1 ;xi11 , · · · , xinn )) and xi11 denote the i1 entity in Di. Though
the search domain is reduced, the complexity is also huge. We sequentially optimize the problem for
given xi and the sub-problem can be extracted by the following:

max
xi∈Di

[T (c1)⊤ · · ·⊤T (ck)] = max
xi∈Di

[⊤ci∈N (xi)T (ci)]⊤[⊤cj /∈N (xi)T (cj)]. (7)

Denote the number of totally involved variables in this sub-problem as k, the involved tensor is k
order. When xi is a leaf variable, only the second-order tensor is computed to solve the sub-problem
and the second tensor is necessary when computing atoms with two variables as arguments. Then
eliminated constraints are stored in the fuzzy vectors.

Proposition 1 (REMOVELEAFNODE). The leaf node in Gϕ can be removed in O(|Dx|2+ |Dx||Dy|).

It’s clear that our realization for removing nodes has lower complexity when |D| < |E|. The details
of implementation for REMOVELEAFNODE function can refer to Appendix C. And we also have
similar results REMOVECONSTNODE for constant node (Yin et al., 2024).

Proposition 2 (REMOVECONSTNODE). The constant node inGϕ can be removed inO(|Dx|+ |Dy|).

4.3 APPROXIMATE SEARCH FOR CYCLIC QUERIES

The cyclic queries can not be addressed by removing constant nodes and leaf nodes (Yin et al.,
2024), and it encounters exponential complexity. To tackle this, we propose local search over local
constraints and autoregressively search the assignment for variables. With the xi as an example, we
optimize the most likely entity for every o ∈ Dy over the remaining constraints and fuzzy vectors as
follows:

max
xi

[⊤ci∈Ne(xi)T (ci)]⊤[⊤x∈Nn(xi)µ(x,Cx)]. (8)

Specifically, we treat the other existential nodes {xj} in Nn(xi) as dummy nodes, respectively
applying the max operation to {xj} to eliminate the variables. Then we take max operation over the
target variable xi to determine its assignment. This approach effectively exploits information from
local constraints and breaks the cycle while maintaining quadratic complexity with respect to the
search domain. Once all remaining variable assignments are obtained, we use t-norm and t-conorm
to integrate the truth values of the logical query under the given variable assignments.

Realization of the above approximate search induces a function LOCALOPTIMIZE.

6
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Algorithm 1 Neural logical Index enhanced Search Approximately (NLISA)
Require: Input query graph Gϕ and initial fuzzy vectors for existential variables and free variable as
Cx and Cy , the size of the reduced domain |Dx| and |Dy|.

Ensure: Output answer vector T (Gϕ, {Cx}, Cy)
({Dx},Dy)← CUTDOMAIN(Gϕ, |Dx|, |Dy|)
(Gϕ, {Cx}, , Cy)← REMOVECONSTNODE(Gϕ, {Cx}, Cy)
while Gϕ contains a leaf node xi do
(Gϕ, {Cx}, Cy)← REMOVELEAFNODE(xi, Gϕ, {Cx}, Cy)

end while
for each remaining node xj in Gϕ do
(Gϕ, {Cx}, Cy) = LOCALOPTIMIZE(xj , Gϕ, {Cx}, Cy)

end for
return T ((Gϕ, {Cx}, Cy))

4.4 ALGORITHM AND COMPLEXITY ANALYSIS

Finally, we present the complete procedure of our method, as shown in Algorithm 1. Our objective is
to propose an efficient symbolic search method for general EFO1 queries. The key aspect is that we
can flexibly reduces the search domain. Additionally, our appropriate search reduces the complexity
of answering cyclic queries from exponential to quadratic with respect to the search domain.

The space complexity of our method isO((|E|+ |R|+dh) ∗d), where d is the embedding dimension
of the KG embedding model and dh is the hidden dimension of hyper-network. This complexity is the
same as the knowledge graph embedding and scales linearly with the sizes of entities and relations.

The time complexity is given by O((|Dx||Dy|+ |Ex|2 + |Dx|+ |Dy|)d), where |Dx| and |Dy| are
the size of search domain of the existential and free variable, respectively. It is evident that our
algorithm exhibits quadratic complexity for any EFO1 query and can flexibly reduce the complexity
by adjusting the size of the search domain.

Compared to other approximate symbolic search methods, such as CQD-beam (Arakelyan et al.,
2020) and CQD-CO (Arakelyan et al., 2020), CQD-beam is constrained by the operator tree and only
utilizes partial constraints to retain consistent entities as intermediate variables. On the other hand,
CQD-CO optimizes the representation of existential variables in continuous space, which may limit
expressiveness and result in slower performance. Notably, both methods do not reduce the search
domain; instead, they only decrease the amount of information retained for intermediate variables.

5 EXPERIMENTS SETTING

In this section, we conduct a comprehensive evaluation of our method across diverse tasks to
investigate its effectiveness and efficiency. In terms of query structure, we consider tree-form queries
and general EFO1 queries. Regarding the scale of the knowledge graph, we consider graphs with
15,000, 60,000, and 400,000 entities.

5.1 BENCHMARKS

The BetaE benchmark (Ren & Leskovec, 2020) is the standard benchmark for complex question
answering (CQA), primarily containing tree-form queries. The benchmark is comprised of three
knowledge graphs (KGs): FB15k (Bordes et al., 2013), FB15k-237 (Toutanova et al., 2015), and
NELL995 (Xiong et al., 2022). Specifically, the BetaE benchmark contains 14 distinct query types,
with 5 types involving negation operations. It is important to note that the "pni" query type in BetaE
is a universal first-order logic query, and is therefore excluded from the evaluation.

The Real EFO1 benchmark (Yin et al., 2024) proposes 10 new query types beyond the tree-from
queries, with the same KGs as BetaE. In particular, the Real EFO1 benchmark introduces new
patterns, including multi-graph, and cyclic graphs. The visualization of these query structures of
BetaE and Real EFO1 benchmark is presented in Appendix E.
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The Smore benchmark (Ren et al., 2022) considers the same tree-form queries as BetaE benchmark,
but the queries are sampled from a much larger-scale KG. Since only the FB400K dataset with
40,0000 entities has been released, we select this KG as the large-scale benchmark.

5.2 EVALUATION PROTOCOL

To evaluate the effectiveness over incomplete knowledge graphs (KGs), we adopt the evaluation
scheme from (Ren & Leskovec, 2020), distinguishing the answers to each query into easy and hard
sets. Hard queries are defined as non-trivial queries that cannot be answered by direct traversal along
the edges of the KG and require predicting at least one missing link in the test and validation splits.
We assess the CQA models on these non-trivial queries by calculating the rank r for each hard answer
against non-answers, and we compute the Mean Reciprocal Rank (MRR) and HIT@k.

To evaluate the efficiency, we experimentally measure the speed and running memory required to
answer complex queries. We sample 100 queries for different query types in each benchmark and
calculate the average queries per second (QPS). We record both the model memory and the maximum
running memory during evaluations. For a fair comparison between models that support batching and
those that do not, the running memory is calculated by excluding the model memory from the total
running memory and then dividing the result by the batch size.

5.3 BASELINES

We consider various state-of-the-art CQA methods as baselines. In particular, we compare our
approach with strong baselines from symbolic search methods, including CQD-CO (Arakelyan
et al., 2020), CQD-Beam (Arakelyan et al., 2020),QTO (Bai et al., 2023), and FIT (Yin et al., 2023).
Additionally, we include ConE and LMPNN as baselines for comparison with query embedding
methods. We also examine the GNN-QE method, which combines graph neural networks with
symbolic methods. To ensure fairness, we use the same checkpoint for those methods requiring
a pre-trained neural link predictor, including CQA, QTO, FIT, and our method. For the FB15K,
FB15K-237, and NELL datasets, we utilize the checkpoints provided by CQD-CO (Arakelyan et al.,
2020). For FB400K, the details for the pretrained checkpoint are provided in Appendix F. Since FIT
is equivalent to QTO in tree-form queries (Yin et al., 2024), we don’t distinguish them in this case.

6 RESULTS

Our experimental results reveal two key insights. First, the search domain can be significantly
reduced with minimal performance loss, thereby alleviating efficiency and scalability issues. Second,
in addressing cyclic queries, our proposed approximate search exhibits quadratic complexity with
respect to the search domain and achieves performance comparable to that of precise symbolic search
methods. To simplify the analysis, we set |Dx| = |Dy| as approximately 10% of the corresponding
entity size. Specifically, we set Dx as 2000, 2000, and 6000 for FB15k-237, FB15k, and NELL,
respectively. We present the results of three benchmarks in the following three sections. The first
insight is demonstrated across all three benchmarks, while the second insight is illustrated on the Real
EFO1 benchmark in Section 6.2. In the implementation, both NLISA (Local) and NLISA (Global)
utilize the local constraints strategy for existential variables. However, NLISA (Local) applies the
local constraints strategy for free variables, while NLISA (Global) employs the global constraints.

6.1 TREE FORM QUERIES: BETAE BENCHMARK

We present the results of efficiency and performance on BetaE benchmark in Table 1 and Table 2,
respectively. Table 1 shows that symbolic search methods, including CQD-CO and FIF, exhibit
remarkably low QSP, while FIT suffers from rapid CUDA memory usage as the size of the knowledge
graph (KG) increases. In contrast, our methods, which utilize neural logical indices, significantly
reduce the search domain, improving QSP and decreasing CUDA memory usage. Table 2 demon-
strates that our method with the global constraint strategy achieves an average performance of 90%
of symbolic search method across three KGs, nearly surpassing all baselines except for the precise
search methods. Our method with the local constraint strategy does not rely on query embedding
methods, achieving lower performance but demonstrating higher QSP compared to those methods.
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Table 1: Efficiency results of the Tree-Form queries on BetaE benchmark (Ren & Leskovec, 2020).
KG Metric ConE LMPNN CQD-CO FIT NLISA(local) NLISA(global)

FB15k-237
Queries per Second ↑ 100 105 14 31 115 86

CUDA Memory of Running (M) ↓ 458 355 176 1208 232 337

FB15K
Queries per Second ↑ 97 101 10.1 20 109 79

CUDA Memory of Running (M) ↓ 338 365 189 2068 255 381

NELL
Queries per Second ↑ 23 24 7 3 35 20

CUDA Memory of Running (M) ↓ 1635 1955 760 15324 774 953

Table 2: MRR results(%) of the Tree-Form queries on BetaE benchmark (Ren & Leskovec, 2020).
The scores of the baselines are taken from their papers. We differentiate the methods that have
complexity concerning |E|. We highlight the best results in red and the second-best results in blue.

Method 1p 2p 3p 2i 3i ip pi 2u up AVG.(P) 2in 3in inp pin AVG.(N)

FB15K-237

CQD-CO 46.7 9.6 6.2 31.2 40.6 16.0 23.6 14.5 8.2 21.9
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 23.4 5.4 8.6 7.8 4.0 5.9

LMPNN 45.9 13.1 10.3 34.8 48.9 17.6 22.7 13.5 10.3 24.1 8.7 12.9 7.7 4.6 8.5

CQD-Beam 46.7 13.3 7.9 34.9 48.6 20.4 27.1 17.6 11.5 25.3
GNN-QE 42.8 14.7 11.8 38.3 54.1 18.9 31.1 16.2 13.4 26.8 10.0 16.8 9.3 7.2 8.5
FIT/QTO 46.7 14.6 12.8 37.5 51.6 21.9 30.1 18.0 13.1 27.4 14.0 20.0 10.2 9.5 13.4

NLISA(Local) 46.6 14.0 12.2 32.1 44.4 20.2 26.4 16.9 11.7 24.9 11.4 14.7 9.3 8.0 10.9
NLISA(Global) 46.6 14.3 12.3 36.2 50.0 21.2 29.3 17.6 12.5 26.7 12.4 17.1 9.3 8.3 11.8

FB15K

CQD-CO 89.2 25.6 13.6 77.4 78.3 44.2 33.2 41.7 22.1 46.9
ConE 75.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 49.8 17.9 18.7 12.5 9.8 14.8

LMPNN 85.0 39.3 28.6 68.2 76.5 43.0 46.7 36.7 31.4 50.6 29.1 29.4 14.9 10.2 20.9

CQD-Beam 89.2 65.3 29.7 77.1 80.6 71.6 70.6 72.3 59.4 68.5
GNN-QE 88.5 69.3 58.7 79.7 83.5 70.4 69.9 74.1 61.0 72.8 44.7 41.7 42.0 30.1 39.6
FIT/QTO 89.4 65.6 56.9 79.1 83.5 71.8 73.1 73.9 59.0 72.5 40.2 38.9 34.8 28.1 35.5

NLISA(local) 87.2 61.0 53.1 67.6 75.4 66.2 65.0 52.6 42.6 63.4 44.8 39.9 36.8 33.0 38.6
NLISA(Global) 89.4 64.7 55.4 76.4 82.3 71.1 71.1 71.9 57.5 71.1 48.3 44.4 37.9 34.5 41.3

NELL

CQD-CO 60.4 17.8 12.8 39.3 46.6 22.1 30.1 17.3 13.2 28.8
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 27.2 5.7 8.1 10.8 3.5 6.4

LMPNN 60.6 22.1 17.5 40.1 50.3 24.9 28.4 17.2 15.7 30.8 8.5 10.8 12.2 3.9 8.9

CQD-Beam 60.4 22.6 13.6 43.6 53.0 25.6 31.2 19.9 16.7 31.8
GNN-QE 53.3 18.9 14.9 42.4 52.5 18.9 30.8 15.9 12.6 28.9 9.9 14.6 11.4 6.3 10.6
FIT/QTO 60.8 23.8 21.2 44.3 54.1 26.6 31.7 20.3 17.6 33.4 12.6 16.4 15.3 8.3 13.2

NLISA(Local) 60.3 23.2 19.9 43.2 53.5 26.6 32.3 20.3 17.2 32.9 10.3 14.3 13.9 6.5 11.3
NLISA(Global) 60.8 23.3 19.8 44.0 53.8 26.8 32.6 20.3 17.3 33.2 10.2 14.2 14.0 6.5 11.3

6.2 GENERAL EFO1 QUEIRES: REAL EFO1 BENCHMARK

Here, we present our results in Table 3 on the real EFO1 benchmark, which contains general EFO1
queries beyond tree-form queries. For baselines QTO and ConE relied on the operator tree, the
new queries cannot be represented by an operator tree and can only be syntactically approximated.
Table 3 shows that our methods achieve nearly 95% of the performance of symbolic search methods,
outperforming all other baselines. This result indicates that our reduction framework is superior to
the tree-structure approximation used by QTO. Regarding cyclic queries, including “3c” and “3m”,
our approximate search framework achieves an average performance of almost 95% compared to
FIT, validating our second insight. Our method even outperforms over “2il” and “3il”, which we
hypothesize is due to the half-precision used in FIT to reduce memory usage. In terms of efficiency,
our method demonstrates significantly higher QSP compared to FIT, as shown in Fig. 1.

6.3 LARGE SCALE TREE-FORM QUERIES: SMORE BENCHMARK

Since training query embeddings on large-scale knowledge graphs (KGs) is challenging, we can only
consider existing query embedding methods and symbolic search using knowledge graph embeddings
as baselines. For the FB400K dataset, which contains 400,000 entities, we set |Dx| = |Dy| = 8000,
representing only 2% of the total. Table 4 demonstrates that precise symbolic search methods face out-
of-memory issues due to their quadratic complexity with respect to |E|. This can be anticipated based
on the rapid increase in CUDA memory usage as the number of entities grows, as shown in Table1.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: MRR results(%) of the queries on the real EFO1 benchmark (Yin et al., 2024). The scores
of the baselines are directly taken from Yin et al. (2024). We differentiate the methods that have
complexity concerning |E|. We highlight the best results in red and the second-best results in blue.

Method pni 2il 3il 2m 2nm 3mp 3pm im 3c 3cm AVG.

FB15K-237

CQD-CO 7.7 29.6 46.1 6.0 1.7 6.8 3.3 12.3 25.9 23.8 16.3
ConE 10.8 27.6 43.9 9.6 7.0 9.3 7.3 14.0 28.2 24.9 18.3
LMPNN 10.7 28.7 42.1 9.4 4.2 9.8 7.2 15.4 25.3 22.2 17.5

QTO 12.1 28.9 47.9 8.5 10.7 11.4 6.5 17.9 38.3 35.4 21.8
FIT 14.9 34.2 51.4 9.9 12.7 11.9 7.7 19.6 39.4 37.3 23.9
NLISA(Local) 12.3 34.2 51.0 9.8 10.0 10.3 7.4 18.1 34.7 34.7 22.3
NLISA(Global) 14.0 34.6 51.8 10.0 9.3 10.7 7.5 18.4 35.7 35.7 22.8

FB15K

CQD-CO 7.7 29.6 46.1 6.0 1.7 6.8 3.3 12.3 25.9 23.8 16.3
ConE 37.0 40.1 57.3 33.3 11.5 23.9 27.6 38.7 35.0 36.3 34.1
LMPNN 38.7 43.2 57.8 40.3 7.9 24.0 30.5 48.4 32.2 30.9 35.4

QTO 48.2 49.5 68.2 64.6 19.4 48.5 53.7 73.9 53.3 54.9 53.4
FIT 57.9 70.4 77.6 73.5 39.1 57.3 64.0 79.4 63.8 65.4 64.8
NLISA(local) 55.9 69.1 70.5 66.0 38.3 49.1 55.2 76.0 57.9 59.7 59.8
NLISA(Global) 60.7 70.4 76.1 68.8 36.2 51.0 57.0 79.9 60.3 61.5 62.2

NELL

CQD-CO 7.9 48.7 68.0 31.7 1.5 12.9 13.8 33.9 38.8 35.9 29.3
ConE 10.3 42.1 65.8 32.4 7.0 12.6 16.8 34.4 40.2 38.2 30.0
LMPNN 11.6 43.9 62.3 35.6 6.2 15.9 19.3 38.3 39.1 34.4 30.7

QTO 12.3 48.5 68.2 38.8 12.3 22.8 19.3 41.1 45.4 43.9 35.3
FIT 14.4 53.3 69.5 42.1 12.5 24.0 22.8 41.5 47.5 45.3 37.3
NLISA(Local) 13.9 53.1 71.6 40.6 11.9 23.1 23.0 40.6 46.0 44.1 36.8
NLISA(Global) 14.0 53.4 72.1 41.0 10.7 22.7 23.1 40.6 46.0 44.1 36.8

Table 4: Averaged MRR results(%) on large KGs with different methods. The results of GQE, Q2B,
and BetaE are taken from Ren et al. (2022). The CQD-CO and NLISA(Local) use the same backbone
of knowledge graph embedding.

GQE Q2B BetaE CQD-CO FIT/QTO NLISA(Local)

FB400K 36.0 51.7 50.5 43.3 OOM 58.9

Our method, which employs a local constraints strategy, outperforms both the query embedding
methods and CQD-CO. This underscores the scalability challenges encountered by precise symbolic
search methods and highlights the importance of effective pruning techniques.

7 CONCLUSION

Complex query answering over knowledge graphs is a crucial multi-hop reasoning task aimed at
addressing first-order logical queries within large and incomplete knowledge graphs. Although sym-
bolic search methods exhibit strong performance and expressiveness, they face efficiency challenge
that hinders further development and application. Query embedding models learn representations for
complex queries, offering fast speed but often providing only generic performance. In this paper, we
integrate their advantage together in a mutually beneficial way and propose an approximate search
framework combined with flexible neural logical indices to address these efficiency issues. The
neural logical indices can be computed rapidly using embedding methods, significantly reducing the
search domain of symbolic methods. In particular, the approximate search framework can handle
cyclic queries well with a quadratic complexity. Our approximate search is precise for acyclic
queries. Experiments on various benchmarks show that, with a 10% reduced search domain, our
method achieves 90% performance, including for cyclic queries, while the QSP assess efficiency
is improved to be comparable to that of query embedding methods. Additionally, we demonstrate
that our framework can execute neural-symbolic methods on a KG with an order of magnitude more
entities than before, highlighting the scalable nature of our approach.
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A RELATED WORK

A.1 QUERY EMBEDDING METHODS

Answering complex logical queries over knowledge graphs is naturally extended from link prediction
and aims to handle queries with complex conditions beyond simple link queries. This task gradually
grows by extending the scope of complex logical queries, ranging from conjunctive queries (Hamilton
et al., 2018) to Existential Positive First-Order (EPFO) queries (Ren et al., 2020), Existential First-
Order (EFO) queries (Ren & Leskovec, 2020), real Existential First-Order queries (Yin et al., 2024).
The primary method is query embedding, which maps queries and entities to a low-dimensional
space. The form of embedding has been well investigated, such as vectors (Hamilton et al., 2018;
Chen et al., 2022; Bai et al., 2022), geometric regions (Ren et al., 2020; Zhang et al., 2021; Liu et al.,
2021), and probabilistic distributions (Ren & Leskovec, 2020; Choudhary et al., 2021; Yang et al.,
2022; Wang et al., 2023). These methods not only explore knowledge graphs embedding but also
leverage neural logical operators to generate the embedding of complex logical queries.

A.2 SYMBOLIC METHODS

Neural-symbolic CQA models represent variables as fuzzy sets with vector forms µ ∈ [0, 1]E and
apply fuzzy logic to model the logic operations naturally. Built on the operator tree, GNN-QE (Zhu
et al., 2022) represents the intermediate variable as a fuzzy vector, and simultaneously adapts graph
neural network from KG completion to execute relation projection and models the logical operations
with fuzzy logic. In particular, the neural symbolic search method combining the knowledge graph
embedding with symbolic search is of particular interest. CQD-beam (Arakelyan et al., 2020; 2023)
uses beam search during the execution of operator tree, maintaining only a beam width of entities for
intermediate variables. CQD-CO uses gradient optimization to estimate the embedding of existential
variables (Arakelyan et al., 2020). Unlike previous approximate search methods, QTO is a precise
symbolic search method because it finds that the tree-form queries can be solved onO(|E|2). FIT (Yin
et al., 2024) extends its scope to general EFO1 by using the enumeration to handle cyclic queries.
However, the complexity is |E|n (Yin et al., 2024), where n is the variable number of query. In
general, the above two precise methods constantly remove nodes and preserve results with fuzzy
vectors corresponding to variables.While symbolic methods demonstrate good performance and
strong interpretability, they struggle with high computational complexity.

There are many other models and datasets proposed to enable answering queries with good perfor-
mance and additional features, see the comprehensive survey Ren et al. (2023).

B DETAILS OF CONSTRAINTS STRATEGIES

For local constraints, when the variable involves logical disjunction, we use the T-conorm to handle
it.

For global constraints, the computation of existential variables should treat them as free variables,
while the original free variables are converted into existential variables. This allows us to use query
embedding to compute the global constraints for the existential variables.

C DETAILS OF FUNCTIONS

REMOVCONSTNODE(Gϕ, |Dx|, |Dy|) removes the constant nodes based on the given domain of
variables. We consider the simplest case where (s, r, e,NEG = FALSE), with s as the constant node,
r as the relation, e as the existential variable, and NEG = FALSE indicating that this edge is positive.
We first construct the symbolic representation of this edge: s = [Pr(s, e

i)] ∈ R|De|, ei ∈ De.
We then update this representation into the fuzzy vector of the existential variable e by t-norm:
µ(e,D) = µ(e,D)⊤s. Consequently, we can remove this edge while preserving its constraints in the
fuzzy vector of e. The above method can be generalized to other cases, such as when the variable is a
free variable y and the edge is negative. A similar update approach can be used, and specific details
can be found in Yin et al. (2024).
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REMOVCONSTNODE(Gϕ, |Dx|, |Dy|) removes one leaf node based on the given domain of variables.
We consider the most difficult case where (e1, r, e2,NEG = FALSE), with s as the constant node, r
as the relation, e as the existential variable, and NEG = FALSE indicating that this edge is positive.
The symbolic representation of this edge results in a matrix: S = [Pr(e

i
1, e

j
2)] ∈ R|De1

|×|De2
|, ei1 ∈

De1 , e
i
2 ∈ De2 . We then update this representation into the fuzzy vector of the existential variable e by

t-norm and max operation: µ(e,D) = µ(e,D)⊤max(S, axis = 0). The proof of the effectiveness
of the above update can be found in Yin et al. (2024), and this update can be easily extended to other
cases, such as when the variable is a free variable y and the edge is negative.

D DETAILS OF TRUTH VALUES

The symbolic representation in the previous symbolic search method QTO and FIT is constructing
the set of truth values matrix for the whole knowledge graph To convert real number scores computed
by knowledge graph embedding modes to truth value that falls into [0, 1], QTO/FIT use the softmax
function: P ⋆

r,a(b) =
exp(s(a,r,b))

Σc∈Eexp(s(a,r,c))
. Next, QTO and FIT scale the results of the softmax function

using a factor based on the observed edges in the training graph since softmax outputs a vector that
sums to 1: Go.

Qa,b =

{
|{d|(a,r,d)∈Go}|

Σc∈{d|(a,r,d)∈Go}P⋆
r,a(c)

, if |{d|(a, r, d) ∈ Go}| > 0

1, if |{d|(a, r, d) ∈ Go}| = 0
(9)

where Ea,r = {b | (a, r, b) ∈ Go} represents the set of observed edges. Then the a-th row of r-th
matrix is got by clamping the value for each element:

Pr(a, b) = min(1, P ⋆
r,a(b)×Qa,b) (10)

They then mark the observed edges and set the truth value for these edges to 1. The scaling and
marking operations are performed on a case-by-case basis for each fact, which cannot be parallelized.

We demonstrate that these scaling operations can be parallelized through caching. For cases where
|{d|(a, r, d) ∈ Go}| > 0: the truth value is computed by the following normalization:

Qa,b =
exp(fr(a, b))∑

{d|(a,r,d)∈Go} exp(fr(a, d))
. (11)

To simplify the calculations, we use log-scale operations

log(Qa,b) = fr(a, b)− log(
∑

{d|(a,r,d)∈Go}

exp(fr(a, d))). (12)

If we cache Sr
a = log(

∑
{d|(a,r,d)∈Go} exp(fr(a, d))) with |E| × |R| size, we can parallel index the

cached values to optimize the computation of Equation 12. For cases where |{d|(a, r, d) ∈ Go}| > 0,
we have:

Sr
a = log(

∑
{d∈E}

exp(fr(a, d))), (13)

which allows the scaling operation to yield the softmax result. In general: the cached values
S ∈ RE|×|R are defined as follows:

Sr
a =

{
log(

∑
{d|(a,r,d)∈Go} exp(fr(a, d))), if |{d|(a, r, d) ∈ Go}| > 0

log(
∑

{d∈E} exp(fr(a, d))), if |{d|(a, r, d) ∈ Go}| = 0
(14)

This caching mechanism grows linearly with the size of the knowledge graph. By utilizing this
caching strategy, we can perform parallel computations for the scaling operations, facilitating efficient
dynamic symbolic representation construction. However, when it comes to listing the marked training
facts, our symbolic representation may exhibit slightly lower performance compared to the original
construction.

We formula the constructing process in the following three steps For the case that |{d|(a, r, d) ∈
Go}| > 0, the above derivation is equivalent with Equation 6.

However, the mask created based on the training facts cannot be completed in parallel. Therefore,
we rely on previous steps by caching. This is a key issue that may lead to a drop in our method’s
performance in experiments.
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Figure 3: 14 query types propsed in BetaE benchmark (Ren & Leskovec, 2020). These query types
are modeled by the operator tree.

Figure 4: 10 query types propsed in Real EFO1 benchmark (Yin et al., 2024). These query types are
modeled by query graph.

E DETAILS OF QUERY STRUCTURES

We present the visualization of query types BetaE benchmark (Ren & Leskovec, 2020) and Real
EFO1 benchmark (Yin et al., 2023) in Fig. 3 and Fig. 4, where the visualization of BetaE benchmark
is taken from Wang et al. (2023) and the visualization of Real EFO1 benchmark is taken from Yin
et al. (2024).

F DETAILS OF IMPLEMENTATION

F.1 KNOWLEDGE GRAPH COMPLETION

We reproduce the results from previous work (Chen et al., 2021) to train the embedding and hyper-
network. For the FB400K dataset, we search the hyperparameters with the following settings:
learning rates of [1 × 10−1, 1 × 10−2], embedding dimensions of [100, 200, 400], and λ values of
[0.0005, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 0]. We utilize the ComplEx model with the N3 regularizer. The
embedding initialization is set to 1× 10−3, and we employ the Adagrad optimizer.

F.2 RELATION TAIL PREDICTION

Why Use Hypernet?

Relation tail prediction is fundamentally similar to knowledge graph completion (KGC) tasks, as
both involve inferring missing tails from a knowledge graph. In KGC, the query is presented as
(h, r, ?), to predict the tail t. In contrast, relation tail prediction aims to predict the tail t given
the relation r. This similarity makes the embedding methods used in KGC equally applicable to
relation tail prediction. Hypernet is employed to generate weights dynamically, allowing the model
to automatically adjust representations for new tasks. This facilitates the sharing and adaptation

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: MRR results for the trained Hypernet.
FB15K-237 FB15K NELL FB400K

MRR 1.0 0.998 0.99 1.0

of weights across different tasks. By adopting the embeddings from KGC, Hypernet enhances
the utilization of existing knowledge and enables quicker adaptation to relation tail prediction.
Additionally, Hypernet requires only a few parameters, improving performance while reducing
training costs and storage needs.

How Is Hypernet Trained?

The training process is similar to that of KGC, where each triple (h,r,t)(h,r,t) is replaced with (r,t)(r,t).
This requires only minor modifications compared to the existing KGC framework.

What Is the Performance of Hypernet?

For the hypernet used for relation tail prediction, we set the learning rate to 1 × 10−2 and search
the hidden dimensions [100, 200, 400] also using the ComplEx model with the N3 regularizer. The
embedding initialization remains at 1× 10−3, and the optimizer is Adagrad. The performance of our
method is quite impressive, as demonstrated in Table 5. The results indicate a strong capability of the
hypernet in addressing relation tail prediction tasks.

G t-NORM INTRODUCTION

Definition 9 (t-norm). A t-norm ⊤ is a function: [0,1] x [0,1]→ [0,1] that satisfies the following
properties:

(i) Communitavity: a⊤b = b⊤a

(ii) Monotonicity: (a⊤b) ≤ (c⊤b) if a ≤ c

(iii) Associativity: (a⊤b)⊤c = a⊤(b⊤c)

(iv) Neutrality: a⊤1 = a

Then the t-conorm ⊥ is directly defined by a⊥b = 1 − (1 − a)⊤(1 − b), which follows the De
Morgan’s law.

Finally, we introduce some common t-norms which are of interest:

(i) Godel: a⊤Gb = min(a, b)
(ii) Product: a⊤P b = a ∗ b

(iii) Łukasiewicz: a⊤LKb = max(a+ b− 1, 0)

In the main paper, we mainly focus on the Godel and Product t-norm.
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