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ABSTRACT

The COVID19 pandemic had enormous economic and societal consequences.
Contact tracing is an effective way to reduce infection rates by detecting potential
virus carriers early. However, this was not generally adopted in the recent pandemic,
and privacy concerns are cited as the most important reason. We substantially
improve the privacy guarantees of the current state of the art in decentralized
contact tracing. Whereas previous work was based on statistical inference only, we
augment the inference with a learned neural network and ensure that this neural
augmentation satisfies differential privacy. In a simulator for COVID19 even at
ε = 1 per message, this can significantly improve the detection of potentially
infected individuals and, as a result of targeted testing, reduce infection rates. This
work marks an important first step in integrating deep learning into contact tracing
while maintaining essential privacy guarantees.

1 INTRODUCTION

The COVID19 pandemic had enormous consequences (Kim et al., 2022; Kaye et al., 2021; Boden
et al., 2021; Vindegaard & Benros, 2020). Contact-tracing algorithms could make early predictions of
virus carriers, signaling individuals to get tested and thereby reducing the spread of the virus (Baker
et al., 2021). However, population surveys show that privacy concerns are among the primary reasons
for the low adoption of these algorithms (Jones et al., 2021; Gao et al., 2022; Walrave et al., 2022).

Recent work introduces a differential privacy (DP) solution against a privacy attack on contact
tracing algorithms (Romijnders et al., 2024). This method, however, uses only a statistical model
with a corresponding inference method to make predictions of infectiousness (Rosen-Zvi et al.,
2005). We propose augmenting the inference steps with a learned neural network. Such a ‘neural
augmentation’ can learn patterns in the data that are not captured by the statistical model. This builds
on a line of work about augmenting statistical updates with learnable functions (Satorras & Welling,
2021; Lønning et al., 2019; Gregor & LeCun, 2010). We ensure differential privacy for the neural
augmentation and name the method Differentially private Neural Augmentation (DNA).

In the attack scenario, an adversary tries to infer the private state of a victim. The model predicts for
every user on every day a risk score, named COVIDSCORE, and it is this private score that the attacker
tries to infer. We quote from previous work (Romijnders et al., 2024):

‘An adversary wants to determine the COVIDSCORE of a victim. The adversary
installs the app and only makes contact with the victim. The next day, the adversary
observes a change in their COVIDSCORE. This change is due to the victim, and the
adversary reconstructs the COVIDSCORE of the victim.’

Our goal is to achieve better predictions of the COVIDSCORE for an algorithm that is DP against this
attack. Injecting noise is the default method for guaranteeing DP, but the noise makes the predictions
worse. In order to motivate neural augmentation, we identify a hierarchy of methods to achieve DP.
Whereas previous work analyzed contact tracing in terms of individual messages per user (level 1)
and multiple messages per day (level 2), our analysis considers the set of all messages in a window
of multiple days (level 3). The analysis reveals that the current algorithm has a bounded sensitivity,
which motivates us to propose a neural augmentation module with a similar bound on the sensitivity.
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In total, we make the following contributions:

• We show how statistical inference can be augmented with a neural network such that the
combined prediction satisfies differential privacy. We are the first to bridge the promising
field of neural augmentation with differential privacy.

• We identify a novel hierarchy of privacy in contact tracing and provide a theoretical proof of
differential privacy at the most general level of the hierarchy.

• Both methods are tested on a widely used simulator. Even in the challenging situation of
noisy tests, or agents not following the protocol, our method significantly reduces the number
of simultaneously infected individuals, which is a key marker for pandemic mitigation.

The code for running the experiments will be open-sourced upon acceptance.

2 RELATED WORK

As this work brings together multiple fields, we overview related literature in four areas: differential
privacy, neural augmentation, Lipschitz-constrained neural networks, and the application area of
statistical contact tracing.

We use differential privacy (DP) as the main method to quantify the privacy of a statistical algorithm.
A good overview of DP is the book by Dwork & Roth (2014). Differential privacy has been used
in fields such as mean estimation (Dwork et al., 2006), deep learning (Abadi et al., 2016), and
statistical query answering (Goryczka & Xiong, 2015). Moreover, DP is named as a promising area
for federated learning research (Kairouz et al., 2021). Another reason for using DP is the use of
building blocks like the post-processing property (Dwork & Roth, 2014) and advanced composition
theorems (Dwork et al., 2010; Abadi et al., 2016; Ponomareva et al., 2023).

Neural augmentation is a method for augmenting statistical/physical algorithms with learnable neural
networks. This has been studied in application areas such as sparse coding (Gregor & LeCun, 2010),
MRI reconstruction (Lønning et al., 2019), and error correction codes (Satorras & Welling, 2021).
We are the first to combine neural augmentation and differential privacy.

For the DP guarantee, we will make use of neural networks with constrained Lipschitz constant for
the input data (defined in Section 4). The concept of Lipschitz neural networks has been studied
as a method in adversarial robustness (Farnia et al., 2019), and to optimize a constrained family of
models in Generative Adversarial Networks (Goodfellow et al., 2014; Miyato et al., 2018). Previous
works use Lipschitz-constrained models for differentially private learning (Chaudhuri et al., 2011;
Béthune et al., 2023; Minami et al., 2016) and data analysis (Jha & Raskhodnikova, 2013). In our
case, we need a Lipschitz constraint with respect to the input data, and we follow previous work (Jha
& Raskhodnikova, 2013) to apply this to neural augmentation.

Contact tracing has been shown to be effective in mitigating a pandemic outbreak (Jenniskens et al.,
2021). Previous work shows that models based on statistical algorithms can outperform traditional
methods (Baker et al., 2021; Herbrich et al., 2020). However, population studies make clear that
privacy concerns are a major reason for not using contact tracing algorithms (Jones et al., 2021; Gao
et al., 2022; Walrave et al., 2022). A recent work introduced a DP alternative for statistical contact
tracing (Romijnders et al., 2024). That work, however, a) considers only a privacy composition per
day which is only level 2 of our hierarchy and b) uses only classical statistical updates. In this work,
we propose a DP method in a higher level of privacy hierarchy and show that, combined with neural
augmentation, this can substantially decrease the peak impact of the infection.

3 METHOD

We provide a background on the statistical model and prove differential privacy for each level of the
hierarchy. Appendix A.1 provides an overview of the notation used in this paper.
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3.1 STATISTICAL MODEL

We will formulate a common statistical model for contact tracing. A Markov chain of random
variables zu,t models the disease progression for a user u at timestep t. Each such variable takes
on one of four disease states, S,E, I,R, for the Susceptible, Exposed, Infected, and Recovered
state (Kermack & McKendrick, 1927; Anderson & May, 1992). The dynamics of this Markov Chain
are described in Equation 7. The only non-scalar transition function is the transition between state S
and state E:

P (zu,t+1 = E|zu,t = S, zN(u,t)) = 1− (1− p0)(1− p1)|{zc ∈ zN(u,t): zc=I}| (1)

Parameter p1 indicates the probability of transmitting the virus upon contact, and its value is set to
a value from previous literature (Romijnders et al., 2023; Herbrich et al., 2020). A user can have
contact with multiple other users on a particular day. As such, zN(u,t) denotes the set of random
variables of all contacts of user u at time step t.

The actual observation is a test for COVID19 which can have a false positive or false negative
outcome regarding the underlying state. The data set of observations is DO = {oui,ti}Oi=1, which
are O observations, each with an outcome {0, 1} for user ui at time step ti. The observation model
follows previous literature (Herbrich et al., 2020) and is stated in Equation 10. We denote the False
Positive rate (FPR) by β and denote the False Negative rate (FNR) by α.

3.2 STATISTICAL MESSAGES

The inference for the statistical SEIR model consists of sending decentralized messages between
users. We follow the algorithm of (Romijnders et al., 2024) and run the Factorised Neighbors (FN)
algorithm (Rosen-Zvi et al., 2005). This algorithm has been shown to be effective for decentralized
contact tracing and its updates are amenable to the privacy analysis that we make in this paper.

We can write the FN inference algorithm as a function of the incoming messages. Each message is a
number in the range [0, 1) and denotes the COVIDSCORE, ϕc,t, of user c at timestep t. On each day t,
user u has Ct contacts with a user that will be denoted by the relative index 1, 2, · · · , Ct.

3.3 DIFFERENTIAL PRIVACY

The conventional definition of differential privacy is used, (ε, δ)-DP (Dwork & Roth, 2014). For
every ε > 0, δ ∈ [0, 1], a function f(·), for any outcome Φ in the range of f(·), and two adjacent data
sets D, D′ that have at most one element different, the following constraint holds:

p(f(D) ∈ Φ) ≤ eεp(f(D′) ∈ Φ) + δ (2)

We define two data sets, D,D′, as adjacent when the COVIDSCORE of one of the contacts has a
different value. A dataset D is a collection of COVIDSCORE that C contacts send at particular days,
D = {(µi, ti)}Ci=1. Each ti ∈ {1, 2, · · · , T − 1} is a particular day when a contact occurs, where
T is the window length. The values for ti are public information from the point of view of the
attack model, i.e. an attacker could know on what day a particular contact was established, but the
COVIDSCORE of that contact should remain private. Therefore, DP is defined between two adjacent
datasets, where the value of one message by a contact, µi, is replaced by another value µ′

i. The largest
change in the output of an algorithm then defines the sensitivity:

∆ = max
µ1,µ′

1

∥∥f( {(µ1, t1)} ∪D
)
− f

(
{(µ′

1, t1)} ∪D
)∥∥ ∀ D. (3)

For a particular sensitivity, the Gaussian mechanism by (Dwork & Roth, 2014) prescribes the standard
deviation of additive Gaussian noise such that the output of the algorithm satisfies (ε, δ)-DP.
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Figure 1: Three levels of DP analysis.

DP analysis per message (level 1): If each individual
message is noised, by the post-processing property of DP,
the entire prediction function is DP. We add Gaussian
noise according to the Gaussian mechanism to ascertain
DP (Dwork & Roth, 2014; Romijnders et al., 2024).

DP analysis of messages per day (level 2): The sta-
tistical model deals with messages per day in a product,
highlighted in Equation 11. Previous work suggests adding
log-normal noise to each message and provides the corre-
sponding DP analysis (Romijnders et al., 2024).

DP analysis of messages per multiple days (level 3): A
novel contribution of this work is that we generalize the
hierarchy of privacy on one more level. We establish a
bound on the sensitivity of the prediction function in the
presence of multiple contacts on multiple days. Based on
the sensitivity, we add Gaussian noise according to the
Gaussian mechanism to ensure DP. The sensitivity of FN
is formalized in the following theorem.
Theorem 1. Following notation in Section 3 and assuming that each message µi is bounded in the
interval [0, γu], for any two adjacent datasets as defined in Equation 3, the sensitivity for the FN
inference function, F (·), is defined by:

∆ = max
µ1,µ′

1∈[0,γu]

∥∥F ( {(µ1, t1)} ∪D
)
− F

(
{(µ′

1, t1)} ∪D
)∥∥ ≤ p1γu ∀ D. (4)

Proof sketch: Each contact has a probability p1 of transmitting the virus during a contact, c.f.
Equation 1, and the value of the message is in the range 0 to γu. For every sequence of health states
S ) E ) I ) R, the probability can only increase p1 for a message value up to γu, of which the output
is a convex combination. The sensitivity of p1γu follows. See Section A.3 for the full proof. .

This method modifies the DPFN algorithm based on bounding the sensitivity. Therefore, the experi-
mental results will refer to this method as DPFN-sensitivity, or DPFN-S for short.

4 NEURAL AUGMENTATION

We propose to improve the statistical predictions with neural augmentation. The current SEIR model
has only four modifiable parameters and we hypothesize that a neural network can learn more complex
patterns from data (Satorras & Welling, 2021; Lønning et al., 2019). Theorem 1 shows that the FN
function has a sensitivity of p1, typically around 0.02 (Hinch et al., 2021). However, such a sensitivity
is only 2% of the output range, which is ϕu,t ∈ [0, 1]. This shows that even a function with relatively
low sensitivity can predict infectiousness. Therefore, we aim to learn a neural augmentation with
similarly low sensitivity to augment the statistical predictions while maintaining privacy.

To obtain a bound for the sensitivity of a neural network, we use Lipschitz-constrained neural
networks (Béthune et al., 2023). A function g : Rm → Rn has Lipschitz constant l if for every
x, y ∈ Rm we have ∥g(x) − g(y)∥2 ≤ l∥x − y∥2. This constraint is achieved when the gradient
norm is upper bounded, supx ∥∇xg(x)∥ ≤ l (Béthune et al., 2023).

The Lipschitz constant can be decomposed for a neural network into the Lipschitz constants of its
layers. For a function g(x) = g1 ◦ g2 ◦ · · · ◦ gH(x) based on H composite functions, denote by lh
the Lipschitz constant of layer h. Then the Lipschitz constant of the composite function, g(·), is:

l = l1 × l2 × · · · × lH . (5)

For linear layers in the neural network, the Lipschitz constant equals the spectral norm, which will
be restricted during training (Miyato et al., 2018; Bartlett et al., 2017). We also use an activation
function with a bounded gradient, such as the Rectified Linear Unit (Nair & Hinton, 2010).

The neural network takes, as features, the messages that are sent to the agent by its contacts and
predicts the infectiousness for that particular agent on that day. As there can be a variable number of
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messages and the prediction is invariant under permutation, we use a DeepSet model (Zaheer et al.,
2017). For each contact, we denote the stacked feature vector xi = [µi, ti]

T . Each feature vector is
mapped to a representation by a neural network g(1)(·), and, after averaging, a second neural network
makes the prediction, g(2)(·). The total neural network model is as follows:

ϕ = Gθ({(µi, ti)}CT
i=1) = g

(2)
θ (

1

C

∑
i

g
(1)
θ ([µi, ti]

T ) ). (6)

Theorem 2. The neural network in Equation 6 has Lipschitz constant 1
C w.r.t. one vector [µi, ti]

T .

Proof: The mean function multiplies each vector, g(1)θ ([µi, ti]
T ), from a single message µi with 1

C .
The Lipschitz constant of all linear layers and activation functions in g(1)θ and g(2)θ does not exceed 1.
Therefore, by Equation 5, the product of Lipschitz constants does not exceed 1

C

Algorithm 1 denotes the full algorithm for use in contact tracing. With the sensitivity of the statistical
prediction and neural augmentation together, we add noise according to the Gaussian mechanism to
ensure (ε, δ)-DP. The crucial differences with the DPFN-sensitivity method are indicated in blue.

Algorithm 1 DNA: differential private neural augmentation

Require: Dataset D = {(µi, ti)}CT
i=1, constants p1, γu ∈ (0, 1), DP (ε, δ)

Ensure: output ϕ is differentially private with budget (ε, δ)

µi ← min(µi, γu) ▷ Clip message value

ϕ̄← F ({(µi, ti)}CT
i=1) + p1 ×Gθ({(µi, ti)}CT

i=1) +N (0, 2
ε2 (γup1(1 +

1
CT

))2 log( 5
4δ ))

ϕ← min(γu,max(0, ϕ̄)) ▷ Clip output by public knowledge

Lemma 1. Algorithm 1 satisfies (ε, δ)-DP

Proof: FunctionGθ(·) has Lipschitz constant with respect to an individual message 1
C per Theorem 2.

When the message values are clipped and the timesteps ti are fixed by assumption, Gθ(·) has
sensitivity γu

C w.r.t. each message value µi. Combining this sensitivity with the sensitivity of FN at
p1γu, c.f. Theorem 1, the sensitivity of the composed neural augmentation is γup1(1 + 1

C ). We add
noise according to the Gaussian mechanism with this sensitivity, ensuring (ε, δ)-DP.

Learning under Lipschitz constraints To learn a Lipschitz-constrained neural network with
stochastic gradient descent, we use the Power Iteration method to approximate the spectral norm of
linear layers at each step during training (Miyato et al., 2018). The Power Iteration method, however,
only approximates the spectral norm. Therefore, after training, we calculate the singular values
exactly and project the weights accordingly. In practice, we find that the spectral norms after training
are close to 1, and the projection step has negligible influence on the final performance.

4.1 EXPERIMENTAL DETAILS

The functions g(1)θ1
(·) and g(2)θ2

(·) are each a multilayer perceptron of M = 8 layers of width w = 64.

Data for training with the neural augmentation module is obtained from running the simulator three
times for 100 time steps, once each time for the training, validation, and test set. Due to a large
imbalance, negative samples are subsampled at random to match the number of positive samples.
In the simulation, users get tested according to the estimated COVIDSCORE and self isolate upon a
positive test. In this way, better predictions potentially lead to a lower overall virus spread. Further
details are described in Section A.4. In the experimental results, we report the mean and 90%
confidence interval of the mean after ten random restarts. The randomness arises from variability in
contact patterns in the simulator, stochastic disease dynamics, and the additive noise required for DP.

5 EXPERIMENTAL RESULTS

We evaluate the four methods on a simulation of 10.000 agents for 100 days and report the peak
infection rate (PIR), which is the largest fraction of simultaneously infected individuals. A high
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Figure 2: The trade-off between peak infection
rate (y-axis) and the ε DP parameter (x-axis). At
the crucial setting of ε = 1, our method, DNA,
achieves a significantly lower peak infection rate.

DPFN-S (h) DNA (h)

Follow protocol
100% 52.7±10.9 6.4±2.6
80% 60.4±9.6 6.4±2.2
50% 100.1±4.4 27.2±8.6

Noisy tests
FPR 1%, FNR .1% 52.7±10.9 6.4±2.6
FPR 10%, FNR 1% 81.3±2.6 19.5±2.5
FPR 25%, FNR 3% 130.4±1.5 81.3±1.8

Table 1: Two ablation experiments to test the
robustness. When up to 50% of the agents don’t
follow the protocol, or when the tests become
more noisy, the DNA method still achieves lower
PIR than the method without neural augmenta-
tion. Numbers are in one-per-thousand (h).

number corresponds to a large pandemic, which strains the healthcare system and society with
all its consequences. The parameters of the neural augmentation module are learned on a dataset
based on the simulator, where we measure the Area Under the Receiver-Operator Curve (AUC)
as a performance metric. On the test set, predictions from FN achieve an AUC of 77.0, while the
combination with the neural augmentation module achieves 83.1 AUC. This improvement of more
than six points in AUC already shows the benefits of neural augmentation on the prediction task.

Figure 2 shows the results of deploying the methods on the OpenABM-Covid19 simulator. We
compare neural augmentation against traditional contact tracing, which counts only the number of
positive contacts (Traditional, Baker et al. (2021)), against DPFN with privacy analysis per message
(level 1, per-message FN), against privacy analysis per day (level 2, DPFN), and against privacy
analysis by sensitivity (level 3, DPFN-S). The results show a trade-off between infection rates and
privacy. For ε = 0.1, which is considered a very strict DP, all methods have a large PIR. On the
other side, for ε = 30, which is not considered private, most methods have a low PIR. Expert studies
identify ε = 1 as a target for DP (Hsu et al., 2014; Wood et al., 2018) and at this ε = 1.0-DP, the
experimental results show that our DNA method has significantly lower PIR than other methods.

We run two ablation experiments to test the robustness of our method. First, we simulate that agents
don’t adhere to the protocol of voluntarily isolating after a positive test, e.g. they continue to interact
with other agents. Up to 50 % non-adherence, the DNA method gets significantly lower PIR. Secondly,
we run the simulation with higher false positive and false negative rates. The results in Table 1 show
that even with tests as noisy as 25% FPR and 3% FNR, DNA achieves significantly lower PIR.

6 DISCUSSION AND CONCLUSION

We propose a novel algorithm for statistical contact tracing using neural augmentation, which can
learn patterns from data that are not captured by a statistical model. The algorithm is decentralized
and maintains differential privacy against a recently identified attack scenario on contact tracing.

Further research is needed in two directions. Our algorithm quantifies the DP per message and
repeated contacts are treated as individual messages, but a group of attackers could yield more
information by repeatedly contacting the same individual. More research is needed on privacy
composition in iterative decentralized inference methods. Secondly, in the classification setting, DP
is known to exacerbate biases with respect to minority groups (Farrand et al., 2020), and although
decentralized contact tracing is a different context, this effect should be further investigated.

The early consequences of a pandemic like COVID19 can be mitigated with contact tracing. We
improve the predictions of a differentially private algorithm, and experiments show that our method
significantly reduces the peak infection rate, especially at the level of ε = 1 per message. This is a
crucial step for differentially private and decentralized contact tracing in case a new pandemic arises.
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A.1 NOTATION

We repeat the most important notation in this paper.

• ϕu,t is the COVIDSCORE of user u on day t.

• µi is a message sent in decentralized inference. This is a function of the COVIDSCORE of
the sender, ϕc,t.

• zu,t is the random variable of a user u on day t and takes on the values {S,E, I,R} for the
Susceptible, Exposed, Infected, Recovered states.

• zu,1:T = {zu,1, zu,2, · · · , zu,T } corresponds to the set of random variables for the time
range 1 up to and including T .

• C indicates the number of contacts; Ct is the number of contacts on day t.

• p0, p1, g, h ∈ (0, 1) are scalar model parameters. Its values are taken from previous studies
such as (Herbrich et al., 2020; Romijnders et al., 2023).

• b(z): the functions b generally indicate beliefs (Rosen-Zvi et al., 2005), which could be
either bu(zu,t) for a particular user or bN(u)(zN(u)) for a set of users.

• N(u, t) are the neighbors of user u at day t. We write N(u) and N(t) for briefness when u
or t is clear from context.

• ε > 0, δ ∈ [0, 1) are the parameters for differential privacy.

• γu is the clipping bound for messages between decentralized agents, e.g. µi ∈ [0, γu].

A.2 BACKGROUND

Details on the statistical model: The random variables are written as zu,t for user u, at time step
t. For a particular user, the variables zu,t, zu,t+1, · · · form a Markov chain. The Markov chain is
described by a conditional distribution between one timestep and the next:

P (zu,t+1|zu,t, zN(u,t)) =



ψ(u, t, zN(u,t)) S → S

1− ψ(u, t, zN(u,t)) S → E

1− g E → E

g E → I

1− h I → I

h I → R

1 R→ R

0 otherwise

(7)

The prior for the first timestep for every user is:

P (zu,1) =


1− p0 zu,1 = S

p0 zu,1 = E

0 otherwise.
(8)
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The function ψ(·) is the statistical model for virus transmission over a user contact. This dynamic is
described with a noisy-OR model, c.f. Equation 1 and repeated here:

ψ(u, t, zN(u,t)) = (1− p0)(1− p1)|{zc ∈ zN(u,t): zc=I}|. (9)

Further introduced variables are g, h, p0, and p1, which are set to value from previous literature (Her-
brich et al., 2020; Romijnders et al., 2023). A user can have contact with multiple users on a particular
day. As such, zN(u,t) denotes the set of random variables of all contacts of user u at time step t.

Particular users can also take a test for COVID19. These tests can be assigned randomly, or a potential
contact tracing algorithm could predict a COVIDSCORE per user and prompt users with a high score
to take a test. The test may have a false positive or false negative result with respect to the underlying
state. We denote the False Positive rate (FPR) by β and denote the False Negative rate (FNR) by α.
The conditional observation model then follows:

P (ou,t|zu,t) =


α if zu,t = I ∧ ou,t = 0

1− α if zu,t = I ∧ ou,t = 1

1− β if zu,t ∈ {S,E,R} ∧ ou,t = 0

β if zu,t ∈ {S,E,R} ∧ ou,t = 1

. (10)

Lemma 2. FN update of noisy-or model

This lemma repeats Equation 8 in Romijnders et al. (2023).

The expectation of the noisy-OR model under FN for user v after C contacts happened
at timestep τ . The random variables of these contacts are denoted zc,τ . This has the
corresponding FN belief bc(zc,τ ), with message parameter µc,τ . When clear from context,
we write the message parameter as µi for contact i = c. A central assumption in FN
is that the belief over the set of neighbor nodes, BN(u), follows a factor distribution
BN(u) =

∏C
c=1 bc(zc,τ ).

EBN(u)(zN(u))

[
p(zv,τ+1 = S|zv,τ = S, zN(v,τ) = {zc,τ}Cc=1)

]
= EBN(u)(zN(u))

[
(1− p0)

C∏
c=1

(1− p1)1[zc,τ ]
]

= (1− p0)
C∏

c=1

Ebc(zc,τ )

[
(1− p1)1[zc,τ ]

]
= (1− p0)

C∏
c=1

[1− p1µc,τ ] (11)

Notation 1[·] indicates the Iverson bracket for having state I, which evaluates to 1 when
the argument has state I and 0 otherwise.

A.3 GLOBAL SENSITIVITY PROOF

This section provides the proof for Theorem 1. We aim to bound the sensitivity of the FN algorithm
on two adjacent datasets, as defined in Equation 3. The main establishment of this proof is to address
the sensitivity with respect to the value of one message in the context of arbitrarily many other
statistical messages on that day and other days.

Each dataset has all contacts’ messages in a time window of the past T days. Figure 3 provides a
schematic illustration of the proof. Without loss of generality, we consider two adjacent datasets
where the value of a message, µc,τ , of contact c on day τ from dataset D to dataset D′ is changed.
On that day, assume there are C contacts in total, c = 1, c = 2, · · · , c = C. Each contact sends a
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message (1− p1µ1,τ ), (1− p1µ2,τ ), · · · , (1− p1µC,τ ). Here p1 ∈ (0, 1) is a model parameter. The
definition of these messages follow from (Romijnders et al., 2023), and are repeated in Lemma 2.

We introduce two shorthand notations for a set of random variables. We write the set of random
variables in a sequence of days z1:T = {z1, z2, · · · , zT }. We also use zN(u,1:T ) to denote the
neighboring nodes, contacts, of user u in timesteps 1 up to and including T , where a neighbor could
be any user v not equal to u. We write ZN(u) when the timesteps are evident from the context.

The general update rule for FN is:

F (D) = b(zT = I)

=
∑

z1:T−1

EbN(u)
[p(zT = I, z1:T−1|zN(u,1:T ))] (12)

=
∑

z1:T−1

E[p(zT = I, zτ+1:T−1|z1:τ , zN(u,τ+1:T ))]E[p(z1:τ |zN(u,1:τ))] (13)

=
∑

z1:T−1

E[p(zT = I, zτ+1:T−1|zτ , zN(u,τ+1:T ))]E[p(z1:τ |zN(u,1:τ))] (14)

The equalities in Equations 13 and 14 follow from the Markov property of the model, c.f. Equation 7.
The Markov property implies the conditional independence:

zτ+1:T ⊥ z1:τ−1 | zτ (15)
zτ+1:T ⊥ zN(u,1:τ) | zτ . (16)

We split summation in Equation 14 in three parts: timesteps before τ , the transition at timestep τ ,
and all timesteps after τ . In the following, all expectations are taken with respect to the factored FN
beliefs, so we use shorthand E[·] to indicate EbN(u)

[·], c.f. Lemma 2.

F (D) =
∑

zτ+1:T−1

∑
zτ

E[p(zT = I, zτ+1:T−1|zτ , zN(u,τ+1:T ))]
∑

z1:τ−1

E[p(z1:τ |zN(u,1:τ))] (17)

=
∑

zτ+1:T−1

∑
zτ

E[p(zT = I, zτ+2:T−1|zτ+1, zN(u,τ+2:T ))p(zτ+1|zτ , zN(u,τ+1))]

·
∑

z1:τ−1

E[p(z1:τ |zN(u,1:τ))]. (18)

The conditional distribution for zτ+1 in Equation 18 is highlighted in blue for clarity, as we will
consider two explicit cases for zτ in this conditional distribution for the following analysis. The
random variable zτ can be either in state S or not in state S, which are states {E, I,R}. From state
S the only non-zero conditional probabilities, under Equation 7, are to state S and state E for zτ+1.
For brevity of notation, we will write zN(t1:t2) for zN(u,t1:t2) when the user is clear from context.

F (D) =( ∑
zτ+2:T−1

(
E[p(zT = I, zτ+2:T−1|zτ+1 = S, zN(τ+2:T ))]E[p(zτ+1 = S|zτ = S, zN(τ+1))]

+E[p(zT = I, zτ+2:T−1|zτ+1 = E, zN(τ+2:T ))]E[p(zτ+1 = E|zτ = S, zN(τ+1))]
)

·
∑

z1:τ−1

E[p(zτ = S, z1:τ−1|zN(1:τ))]
)

+
( ∑

zτ+1:T−1

∑
zτ∈{E,I,R}

E[p(zT = I, zτ+1:T−1|zτ ̸= S, zN(τ+2:T ))]
∑

z1:τ−1

E[p(zτ , z1:τ−1|zN(1:τ))]
)
.

(19)

The outer sum in Equation 19 starts at τ +2 because for timestep τ +1 in the first factor, the states S
and E are explicitly written. When the contact occurs on day τ and we name this contact user v, then
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zv,τ ∈ zN(u,τ+1). In Equation 19, conditioned on zτ ̸= S, the random variables zT = I, zτ+1:T−1

are conditionally independent from zN(u,τ+1). Therefore, we define two factors that are constant
w.r.t. the random variables of the contacts on day τ :

K0 =
∑

zτ+1:T−1

∑
zτ∈{E,I,R}

E[p(zT = I, zτ+1:T−1|zτ , zN(τ+2:T ))]
∑

z1:τ−1

E[p(zτ , z1:τ−1|zN(1:τ))]

(20)

K1 =
∑

z1:τ−1

E[p(zτ = S, z1:τ−1|zN(1:τ))]. (21)

Rewrite Equation 19 and fill in the conditional distribution as defined in Equation 11. For ease of
notation, all messages on day τ will be written as µi instead of µi,τ .

F (D) = K0 +K1

∑
zτ+2:T−1

(
E[p(zT = I, zτ+2:T−1|zτ+1 = S, zN(τ+2:T ))]E[p(zτ+1 = S|zτ = S, zN(τ+1))]

+ E[p(zT = I, zτ+2:T−1|zτ+1 = E, zN(τ+2:T ))]E[p(zτ+1 = E|zτ = S, zN(τ+1))]
)

= K0 +K1

(
E[p(zτ+1 = S|zτ = S, zN(τ+1))]

∑
zτ+2:T−1

E[p(zT = I, zτ+2:T−1|zτ+1 = S, zN(τ+2:T ))]

+ E[p(zτ+1 = E|zτ = S, zN(τ+1))]
∑

zτ+2:T−1

E[p(zT = I, zτ+2:T−1|zτ+1 = E, zN(τ+2:T ))]
)

= K0 +K1

(
(1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC)

·
∑

zτ+2:T−1

E[p(zT = I, zτ+2:T−1|zτ+1 = S, zN(τ+2:T ))]

+ (1− (1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC))

·
∑

zτ+2:T−1

E[p(zT = I, zτ+2:T−1|zτ+1 = E, zN(τ+2:T ))]
)

(22)

We further introduce two constants w.r.t. the message value µi:

KS =
∑

zτ+2:T−1

E[p(zT = I, zτ+2:T−1|zτ+1 = S, zN(τ+2:T ))] (23)

KE =
∑

zτ+2:T−1

E[p(zT = I, zτ+2:T−1|zτ+1 = E, zN(τ+2:T ))] (24)

Lemma 3. Constants K0, K1, KS , and KE are in [0, 1).

The conditional probability distributions in Equations 7 and 1 take value in [0, 1)
for any variable realization because the model parameters are chosen such that
0 < p0, p1, g, h < 1 and the joint probability distributions are on a discrete domain.
This holds for all conditional distributions in the definitions of K0, K1, KS , and KE .

The expectation operator, E[·], is a convex combination, and a convex combination of
numbers in [0, 1), is itself in [0, 1). The constants K0, K1, KS , and KE in Equations 20,
21, 23, 24 can all be rewritten to an expectation of a joint probability distribution and
are, therefore, in [0, 1).

Now, we can rewrite Equation 22, replacing all factors that are constant with respect to µ1.

F (D) =
(
KS(1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC)

+KE(1− (1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC))
)
K1 +K0. (25)
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S
E
I
R

Figure 3: This diagram illustrates the proof setup in Section A.3. The value of µ1 on day τ occurs in
the conditional probability distribution p(zτ+1|zτ = S, zN(u)). Filled lines indicate a transition to an
equal state, and dashed lines indicate a transition to the next state in the S → E → I → R order.

Finally, we obtain the sensitivity from taking the difference between the two adjacent datasets D,D′.
The FN inference update equation is invariant to a permutation of the messages in the same day.
Therefore, as mentioned, without loss of generality, we assume that the change from D to D′ happens
in contact 1, which changes its message value from µ1 to µ′

1.

∥F (D)− F (D′)∥ = ∥
((
KS(1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC)

+KE(1− (1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC))
)
K1 +K0

)
−((

KS(1− p0)(1− p1µ′
1)(1− p1µ2) · · · (1− p1µC)

+KE(1− (1− p0)(1− p1µ′
1)(1− p1µ2) · · · (1− p1µC))

)
K1 +K0

)
∥

(26)

≤ ∥
(
KS(1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC)

+KE(1− (1− p0)(1− p1µ1)(1− p1µ2) · · · (1− p1µC))
)
−(

KS(1− p0)(1− p1µ′
1)(1− p1µ2) · · · (1− p1µC)

+KE(1− (1− p0)(1− p1µ′
1)(1− p1µ2) · · · (1− p1µC))

)
∥ (27)

≤ ∥(1− p1µ1)− (1− p1µ′
1)∥ (28)

= p1∥µ1 − µ′
1∥ (29)

Arriving at Equation 27, we use Lemma 3 that 0 ≤ K0 < 1 and 0 ≤ K1 < 1. Likewise, arriving at
Equation 28, we use that 0 ≤ KS < 1 and 0 ≤ KE < 1.

If we assume that every message µi is clipped to the range [0, γu], then we prove the sensitivity.

∆ = max
µ1,µ′

1∈[0,γu]

∥∥F ( {(µ1, t1)} ∪D
)
− F

(
{(µ′

1, t1)} ∪D
)∥∥ ≤ p1γu ∀ D (30)
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A.4 EXPERIMENTAL DETAILS

The different methods are compared on a simulator for COVID19. We need a simulator to evaluate
the interaction between predictions from each method, how that affects which individuals get tested,
and the resulting change in infection rates if infectious individuals go in isolation. All methods in this
paper are decentralized to ensure the locality of data. Each day, the method assigns a COVIDSCORE
for the local user. The top 8% of agents with the highest score receive a signal to get tested. An agent
that tests positively isolates themselves for ten days, and no contacts occur during this period. We
assume that a private algorithm exists to determine the agents with the highest score (Beaver et al.,
1990; Ben-Efraim et al., 2016). The tests have a False Positive Rate of 1% and False Negative Rate
of 0.1%. In Table 1, we report on two ablation experiments where users do not adhere to the isolation
protocol and when the false positive and false negative rates increase.

The settings for the OpenABM-Covid19 simulator (Hinch et al., 2021) follow the parameter settings
in previous work (Baker et al., 2021; Romijnders et al., 2024). The simulator has over 150 modifiable
parameters and uses different network properties to model agents. The parameters are calibrated
against population data from the UK, in terms of age distributions and household and occupation
patterns. Due to computational limits, the simulator’s experimental results are each with 10.000
agents. The noise rates in Table 1 also follow previous work (Romijnders et al., 2024). The largest
values of 25% False Positive Rate and 3% False Negative Rate correspond to the maximum allowance
for an approved COVID19 test by the European Centre for Disease Control (ECDC, 2021).

For training the neural augmentation module, we use a dataset that is extracted from the OpenABM-
Covid19 simulator – on different random seeds than later testing. We run the simulator on 100.000
agents for 100 time steps. As the model will be used in a decentralized setting, we store, per agent
per timestep, the local messages, observations, and the underlying simulator state. The loss function
for training is a Mean Squared Error, and the target label is one if the agent has the infected state, I,
and zero if the agent has any other state, e.g., S, E, R. We measure the Area Under Receiver-Operator
Curve (AUC) as a performance metric to make model decisions. The test set is obtained with the
same protocol but a different random seed. On this test set, FN by itself achieves an AUC of 77.0,
while the neural augmentation module achieves 83.1. This improvement of almost six points in AUC
already shows the benefits of neural augmentation on the static dataset. Note that without neural
augmentation, we found that the best Lipschitz-constrained network achieves only 80.3 AUC.

The parameter vector θ = [θ1; θ2] is learned with stochastic gradient descent, ADAM (Kingma &
Ba, 2015). The model trains for 40 epochs, with weight decay 10−9 and learning rate 0.002, which
decays to 0.0002 by a cosine learning rate decay schedule (Loshchilov & Hutter, 2017). The functions
g
(1)
θ1

(·) and g(2)θ2
(·) are each a multilayer perceptron of M = 8 layers of width w = 64, as discussed

in Section 4.1. The activation function is the Rectified Linear Unit (Nair & Hinton, 2010). During
training, we find that using two or more power iteration steps per gradient descent step results in
spectral norms close to 1. After training, we calculate the spectral norms exactly and project the
weights accordingly.

All inference algorithms in this study use a finite time window of T = 14 days. This means that after
14 days, a message from a contact is deleted and has no influence on future predictions anymore. The
function for FN, F (·), is also stateless. So, any user can withdraw their data at any time, and it will
not be used the next day or thereafter.

Experiments in this paper use (ε, δ) differential privacy. We follow the convention and set δ smaller
than one divided by the dataset size (Blanco-Justicia et al., 2022; Hsu et al., 2014; van Dijk & Nguyen,
2023). The simulators have an average of fifteen contacts daily, and the time window is fourteen days.
Therefore, we set δ = 1

1000 , which is well below the recommended 1
14×15 .
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