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ABSTRACT

Conservative Contextual Bandits (CCBs) address safety in sequential decision
making by requiring that an agent’s policy, along with minimizing regret, also
satisfies a safety constraint: the performance is not worse than a baseline policy
(e.g., the policy that the company has in production) by more than (1 + α) factor.
Prior work developed UCB-style algorithms for this problem in the multi-armed
(Wu et al., 2016) and contextual linear (Kazerouni et al., 2017) settings. However,
in practice the cost of the arms is often a non-linear function, and therefore existing
UCB algorithms are ineffective in such settings. In this paper, we consider CCBs
beyond the linear case and develop two algorithms C9SquareCB and C9FastCB,
using Inverse Gap Weighting (IGW) based exploration and an online regression
oracle. We show that the safety constraint is satisfied with high probability and
that the regret for C9SquareCB is sub-linear in horizon T , while the the regret for
C9FastCB is first-order and is sub-linear in L∗, the cumulative loss of the optimal
policy. Subsequently, we use a neural network for function approximation and
online gradient descent as the regression oracle to provide Õ(

√
KT +K/α) and

Õ(
√
KL∗ + K(1 + 1/α)) regret bounds respectively. Finally, we demonstrate

the efficacy of our algorithms on real world data, and show that they significantly
outperform the existing baseline while maintaining the performance guarantee.

1 INTRODUCTION

Contextual bandits provide a framework to make sequential decisions over time by actively interacting
with the environment. In each time step, the learner observes K context vectors associated with
corresponding arms, selects an arm based on the history of interaction and observes the corresponding
noise corrupted cost1 of playing that arm. The objective of the learner is to minimize the cumulative
sum of costs over the entire horizon of length T , or equivalently to minimize the regret. Although a
lot of progress had been made in the multi-armed (Auer et al., 2002; Agrawal & Goyal, 2012; Bubeck
et al., 2012; Bubeck & Slivkins, 2012) and linear formulation (Chu et al., 2011; Abbasi-Yadkori et al.,
2011; Agrawal & Goyal, 2013), until recently solutions for the general non-linear cost function did
not exist. A series of work on neural contextual bandits (Zahavy & Mannor, 2020; Zhou et al., 2020;
Zhang et al., 2021) have provided algorithms and guarantees for general non-linear cost functions,
paving the way for practical use of bandit algorithms in real-world problems. Distinct from the
previous set of works, Foster & Rakhlin (2020) and Foster & Krishnamurthy (2021) developed
general reductions from the bandit problem to online regression using the Inverse Gap Weighting
(IGW) idea (Abe & Long, 1999; Abe et al., 2003). This reduction works for general cost functions
and uses only a mild realizability assumption (see Assumption 1).

In addition to non-linear cost functions, safety is another crucial consideration that significantly
enhances the practical use of these algorithms in real-world. In this work, we consider a specific
notion of safety called safety with respect to a baseline (Kazerouni et al., 2017). Algorithms that are
safe, meaning it is assured to perform at least as well as an established (possibly already deployed)
baseline, are more likely to be used in practice. While existing online algorithms for bandits are
expected to eventually identify an optimal or high-performing policy, their performance during the
initial learning phase can be unpredictable and often unsafe. To ensure safety in such algorithms, it is
important to regulate their exploration, by making them more conservative. This is done by making

1We use the cost formulation instead of the more common reward formulation in this paper.
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sure that the cumulative cost of the algorithm at any stage is not worse than that of the baseline by
more than a (1 + α) factor (cf. Definition 2.2). Such a conservative bandit formulation has been
studied in the multi-armed setting (Wu et al., 2016) and the contextual linear setting (Kazerouni et al.,
2017; Garcelon et al., 2020), but algorithms and regret guarantees for the general case do not exist.

Existing conservative bandit algorithms in Wu et al. (2016); Kazerouni et al. (2017); Garcelon et al.
(2020) have considered standard multi-armed bandits and linear contextual bandits, using a suitable
variant of the popular Upper Confidence Bound (UCB) approach. In this work, we are interested
in Conservative Contextual Bandits (CCBs) beyond the linear case. One simple and lazy way to
extend the analysis to general non-linear functions would be to modify the Neural UCB algorithm
(Zhou et al., 2020), and extend the regret analysis to the conservative setup. However, a recent
work (Deb et al., 2024a) has shown that the regret bound for Neural UCB in Zhou et al. (2020) (and
Neural Thompson Sampling Zhang et al. (2021)) that depends on the efective dimension d̃, is Ω(T )
in the worst case even with an oblivious adversary. This also extends to any modification for the
conservative case, and therefore we avoid this approach.

In this paper, we consider CCBs with general functions and make the following contributions. First, as
our main contribution, under the assumption of an online regression oracle for such general functions,
we propose CCB algorithms utilizing such regression oracle and doing exploration using inverse
gap weighting (IGW) (Abe & Long, 1999; Foster & Rakhlin, 2020; Foster & Krishnamurthy, 2021).
The regret of our proposed algorithms, respectively based on squared loss and KL-loss regression
(Sections 3 and 4), can be expressed in terms of the regret of the corresponding regression oracle,
while ensuring that the conservative performance guarantee is not violated with high probability.
Our analysis differs substantially from the standard UCB based analysis, since our algorithms do
not maintain high confidence sets around the true cost functions, which is challenging for general
functions. Our analysis also differs from the standard IGW analysis as the proposed CCB algorithms
have to guarantee the safety constraint by a careful balance between actions chosen based on IGW
exploration and using the baseline algorithm. Second, we instantiate the proposed CCB algorithms by
using online neural regression, leverage O(log T ) regret for neural regression with both square-loss
and KL-loss, and provide regret bounds for CCBs with neural networks (Section 5). A more detailed
description of existing works leading up to the current work can be found in Appendix A.

Next we summarize our specific technical contributions below:
1. Reduction using Squared loss: We provide an algorithm for conservative bandits for general

cost functions using an oracle for online regression with squared loss (see Algorithm 1). We
subsequently prove a O(

√
KT RegSq(T ) +KRegSq(T )/α) regret bound, where RegSq(T ) is the

regret of online regression with squared loss, and also ensure that the performance constraint is
satisfied in high probability (see Theorem 3.1).

2. Reduction using KL loss: Next, we provide an algorithm using an oracle for online regression
with KL loss (see Algorithm 2) and prove a O(

√
KL∗ log(L∗) RegKL(T )+K RegKL(T )(1+1/α)

regret bound. Here, RegKL(T ) is the regret of online regression with KL loss and L∗ is the
cumulative cost of the optimal policy, while ensuring that the performance constraint is satisfied in
high probability (see Theorem 4.1). This is a first order regret bound and is data-dependent in the
sense that it scales with the cumulative cost of the best policy L∗, instead of the horizon length T .

3. Regret Bounds using Neural Networks: We instantiate the online regression oracle with Online
Gradient Descent (OGD) and the function approximator with a feed-forward neural network to give
an end-to-end regret bound of O

(√
KT log(T ) +K log(T )/α

)
for Algorithm 1 (Theorem 5.1)

and O
(√

KL∗ log(L∗) log(T ) +K log T +K log(T )/α
)

for Algorithm 2 (Theorem 5.2).
4. Experiments: Finally, we compare our proposed algorithms with existing baselines for conserva-

tive bandits and show that our algorithms consistently perform better (see Section 6).

2 PROBLEM FORMULATION

Contextual Bandits: We consider a contextual bandit problem where a learner needs to make
sequential decisions over T time steps. At any round t ∈ [T ], the learner observes the context for K
arms Xt = {xt,1, , ...,xt,K} ⊆ Rd, where the contexts can be chosen adversarially unlike in Agarwal
et al. (2014); Simchi-Levi & Xu (2020); Ban et al. (2022) where the contexts are chosen i.i.d. from
a fixed distribution. The learner chooses an arm at ∈ [K] and then the associated cost of the arm
yt,at ∈ [0, 1] is observed. We make the following assumption on the cost.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Assumption 1 (Realizability). The conditional expectation of yt,a given xt,a is given by some
h ∈ H, where H is the function class such that h : Rd 7→ [0, 1], i.e., E[yt,a|xt,a] = h(xt,a). Further,
the context vectors satisfy ∥xt,a∥ ≤ 1, t ∈ [T ], a ∈ [K].
Definition 2.1 (Regret). The learner’s goal is to minimize the regret, defined as the expected
difference between the cumulative cost of the algorithm and that of the optimal policy:

RegCB(T ) = E
[ T∑

t=1

(
yt,at − yt,a∗

t

) ]
=

T∑
t=1

(
h(xt,at)− h(xt,a∗

t
)
)
, (1)

where a∗t = argmina∈[K] h(xt,a), minimizes the expected cost in round t. The subscript CB stands
for Contextual Bandits and subsequently differentiates it from the regret of online regression.

Conservative Contextual Bandits: There exists a baseline policy πb that at each round t, selects
action bt ∈ [K] and receives the expected cost h(xt,bt). This baseline policy is to be interpreted as the
default or status quo policy that the company follows and knows to provide a reasonable performance.
However, the company wants to improve the policy but at the same time not incur a high cost while
trying to do so. Thus, it insists on the following performance constraint on any algorithm:
Definition 2.2 (Performance Constraint). At each round t, the cumulative loss of the agent’s policy
should remain below (1+α) times the cumulative loss of the baseline policy for some α ∈ (0, 1), i.e.,

t∑
i=1

h(xi,ai
) ≤ (1 + α)

t∑
i=1

h(xi,bi) , ∀t ∈ {1, . . . , T}. (2)

The parameter α > 0 controls how conservative the agent has to be with respect to the baseline policy.
When α is very small, the cumulative loss by the agent’s policy cannot be very large in comparison to
baseline cumulative loss and as α is increased the agent can take larger risks to explore more. We
assume that the expected costs of the actions taken by the baseline policy, h(xt,bt), are known. This
is a reasonable assumption as argued in Kazerouni et al. (2017); Garcelon et al. (2020), since we
usually have access to a large amount of data generated by the baseline policy as this is the default
strategy of the company. We can also relax this to the assumption that we have an un-biased estimate
of the baseline cost and modify our algorithms slightly (see Appendix E).

Next, we make the following assumption on the baseline gap and the costs of the baseline actions.
Assumption 2 (Baseline Gap and Cost Bounds). Let ∆t,bt := h(xt,bt)− h(xt,a∗

t
) be the baseline

gap. There exist 0 ≤ ∆l ≤ ∆h and 0 < yl < yh, such that for all t ∈ [T ], we have
∆l ≤ ∆t,bt ≤ ∆h and yl ≤ yt,bt ≤ yh.

The assumption ensures a minimum level of performance by the baseline action and is standard in
conservative bandits. Assumption 3 in both Kazerouni et al. 2017 and Garcelon et al. (2020) are
exactly as Assumption 2 in this work, while the regret bound provided in Theorem 2 of Wu et al.
(2016) implicitly depends on similar quantities.

3 REDUCTION TO ONLINE REGRESSION WITH SQUARED LOSS

In this section, we develop an algorithm for Conservative Bandits with general output functions by
reducing it to a black-box online regression oracle with squared loss. In Section 5, we instantiate the
oracle by online gradient descent and give end-to-end regret guarantees. Before proceeding to the
algorithm, we briefly describe the online regression formulation below. For a more detailed treatment,
see Hazan (2021); Shalev-Shwartz (2012); Bubeck (2011).

Online Regression with Squared Loss: We assume access to an oracle Sq9Alg that takes as
input all data points until time t − 1, Dt−1 = {(xi,ai

, yi.ai
) : 1 ≤ i ≤ t − 1} and makes the

prediction ŷt,a = Sq9Alg(Dt−1,xt,a) in [0, 1] for input xt,a at time t. We further make the following
assumption on the regret incurred by the oracle Sq9Alg:
Assumption 3 (Online Regression Regret for Squared Loss). The regret of the online regression
oracle Sq9Alg is bounded by RegSq(T ) ≥ 1, i.e.,

T∑
t=1

ℓsq(ŷt,at
, yt,at

)− inf
g∈H

T∑
t=1

ℓsq(g(xt,at
), yt,at

) ≤ RegSq(T ), (3)

where the squared loss is given by ℓsq(ŷt,at , yt,at) = (ŷt,at − yt,at)
2.
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Algorithm 1 Conservative SquareCB (C9SquareCB)

1: Input: α
2: Hyper-parameter: Exploration parameter γt
3: Initialize: S0 = ∅, and let m0 = 0,mt := |St|, t ∈ [T ]
4: for t = 1, . . . , T do
5: Receive contexts xt,1, . . . ,xt,K and compute ŷt,k, ∀k ∈ [K] using Sq9Alg
6: Let zt = argmin

a∈[K]

ŷt,a, and compute

pt,a =
1

K + γt(ŷt,a − ŷt,zt)
, ∀k ∈ [K] \ {zt}; pt,zt = 1−

∑
a̸=zt

pt,a .

7: Sample ãt ∼ pt
8: if the safety condition in (4) is satisfied then
9: Play the IGW action at = ãt and observe output yt,at

10: Set St = St−1 ∪ t, Sc
t = Sc

t−1
11: Set Dt = Dt−1 ∪ {(xt,at

, yt,at
)} and update the oracle Sq9Alg

12: else
13: Play at = bt and observe output h(xt,bt)
14: Set St = St−1, Sc

t = Sc
t−1 ∪ t, Dt+1 = Dt

We refer to our algorithm as C9SquareCB, whose pseudo-code is reported in Algorithm 1. At a
high level, C9SquareCB does the following: 1) It samples an action from the IGW distribution using
the outputs of the oracle Sq9Alg, 2) It then verifies if a certain safety condition is met, 3) If yes, it
then plays the sampled action, otherwise turns conservative and plays the baseline action. We use
St ⊆ [T ] and its complement Sc

t ⊆ [T ] to denote the subsets containing the time-steps until round t
when the IGW and baseline actions were played, respectively. We denote the cardinality of these sets
by mt = |St| and nt = |Sc

t |.
At every round t, the agent receives K contexts xt,1, . . . ,xt,K and estimates the cost for every arm
ŷt,a using the online regression oracle (line 5). It then finds the arm with the lowest estimate zt (see
line 6) and computes the Inverse Gap Weighted (IGW) distribution using the estimate gaps ŷt,a− ŷt,zt
and the exploration parameter γt. Next it samples a candidate action ãt in line 7 and verifies a safety
condition in line 7 (corresponding to (2)) by checking if the following inequality holds:

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a︸ ︷︷ ︸
(A)

+
∑

i∈Sc
t−1

h(xi,bi)︸ ︷︷ ︸
(B)

+ 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)
︸ ︷︷ ︸

(C)

≤ (1 + α)

t∑
i=1

h(xi,bt). (4)

Here, term (A) sums up the expected costs of the regression oracle for all rounds when the IGW
action was played and the cost of the current IGW action ãt under consideration. Term (B) simply
sums up the baseline costs for all the rounds when the baseline action was played. To ensure that the
performance constraint (2) is not violated, in our proof we show that (see proof of Lemma 4)

(A) −
∑

i∈St−1∪{t}

h(xi,ai) ≥ −16
√

mt−1(RegSq(mt−1) + log(4/δ)).

Observe that now term (C) compensates for the above gap and immediately implies that the constraint
in (2) is satisfied. Note that an easy way to ensure that (2) holds would be to replace (A) with the
observed costs yt,at

and use Azuma-Hoeffding to bound
∑

i∈St−1
(yi,ai

− h(xi,ai
)). However this

approach does not let us control the number of times the baseline action is played by the algorithm,
which is crucial to bound the final regret (see Step 2 in the proof of Theorem 3.1). If the safety
condition in (4) is satisfied, then the IGW action at = ãt is played and the output yt,at

is observed in
line 9. The current time step is added to St and the current input-output pair (xt,at

, yt,at
) is added

to the online regression dataset Dt (lines 10 and 11). Otherwise we play the baseline action bt in

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

line 13, observe the true output h(xt,bt) and add the current time step to Sc
t in line 14. We now state

the main theoretical result of this section that bounds the regret of C9SquareCB (Algorithm 1) along
with satisfying the performance constraint in (2) in high probability.
Theorem 3.1 (Regret Bound for C-SquareCB). Suppose Assumptions 1,2 and 3 hold. With
probability at least 1−δ, C9SquareCB (Algorithm 1) with γt =

√
K|St|/(RegSq(mT ) + log(8δ−1))

satisfies the performance constraint in (2) and has the following regret bound:

RegCB(T ) = O
(√

KT
(√

RegSq(T ) +
√
log(8δ−1)

)
︸ ︷︷ ︸

I

+
K(RegSq(T ) + log(8δ−1))

αyl(∆l + αyl)︸ ︷︷ ︸
II

)
. (5)

Remark 3.1 (Term interpretations). Term I and II in (5) correspond to the regret of playing the
IGW and baseline actions, respectively. Note that term II grows with RegSq(T ), unlike the linear
case where the second term is independent of the horizon T (see Theorem 5 in Kazerouni et al. 2017).
However, in Section 5, when we instantiate the oracle with OGD and the function approximator with
a neural network, RegSq(T ) only contributes a log T factor to the regret to the second term.
Remark 3.2 (Infinite actions). The regret in (5) scales with the number of actions K, and thus,
holds for finite number of actions. In case of infinite actions, a straightforward extension of our
results following the analysis of Theorem 1 in Foster et al. (2020) will lead to a regret that scales with
the dimension of the action space instead of K.

Proof of Theorem 3.1 The proof of the theorem follows along the following steps. We report the proof
of the intermediate lemmas in Appendix B.

1. Regret Decomposition: We begin by decomposing the regret in (1) into two parts following Kaze-
rouni et al. (2017): the regret accumulated by playing the IGW and baseline actions, terms I and
II in the regret bound (5), respectively.
Lemma 3.1. Let Assumptions 1 and 2 hold. Then, the regret defined in (1) can be bounded as

RegCB(T ) ≤
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
+ nT∆h, (6)

where the set ST consists of the rounds until the horizon T when C9SquareCB played an IGW
action and nT = |Sc

T | is the number of times until T where a baseline action was played.

2. Upper Bound on nT : The safety condition in (4) determines how many times the baseline action
is played. In what follows, we use mt := |St| and τ := max{1 ≤ t ≤ T : at = bt}, i.e., the last
time step at which C9SquareCB played an action according to the baseline strategy.
(a) The following lemma upper-bounds nT in terms of mτ and RegSq(mτ−1).

Lemma 3.2. Suppose Assumption 1,2 and 3 holds. Then, with probability 1−δ/4 the number
of times the baseline action is played by C9SquareCB is bounded as

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl)

+ 64
√
K
√
(mτ−1 + 1)

(√
RegSq(T ) +

√
log(8δ−1)

)}
. (7)

(b) Note that the second term in (7) grows as
√
mτ−1 and the first term decreases linearly in mτ ,

and therefore, one can find the maximum and further bound nT as in the following lemma.
Lemma 3.3. Suppose Assumption 1,2 and 3 holds. Then, with probability 1−δ/4 the number
of times the baseline action is played by C9SquareCB is bounded as follows:

nT ≤ O
(
K(RegSq(T ) + log(8δ−1))

αyl(∆l + αyl)

)
. (8)

3. Bounding the Final Regret: The first term in (6) can be bounded along the lines of the analysis
in (Foster & Rakhlin, 2020). Note that DT only contains the input-output pairs at time steps when
the IGW action was picked, i.e., all t ∈ ST , and therefore, using mT = |ST |, (3) reduces to∑

t∈ST

(ŷt,at
− yt,at

)2 − inf
g∈H

∑
t∈ST

(
g(xt,at

)− yt,at

)2 ≤ RegSq(mT ). (9)
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However, unlike Foster & Rakhlin (2020), we need an a time varying exploration parameter γt
that depends on the size of St for all t ∈ [T ] in order to bound nT in Step 2. The next lemma
bounds the regret of the first term in (6) with an such adaptive γt.
Lemma 3.4. Suppose Assumptions 1 and 3 hold. Then, for δ > 0 and γt =√
K|St|/(RegSq(T ) + log(4δ−1)), with probability 1− δ/4, C9SquareCB guarantees∑

t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
≤ O

(√
KmT RegSq(T ) +

√
KmT log(8δ−1)

)
. (10)

Note that mT ≤ T . Combining (6), (8), and (10), and taking a union bound over the high
probability events shows that the regret bound in (5) holds with probability 1− δ/2.

4. Performance Constraint: Finally the following lemma shows that the condition in Line 7 of
C9SquareCB ensures that the performance constraint in (2) is satisfied.
Lemma 3.5. Let Assumptions 1, 2 and 3 hold. Then, for δ > 0 and γt =√
K|St|/(RegSq(mT ) + log(8δ−1)), with probability 1 − δ/2, C9SquareCB satisfies the per-

formance constraint in (2).

Taking a union bound with the high probability regret bound in Step 3, we have that with
probability 1− δ, C9SquareCB simultaneously satisfies the performance constraint in (2) and the
regret upper-bound in (5), which concludes the proof.

Remark 3.3 (Novelty in Analysis). The analysis in Foster & Rakhlin (2020) does not have a safety
condition and therefore our analysis bounding nT (the number of times the baseline action is played)
in Step 2 and the performance constraint satisfaction in Step 4 of proof of Theorem 3.1 are original
contributions. One of the important parts of the analysis involves bounding nT , the number of times
the baseline actions are played. In the linear case (Kazerouni et al., 2017), the analysis crucially uses
the upper and lower confidence bounds for the parameter estimates. For general function classes it is
difficult to maintain such confidence bounds around estimates, and further the estimates from the
regression oracle ŷt,at

do not provide any such guarantees. Therefore our analysis crucially relates
nT to squared loss and through that gives a reduction to online regression.

Further, even the analysis from Foster & Rakhlin (2020) cannot be directly used to bound the regret
for the time steps when the IGW actions were picked (term I in eq (5) of the draft). This is because
we need to carefully choose a time dependent exploration parameter γt, to simultaneously ensure
that term I is

√
T while ensuring that nT is small. In the process, we extend the analysis in Foster &

Rakhlin (2020) to time-dependent γt and bound the regret in I .

4 FIRST ORDER REGRET BOUND WITH LOG LOSS

In this section, we use an oracle with KL loss, KL9Alg, and provide a reduction from the conservative
contextual bandit (CCB) problem to online regression. The objective of this reduction is to provide
a first order data dependent2 regret bound, i.e., a bound that scales with L∗ =

∑T
t=1 L

∗(t), where
L∗(t) = h(xt,a∗

t
) is the cost of the optimal action at time t. Note that L∗ ≤ T , since h(x) ∈ [0, 1]

for all x, but in practice we may have L∗ ≪ T .

Online Regression with KL Loss: We assume access to an oracle KL9Alg that takes as input all
data points until time t− 1, Dt−1 = {(xi,ai , yi.ai) : 1 ≤ i ≤ t− 1} and makes the prediction ŷt,a =
KL9Alg(Dt−1,xt,a) in [0, 1] for input xt,a at time t. We further make the following assumption on
the regret incurred by the oracle KL9Alg:
Assumption 4 (Online Regression Regret for KL Loss). The regret of the online regression oracle
KL9Alg is bounded by RegKL(T ) ≥ 1, i.e.,

T∑
t=1

ℓKL(ŷt,at
, yt,at

)− inf
g∈H

T∑
t=1

ℓKL
(
g(xt,at

), yt,at

)
≤ RegKL(T ), (11)

where the KL loss is given by ℓKL(ŷ, y) = y log(1/ŷ) + (1− y) log(1/(1− ŷ)).

2See Appendix A for more details on Data Dependent Bounds
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Algorithm 2 Conservative FastCB (C9FastCB)

1: Input: α
2: Hyper-parameter: Exploration parameter γt
3: Initialize: S0 = ∅
4: for t = 1, . . . , T do
5: Receive contexts xt,1, . . . ,xt,K and compute ŷt,k, ∀k ∈ [K] using KL9Alg
6: Let zt = argmin

k∈[K]

ŷt,k and compute

pt,k =
ŷt,zt

Kŷt,zt + γt(ŷt,k − ŷt,zt)
∀k ∈ [K] \ {zt}; pt,zt = 1−

∑
a ̸=zt

pt,a

7: Sample ãt ∼ pt
8: if

ŷt,ãt +
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a +
∑

i∈Sc
t−1

h(xi,bi) + 16
√

mt−1RegKL(T ) ≤ (1 + α)

t∑
i=1

h(xi,bt)

then
9: Play at = ãt and observe output yt,at

10: Set St = St−1 ∪ t, Sc
t = Sc

t−1
11: Set Dt = Dt−1 ∪ {(xt,at

, rt,at
)} and update the oracle KL9Alg

12: else
13: Play at = bt and observe output h(xt,bt)
14: Set St = St−1, Sc

t = Sc
t−1 ∪ t, Dt+1 = Dt

We refer to the resulting algorithm as C9FastCB. It follows the same structure as C9SquareCB
(Algorithm 1) and is summarized in Algorithm 2. We now state the main theory of this section that
bounds the regret of C9FastCB along with satisfying the performance constraint in high probability.

Theorem 4.1 (Regret Bound for C-FastCB). Let Assumptions 1, 2 and 4 hold. With probability
1−δ, C9FastCB (Algorithm 2) with γi chosen in (γi-Schedule), satisfies the performance constraint
in (2) and has the following bound on the expected regret (expectation is for the action distributions):

E
[
RegCB(T )

]
= O

(√
KL∗ log(L∗) RegKL(T ) +

KRegKL(T )

αyl(∆l + αyl)
log
(e√KRegKL(T )

∆l + αyl

))
. (12)

Remark 4.1 (First Order Regret). Note that the regret in (12) depends on
√
L∗ instead of

√
T ,

where L∗ =
∑T

t=1 L
∗(i) is the cumulative loss of the optimal policy and depends on the complexity

of the bandit instance, L∗ ≪ T , thus improving the performance of the learner. Such a data dependent
regret is referred to as a first-order regret (Agarwal et al., 2017a; Foster & Krishnamurthy, 2021).

Remark 4.2 (Novelty in Analysis). We face similar set of challenges as in Theorem 5.1 in trying to
bound nT , and our analysis relates nT to the KL loss using the sampling strategy and reduces it to
online regression with KL loss. We face an additional challenge. In Foster & Krishnamurthy (2021),
the exploration parameter γt is set to a fixed value γ = max(

√
KL∗/3RegKL(T ), 10K). In our

analysis we need a time dependent γt to ensure that we can bound the regret contributed by both the
IGW and baseline actions (cf. decomposition in (6)). However, unlike in Algorithm 1, we crucially
need to set γt in an episodic manner to ensure that the final regret does not have a

√
T dependence.

By having log(L∗) episodes and keeping γt constant within an episode, we derive our final regret in
(12), in which term I has only an additional

√
log(L∗) factor. A more detailed description of the

exact choice of γt along with the episodic analysis has been pushed to Appendix C, for clarity.

Proof of Theorem 4.1. The proof broadly follows the same sequence of steps as in the proof of
Theorem 3.1, and owing to limited space, has been reported in Appendix C.
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5 NEURAL CONSERVATIVE BANDITS

In this section, we instantiate the online regression oracles Sq9Alg (Algorithm 1) and KL9Alg
(Algorithm 2) by (projected) Online Gradient Descent (OGD), and use feed-forward neural networks
for function approximation. The setup closely follows the one in Deb et al. (2024a), which we restate
it here for completeness. We consider a feed-forward neural network whose output is given by

f(θt;x) := m−1/2v⊤
t ϕ(m

−1/2Wt
(L)ϕ(· · · ϕ(m−1/2Wt

(1)x) · · · )), (13)

where L is the number of hidden layers and m is the width of the network. Further, Wt
(1) ∈

Rm×d and W
(l)
t = [w

(l)
t,i,j ] ∈ Rm×m for all l ∈ {2, . . . , L} are layer-wise weight matrices, and

vt ∈ Rm is the last layer vector. Similar to Du et al. (2019); Banerjee et al. (2023), we consider
a (point-wise) smooth and Lipschitz activation function ϕ(·). We define θt ∈ Rp, where θt :=

(vec(W
(1)
t )⊤, . . . ,vec(W

(L)
t )⊤,v⊤)⊤, as the vector of all parameters in the network, and make the

following assumption on the initialization of the network (Liu et al., 2020; Banerjee et al., 2023).

Assumption 5. We initialize θ0 with w
(l)
0,ij ∼ N (0, σ2

0) for l ∈ [L], where σ0 = σ1

2
(
1+

√
log m√
2m

) , σ1 > 0,

and v0 is a random unit vector with ∥v0∥2 = 1.

Next, we define the Neural Tangent Kernel (NTK) matrix (Jacot et al., 2018) at θ as Kntk(θ) :=
[⟨∇f(θ;xt),∇f(θ;xt′)⟩] ∈ RT×T , and make the following assumption on this matrix which is
common in the deep learning literature (Du et al., 2019; Arora et al., 2019; Cao & Gu, 2019). Note
that our NTK is defined for a specific sequence of xt’s where xt depends on the choice of arms played,
and our assumption on the NTK matrix is for all sequences, which is equivalent to the assumption for
the (TK × TK) NTK matrix as in Zhou et al. (2020); Zhang et al. (2021).

Assumption 6. The matrix Kntk(θ0) is positive definite, i.e., Kntk(θ0) ⪰ λ0I for some λ0 > 0 .

The assumption can be ensured if no two context vectors xt overlap. Note that this assumption is used
by all existing regret bounds for neural bandits (see Assumption 4.2 in Zhou et al. 2020, Assumption
3.4 in Zhang et al. 2021, Assumption 5.1 in Ban et al. 2022 and Assumption 5 in Deb et al. 2024a).
The choice of the width of the network m depends on λ0 and is similar to the width requirements in
Zhou et al. (2020) and Zhang et al. (2021).

We define a perturbed network as in Deb et al. (2024a) as follows:

f̃(θt,xt, ε) = f(θt;xt) + cp

p∑
j=1

(θt − θ0)
T ejεj

m1/4
, (14)

where {ej}pj=1 are standard basis vectors, ε = (ε1, . . . , εp)
T is an i.i.d. random Rademacher vector,

i.e., P (εj = +1) = P (εj = −1) = 1/2, and cp is the perturbation constant. As in Deb et al. (2024a),
we use an ensemble of S = O(log T ) random networks as follows:

f̃ (S)
(
θ;xt, ε

(1:S)
)
=

1

S

S∑
s=1

f̃(θ;xt, εs), (15)

where each εs is a Rademacher vector. We run projected OGD on the loss function

L(S)
Sq

(
yt,
{
f̃(θ;xt, εs)

}S
s=1

)
:=

1

S

S∑
s=1

ℓSq

(
yt, f̃(θ;xt, εs)

)
, (16)

which with the projection operator
∏
B

(θ) = arginfθ′∈B∥θ′ − θ∥2 gives us the following update:

θt+1 =
∏
B

(
θt − ηt∇L(S)

Sq

(
yt,at ,

{
f̃(θ;xt,at , εs)

}S
s=1

))
. (17)

We now prove a regret bound for C9SquareCB with feed-forward neural networks (neural
C9SquareCB) and OGD as a regression oracle.
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Figure 1: Comparison of cumulative regret of C-SquareCB and C-FastCB with the baseline C-LinUCB
on openml datasets (averaged over 10 runs).

Theorem 5.1 (Regret bound for Neural C-SquareCB). We instantiate Sq9Alg with the predictor
ŷt,at

= f̃ (S)
(
θ;xt, ε

(1:S)
)

from (15) and update the parameters using OGD in (17). Under Assump-
tions 1,2, 5 and 6 with γt as in Theorem 5.1, step-size sequence {ηt}, width m, perturbation constant
cp, and projection ball B, with high probability (1 − O(δ)), the performance constraint in (2) is
satisfied by C-SquareCB and the regret is given by

RegCB(T ) ≤ O
(√

KT log T +
√
KT log(16δ−1) +

K(log T + log(16δ−1))

αyl(∆l + αyl)

)
.

Next, for the first-order bound, we use the following ensembled network as the predictor:

σ
(
f̃ (S)

(
θ;xt, ε

(1:S)
))

=
1

S

S∑
s=1

σ(f̃(θ;xt, εs)) (18)

where f̃(θ;xt, εs) is as defined in (14) and σ(·) is the sigmoid function. Our next theorem provides
a first-order regret bound for C9FastCB when coupled with feed-forward networks and OGD.
Theorem 5.2 (Regret bound for Neural C-FastCB). We instantiate Sq9Alg with the predictor
ŷt,at

= f̃ (S)
(
θ;xt, ε

(1:S)
)

from (15) and update the parameters using OGD in (17). Under As-
sumptions 1,2, 4, 5 and 6 with γt chosen as in (γi-Schedule), step-size sequence {ηt}, width m,
perturbation constant cp, and projection ball B, with probability (1 − O(δ)), the performance
constraint in (2) is satisfied by C-FastCB and the expected regret is given by

E RegCB(T ) ≤ O
(√

KL∗ logL∗ log T +K log T +
K log T

αyl(∆l + αyl)

)
.

6 EXPERIMENTS

We evaluate our algorithms C9SquareCB and C9FastCB and compare the regret bounds with the
existing baseline - Conservative Linear UCB (C9LinUCB) (Kazerouni et al., 2017). The algorithm
estimates the parameter associated with the cost function using least squares regression and uses
existing results on high probability confidence bounds around the estimate (Abbasi-Yadkori et al.,
2011) to set up a safety condition. When the safety condition is satisfied, it plays actions according to
Linear UCB (Chu et al., 2011; Abbasi-Yadkori et al., 2011), otherwise switches to the baseline action.
We tune the ridge parameter λ in {0.001, 0.005, 0.01, 0.05, 0.1}.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 v

io
la

te
d 

co
ns

tra
in

t

covertype
C SquareCB
SquareCB
C FastCB
FastCB

0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

P
er

ce
nt

ag
e 

of
 v

io
la

te
d 

co
ns

tra
in

t

Plants

C SquareCB
SquareCB
C FastCB
FastCB

0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

P
er

ce
nt

ag
e 

of
 v

io
la

te
d 

co
ns

tra
in

t

fashion
C SquareCB
SquareCB
C FastCB
FastCB

0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

12

P
er

ce
nt

ag
e 

of
 v

io
la

te
d 

co
ns

tra
in

t

MagicTelescope
C SquareCB
SquareCB
C FastCB
FastCB

Figure 2: Comparison of Percentage of Constraints violated by C-SquareCB and C-FastCB with their
vanilla non conservative versions on openml datasets (averaged over 100 runs).

We use the evaluation setting for bandit algorithms developed in Bietti et al. (2021) and subsequently
used in (Zhou et al., 2020; Zhang et al., 2021; Ban et al., 2022; Deb et al., 2024a). We consider a
series of multiclass classification problems from the openml.org platform. We transform each d-
dimensional input into K different context vectors of dimension dK, where K is the number of classes
as follows: xt,1 = (xt,0,0, . . . ,0)

T , xt,2 = (0,xt,0, . . . ,0)
T ), . . . ,xt,K = (0,0, . . . ,0,xt)

T .
The K vectors correspond to the K different action choices in the bandit problem. We assign a cost
of 1 to all the context vectors associated with the incorrect classes, and a cost of 0.01 to the correct
class. Note that when an action corresponding to an incorrect class is selected, the learner does not
learn the identity of the action with the lowest cost. For each of the datasets, we fix one action as the
baseline action, and the baseline policy corresponds to always choosing this pre-defined action.

Both C9SquareCB and C9FastCB use a two layered neural network with ReLU hidden activa-
tion with width 100. We update the network parameter every 10-th round and do a grid search
over step sizes (0.01, 0.005, 0.001). For C9SquareCB we set γi = c

√
t/ log(δ−1) and tune c in

{10, 20, 50, 100, 200, 500, 1000}. For C9FastCB, since the optimal loss L∗
i is not known in advance,

the exploration parameter γi is treated as a hyper-parameter in our experiments. We set γi = γ
and tune it in {10, 20, 50, 100, 200, 500, 1000}. Deb et al. (2024a) tune for different choices of
the perturbation constant (see Appendix F in Deb et al. (2024a)) and show that the unperturbed
version perform almost as good as the perturbed ones empirically, and are computationally more
efficient. We saw a similar behavior in our experiments and report the final plots for the unperturbed
networks. We compare the cumulative regret of the algorithms in Figure 1. Note that C9SquareCB
and C9FastCB consistently show a sub-linear trend in regret and beat the existing benchmark, with
C9FastCB performing better in some of the datasets, owing to it’s first order order regret guarantee.
We also compare it with another heuristic choice, where we substitute

∑t
i=1 L

∗
i by the sum of the

observed losses until time t− 1, i.e.,
∑t−1

i=1 Li to choose γt, and note that it produces good results in
the majority of environments (See Figure 3). We also compare the performance of the algorithms for
various choices of width of the network (see Appendix F).

Finally, we compare the percentage of constraints violated by our algorithms C-SquareCB and
C-FastCB compared to their vanilla counterparts that does not use any safety condition in Figure 2.
Our algorithms maintain the performance constraint while minimizing the regret.

7 CONCLUSION

In this paper, we developed two new algorithms, C9SquareCB and C9FastCB, for the problem of
Conservative Contextual Bandits with general non-linear cost functions. Our algorithms use Inverse
Gap Weighting (IGW) for exploration and rely on an online regression oracle for prediction. We
provided regret guarantees for both algorithms, showing that C9SquareCB achieves a sub-linear regret
in T , while C9FastCB achieves a first-order regret in terms of the cumulative loss of the optimal
policy L∗. We also extended our approach by using neural networks for function approximation and
provide end-to-end regret bounds. Finally, through experiments on real-world data, we showed that
our methods outperform existing baseline while maintaining safety guarantee. Adapting our methods
to other safe bandit frameworks such as the stage-wise setting (Moradipari et al., 2019; Amani et al.,
2019) and to the more general reinforcement learning framework following Foster et al. (2023b) and
Foster et al. (2023a) is left for future work.
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A RELATED WORKS

Contextual Bandits. The study of bandit algorithms, especially in the contextual bandit setting, has
seen significant development over the years. Initial works on linear bandits, such as those by Abe
et al. (2003), Chu et al. (2011), and Abbasi-Yadkori et al. (2011), laid the foundation for exploration
strategies with provable regret bounds. These works primarily leveraged linear models, achieving
near-optimal performance in various settings. Agrawal & Goyal (2012) provided regret guarantee for
the Thompson sampling algorithm in the multi-armed case and later extended it to the linear setting
with provable guarantees (Agrawal & Goyal, 2013). The success of linear bandits naturally led to
their extension to more complex settings, particularly nonlinear models. Generalized linear bandits
(GLBs) explored by Filippi et al. (2010) and Li et al. (2017) introduced non-linearity through a link
function, while preserving a linear dependence on the context.

Contextual Bandits beyond linearity. More recently, the rise of deep learning has led to interest
in neural models for contextual bandits. Early attempts to incorporate neural networks into the
bandit framework relied on using deep neural networks (DNNs) as feature extractors, with a linear
model learned on top of the last hidden layer of the DNN (Lu & Van Roy, 2017; Zahavy & Mannor,
2020; Riquelme et al., 2018). Although these methods demonstrated empirical success, they lacked
theoretical regret guarantees. The NeuralUCB (Zhou et al., 2020) algorithm combined neural
networks with UCB-based exploration, and provided regret guarantees. This approach was further
extended to Thompson Sampling in the work of Zhang et al. (2021), with both methods drawing on
neural tangent kernels (NTKs) (Jacot et al., 2018; Allen-Zhu et al., 2019) and the notion of effective
dimension d̃. However rcently Deb et al. (2024a) showed that these bounds are Ω(T ) in the worst
case even with an oblivious adversary. These methods also suffer from the computational complexity
of inverting large matrices at each step of the algorithm remained a limitation, as the inversion scales
with the number of neural network parameters. In response, Ban et al. (2022) introduced a novel
approach that achieved regret bounds independent of the effective dimension d̃, though this method
required specific distributional assumptions on the context.

Agnostic Contextual Bandits. Concurrently, agnostic algorithms for bandit problems were also
studied starting from Dudik et al. (2011); Agarwal et al. (2014). Foster et al. (2018) provided an
approach to leverage an offline weighted least squares regression oracle and demonstrated that this
approach performs well compared to other existing contextual bandit algorithms. However, despite
its success, the algorithm was theoretically sub-optimal, potentially incurring high regret in the
worst case. Subsequently (Foster & Rakhlin, 2020) adapted the inverse gap weighting idea from
Abe & Long (1999); Abe et al. (2003) related the bandit regret to the regret of online regression
with square loss, while Foster & Krishnamurthy (2021) modified (Foster & Rakhlin, 2020), with
binary Kullback–Leibler (KL) loss and a re-weighted inverse gap weighting scheme to provide a
first-order regret bound. Further, Simchi-Levi & Xu (2020) showed that an offline regression oracle
with O(log T ) calls can also be used to derive optimal regret gurantees for the general realizable case.
This improves ove the O(T ) calls by Foster & Krishnamurthy (2021) and (Foster & Rakhlin, 2020)
and also relaxes the assumption to offline oracles instead of online, however it needs to make a strong
assumption about the contexts - they are drawn i.i.d. from a fixed distribution.

Constrained Bandits. Bandit problems under constraints have also been studied extensively. The
Bandits with Knapsacks problem looks at cumulative reward maximization under budget constraints
(Badanidiyuru et al., 2013; Agrawal & Devanur, 2016; Immorlica et al., 2022; Sivakumar et al., 2022;
Deb et al., 2024b). The general cost function case as in this work has been studied in Slivkins et al.
(2023); Han et al. (2023) and provided sub-linear regret bounds using the Inverse gap weighting idea
from Abe & Long (1999); Foster & Rakhlin (2020); Foster & Krishnamurthy (2021). In the stage-
wise constraint setup, each arm generates both reward and cost signals from unknown distributions.
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The objective is to maximize cumulative rewards while ensuring the expected cost stays below a
threshold at each round. Amani et al. (2019) and Moradipari et al. (2019) investigated this setting in
the context of linear bandits, developing and evaluating explore-exploit algorithm and a Thompson
sampling algorithm respectively. The setup in this work, conservative bandits was introduced in
Wu et al. (2016) and subsequently studied in the linear setting Kazerouni et al. (2017); Garcelon
et al. (2020), and all existing methods use a modified version of UCB. To the best of our knowledge
neither a Thompson Sampling version has been studied, nor an oracle based approach for the general
function case.

Data Dependent Regret Bounds. Adaptive algorithms can often perform better if the environment
it is operating in is comparatively easier. A data dependent regret bound tries to capture such a
phenomena. In a first-order regret bounds, the regret scales as in L∗ =

∑T
t=1 ℓt,a∗

t
, the cumulative

loss/cost of the optimal policy. It has a rich history, with Freund & Schapire (1997) proving the first
such bound for the full information setting (or the classical expert setting) using Exponential Weights
algorithm. For the K-armed bandit setting (with no contexts), first order bounds were provided in
Agarwal et al. (2016). For the adversarial setting Agarwal et al. (2017b) provided a O(L

2/3
∗ ) bound

and subsequently also posed an open problem at COLT - ‘Can first-order regret bounds be developed
for contextual bandits ?’. Allen-Zhu et al. (2018) responded by providing a first order bound with an
inefficient algorithm, and subsequently Foster & Krishnamurthy (2021) provided an algorithm with a
reduction to online regression that was both efficient and provided a first order regret.

Cesa-Bianchi et al. (2006a) first posed the question of whether further improvements could be
achieved by deriving second-order (variance-like) bounds on the regret for the full information
setting. They provided two choices for second order bounds, one that depends on

∑T
t=1 ℓ

2
t,a∗

t

(variance across time) and another that depends on
∑

k≤K pk,t(ℓ̂t − ℓk,t)
2 (variance across actions),

where ℓ̂t =
∑K

k=1 pt,kℓt,k, and pk,t is the probability with which expert k is chosen in round t. For a
more detailed discussion of second order bounds we refer the reader to Ito et al. (2020); Gaillard et al.
(2014); Freund (2016); Ito et al. (2020); Cesa-Bianchi et al. (2006b); Pacchiano (2024).

B PROOF OF REGRET BOUND FOR C9SquareCB

Lemma 3.1. Let Assumptions 1 and 2 hold. Then, the regret defined in (1) can be bounded as

RegCB(T ) ≤
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
+ nT∆h, (6)

where the set ST consists of the rounds until the horizon T when C9SquareCB played an IGW action
and nT = |Sc

T | is the number of times until T where a baseline action was played.

Proof. The decomposition follows as in Proposition 2 in (Kazerouni et al., 2017), and we reproduce
the proof here for completeness. Recall that ST = {t ∈ [T ] : at = bt} is the set of time steps when
the baseline action was chosen and Sc

T = {t ∈ [T ] : at = ãt} is the set of time steps when the
SquareCB action was played. Then, we can decompose the regret as follows:

RegCB(T ) =

T∑
t=1

h(xt,at
)−

T∑
t=1

h(xt,a∗
t
)

(a)
=
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
+
∑
t∈Sc

T

(
h(xt,bt)− h(xt,a∗

t
)
)

(b)
=
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
+
∑
t∈Sc

T

∆t
bt

(c)

≤
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
+ nT∆h,

where (a) follows because ST ∪Sc
T = [T ], (b) follows by the definition of ∆t

bt
= h(xt,bt)−h(xt,a∗

t
),

and (c) follows by Assumption 2.
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Lemma 3.2. Suppose Assumption 1,2 and 3 holds. Then, with probability 1− δ/4 the number of
times the baseline action is played by C9SquareCB is bounded as

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl)

+ 64
√
K
√
(mτ−1 + 1)

(√
RegSq(T ) +

√
log(8δ−1)

)}
. (7)

Proof. Let τ be the last round at which the algorithm plays the conservative action, i.e.,

τ = max{1 ≤ t ≤ T |at = bt}.

Recall that mt = |St| and nt = |Sc
t |. By the definition of τ , we have that at round τ

ŷτ,ãτ
+

∑
i∈Sτ−1

∑
a∈[K]

pi,aŷi,a +
∑

i∈Sc
τ−1

h(xi,bi) + 16

√
mτ−1

(
RegSq(T ) + log(2/δ)

)

> (1 + α)

τ∑
i=1

h(xi,bi).

Therefore, we may write

α

τ∑
i=1

h(xi,bi) <
∑

i∈Sτ−1

∑
a∈[K]

pi,aŷi,a + ŷτ,ãτ
−

∑
i∈Sτ−1

(h(xi,bi) + h(xτ,bτ ))

+ 16

√
mτ−1

(
RegSq(T ) + log(2/δ)

)
=

∑
i∈Sτ−1

∑
a∈[K]

pi,aŷi,a + ŷτ,ãτ
−

∑
i∈Sτ−1

∑
a∈[K]

pi,ah(xi,a∗
i
)

+
∑

i∈Sτ−1

∑
a∈[K]

pi,ah(xi,a∗
i
) +

∑
a∈[K]

pτ,ah(xτ,a∗
τ
)

−
∑

a∈[K]

pτ,ah(xτ,a∗
τ
)−

∑
i∈Sτ−1

(h(xi,bi) + h(xτ,bτ ))

+ 16

√
mτ−1

(
RegSq(T ) + log(2/δ)

)
=

∑
i∈Sτ−1

(
h(xi,a∗

i
)− h(xi,bi)

)
+
(
h(xτ,a∗

τ
)− h(xτ,bτ )

)
︸ ︷︷ ︸

I

+
∑

i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)

︸ ︷︷ ︸
II

+
∑

a∈[K]

pτ,a
(
ŷτ,ãτ

− h(xτ,a∗
τ
)
)

︸ ︷︷ ︸
III

(19)

+ 16

√
mτ−1

(
RegSq(T ) + log(2/δ)

)
First consider term I . Using Assumption 2 we have that ∆l ≤ h(xi,a∗

i
)−h(xi,bi) ≤ ∆h. Also recall

that mτ−1 = |Sτ−1|. Combining these we have:∑
i∈Sτ−1

(
h(xi,a∗

i
)− h(xi,bi)

)
+
(
h(xτ,a∗

τ
)− h(xτ,bτ )

)
< −(mτ−1 + 1)∆l
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Next consider term II . Adding and subtracting h(xi,a), we obtain

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
=

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− h(xi,a∗

i
)
)

︸ ︷︷ ︸
II(a)

+
∑

i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a)

)
︸ ︷︷ ︸

II(b)

.

Consider term II(a). Using Lemma 3 in Foster & Rakhlin (2020) we have

∑
a∈[K]

pi,a

[
h(xi,a)− h(xi,a∗

i
)− γi

4

(
ŷi,a − h(xi,a)

)2] ≤ K

γi
.

Now summing for all i ∈ Sτ−1 we have

∑
i∈Sτ−1

∑
a∈[K]

pi,a

[
h(xi,a)− h(xi,a∗

i
)− γi

4

(
ŷi,a − h(xi,a)

)2] ≤ ∑
i∈Sτ−1

K

γi
.

Using this, we can bound term II(a) as follows:

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− h(xi,a∗

i
)
)
≤

∑
i∈Sτ−1

2K

γi
+

∑
i∈Sτ−1

∑
a∈[K]

γi
4
pi,a
(
ŷi,a − h(xi,a)

)2
.

Now recall that γi =
√
K|Si|/(2RegSq(T ) + 16 log(8δ−1)) and therefore plugging this back in the

above equation we get

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− h(xi,a∗

i
)
)
≤

∑
i∈Sτ−1

2K

γi
+

∑
i∈Sτ−1

∑
a∈[K]

γi
4
pi,a
(
ŷi,a − h(xi,a)

)2
= 2K

∑
i∈Sτ−1

√
2RegSq(T ) + 16 log(8δ−1)

K|Si|

+
1

4

∑
i∈Sτ−1

√
K|Si|

(2RegSq(T ) + 16 log(8δ−1))

∑
a∈[K]

pi,a
(
ŷi,a − h(xi,a)

)2
(a)

≤ 2
√
K(2RegSq(T ) + 16 log(8δ−1))

mτ−1∑
i=1

1√
i

+
1

4

√
Kmτ−1

2RegSq(T ) + 16 log(8δ−1)

∑
i∈Sτ−1

∑
a∈[K]

pi,a
(
ŷi,a − h(xi,a)

)2
.

In (a), we used the fact that γi depends on |Si| and that max
i∈Si

γi =

√
Kmτ−1

2RegSq(T ) + 16 log(8δ−1)
.

Now note that the C9SquareCB actions are only played for i ∈ ST and therefore invoking Assump-
tion 3, we can use Lemma 2 in Foster & Rakhlin (2020) to show that with probability 1− δ/4∑

i∈Sτ−1

∑
a∈[K]

pi,a
(
ŷi,a − h(xi,a)

)2 ≤ 2RegSq(mτ−1) + 16 log(8δ−1)
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Further note that
mτ−1∑
i=1

1√
i
≤ 2

√
mτ−1 . Therefore term II(a) can be bounded as

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− h(xi,a∗

i
)
)

≤ 16
√

Kmτ−1(RegSq(T ) + log(8δ−1))

+
1

4

√
Kmτ−1

2RegSq(T ) + 16 log(8δ−1)

(
2RegSq(mτ−1) + 16 log(8δ−1)

)
≤ 17

√
Kmτ−1

(√
RegSq(T ) +

√
log(8δ−1)

)
,

where we have used the fact RegSq(mτ−1) ≤ RegSq(T ).

Now consider term II(b). Suppose Epi be the expectation with respect to pi,a. Then, we may write∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− ŷi,a

)
=

∑
i∈Sτ−1

Epi

[(
h(xi,a)− ŷi,a

)]
=

∑
i∈Sτ−1

Epi

√(
h(xi,a)− ŷi,a

)2
(a)

≤
∑

i∈Sτ−1

√
Epi

(
h(xi,a)− ŷi,a

)2
(b)

≤
√
mτ−1

∑
i∈Sτ−1

∑
a∈[K]

pi,a
(
h(xi,a)− ŷi,a

)2
,

where (a) follows by Jensen and (b) follows by Cauchy Schwartz. Again, using Lemma 2 in Foster
& Rakhlin (2020), with probability 1− δ/4, we have∑

i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− ŷi,a

)
≤
√
mτ−1

(
2RegSq(mτ−1) + 16 log(8δ−1)

)
.

Finally consider term III . Since 0 ≤ h(xi,a), ŷi,a ≤ 1, we may write∑
a∈[K]

pτ,a
(
ŷτ,ãτ

− h(xτ,a∗
τ
)
)
≤ 2.

Combining all the bounds, for K ≥ 2 and RegSq(T ) ≥ 1, with probability 1− δ/2, we have

α

τ∑
i=1

h(xi,bi) ≤ −(mτ−1 + 1)∆l + 64
√
K(mτ−1 + 1)

(√
RegSq(T ) +

√
log(8δ−1)

)
. (20)

Now, using the fact that mτ−1+nτ−1+1 = τ , and Assumption 2, we have yl ≤ h(xi,bi) ≤ yh,∀i ∈
[T ]. Therefore,

α

τ∑
i=1

h(xi,bi) ≥ α (mτ−1 + nτ−1 + 1) yl.

Combining this with (20), with probability 1− δ/2, we obtain

αnτ−1yl ≤ −(mτ−1 + 1)(∆l + αyl) + 64
√

K(mτ−1 + 1)
(
RegSq(T ) +

√
log(8δ−1)

)
= −(mτ−1 + 1)(∆l + αyl) + 64

√
K
√
(mτ−1 + 1)

(
RegSq(T ) +

√
log(8δ−1)

)
.

Finally, using nT = nτ = nτ−1 + 1, with probability 1− δ/2, we have

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl) + 64

√
K
√
(mτ−1 + 1)

(√
RegSq(T ) +

√
log(2δ−1)

)}
.
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Lemma 3.3. Suppose Assumption 1,2 and 3 holds. Then, with probability 1− δ/4 the number of
times the baseline action is played by C9SquareCB is bounded as follows:

nT ≤ O
(
K(RegSq(T ) + log(8δ−1))

αyl(∆l + αyl)

)
. (8)

Proof. Let us define

Q(mτ−1) = −(mτ−1 + 1)(∆l + αyl) + 64
√
K
√
(mτ−1 + 1)

(√
RegSq(T ) +

√
log(2δ−1)

)
Note that we have

Q(mτ−1) ≤ −c1m+ c2
√
m := f(m)

where

c1 = ∆l + αrl ≥ 0,

c2 = 64
√
K

(√
RegSq(T ) +

√
log(2δ−1)

)
≥ 0,

m = mτ−1 + 1.

Setting f ′(m) = 0, and solving we get m∗ =
c22
4c21

. Now note that f is concave and that f ′′(m∗) < 0

and therefore,

Q(mτ−1) ≤ f(m) ≤ f(m∗) = − c22
4c1

+
c22
2c1

=
c22
4c1

≤ O
(
K(RegSq(T ) + log(2δ−1))

∆l + αyl

)
.

Finally noting that nT ≤ nτ−1 + 1 ≤ Q(mτ−1)

αyl
+ 1 completes the proof.

Lemma 3.4. Suppose Assumptions 1 and 3 hold. Then, for δ > 0 and γt =√
K|St|/(RegSq(T ) + log(4δ−1)), with probability 1− δ/4, C9SquareCB guarantees∑

t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
≤ O

(√
KmT RegSq(T ) +

√
KmT log(8δ−1)

)
. (10)

Proof. Using Lemma 3 from Foster & Rakhlin (2020) for any i ∈ [K] we have∑
a∈[K]

pi,a

[
h(xi,a)− h(xi,a∗

i
)− γi

4

(
ŷi,a − h(xi,a)

)2] ≤ K

γi

Now summing for all i ∈ ST we have∑
i∈ST

∑
a∈[K]

pi,a

[
h(xi,a)− h(xi,a∗

i
)− γi

4

(
ŷi,a − h(xi,a)

)2] ≤ ∑
i∈ST

K

γi
.

Using this get the following bound:∑
i∈ST

∑
a∈[K]

pi,a

(
h(xi,a∗

i
)− h(xi,a)

)
≤
∑
i∈ST

2K

γi
+
∑
i∈ST

∑
a∈[K]

γi
4
pi,a
(
ŷi,a − h(xi,a)

)2
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Now recall that γi =
√
K|Si|/(RegSq(T ) + 16 log(8δ−1)) and therefore plugging this back in the

above equation we get:∑
i∈ST

∑
a∈[K]

pi,a

(
h(xi,a∗

i
)− h(xi,a)

)
≤
∑
i∈ST

2K

γi
+
∑
i∈ST

∑
a∈[K]

γi
4
pi,a
(
ŷi,a − h(xi,a)

)2
= 2K

∑
i∈ST

√
RegSq(T ) + 16 log(8δ−1)

K|Si|

+
1

4

∑
i∈ST

√
K|Si|

(RegSq(T ) + 16 log(2δ−1))

∑
a∈[K]

pi,a
(
ŷi,a − h(xi,a)

)2
(a)

≤ 2
√

K(RegSq(T ) + 16 log(8δ−1))

mT∑
i=1

1√
i

+
1

4

√
KmT

RegSq(T ) + 16 log(8δ−1)

∑
i∈ST

∑
a∈[K]

pi,a
(
ŷi,a − h(xi,a)

)2

In (a) we used the fact that γi depends on |Si| and that max
i∈Si

γi =

√
KmT

RegSq(T ) + 16 log(8δ−1)
. Now

note that the C9SquareCB actions are only played for i ∈ ST and therefore invoking Assumption 3,
we can use Lemma 2 from (Foster & Rakhlin, 2020) to show that with probability 1− δ/4∑

i∈ST

∑
a∈[K]

pi,a
(
ŷi,a − h(xi,a)

)2 ≤ 2RegSq(mT ) + 16 log(8δ−1)

Further note that
mT∑
i=1

1√
i
≤ 2

√
mT . Therefore term II(a) can be bounded as follows

∑
i∈ST

∑
a∈[K]

pi,a

(
h(xi,a∗

i
)− h(xi,a)

)
≤ 4
√

KmT (RegSq(T ) + 16 log(8δ−1))

+
1

4

√
KmT

2RegSq(T ) + 16 log(8δ−1)

(
2RegSq(mT ) + 16 log(8δ−1)

)
≤ 17

√
KmT

(√
RegSq(T ) +

√
log(8δ−1)

)
, (21)

where we have used the fact RegSq(mT ) ≤ RegSq(T ).

Now we can modify the proof of Lemma 2 of Foster & Rakhlin (2020) to take the sum over i ∈ ST

instead of i ∈ [T ] to ensure that with probability 1− δ/4∑
i∈ST

h(xt,at
)− h(xt,a∗

t
) ≤

∑
i∈ST

∑
a∈[K]

pi,a

(
h(xi,a∗

i
)− h(xi,a)

)
+
√

2mT log(8δ−1).

Combining with (21) and noting that RegSq(T ) ≥ 1 we get with probability 1− δ/4∑
i∈ST

h(xt,at
)− h(xt,a∗

t
) ≤ 32

√
KmT

(√
RegSq(T ) +

√
log(8δ−1)

)
which completes the proof.

Lemma 3.5. Let Assumptions 1, 2 and 3 hold. Then, for δ > 0 and γt =√
K|St|/(RegSq(mT ) + log(8δ−1)), with probability 1 − δ/2, C9SquareCB satisfies the perfor-

mance constraint in (2).
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Proof. For t = 1 if the condition in line 8 holds then ã1 = a1 and we have that with probability 1− δ

ŷ1,a1
− 16

√
(m0 + 1)(1 + log(1/δ)) ≤ (1 + α)h(x1,b1)

Noting that |ŷ1,a1 − h(xi,a1)| ≤ 2 and therefore with probability 1− δ

h(xi,a1
) ≤ (1 + α)h(x1,b1).

Further, if the condition in line 8 doesn’t hold, then a1 = b1, and therefore

h(xi,a1
) ≤ (1 + α)h(x1,b1),

showing that the performance constraint in Definition 2.2 is satisfied. Now assume that the constraint
holds for t− 1 and now consider t ∈ [T ]. Note that∣∣∣∣∣ ∑

i∈St−1

∑
a∈[K]

pi,aŷi,a − h(xi,ãi)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,aŷi,a −
∑

i∈St−1

∑
a∈[K]

pi,ah(xi,a)

∣∣∣∣∣︸ ︷︷ ︸
I

+

∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,ah(xi,a)− h(xi,ãi)

∣∣∣∣∣︸ ︷︷ ︸
II

Consider term I . We handle it as in the proof of Lemma 3.2 as follows: Suppose Epi be the
expectation with respect to pi,a. Then∣∣∣∣∣ ∑

i∈St−1

∑
a∈[K]

pi,a

(
h(xi,a)− ŷi,a

)∣∣∣∣∣ =
∣∣∣∣∣ ∑
i∈St−1

Epi

[(
h(xi,a)− ŷi,a

)]∣∣∣∣∣
=

∣∣∣∣∣ ∑
i∈St−1

Epi

√(
h(xi,a)− ŷi,a

)2∣∣∣∣∣
(a)

≤

∣∣∣∣∣ ∑
i∈St−1

√
Epi

(
h(xi,a)− ŷi,a

)2∣∣∣∣∣
(b)

≤
√
mt−1

∑
i∈St−1

∑
a∈[K]

pi,a
(
h(xi,a)− ŷi,a

)2
where (a) follows by Jensen and (b) follows by Cauchy Schwartz. Again using Lemma 2 from

(Foster & Rakhlin, 2020) with probability 1− δ

2∑
i∈St−1

∑
a∈[K]

pi,a

(
h(xi,a)− ŷi,a

)2
≤
√

mt−1

(
2RegSq(mt−1) + 16 log(2δ−1)

)
(22)

Next, consider term II . Consider the following filtration

Ft−1 = σ

(
(xi,a, ãi, yi,ãi),xt,a; 1 ≤ i ≤ t− 1, a ∈ [K]

)
.

Note that E
[
h(xt,ãt

)|Ft−1

]
=
∑

a∈[K]

pt,ah(xt,a), and therefore using Azuma-Hoeffding we have

that with probability 1− δ

2∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,ah(xi,a)− h(xi,ãi)

∣∣∣∣∣ ≤ 2

√√√√mt−1 log

(
2

δ

)
(23)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Combing (22) and (23) and taking a union bound we have with probability 1− δ∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,aŷi,a − h(xi,ãi)

∣∣∣∣∣ ≤ 8

√
mt−1

(
RegSq(mt−1) + log(2/δ)

)
Further |ŷt,ãt

− h(xt,ãt
)| ≤ 2, and therefore with probability 1− δ∣∣∣∣∣ŷt,ãt

+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a − h(xi,ãi
)− h(xt,ãt

)

∣∣∣∣∣ ≤ 16

√
mt−1

(
RegSq(mt−1) + log(2/δ)

)
.

(24)

Now if line 8 of Algorithm 1 holds at time step t, then we have

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a +
∑

i∈Sc
t−1

h(xi,bi) + 16

√
mt−1

(
RegSq(mt−1) + log(2/δ)

)

≤ (1 + α)
t∑

i=1

h(xi,bt),

and therefore invoking (24), we have with probability 1− δ

h(xt,ãt) +
∑

i∈St−1

h(xi,ãi) +
∑

i∈Sc
t−1

h(xi,bi) ≤ (1 + α)

t∑
i=1

h(xi,bt)

Now note that for all i ∈ St−1, ai = ãi, for all i ∈ Sc
t−1, ai = bi, and using St−1 ∪ Sc

t−1 = [t− 1],
and the fact that the condition in line 8 is satisfied we have with probability 1− δ

h(xt,at
) +

∑
i∈[t−1]

h(xi,ai
) ≤ (1 + α)

t∑
i=1

h(xi,bt),

satisfying the performance condition in Definition 2.2.

Next we consider the case when the condition in line 8 does not hold. Invoking the fact that the
performance constraint holds until time t− 1, we have with probability 1− δ

t−1∑
t=1

h(xi,ai
) ≤ (1 + α)

t−1∑
i=1

h(xi,bt)

Adding h(xt,bt) on both sides of the above equation we get

h(xt,bt) +

t−1∑
i=1

h(xi,ai) ≤ h(xt,bt) + (1 + α)

t−1∑
i=1

h(xi,bt).

Noting that when condition in line 8 does not hold at step t, then at = bt and that α > 0, we have
with probability 1− δ

t∑
i=1

h(xi,ai
) ≤ (1 + α)

t∑
i=1

h(xi,bt),

satisfying the performance constraint in Definition 2.2 for step t. Using mathematical induction we
conclude that the performance constraint holds for all t ∈ [T ], completing the proof.

C PROOF OF REGRET BOUND FOR C9FastCB

Proof of Theorem 4.1. The proof of the theorem follows along the following steps, and the proof of
the intermediate lemmas can be found at the end of this proof.
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1. Regret Decomposition: The regret decomposition follows using Lemma 3.1 as in the proof of
Theorem 3.1.

Lemma 3.1. Let Assumptions 1 and 2 hold. Then, the regret defined in (1) can be bounded as

RegCB(T ) ≤
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
+ nT∆h, (6)

where the set ST consists of the rounds until the horizon T when C9SquareCB played an IGW
action and nT = |Sc

T | is the number of times until T where a baseline action was played.

2. Upper Bound on nT : The condition in Line 7 determines how many times the baseline action is
played. Suppose mt = |St| and τ = max{1 ≤ t ≤ T : at = bt}, i.e., the last time step at which
C9FastCB played an action according to the baseline strategy.

Before we proceed and give a bound on nT , the number of times the baseline action is played by
Algorithm 2, we specify how the exploration factor γi is chosen. Unlike in Foster & Krishnamurthy
(2021) where γi = γ = max(

√
KL∗/(3RegKL(T )), 10K), for all i ∈ [K], we need to choose a

time dependent γi to ensure that we control both nT and the regret by playing the non-conservative
actions. However using a different γi at every step does not lead to a first-order regret bound for
the first term in (6). Therefore we set γi in an episodic manner, where γi remains same in an
episode. More specifically we choose γi as follows:

γ0 = 1, η0 = 1, L∗
i = 0

for i ∈ ST

L∗
i = L∗

i−1 + h(xt,a∗
i
)

if L∗
i > 2ηi−1

ηi = 2ηi−1 (γi-Schedule)
else

ηi = ηi−1

γi = max

(
10K,

√
Kηi

RegKL(T )

)
(a) The following lemma upper-bounds nT in terms of mτ ,

∑
i∈Sτ

L∗(i), the cumulative cost
in the set Sτ−1, and the KL loss RegKL(T ), using the above schedule for γi.
Lemma C.1. Suppose Assumption 1,2, 4 holds. Then, the number of times the baseline
action is played by C9FastCB is bounded as

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl)

+ 60

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
) + 1

}. (25)

(b) Now note that since L∗(i) ∈ [0, 1],
∑

i∈Sτ−1

L∗(i) ≤ mτ−1. Therefore the second term in

(25) grows as
√
mτ−1 logmτ−1 and that the first term decreases linearly in mτ−1, and

therefore one can further bound nT in the following lemma.
Lemma C.2. Suppose Assumption Assumption 1,2, 4 holds. Then the number of times the
baseline action is played by C9SquareCB is bounded as follows:

nT ≤ O

(
KRegKL(T )

αyl(∆l + αyl)
log

(
e
√
KRegKL(T )

∆l + αyl

))
. (26)
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3. Bounding the Final Regret: We next move to bounding the first term in (6), with the schedule of
γi as described in Step-2. Note that DT only contains the input-output pairs at time steps when
the IGW action was picked, i.e., all t ∈ ST , and therefore, (11) reduces to∑

t∈ST

ℓKL(ŷt,at
, yt,at

)− inf
g∈H

∑
t∈ST

ℓKL
(
g(xt,at

), yt,at

)
≤ RegKL(T ). (27)

The next lemma bounds the regret of the first term in (6) with an adaptive γi.

Lemma C.3. Suppose Assumptions 1 and 4 hold. Then for γt chosen as in (γi-Schedule), we
have

E
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
≤ O

(√
KRegKL(T ) log

(
L∗
ST

)
L∗
ST

)
. (28)

where L∗
ST

=
∑

t∈ST
h(xt,a∗

t
) is the cumulative cost of the optimal policy in the subset ST .

Note that L∗
ST

≤ L∗ and therefore combining (6), (26), and (28), the regret bound in (12) holds.

4. Performance Constraint: Finally the following lemma shows that the condition in Line 7 of
C9SquareCB ensures that the Performance Constraint in (2) is satisfied.

Lemma C.4. Suppose Assumptions 1 and 4 hold. Then for δ > 0 with γi chosen according to
(γi-Schedule), with probability 1− δ, C9FastCB satisfies the performance constraint in (2).

Combining all four steps, C9FastCB simultaneously satisfies the performance constraint in (2)
with probability 1− δ and the regret upper-bound in (12), which concludes the proof.

Lemma C.1. Suppose Assumption 1,2, 4 holds. Then, the number of times the baseline action is
played by C9FastCB is bounded as

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl)

+ 60

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
) + 1

}. (25)

Proof. Let τ be the last round at which the algorithm plays the conservative action, i.e.,

τ = max{1 ≤ t ≤ T |at = bt}.

Recall that mt = |St| and nt = |Sc
t |. By the definition of τ , we have that at round τ

ŷτ,ãτ
+

∑
i∈Sτ−1

∑
a∈[K]

pi,aŷi,a +
∑

i∈Sc
τ−1

h(xi,bi) + 16
√

mτ−1RegKL(T )

> (1 + α)

τ∑
i=1

h(xi,bi).
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Therefore, we may write

α

τ∑
i=1

h(xi,bi) <
∑

i∈Sτ−1

∑
a∈[K]

pi,aŷi,a + ŷτ,ãτ
−

∑
i∈Sτ−1

(h(xi,bi) + h(xτ,bτ ))

=
∑

i∈Sτ−1

∑
a∈[K]

pi,aŷi,a + ŷτ,ãτ
−

∑
i∈Sτ−1

∑
a∈[K]

pi,ah(xi,a∗
i
)

+
∑

i∈Sτ−1

∑
a∈[K]

pi,ah(xi,a∗
i
) +

∑
a∈[K]

pτ,ah(xτ,a∗
τ
)

−
∑

a∈[K]

pτ,ah(xτ,a∗
τ
)−

∑
i∈Sτ−1

(h(xi,bi) + h(xτ,bτ ))

+ 16
√

mτ−1RegKL(T )

=
∑

i∈Sτ−1

(
h(xi,a∗

i
)− h(xi,bi)

)
+
(
h(xτ,a∗

τ
)− h(xτ,bτ )

)
︸ ︷︷ ︸

I

+
∑

i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)

︸ ︷︷ ︸
II

+
∑

a∈[K]

pτ,a
(
ŷτ,ãτ

− h(xτ,a∗
τ
)
)

︸ ︷︷ ︸
III

(29)

+ 16
√
mτ−1(RegKL(T ) + log(2/δ)

First consider term I . Using Assumption 2 we have that ∆l ≤ h(xi,a∗
i
)−h(xi,bi) ≤ ∆h. Also recall

that mτ−1 = |Sτ−1|. Combining these we have:∑
i∈Sτ−1

(
h(xi,a∗

i
)− h(xi,bi)

)
+
(
h(xτ,a∗

τ
)− h(xτ,bτ )

)
< −(mτ−1 + 1)∆l

Next consider term II . Adding and subtracting h(xi,a), we obtain∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
=

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,a)− h(xi,a∗

i
)
)

︸ ︷︷ ︸
II(a)

+
∑

i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a)

)
︸ ︷︷ ︸

II(b)

Using the AM-GM inequality we can bound term II(a) as follows:∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
≤

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
1

4β
(ŷi,a − h(xi,a∗

i
)) + β

(ŷi,a − h(xi,a∗
i
))2

ŷi,a + h(xi,a∗
i
)

)
for any β > 1. Using Lemma 5 in (Foster & Krishnamurthy, 2021) we have∑

i∈Sτ−1

∑
a∈[K]

pi,aŷi,a ≤ 3
∑

a∈[K]

pi,ah(xi,a∗
i
) +

∑
a∈[K]

pi,a
(ŷi,a − h(xi,a∗

i
))2

ŷi,a + h(xi,a∗
i
)

Therefore we have the following bound on term II(b):∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
≤ 1

β

∑
i∈Sτ−1

∑
a∈[K]

pi,ah(xi,a∗
i
) + 2β

∑
i∈Sτ−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,a∗

i
))2

ŷi,a + h(xi,a∗
i
)

Using Proposition 5 from Foster & Krishnamurthy (2021) we have

2β
∑

i∈Sτ−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,a∗

i
))2

ŷi,a + h(xi,a∗
i
)

≤ 4βRegKL(T )
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and therefore,∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a∗

i
− h(xi,a∗

i
)
)
≤ 1

β

∑
i∈Sτ−1

∑
a∈[K]

pi,ah(xi,a∗
i
) + 4βRegKL(T )

=
1

β

∑
i∈Sτ−1

h(xi,a∗
i
) + 4βRegKL(T )

Choosing β =

√∑
i∈Sτ−1

h(xi,a∗
i
)

RegKL(T )
we have

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a∗

i
− h(xi,a∗

i
)
)
≤ 4

√ ∑
i∈Sτ−1

h(xi,a∗
i
)RegKL(T ) (30)

Next consider term II(a). We use the per round regret guarantee (Theorem 4) from Foster &
Krishnamurthy (2021) as follows:∑

a∈[K]

pi,a

(
h(xi,ai)− h(xi,a∗

i
)
)
≤ 5K

γi

∑
a∈[K]

pi,ah(xi,ai) + 7γi
∑

a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai)

(31)

Adding and subtracting h(xi,a∗
i
) we get∑

a∈[K]

pi,a

(
h(xi,a∗

i
)− h(xi,a∗

i
)
)
≤ 5K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
) +

5K

γi

∑
a∈[K]

pi,a(h(xi,ai)− h(xi,a∗
i
))

+ 7γi
∑

a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai
)

,

and therefore(
1− 5K

γi

) ∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
)
≤ 5K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
) + 7γi

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai
)

Using γi ≥ 10K we have∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
)
≤ 10K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
) + 14γi

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai))

2

ŷi,a + h(xi,ai
)

(32)
Recall that we set the exploration factor γi as follows:

γ0 = 1, η0 = 1, L∗
i = 0

for i ∈ ST

L∗
i = L∗

i−1 + h(xt,a∗
i
)

if L∗
i > 2ηi−1

ηi = 2ηi−1

else
ηi = ηi−1

γi = max

(
10K,

√
Kηi

RegKL(T )

)

Note that according to the above schedule of γi there are E = log

 ∑
i∈Sτ−1

L∗
i

 episodes, that

we denote by Te(Sτ−1), e ∈ [E], ηi = ηe and ηi := ηe is constant for all i ∈ Te(Sτ−1) with the
following guarantee ∑

i∈Te(Sτ−1)

h(xi,a∗
i
) ≤ ηe ≤ 2

∑
i∈Te(Sτ−1)

h(xi,a∗
i
) (33)
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Therefore summing up the inequality in (32) for i ∈ Sτ−1 we get

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
)
≤

∑
i∈Sτ−1

10K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
)

+
∑

i∈Sτ−1

14γi
∑

a∈[K]

pi,a
(ŷi,a − h(xi,ai))

2

ŷi,a + h(xi,ai
)

(a)

≤
E∑

e=1

∑
i∈Te(Sτ−1)

10K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
)

+ 14( max
i∈Sτ−1

γi)
∑

i∈Sτ−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai))

2

ŷi,a + h(xi,ai
)

(b)
=

E∑
e=1

10K

γe

∑
i∈Te(Sτ−1)

∑
a∈[K]

pi,ah(xi,a∗
i
)

+ 14( max
i∈Sτ−1

γi)
∑

i∈Sτ−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai
)

(c)
=

E∑
e=1

10K

√
RegKL(T )

K
∑

i∈Te(Sτ−1)
h(xi,a∗

i
)

∑
i∈Te(Sτ−1)

h(xi,a∗
i
)

+ 14( max
i∈Sτ−1

γi)
∑

i∈Sτ−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai)
,

where (a) follows by changing the sum in i ∈ Sτ−1 to
∑E

e=1

∑
i∈Te(Sτ−1)

and noting that
maxi∈Sτ−1

γi ≥ γi for all i ∈ Sτ−1. Next (b) follows because γi is constant within an episode
e ∈ [E]. Finally (c) follows by our choice of γi from (γi-Schedule) and the property in (38).
Therefore we have

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
) (d)

≤
E∑

e=1

10K

√
RegKL(T )

K
∑

i∈Te(Sτ−1)
h(xi,a∗

i
)

∑
i∈Te(Sτ−1)

h(xi,a∗
i
)

+ 14

√
K

∑
i∈Sτ−1

h(xi,ai∗ )

RegKL(T )

∑
i∈Sτ−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai)

(e)

≤ 10

E∑
e=1

√
KRegKL(T )

∑
i∈Te(Sτ−1)

h(xi,a∗
i
)

+ 14

√
K

∑
i∈Sτ−1

h(xi,ai∗ )

RegKL(T )
RegKL(mτ−1)

(f)

≤ 10

√√√√KERegKL(T )

E∑
e=1

∑
i∈Te(Sτ−1)

h(xi,a∗
i
)

+ 14

√
K
∑

i∈Sτ−1

h(xi,ai∗ )RegKL(mτ−1),

where (d) again follows by our choice of γi and (38), (e) follows by Proposition 5 of Foster &
Krishnamurthy (2021) and (f) follows by Cauchy-Schwarz inequality. Finally we arrive at the
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following bound∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
)

≤ 25

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
) (34)

and combining with (30) we have the following bound on term II:

∑
i∈Sτ−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
≤ 30

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
)

Now consider term III . Since 0 ≤ h(xi,a), ŷi,a ≤ 1 we have that∑
a∈[K]

ŷτ,ãτ
− pτ,ah(xτ,a∗

τ
) =

∑
a∈[K]

pτ,a
(
ŷτ,ãτ

− h(xτ,a∗
τ
)
)
≤ 2

Combining all the bounds we get for K ≥ 2 and RegKL(T ) ≥ 1 we have

α

τ∑
i=1

h(xi,bi) ≤ −(mτ−1 + 1)∆l

+ 30

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
) + 1

 (35)

Now, note that mτ−1+nτ−1+1 = τ , and using Assumption 2 we have yl ≤ h(xi,bi) ≤ yh,∀i ∈ [T ].
Therefore

α

τ∑
i=1

h(xi,bi) ≥ α (mτ−1 + nτ−1 + 1) yl.

Combining with (35) and noting that nT = nτ = nτ−1 + 1 we have

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl)

+ 60

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
) + 1

}

Lemma C.2. Suppose Assumption Assumption 1,2, 4 holds. Then the number of times the baseline
action is played by C9SquareCB is bounded as follows:

nT ≤ O

(
KRegKL(T )

αyl(∆l + αyl)
log

(
e
√
KRegKL(T )

∆l + αyl

))
. (26)
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Proof. Note that we have from Lemma C.1 and using the fact that h(·) ∈ [0, 1] we

nT ≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl)

+ 60

√√√√√KRegKL(T ) log

 ∑
i∈Sτ−1

h(xi,a∗
i
)

 ∑
i∈Sτ−1

h(xi,a∗
i
) + 1

}

≤ 1

αyl

{
− (mτ−1 + 1)(∆l + αyl) + 60

√
KRegKL(T ) log (mτ−1) (mτ−1 + 1)

}

We define Q(m) := −m c1 +
√
m log(m) c2 where

c1 = ∆l + αyl ≥ 0,

c2 = 60
√
KRegKL(T ),

m = mτ−1 + 1

Next observe that for m ≥ 3, we have −m c1 +
√

m log(m) c2 ≤ −m c1 +
√
m logm c2. Now we

use Lemma 8 from Kazerouni et al. (2017) to conclude that

−m c1 +
√
m logm c2 ≤ 16c22

9c1

[
log

(
2c2e

c1

)]2

= O

(
KRegKL(T )

∆l + αyl
log

(
e
√
KRegKL(T )

∆l + αyl

))
which completes the proof.

Lemma C.3. Suppose Assumptions 1 and 4 hold. Then for γt chosen as in (γi-Schedule), we have

E
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
≤ O

(√
KRegKL(T ) log

(
L∗
ST

)
L∗
ST

)
. (28)

where L∗
ST

=
∑

t∈ST
h(xt,a∗

t
) is the cumulative cost of the optimal policy in the subset ST .

Proof. The proof follows along similar lines as term II(a) in the proof of Lemma C.1 and is
provided here for completeness. We use the per round regret guarantee (Theorem 4) from Foster &
Krishnamurthy (2021) as follows:∑

a∈[K]

pi,a

(
h(xi,ai)− h(xi,a∗

i
)
)
≤ 5K

γi

∑
a∈[K]

pi,ah(xi,ai) + 7γi
∑

a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai)

(36)

Adding and subtracting h(xi,a∗
i
) we get∑

a∈[K]

pi,a

(
h(xi,a∗

i
)− h(xi,a∗

i
)
)
≤ 5K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
) +

5K

γi

∑
a∈[K]

pi,a(h(xi,ai
)− h(xi,a∗

i
))

+ 7γi
∑

a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai)
,

and therefore(
1− 5K

γi

) ∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
)
≤ 5K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
) + 7γi

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai))

2

ŷi,a + h(xi,ai
)
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Using γi ≥ 10K we have∑
a∈[K]

pi,a

(
h(xi,ai

)− h(xi,a∗
i
)
)
≤ 10K

γi

∑
a∈[K]

pi,ah(xi,a∗
i
) + 14γi

∑
a∈[K]

pi,a
(ŷi,a − h(xi,ai

))2

ŷi,a + h(xi,ai
)

(37)

Using the schedule of γi from (γi-Schedule), there are E = log

(∑
i∈ST

L∗
i

)
episodes, that we

denote by Te(ST ), e ∈ [E], ηi = ηe and ηi := ηe is constant for all i ∈ Te(ST ) with the following
guarantee ∑

i∈Te(ST )

h(xi,a∗
i
) ≤ ηe ≤ 2

∑
i∈Te(ST )

h(xi,a∗
i
) (38)

Now summing for i ∈ ST as in the proof of Lemma C.1 (cf. equation (34)) we obtain∑
i∈ST

∑
a∈[K]

pi,a

(
h(xi,ai)− h(xi,a∗

i
)
)

≤ 25

√√√√KRegKL(T ) log

(∑
i∈ST

h(xi,a∗
i
)

) ∑
i∈ST

h(xi,a∗
i
)

= 25
√

KRegKL(T ) log
(
L∗
ST

)
L∗
ST

where L∗
ST

=
∑

t∈ST
h(xt,a∗

t
). Define the following filtration

Ft−1 = σ

(
(xi,a, ãi, yi,ãi

),xt,a; 1 ≤ i ≤ t− 1, a ∈ [K]

)
.

Note that E
[
h(xt,ãt

)|Ft−1

]
=
∑

a∈[K]

pt,ah(xt,a) and therefore

E
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
=
∑
i∈ST

∑
a∈[K]

pi,a

(
h(xi,ai)− h(xi,a∗

i
)
)

which completes the proof.

Lemma 3.5. Let Assumptions 1, 2 and 3 hold. Then, for δ > 0 and γt =√
K|St|/(RegSq(mT ) + log(8δ−1)), with probability 1 − δ/2, C9SquareCB satisfies the perfor-

mance constraint in (2).

Proof. For t = 1 if the condition in line 8 holds then ã1 = a1 and we have that with probability 1− δ

ŷ1,a1
− 16

√
(m0 + 1)(1 + log(1/δ)) ≤ (1 + α)h(x1,b1)

Noting that |ŷ1,a1
− h(xi,a1

)| ≤ 2 and therefore with probability 1− δ

h(xi,a1
) ≤ (1 + α)h(x1,b1).

Further, if the condition in line 8 doesn’t hold, then a1 = b1, and therefore
h(xi,a1) ≤ (1 + α)h(x1,b1),

showing that the performance constraint in Definition 2.2 is satisfied. Now assume that the constraint
holds for t− 1 and now consider t ∈ [T ]. Note that∣∣∣∣∣ ∑

i∈St−1

∑
a∈[K]

pi,aŷi,a − h(xi,ãi
)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,aŷi,a −
∑

i∈St−1

∑
a∈[K]

pi,ah(xi,a)

∣∣∣∣∣︸ ︷︷ ︸
I

+

∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,ah(xi,a)− h(xi,ãi)

∣∣∣∣∣︸ ︷︷ ︸
II
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Consider term I . We handle it as in the proof of Lemma C.1 as follows: Using the AM-GM inequality,∑
i∈St−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
≤

∑
i∈St−1

∑
a∈[K]

pi,a

(
1

4β
(ŷi,a − h(xi,a∗

i
)) + β

(ŷi,a − h(xi,a∗
i
))2

ŷi,a + h(xi,a∗
i
)

)
for any β > 1. Using Lemma 5 in (Foster & Krishnamurthy, 2021) we have∑

i∈St−1

∑
a∈[K]

pi,aŷi,a ≤ 3
∑

a∈[K]

pi,ah(xi,a∗
i
) +

∑
a∈[K]

pi,a
(ŷi,a − h(xi,a∗

i
))2

ŷi,a + h(xi,a∗
i
)

Therefore we have the following bound on term II(b):∑
i∈St−1

∑
a∈[K]

pi,a

(
ŷi,a − h(xi,a∗

i
)
)
≤ 1

β

∑
i∈St−1

∑
a∈[K]

pi,ah(xi,a∗
i
) + 2β

∑
i∈St−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,a∗

i
))2

ŷi,a + h(xi,a∗
i
)

Using Proposition 5 from Foster & Krishnamurthy (2021) we have

2β
∑

i∈St−1

∑
a∈[K]

pi,a
(ŷi,a − h(xi,a∗

i
))2

ŷi,a + h(xi,a∗
i
)

≤ 4βRegKL(T )

and therefore,∑
i∈St−1

∑
a∈[K]

pi,a

(
ŷi,a∗

i
− h(xi,a∗

i
)
)
≤ 1

β

∑
i∈St−1

∑
a∈[K]

pi,ah(xi,a∗
i
) + 4βRegKL(T )

=
1

β

∑
i∈St−1

h(xi,a∗
i
) + 4βRegKL(T )

Choosing β =

√∑
i∈St−1

h(xi,a∗
i
)

RegKL(T )
we have

∑
i∈St−1

∑
a∈[K]

pi,a

(
ŷi,a∗

i
− h(xi,a∗

i
)
)
≤ 4

√ ∑
i∈St−1

h(xi,a∗
i
)RegKL(T )

Using the fact that h(·) ≤ 1 we have∑
i∈St−1

∑
a∈[K]

pi,a

(
ŷi,a∗

i
− h(xi,a∗

i
)
)
≤ 4
√

mt−1RegKL(T )

Next, consider term II . Consider the following filtration

Ft−1 = σ

(
(xi,a, ãi, yi,ãi

),xt,a; 1 ≤ i ≤ t− 1, a ∈ [K]

)
.

Note that E
[
h(xt,ãt)|Ft−1

]
=
∑

a∈[K]

pt,ah(xt,a), and therefore using Azuma-Hoeffding we have

that with probability 1− δ∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,ah(xi,a)− h(xi,ãi
)

∣∣∣∣∣ ≤ 2
√
mt−1 log(2δ−1) (39)

Combining (22) and (39) and taking a union bound we have with probability 1− δ∣∣∣∣∣ ∑
i∈St−1

∑
a∈[K]

pi,aŷi,a − h(xi,ãi
)

∣∣∣∣∣ ≤ 8

√
mt−1

(
RegKL(mt−1) + log(2/δ)

)
Further |ŷt,ãt

− h(xt,ãt
)| ≤ 2, and therefore with probability 1− δ∣∣∣∣∣ŷt,ãt +

∑
i∈St−1

∑
a∈[K]

pi,aŷi,a − h(xi,ãi)− h(xt,ãt)

∣∣∣∣∣ ≤ 16

√
mt−1

(
RegKL(mt−1) + log(2/δ)

)
.

(40)
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Now if line 8 of Algorithm 2 holds at time step t, then we have

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a +
∑

i∈Sc
t−1

h(xi,bi) + 16

√
mt−1

(
RegKL(mt−1) + log(2/δ)

)

≤ (1 + α)

t∑
i=1

h(xi,bt),

and therefore invoking (40), we have with probability 1− δ

h(xt,ãt
) +

∑
i∈St−1

h(xi,ãi
) +

∑
i∈Sc

t−1

h(xi,bi) ≤ (1 + α)

t∑
i=1

h(xi,bt)

Now note that for all i ∈ St−1, ai = ãi, for all i ∈ Sc
t−1, ai = bi, and using St−1 ∪ Sc

t−1 = [t− 1],
and the fact that the condition in line 8 is satisfied we have with probability 1− δ

h(xt,at
) +

∑
i∈[t−1]

h(xi,ai
) ≤ (1 + α)

t∑
i=1

h(xi,bt),

satisfying the performance condition in Definition 2.2.

Next we consider the case when the condition in line 8 does not hold. Invoking the fact that the
performance constraint holds until time t− 1, we have with probability 1− δ

t−1∑
t=1

h(xi,ai) ≤ (1 + α)

t−1∑
i=1

h(xi,bt)

Adding h(xt,bt) on both sides of the above equation we get

h(xt,bt) +

t−1∑
i=1

h(xi,ai) ≤ h(xt,bt) + (1 + α)

t−1∑
i=1

h(xi,bt).

Noting that when condition in line 8 does not hold at step t, then at = bt and that α > 0, we have
with probability 1− δ

t∑
i=1

h(xi,ai) ≤ (1 + α)

t∑
i=1

h(xi,bt),

satisfying the performance constraint in Definition 2.2 for step t. Using mathematical induction we
conclude that the performance constraint holds for all t ∈ [T ], completing the proof.

D PROOF FOR REGRET BOUNDS FOR NEURAL CONSERVATIVE BANDITS

Theorem 5.1 (Regret bound for Neural C-SquareCB). We instantiate Sq9Alg with the predictor
ŷt,at

= f̃ (S)
(
θ;xt, ε

(1:S)
)

from (15) and update the parameters using OGD in (17). Under Assump-
tions 1,2, 5 and 6 with γt as in Theorem 5.1, step-size sequence {ηt}, width m, perturbation constant
cp, and projection ball B, with high probability (1 − O(δ)), the performance constraint in (2) is
satisfied by C-SquareCB and the regret is given by

RegCB(T ) ≤ O
(√

KT log T +
√
KT log(16δ−1) +

K(log T + log(16δ−1))

αyl(∆l + αyl)

)
.

Proof. We set the width of the network m = max
(
O(T 5),O( 4LT

δ )
)

and the projection set B =

BFrob
ρ,ρ1

(θ0), the layer-wise Frobenius ball around the initialization θ0 with radii ρ, ρ1 which is defined
as

BFrob
ρ,ρ1

(θ0) := {θ ∈ Rp : ∥ vec(W (l))− vec(W
(l)
0 )∥2 ≤ ρ, l ∈ [L], ∥v − v0∥2 ≤ ρ1}. (41)
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We set ρ and ρ1 according to Theorem 3.2 in Deb et al. (2024a), and the perturbation constant
cp = O(

√
λ), where λ is the Lipschitz parameter of the loss. Now, invoking Theorem 3.2 in Deb

et al. (2024a) we get with probability 1−O(δ) over the randomness of initialization and {ε}Ss=1, the
regret of projected OGD with loss L(S)

Sq

(
yt,
{
f̃(θ;xt, εs)

}S
s=1

)
for online regression with squared

loss is bounded by O(log T ) i.e.,
T∑

t=1

ℓsq(ŷt,at , yt,at)− inf
g∈H

T∑
t=1

ℓsq(g(xt,at), yt,at) ≤ O(log T )

Therefore with probability 1−O(δ) Assumption 3 is satisfied with RegSq ≤ O(log T ).

Before proceeding further we note that Foster & Rakhlin (2020) invokes Assumption-3 (Assumption
2a in Foster & Rakhlin (2020)) for all sequences. In the proof of Lemma 2 in Foster & Rakhlin
(2020), Appendix B, using this assumption, the authors conclude that SqAlg guarantees that with
probability 1

T∑
t=1

ℓsq(ŷt,at , yt,at)− inf
g∈H

T∑
t=1

ℓsq(g(xt,at), yt,at) ≤ O(log T )

In our analysis this would hold in high probability, i.e., with probability 1−O(δ) (this randomness
is over the initialization and the perturbation of the network). Subsequently we invoke Freedman’s
Inequality (Lemma 1 in Foster & Rakhlin (2020)) that holds with probability (1− δ) and take a union
bound of both the high probability events to conclude that with probability (1− (δ +O(δ)))

T∑
t=1

∑
a∈A

pt,a (ŷt(xt, at)− f∗(xt, at))
2 ≤ 2RegSq(T ) + 16 log(δ−1).

Note that the the 1− δ high probability event is with respect to the randomness of the arm algorithm.
Thereafter the analysis follows as in Foster & Rakhlin (2020). Therefore for any sequence of contexts
and costs, our regret bound holds in high probability over the randomness of initialization and the
perturbation of the network and the randomness of the arm choices.

Invoking Theorem 3.1 we get with with probability 1− δ/2

RegCB(T ) = O
(√

KT log T +
√
KT log(16δ−1) +

K(log T + log(16δ−1))

αyl(∆l + αyl)

)
.

Taking a union bound over all the high probability events, we have with probability 1−O(δ) over all
the randomness in the Algorithm the performance constraint in (2) is satisfied and,

RegCB(T ) = O
(√

KT
(√

RegSq(T ) +
√

log(16δ−1)
)
+

K(RegSq(T ) + log(16δ−1))

αyl(∆l + αyl)

)

Theorem 5.2 (Regret bound for Neural C-FastCB). We instantiate Sq9Alg with the predictor
ŷt,at = f̃ (S)

(
θ;xt, ε

(1:S)
)

from (15) and update the parameters using OGD in (17). Under As-
sumptions 1,2, 4, 5 and 6 with γt chosen as in (γi-Schedule), step-size sequence {ηt}, width m,
perturbation constant cp, and projection ball B, with probability (1 − O(δ)), the performance
constraint in (2) is satisfied by C-FastCB and the expected regret is given by

E RegCB(T ) ≤ O
(√

KL∗ logL∗ log T +K log T +
K log T

αyl(∆l + αyl)

)
.

Proof. As in the previous Theorem, we set the width of the network m = max
(
O(T 5),O( 4LT

δ )
)

and the projection set B = BFrob
ρ,ρ1

(θ0), the layer-wise Frobenius ball around the initialization θ0 with
radii ρ, ρ1 which is defined as

BFrob
ρ,ρ1

(θ0) := {θ ∈ Rp : ∥ vec(W (l))− vec(W
(l)
0 )∥2 ≤ ρ, l ∈ [L], ∥v − v0∥2 ≤ ρ1}. (42)
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We set ρ and ρ1 according to Theorem 3.3 in Deb et al. (2024a), and the perturbation constant
cp = O(

√
λ), where λ is the Lipschitz parameter of the loss. Now, invoking Theorem 3.3 in Deb

et al. (2024a) we get with probability 1−O(δ) over the randomness of initialization and {ε}Ss=1, the
regret of projected OGD with loss L(S)

Sq

(
yt,
{
f̃(θ;xt, εs)

}S
s=1

)
for online regression with KL loss is

bounded by O(log T ) i.e.,
T∑

t=1

ℓKL(ŷt,at
, yt,at

)− inf
g∈H

T∑
t=1

ℓKL(g(xt,at
), yt,at

) ≤ O(log T )

Therefore with probability 1−O(δ), Assumption 4 is satisfied with RegSq ≤ O(log T ).

Before proceeding further we note that Foster & Krishnamurthy (2021) invokes Assumption-3
(Assumption 2 in Foster & Krishnamurthy (2021)) for all sequences. In the proof of Theorem 1 in
Foster & Krishnamurthy (2021), using this assumption, the authors conclude that E[R̄egKL(T )] ≤
RegKL(T ), where R̄egKL(T ) is the conditional expectation of of the KL regret with respect to
Ft−1 = σ((xi,ai

, yi,ai
), i ≤ t − 1). In our case R̄egKL(T ) ≤ O(log T ) holds with probability

1 − O(δ) and we need to provide an expected bound. Now note that R̄egKL(T ) ≤ T , for all
sequences therefore setting O(δ) = 1/T we get that

E[R̄egKL(T )] ≤ O(log(T ))
(
1− 1

T

)
+ 1 = O(log T )

Thereafter the analysis follows as in Foster & Krishnamurthy (2021). Now invoking Theorem 4.1

E RegCB(T ) ≤ O
(√

KL∗ logL∗ log T +K log T +
K log T

αyl(∆l + αyl)

)
.

Taking a union bound over all the high probability events, we have with probability 1−O(δ) over
over the randomness of initialization and {ε}Ss=1 the expected regret is bounded by

RegCB(T ) = O
(√

KT
(√

RegSq(T ) +
√

log(16δ−1)
)
+

K(RegSq(T ) + log(16δ−1))

αyl(∆l + αyl)

)
while simultaneously with probability 1 − O(δ) over all the randomness in the Algorithm the
performance constraint in (2) is satisfied.

E UNKNOWN BASELINE COSTS

In this section we relax the the assumption of knowing the true baseline cost values to having a noisy
observation for the baseline cost yt,bt . More formally, consider the following filtration

Ft−1 = σ

(
(xi,a, ai, yi,ãi),xt,a; 1 ≤ i ≤ t− 1, a ∈ [K]

)
.

Then we assume that
E[yt,bt |Ft−1] = h(xt,bt), ∀t ∈ [T ]

We can slightly modify our algorithms to retain the same regret bound and performance constraint
guarantees. Consider C9SquareCB (Algorithm 1) and replace the safety condition in (4) by the
following more stringent condition:

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)

− αmin

 ∑
i∈St−1∪t

yi,bi − 5

√
(mt−1 + 1) ln

(
16

δ

)
,mt−1yl


≤

∑
i∈St−1∪t

yi,bt − 5

√
(mt−1 + 1) ln

(
16

δ

)

+ αmax

 ∑
i∈Sc

t−1

yi,bt − 5

√
nt−1 ln

(
16

δ

)
, nt−1yl

 . (43)
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The next theorem shows that our modified algorithm satisfies the same regret bound as in Theorem 5.1
while satisfying the performance constraint.
Theorem E.1 (Regret for C9SquareCB with unknown baseline cost). Suppose Assumptions 1,2
and 3 hold. With probability at least 1− δ, C9SquareCB (Algorithm 1) with the safety condition (4)
replaced by (43) satisfies the performance constraint in (2) and has the following regret bound:

RegCB(T ) = O
(√

KT
(√

RegSq(T ) +
√

log(8δ−1)
)
+

K(RegSq(T ) + log(8δ−1))

α2y2l

)
. (44)

Proof of Theorem E.1. We first start by showing that the modified safety condition (43) ensures that
with high probability the performance constraint in (2) is satisfied.

Lemma E.2. Let Assumptions 1, 2 and 3 hold. Then, for δ > 0 and γt =√
K|St|/(RegSq(mT ) + log(8δ−1)), with probability 1− δ/2, C9SquareCB satisfies the per-

formance constraint in (2).

Proof of Lemma E.2. We start with our safety condition in (4) for the known baseline case
and show that it is satisfied with high probability whenever the new safety condition in (43) is
satisfied, i.e., the new condition is strictly more conservative than the previous one. Recall that
from (4) we have

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a︸ ︷︷ ︸
(A)

+
∑

i∈Sc
t−1

h(xi,bi)︸ ︷︷ ︸
(B)

+ 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)
︸ ︷︷ ︸

(C)

≤ (1 + α)

t∑
i=1

h(xi,bt).

Now moving term (B) to the other side we have that the above condition is equivalent to

ŷt,ãt +
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)

≤ (1 + α)

t∑
i=1

h(xi,bt)−
∑

i∈Sc
t−1

h(xi,bi)

= (1 + α)
∑

i∈St−1∪t

h(xi,bt) + α
∑

i∈Sc
t−1

h(xi,bt),

where we have used the fact that [t] = St−1 ∪ Sc
t−1 ∪ t. We can further write the above

condition as:

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)
− α

∑
i∈St−1∪t

h(xi,bi)

≤
∑

i∈St−1∪t

h(xi,bt) + α
∑

i∈Sc
t−1

h(xi,bt) (45)

Now note that E[yt,bt |Ft−1] = h(xt,bt), ∀t ∈ [T ]. Therefore Xt = yt,bt − h(xt,bt) is a
martingale difference sequence and since Xt ∈ [−1, 2] we use Azuma-Hoeffding to ensure
that for any ϵ > 0 and all T > 0,

P

(
T∑

t=1

|yt,bt − h(xt,bt)|

)
≤ 2 exp

(
−ϵ2

18T

)
.
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Therefore with probability 1− δ/8∑
i∈St−1∪t

|yt,bt − h(xt,bt)| ≤ 5

√
(mt−1 + 1) ln

(
16

δ

)
and, with probability 1− δ/8∑

i∈Sc
t−1

|yt,bt − h(xt,bt)| ≤ 5

√
nt−1 ln

(
16

δ

)
.

Further
∑

i∈Sc
t−1

h(xt,bt) ≥ nt−1yl, and
∑

i∈St−1∪t

h(xt,bt) ≥ (mt−1 + 1)yl; therefore with

probability 1− δ/8 we have the following lower bound for the rhs of (45):∑
i∈St−1

h(xi,bt) + α
∑

i∈Sc
t−1∪t

h(xi,bt) ≥
∑

i∈St−1∪t

yi,bt − 5

√
(mt−1 + 1) ln

(
16

δ

)

+ αmax

 ∑
i∈Sc

t−1

yi,bt − 5

√
nt−1 ln

(
16

δ

)
, nt−1yl


Next, with probability 1− δ/8 we have the following upper bound on the lhs of (45)

ŷt,ãt +
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)
− α

∑
i∈Sc

t−1

h(xi,bi)

≤ ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)

− αmin

 ∑
i∈St−1∪t

yi,bi − 5

√
(mt−1 + 1) ln

(
16

δ

)
,mt−1yl


Therefore if the following condition holds

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)

− αmin

 ∑
i∈St−1∪t

yi,bi − 5

√
(mt−1 + 1) ln

(
16

δ

)
,mt−1yl


≤

∑
i∈St−1∪t

yi,bt − 5

√
(mt−1 + 1) ln

(
16

δ

)

+ αmax

 ∑
i∈Sc

t−1

yi,bt − 5

√
nt−1 ln

(
16

δ

)
, nt−1yl


then with probability 1− δ/4

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a +
∑

i∈Sc
t−1

h(xi,bi) + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)

≤ (1 + α)

t∑
i=1

h(xi,bt).

Now we invoke Lemma 4 with δ substituted by δ/4 and take a union bound with the above
high probability even to conclude that with probability 1 − δ/2 C9SquareCB (Algorithm 1)
with the safety condition (43) satisfies the performance constraint in (2).
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Next we show that the regret of the modified C9SquareCB algorithm satisfies the same regret bound.
Note that the regret decomposition in (6) and the bound on term I in (10) still hold. Therefore
our objective to complete the proof of the Theorem is to bound nT as in Step-2 of the proof of
Theorem 5.1. The following Lemma bounds nT , the number of times the baseline action is played
with the modified safety condition in (43).

Lemma E.3. Suppose Assumption 1,2 and 3 hold. Then, with probability 1− δ/4 the number
of times the baseline action is played by C9SquareCB with the safety condition (43) is bounded
as follows:

nT ≤ O
(
K(RegSq(T ) + log(8δ−1))

αyl(∆l + αyl)

)
. (46)

Proof. Let τ be the last round at which the algorithm plays the conservative action, i.e.,

τ = max{1 ≤ t ≤ T |at = bt}.

Recall that mt = |St| and nt = |Sc
t |. By the definition of τ , we have that at round τ

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16

√
mt−1

(
RegSq(mt−1) + log(4/δ)

)

− αmin

 ∑
i∈St−1∪t

yi,bi − 5

√
(mt−1 + 1) ln

(
16

δ

)
,mt−1yl


>

∑
i∈St−1∪t

yi,bt − 5

√
(mt−1 + 1) ln

(
16

δ

)

+ αmax

 ∑
i∈Sc

t−1

yi,bt − 5

√
nt−1 ln

(
16

δ

)
, nt−1yl


Re-arranging we can write the above condition as follows:

αnτ−1yl ≤ ŷt,ãτ +
∑

i∈Sτ−1

∑
a∈[K]

pi,aŷi,a + 5

√
(mt−1 + 1) ln

(
16

δ

)

+ 16

√
mτ−1

(
RegSq(mτ−1) + log(4/δ)

)
− α(mt−1 + 1)yl

Hereafter following the analysis as in the proof of Lemma 3.2 we can show that with probability
1− δ/2

αnτ−1yl ≤ −(mτ−1 + 1)αyl + 64
√

K(mτ−1 + 1)
(
RegSq(T ) +

√
log(16δ−1)

)
= −(mτ−1 + 1)αyl + 64

√
K
√
(mτ−1 + 1)

(
RegSq(T ) +

√
log(16δ−1)

)
.

Now using the analysis as in the proof of Lemma 3.3 with m = mτ−1 + 1, c1 = αyl, c2 =

64
√
K
(
RegSq(T ) +

√
log(16δ−1)

)
, with probability 1 − δ/4 we can bound bound nT as

follows:

nT ≤ O
(
K(RegSq(T ) + log(2δ−1))

α2y2l

)
.
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To complete the proof of Theorem E.1 we combine Lemma E.2 and Lemma E.3 with Lemma 3.4.

Next consider C9FastCB (Algorithm 2) and replace the safety condition by the following more
stringent condition:

ŷt,ãt
+
∑

i∈St−1

∑
a∈[K]

pi,aŷi,a + 16
√

mt−1RegKL(T )

− αmin

 ∑
i∈St−1∪t

yi,bi − 5

√
(mt−1 + 1) ln

(
16

δ

)
,mt−1yl


≤

∑
i∈St−1∪t

yi,bt − 5

√
(mt−1 + 1) ln

(
16

δ

)

+ αmax

 ∑
i∈Sc

t−1

yi,bt − 5

√
nt−1 ln

(
16

δ

)
, nt−1yl

 . (47)

Then we have the following regret bound for C9FastCB.
Theorem E.4 (Regret Bound for C-FastCB for unknown baseline). Let Assumptions 1, 2 and 4
hold. With probability 1− δ, C9FastCB (Algorithm 2) with γi chosen in (γi-Schedule), and with
the modified safety condition in (47) satisfies the performance constraint in (2) and has the following
bound on the expected regret (expectation is for the action distributions):

E
[
RegCB(T )

]
= O

(√
KL∗ log(L∗) RegKL(T ) +

KRegKL(T )

α2y2l
log
(e√KRegKL(T )

α2y2l

))
. (48)

Proof. The proof follows along the same lines as in proof of Theorem E.1. By upper bounding
and lower bounding the safety condition we can show that when (47) is satisfied then with high
probability the safety condition in Algorithm 2 is satisfied.

Further the additional terms in (47) can be handled exactly as in proof of Lemma E.3 and combining
with the proof of Lemma C.2 we complete the proof.

F ADDITIONAL EXPERIMENTAL DETAILS

F.1 EXPLORATION PARAMETER γi

Since the optimal loss L∗
i is not known in advance, the exploration parameter γi is treated as a

hyper-parameter in our experiments. A heuristic choice is to substitute
∑t

i=1 L
∗
i by the sum of the

observed losses until time t− 1, i.e.,
∑t−1

i=1 Li to choose γt. Note that at time t,
∑t−1

i=1 Li is known to
the user. The other choice is to treat γi as a single parameter γ and tune it for different values. In our
experiments we tune γ in {10, 20, 50, 100, 200, 500, 1000}. We plot the corresponding cumulative
regret for all these choices in Figure 3 and we note that the heuristic choice of

∑t−1
i=1 Li produces

good results in the majority of environments.
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Figure 3: Comparison of cumulative regret of C-FastCB with various choices of the exploration
parameter γt on openml datasets (averaged over 5 runs).

F.2 DEPENDENCE ON THE NETWORK WIDTH

For Theorem 5.1 and 5.2 we use one specific instance of an online regression oracle, namely Online
Gradient Descent with overparameterized neural networks. Note that the width requirements in the
theorem statements are sufficient conditions, but not necessary. Therefore to address concerns about
practicality of the algorithms, we provide additional evidence here that shows the performance of the
algorithms for different choices of the width of the network. Figure 4 and Figure 5 shows that for
practical purposes, fixed width networks suffice for both Algorithm 1 and 2.
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Figure 4: Comparison of cumulative regret of C9SquareCB with various choices of the network width
m on openml datasets (averaged over 5 runs).
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Figure 5: Comparison of cumulative regret of C9FastCB with various choices of the network width
m on openml datasets (averaged over 5 runs).
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F.3 USE OF BASELINE COSTS

In this section we compare the performance of our Algorithm when the known baseline action-cost
pairs are used in online gradient descent. We note that our analysis separates the time steps into ST

and Sc
T , denoting the subsets containing the time-steps until round T when the IGW and baseline

actions were played, respectively and the oracle is used only for t ∈ ST . Therefore not using the
baseline cost h(xt,bt) for t ∈ Sc

T , does not impact our regret guarantees in Theorem 3.1 and 4.1. In
our experiments we do not see a significant difference in performance when the baseline action-cost
pairs are added (see Figure 6).
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Figure 6: Comparison of cumulative regret of C9SquareCB with and without using the baseline costs
on openml datasets (averaged over 5 runs).
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