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ABSTRACT

Conventional Federated Learning (FL) involves collaborative training of a global
model by multiple client local models. In this emerging paradigm, the central
server assumes a critical role in aggregating local models and maintaining the
global model. However, it encounters various challenges, including scalability,
management, and inefficiencies arising from idle client devices. Recently, stud-
ies on serverless decentralized FL have shown advantages in overcoming these
challenges, enabling clients to own different local models and separately optimize
local data. Despite the promising advancements in decentralized FL, it is crucial
to thoroughly investigate the implications of data and model heterogeneity, which
pose unique challenges that must be overcome. Therefore, the research question
to be answered in this study is: How can every client’s local model learn general-
izable representation? To address this question, we propose a novel Decentralized
FL technique by introducing Synthetic Anchors, dubbed as DESA. Inspired by the
theory of domain adaptation and Knowledge distillation (KD), we leverage the
synthetic anchors to design two effective regularization terms for local training:
1) anchor loss that matches the distribution of the client’s latent embedding with
an anchor and 2) KD loss that enables clients learning from others. In contrast to
previous KD-based heterogeneous FL methods, we don’t presume access to real
public or a global data generator. DESA enables each client’s model to become
robust to distribution shift across different client-domains. Through extensive ex-
periments on diverse client data distributions, we showcase the effectiveness of
DESA in enhancing both inter and intra-domain accuracy of each client.

1 INTRODUCTION

Federated learning (FL) has emerged as an important paradigm to perform machine learning from
multi-source data in a distributed manner. Conventional FL techniques leverage a large number of
clients to process a global model learning, which is coodinated by a central server. Unfortunately,
the conventional FL techniques face poor performance due to the presence of heterogeneities. Data-
heterogeneity involves relaxing the assumption that the data across all the client are independent
and identically distributed (i.i.d.). To solve the problem, a plethora of methods have been proposed.
However, most of the works handling the data heterogeneity assumes that the model architectures
are invariant across clients (Li et al., 2020b;a; 2021b; Karimireddy et al., 2020; Tang et al., 2022).
However, many practical FL applications (e.g., Internet-of-Things and mobile device system) face
Model-heterogeneity, where clients have devices with different computation capabilities and mem-
ory constraints. Thereby, it becomes necessary to allow each client to have different model archi-
tecture. Since conventional FL methods that require model parameter sharing cannot be applied
in this setting, to address the model heterogeneity issue, strategies have been proposed to leverage
knowledge transferring, e.g., server collects labeled data with the similar distribution as the client
data or clients transmit models (Lin et al., 2020; Zhu et al., 2021). Additionally, these operations
usually require a server to coordinate the knowledge distillation.

Besides heterogeneity, there arises concerns on increased vulnerability of system failures and trust-
worthiness concerns for the central server design in the conventional FL. An emerging paradigm,
called decentralized FL, is featured by its severless setting to address the issues. Recent work has
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shown decentralized FL framework can provide more flexibility and solubility (Beltrán et al., 2023;
Yuan et al., 2023b). However, without the use of central server for model aggregation of knowledge
transferring, the aforementioned heterogeneous FL methods could not be directly applied to decen-
tralized FL. Furthermore, most of the works in decentralized FL focus on model personalization,
deflecting the generalization capability of each client models (Huang et al., 2022). It is crucial for
decentralized FL to be generalizable since local training data may not align with local testing data
in practice.

We can see that both heterogeneous FL and decentralized FL leave the gray space of the fol-
lowing practical research question: How can every client model perform well on other client do-
mains(generalization), in a completely decentralized heterogeneous FL setup? Such a problem is
referred as decentralized federated mutual learning, which is further detailed in Section 2.2.
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Figure 1: The decision boundary before (a) and af-
ter (b) applying our proposed LREG (Eq. 4) and LKD

(Eq. 6) using our synthetic anchor data. LREG aims to
group the raw feature towards synthetic anchor feature,
and LKD twists the local decision boundary towards the
generalized decision boundary.

To the best of our knowledge, we are the first to
address both data and model heterogeneity is-
sues under serverless decentralized FL setting
(see the comparison with related work in Ta-
ble 1). In particular, we achieve this by per-
forming local heterogeneity harmonized train-
ing and knowledge distillation. To this end, we
use a lightweight synthetic data generation pro-
cess via distribution matching (Zhao & Bilen,
2023). The synthetic data are exchangeable
across clients to augment local datasets and
serve as anchor points to improves FL for two
purposes: 1) reducing the domain-gap between
the distributions of the learnt features; and 2)
enabling local knowledge distillation on pre-
dicted logits under model heterogeneity setting.
In summary, we tackle a realistic and challeng-
ing setting in decentralized FL, where both data and model heterogeneities exist, and our contribu-
tions are listed as follows:
• To circumvent the heterogeneity on data and model, we propose an innovative algorithm named

Decentralized Federated Learning with Synthetic Anchors (DESA). In DESA, clients commu-
nicate directly, eliminating the need for a central server. Unlike other FL frameworks using real
data, our approach generates a small synthetic anchor data to enhance client-model generalization.

• To optimize models, our novel FL loss function combines local cross-entropy, synthetic anchor,
and cross-client knowledge distillation losses. Our theoretical analysis confirms that a strategic
design of synthetic anchor data and correct leveraging of client knowledge boosts local model
generalization in diverse data scenarios.

• We conduct extensive experiments prove DESA’s effectiveness, surpassing existing decentralized
FL algorithms. It excels in inter- and intra-client performance across diverse tasks, even handling
data shifts and model differences.

2 PRELIMINARIES

2.1 CONVENTIONAL FEDERATED LEARNING

Conventional FL aims to learn a single generalized global model that performs optimally on all the
clients’ data domains. Mathematically, the learning problem can be formulated as

M∗ = arg min
M∈M

N∑
i=1

Ex,y∼Pi
[L(M(x), y)] (1)

where M∗ is the optimized global model from the shared model space M, Pi is the local data
distribution at the ith client, L is the loss function and (x, y) is the feature-label pair. Inspired by the
pioneering work of FedAvg (McMahan et al., 2017), a plethora of methods have tried to fill in the
performance gap of FedAvg on data-heterogeneous scenario, which can be categorized in two main
orthogonal directions: Direction 1 aims to minimize the difference between the local and global
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Table 1: Comparison of the settings with other related heterogeneous FL and decentralized FL methods.

Methods Data Heterogeneity Model Heterogeneity Serverless No Public data Mutual Learning
VHL (Tang et al., 2022) ✓ ✗ ✗ ✓ ✓a

FedGen (Zhu et al., 2021) ✓ ✗ ✗ ✓ ✓
FedHe (Chan & Ngai, 2021) ✗ ✓ ✓ ✓ ✓

FedDF (Lin et al., 2020) ✓ ✓ ✗ ✗ ✓
FCCL (Huang et al., 2022) ✓ ✓ ✗ ✗ ✓

FedFTG (Zhang et al., 2022b) ✓ ✓ ✗ ✓ ✓
DENSE (Zhang et al., 2022a) ✓ ✓ ✗ ✓ ✓

DESA (ours) ✓ ✓ ✓ ✓ ✓
a VHL has a single global model, trained using mutual information from all clients. Therefore we reference it under Mutual Learning.

model parameters to improve convergence (Li et al., 2020a; Karimireddy et al., 2020; Wang et al.,
2020). Direction 2 enforces consistency in local embedded features using anchors and regularization
loss (Tang et al., 2022; Zhou et al., 2022; Ye et al., 2022). This work follows the second research
direction and aim to leverage anchor points to handle data heterogeneity. We also tackle the more
challenging problem of domain shift, unlike other methods that only assume a label-shift amongst
the client-data distributions.

2.2 DECENTRALIZED FL AND MUTUAL LEARNING

Standard decentralized FL aims to solve the same generalization objective as conventional FL (i.e.,
Eq. 1), only, without a central server to do so (Gao et al., 2022). Here, we focus on learning from
each other under heterogeneous models and data distributions. This brings in another line of work,
known as mutual learning. Although mutual learning with heterogeneous data and models has been
studied recently, most of them assume the existence of public real data (Lin et al., 2020; Huang et al.,
2022; Gong et al., 2022) or a central server to coordinate the generation of synthetic data from the
local client data (Zhang et al., 2022a; Zhu et al., 2021; Zhang et al., 2022b). Another related work,
FedHe (Chan & Ngai, 2021) proposes to share averaged information from local data. However, none
of the above methods simultaneously address the non-iid features and heterogeneous models issue
under serverless and data-free setting. In this work, we explore mutual learning to optimize both
local (intra-client) and global (inter-client) dataset accuracy (see the detailed setup in Sec. 3.1). We
list the comparison with other methods in Table 1 and more detailed related works in Appendix G.

3 METHOD

3.1 NOTATION AND PROBLEM SETUP

Suppose there are N clients with ith client denoted as Ci. Let’s represent the private datasets on
Ci as Di = {x, y}, where x is the feature and y ∈ {1, · · · ,K} is the label from K classes. Let
L represent a real valued loss function for classification(Cross-entropy loss). Denote the communi-
cation neighboring nodes of the client Ci in the system as N (Ci). We denote the local models as
{Mi = ρi ◦ ψi}i=Ni=1 , where ψi represents the feature encoder and ρi represents the classification
head for the ith client’s model Mi. DESA returns trained client models {Mi}i=Ni=1 .

Our work aims to connect two key areas in heterogeneous FL and decentralized FL and thus it
forms the problem of decentralized federated mutual learning. Mutual learning is essential in de-
centralized FL, where, we train multiple client models in a decentralized way such that they can
generalize well across all clients’ data domains. Mathematically, our objective is formulated as,

For every client i, M∗
i = argmin

Mi∈Mi

Ex,y∼Pi
[L(Mi(x), y)]︸ ︷︷ ︸

Intra-client

+
∑

j∈N (Ci)

Ex,y∼Pj
[L(Mi(x), y)]︸ ︷︷ ︸

Inter-client

, (2)

where M∗
i is the best possible model for client i with respect to the model space Mi.

Overview of DESA. The overall objective of DESA is to improve local models’ generalizability in
FL training under both model and data heterogeneity in a serverless setting as shown in in Figure 2
a). The pipeline of DESA is depicted in Figure 2 b). Our algorithm contains three important aspects:
1) First, we generate synthetic anchor data that is shared amongst the client’s neighbors; 2) Second,
we train each client model locally on its own private dataset along with a synthetic anchor based
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Figure 2: Heterogeneous setup and DESA pipeline. (a) We assume a realistic FL scenario, where clients
have different data distributions and computational powers, which results in different model architectures. (b)
DESA pipeline consists of three phases, local data synthesis (top left) , global synthetic data aggregation
(top right)(Section 3.2), and decentralized training (bottom) using anchor regularization(Section 3.3) and
knowledge distillation (Section 3.4).

regularizer and 3) Third, we allow the models to learn from each other in-order to boost both inter
and intra domain performance via knowledge distillation based on the synthetic anchors. Note that
during DESA training, clients only need to share logits w.r.t. global synthetic data, resulting in a
lightweight communication overhead (as discussed in Appendix D) . The effectiveness of steps 2
and 3 can be observed in Figure 1. The next three subsections delve deeper into these three designs.
The full algorithm is depicted in Algorithm 1.

3.2 SYNTHETIC ANCHOR DATASETS GENERATION

The recent success of dataset distillation-based data synthesis technique that generates data with sim-
ilar representation power as the original raw data(Zhao et al., 2020; Zhao & Bilen, 2023). Thus, we
propose to leverage this method to efficiently and effectively generate a synthetic anchor dataset
without requiring any additional model pretraining. Specifically, we utilize distribution match-
ing (Zhao & Bilen, 2023) to distill local synthetic anchor data using the empirical maximum mean
discrepancy loss (MMD) (Gretton et al., 2012) as follows,

DSyn
i = argmin

D
|| 1

|Di|
∑

(x,y)∈Di

ψrand(x|y)− 1

|D|
∑

(x,y)∈D

ψrand(x|y)||2, (3)

where ψrand is a randomly sampled feature extractor for each iteration, Di is the raw data for client
i, and DSyn

i is its target synthetic data.

Similar to other FL work sharing distilled synthetic data for efficiency (Song et al., 2023), we request
each client to generate a local synthetic anchor dataset and share it among peers. We denote the
synthetic anchor data as DSyn = ∪iDSyn

i
1. Following Eq. 3, the synthetic anchor datasets are

generated in a class-balanced manner, which enables the label prior to being unbiased towards a
set of classes. Different from (Song et al., 2023), we further propose novel loss terms and training
strategies to help mitigate the distribution discrepancy between the clients, which are detailed in
the following sections (see Sec. 3.3 and Sec. 3.3), enabling improved model performance (see the
ablation study in Sec. 5.4).

Sharing image-level information among clients may raise privacy concerns. However, we claim
that decentralized FL with both data and model heterogeneities is an extremely challenging set-
ting, where existing solutions either require sharing real public data (Lin et al., 2020; Huang et al.,
2022) or synthetic data generated from real data with GAN-based generator (Zhang et al., 2022a;b).

1By default, we perform simple interpolation (averaging) among clients as it is shown that using this mixup
strategy can improve model fairness (Chuang & Mroueh, 2021)
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Instead, we propose to use distribution matching to distill data, a simple and less data-greedy strat-
egy, for data synthesis. Research has shown that using distilled data can defend against privacy
attacks (Dong et al., 2022) such as membership inference attacks (MIA) (Shokri et al., 2017) and
gradient inversion attacks (Huang et al., 2021a). We show the DESA’s defense against MIA (Carlini
et al., 2022a) in Appendix B. In addition, recent papers have successfully applied differential privacy
(DP) (Abadi et al., 2016) mechanism into data distillation (Xiong et al., 2023; Wang et al., 2023) to
ensure privacy. We also discuss how we add DP into data distillation following (Xiong et al., 2023)
and show that DESA is still effective using the DP synthetic anchor data in Appendix C. The poten-
tial privacy risk of FL with DESA is beyond the main scope of our study, as this commonly exists
in the related work mentioned above and we fairly align with their settings in our comparisons.

3.3 ANCHOR LOSS FOR DATA HETEROGENEITY

The synthetic anchor regularization term enforces the model to learn a client-domain invariant
representation of the data. (Tang et al., 2022) and several other domain adaptation works show
that, adding a distribution discrepancy based loss in the latent space enables learning of a domain-
invariant encoder ψ. However, most of the domain adaptation works require explicit access to the
data from other domains, or instead use random noise as anchor’s in the latent space to pull the
representations towards it. We propose using the latent space distribution of the synthetic anchor
data DSyn as a synthetic anchor to which the client-model specific encoders ψi can project their
local private data onto. The loss function can be therefore defined as,

LREG(ψi) =
K∑
k=1

E(x,y)∼Di,(xSyn,y)∼DSyn [d(ψi(x
Syn)||ψi(x))|y = k], (4)

where K is the number of classes , d is distance computed using the supervised contrastive loss,

d(ψi;D
Syn, Di) =

∑
j∈B

− 1

|Byj\j |
∑

xp∈B
yj
\j

log
exp(ψi(xj) · ψi(xp)/τtemp)∑

xa∈B\j
exp(ψi(xj) · ψi(xa)/τtemp)

(5)

where B\j represents a batch containing both local raw data Di and global synthetic data DSyn but
without data j, Byj\j is a subset of B\j only with samples belonging to class yj , and τtemp is a scalar
temperature parameter. Note that we will detach the synthetic anchor data to ensure we are pulling
local features to global features.

3.4 KNOWLEDGE DISTILLATION FOR MODEL HETEROGENEITY

This step allows a single client model to learn from all the other models using their predictions
on a common synthetic anchor dataset DSyn. Under our setting of model heterogeneity among
clients, we cannot aggregate the model parameters by simply averaging as in FedAvg (McMahan
et al., 2017). Instead, we propose to utilize knowledge distillation for decentralized model aggre-
gation. Specifically, the synthetic anchor dataset is representative of the distributions of the client
and its peers together, so minimizing cross entropy on the public dataset DSyn enforces the model
to perform well on client-domains that are also not its own. Since the other peer models are already
learning using Eq. 4 on their local datasets, we also add a loss that enables the client model to mimic
the predictions of the other models on the global dataset DSyn.

LKD(Mi) = LKL(Mi(x
Syn), Z̄i), Z̄i =

1

N − 1

∑
j ̸=i

Mj(x
Syn), (6)

where (xSyn, ySyn) ∼ DSyn, LCE is the cross-entropy loss of the synthetic anchor data xSyn and
LKL is the KL-Divergence between the output logits of xSyn on Mi and the averaged output logits
of xSyn on Mj ,∀j ̸= i. As you can see that enforcing the client model Mi to learn on Eq. 6 may
reduce the performance of the model on it’s own dataset Di. This is because of the phenomenon
referred to as Catastrophic Forgetting. To prevent this from happening, we take inspiration from
Continual Learning and we modify the KD loss to also incorporate the standard cross entropy loss
on the private datasetDi. This helps the gradients of the losses in both of the steps become coherent.
Thus, we formulate the overall loss as

L = LCE(Di ∪DSyn;Mi) + λREGLREG(Di, D
Syn;Mi) + λKDLKD(D

Syn;Mi, Z̄i), (7)

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Serverless DESA (Procedures for Client i)

procedure INIT(Ci)
for all j ∈ N (Ci) do ▷ Communicate with peers to send their synthetic anchor data

DSyn = DSyn ∪ GET-IMG(Cj) ▷ Get-img generate synthetic data using Eq. 3.
end for

end procedure
procedure LOCALTRAIN(Ci, t)

if client Ci is sampled then ▷ Client sampling
share Zi =Mi(D

Syn) to N (Ci)

get Z̄i = 1/|N (Ci)|
∑j∈N (Ci)
j Zj

LCE = CLASSIFICATION(Di ∪DSyn;Mi) ▷ Standard Local Cross entropy
LREG = FEATURE-REGULARIZATION(Di, D

Syn;Mi) ▷ Anchor Loss with Eq. 4
LKD = KD(DSyn;Mi, Z̄) ▷ Model knowledge transferring on DSyn with Eq. 6
L = LCE + λREGLREG + λKDLKD
Mi =Mi − η∇MiL ▷ Update local model with Eq. 7

end if
end procedure

where LCE(D;M) = 1
|D|

∑
x,y∈D −

∑K
k [y]klog([M(x)]k) is the K-classes cross entropy loss

on data D and model M , and [·]k represents the kth element. In Eq. 7, λREG and λKD are the
hyperparameters for regularization and KD losses, LREG and LKD are as defined in Eq. 4 and
Eq. 6, and Z̄i is the shared logits from other clients.

4 THEORETICAL ANALYSIS ON GENERALIZATION

In this section, we focus on providing a theoretical justification for our proposed loss function and
models. Consider the ith client’s local dataset Di which is sampled from the local data distribution
(x, y) ∼ Pi. Taking the data heterogeneity into consideration, there exists at least two clients has
different local data distributions, i.e. ∃i ̸= j s.t. Pi ̸= Pj . Also, denote the global data distribu-
tion as PT = 1

N

∑
i Pi with the labeling function fT : y = fT (x), ∀(x, y) ∼ PT . Our ultimate

goal is to have each client learn the local model Mi, which optimizes the global generalization error
ϵPT (Mi) = P(x,y)∼PT [Mi(x) ̸= y] = P(x)∼PT [Mi(x) ̸= fT (x)]. We borrow the notion of H∆H
divergence from Ben-David et al. (2010) that dH∆H(Ds, DT ) = suph,h′∈H|Prx∼Ds

(h(x) ̸=
h′(x)) − Prx∼DT

(h(x) ̸= h′(x))|. We also define a constant λ(Pi) for each client domain as
λ(Pi) = minM∈Mi

ϵPT
(M) + ϵPi

(M). Furthermore, we assume the global synthetic data DSyn

are from the distribution PSyn with the corresponding labeling function fSyn. As DSyn is also
leveraged for the knowledge distillation, inspired by (Feng et al., 2021), we further denote the
extended knowledge distillation (KD) dataset DSyn

KD = {xSyn, 1
N−1

∑
i̸=jMj(x

Syn)} ∼ PSynKD ,
where Mi(x

Syn) is the predicted logit on data xSyn with the ith client’s model. Obviously,
DSyn

KD and DSyn shares the same distribution over x, while the labeling function on DSyn
KD is

fSynKD (x) = argmaxc
1

N−1

∑
j ̸=iMj(x), where c is the predicted class. With the defined notation,

the following theorem provides the global generalization bound for the ith client’s model Mi.

Theorem 1. Assume the model in i-th client Mi = ρi ◦ ψi from the model space Mi. Let the
training source data at i-th client compose of local data, synthetic data and extended KD data with
the component weights α = [α, αSyn, αSynKD ]⊤. If ψi ◦ PSyn → ψi ◦ PT for any ψi, then the global
generalization error can be bounded by

ϵPT (Mi) ≤ϵPS
i
(Mi) +

α

2
dH∆H(Pi, P

T ) + αλ(Pi) + αSynϵPT (fSyn) + αSynKD ϵPT (fSynKD ). (8)

We provide the interpretation for Theorem 1 in Appendix A.2 . Furthermore, the following propo-
sition implies our generalization bound in Theorem 1 is tighter than the original bound under some
mild conditions.

6



Under review as a conference paper at ICLR 2024

Proposition 2. Under the conditions in Theorem 1, if it further holds that

sup
M∈Mi

min{|ϵPSyn(M)− ϵPT (M)|+ ϵPT (fSyn), |ϵPSyn
KD

(M)− ϵPT (M)|+ ϵPT (fSynKD )}

≤ inf
M∈Mi

|ϵPi(M)− ϵPT (M)|+ 1

2
dMi∆Mi(Pi, P

T ) + λ(Pi), (9)

then we can get a tighter generalization bound on the ith client’s model Mi than local learning.

When the local data heterogeneity is severe, infM∈Mi
|ϵPi

(M)− ϵPT (M)| and dMi∆Mi
(Pi, P

T )
would be large. As the synthetic data and the extended KD data are approaching the the global data
distribution, the left side term in (9) would be small. Thus, the above proposition points out that,
to reach better generalization, the model learning should rely more on the synthetic data and the
extended KD data, when the local data are highly heterogeneous and the synthetic and the extended
KD datasets are similar to the global ones.

5 EXPERIMENT

5.1 TRAINING SETUP

Datasets and Models We extensively evaluate DESA under data heterogeneity in our experiments.
Specifically, we consider three classification tasks on three sets of domain-shifted datasets:
1) DIGITS={MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), USPS (Hull, 1994), Syn-
thDigits (Ganin & Lempitsky, 2015), MNIST-M (Ganin & Lempitsky, 2015)}, each dataset repre-
sents one client.
2) OFFICE={Amazon (Saenko et al., 2010), Caltech (Griffin et al., 2007), DSLR (Saenko et al.,
2010), and WebCam (Saenko et al., 2010)}, each dataset represents one client.
3) CIFAR10C consists 57 subsets with domain- and label-shifted datasets sampled with Dirichlet
distribution with β = 2 from Cifar10-C (Hendrycks & Dietterich, 2019).
More information about datasets and image synthesis can be found in Appendix E. In addition to in-
corporating data heterogeneity, we explicitly showcase that DESA can handle model heterogeneity
by setting the models as ConvNet and AlexNet (see Appendix F for model details). In our model
heterogeneity experiments (Sec. 5.2), we randomly assign model architectures from {ConvNet,
AlexNet} for each client, while in model homogeneous experiments, we use ConvNet for all clients.

Comparison Methods We compare DESA with two sets of baseline federated learning methods:
one group considers both data and model heterogeneities (Sec. 5.2) and another with homogeneous
models(Sec. 5.3). For heterogeneous model experiments, we compare with FedHe (Chan & Ngai,
2021) , FedDF (Lin et al., 2020), FCCL (Huang et al., 2022), and VHL (Tang et al., 2022)2(Deleted
FedMD.) . For homogeneous model experiments, we compare with FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020b), MOON (Li et al., 2021b), Scaffold (Karimireddy et al., 2020), Fed-
Gen (Zhu et al., 2021) , and VHL (Tang et al., 2022).

FL Training Setup If not otherwise specified, we use SGD optimizer with a learning rate of 10−2,
and our default setting for local model update epochs is 1 , total update rounds is 100, and the batch
size for local training is 32. Since we only have a few clients for DIGITS and OFFICE experiments,
we will select all the clients for each iteration, while we randomly sample 10% and 20% clients for
each round when performing CIFAR10C experiments. By default, λREG and λKD is set to 1.

5.2 HETEROGENEOUS MODEL EXPERIMENTS

The experiment results for heterogeneous data and heterogeneous model can be found in Table. 2.
The objective of the experiments is to show that DESA can effectively leverage and learn gener-
alized information from other clients even with different model architectures. Thus, we report the
intra and inter-client test accuracy by testing i-th local model on client i’s test set (intra) and every

2For the purposes of this comparison, we have excluded FedFTG (Zhang et al., 2022b) and DENSE (Zhang
et al., 2022a), which address heterogeneities in different learning scenarios. FedFTG focuses on fine-tuning a
global model, and DENSE is a one-shot FL, and both of them requires aggregate local information and train
a generator on the server side. Note that none of the data-sharing-based baseline methods employ privacy-
preserving techniques.
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Table 2: Heterogeneous data and heterogeneous model experiments. We compare with baseline FL methods
that can handle both data and model heterogeneity on the intra and inter-client test accuracya.

DIGITS OFFICE CIFAR10C
MN(C)b SV(A) US(C) Syn(A) MM(C) Avg AM(A) CA(C) DS(A) WE(A) Avg 0.1 0,2

FedHe intra 98.89 83.33 98.76 93.89 94.31 93.84 53.65 52.89 25.00 88.14 54.92 48.88 55.07
inter 49.67 62.50 37.67 70.77 65.89 57.30 18.12 44.72 14.10 34.82 27.94 28.35 34.82

FedDF
Cifar100 intra 92.29 20.73 86.18 15.19 51.57 53.19 10.42 12.00 15.62 15.25 13.66 60.59 62.00

inter 34.85 12.39 18.28 17.21 37.28 24.00 14.29 16.67 12.56 12.68 14.05 38.17 39.38

FMNIST intra 92.59 19.56 93.33 77.86 69.83 70.63 10.42 29.33 6.25 23.73 17.43 38.52 47.24
inter 39.03 18.21 30.66 54.02 54.26 39.24 7.43 20.43 11.22 15.71 13.71 21.37 27.33

FCCL
Cifar100 intra 11.25 19.10 13.66 10.08 11.25 13.07 57.81 24.44 50.50 33.90 41.54 65.14 64.89

inter 13.52 11.56 12.92 13.82 13.52 13.07 24.22 31.78 21.75 25.72 25.87 53.67 53.30

FMNIST intra 95.01 72.92 94.73 86.11 90.10 87.78 65.10 68.37 31.25 52.54 46.89 13.51 13.51
inter 34.29 58.04 29.62 57.28 60.46 47.94 20.64 29.70 15.00 22.80 22.03 12.48 12.48

DESA(DSyn
VHL)d intra 98.69 80.09 98.66 90.68 94.40 92.50 10.42 57.33 28.13 89.83 46.43 47.99 54.42

inter 43.33 57.51 28.26 62.02 67.69 51.76 8.28 46.20 13.16 35.56 25.80 28.18 34.86

DESA intra 98.78 86.42 98.87 95.21 94.54 94.77 71.88 60.44 78.13 89.83 75.07 54.06 58.14
inter 65.59 80.14 64.14 78.97 69.98 71.76 42.24 57.84 33.84 41.98 43.98 34.42 39.01

a Intra and inter-client test accuracy are defined as testing i-th local model on client i’s test set and every client j’s (∀j ̸= i, j ∈ [N ]) test sets, respectively.
b The letter inside the parenthesis is the model architecture used by the client. A and C represent AlexNet and ConvNet, respectively.
c The best accuracy is marked in bold.
d For VHL baseline, we use the synthetic data sampling strategy in VHL only. The purpose is to show DESA can generate better synthetic anchor data for
feature regularization and knowledge distillation.
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Figure 3: Heterogeneous data and homogeneous model experiments. We compare with baseline data hetero-
geneity FL methods with the same client models. To show that DESA can effectively leverage information
from other clients, we report the averaged global accuracy and the worst test accuracy on local test sets.

client j’s (∀j ̸= i, j ∈ [N ]) test sets (inter). To fairly compare with FedDM and FCCL, which
require accessing to public available data, we test on using Cifar100 (Krizhevsky et al., 2009) and
FMNIST (Xiao et al., 2017). DESA(DSyn

VHL) uses our training pipeline with synthetic data sampled
from an untrained StyleGAN (Karras et al., 2019) as in VHL (Tang et al., 2022).

From the experiments with DIGITS and OFFICE, it is clear that our method DESA effectively im-
proves both intra- and inter-accuracies. In the CIFAR10C experiments, DESA improves the intra-
and inter-accuracies compared to most of the baseline models, except for FedDF and FCCL with CI-
FAR100 as the public dataset. We believe this is due to two reasons: 1) CIFAR100 has significantly
more data points than our synthetic data, and 2) CIFAR100 and CIFAR10 have a genuine seman-
tic overlap (Krizhevsky et al., 2009), which naturally biases the comparison in favor of methods
using additional CIFAR100 information. Nonetheless, it is worth mentioning that the accuracies
of FedDF and FCCL drop significantly when switching from Cifar100 to FMNIST. This pattern
remains consistent as they perform better with the FMNIST public dataset than using CIFAR100
in the DIGITS experiment. This suggests that the choice of public data for knowledge distillation
significantly affects the training outcome of these methods relying on such data. In contrast, our
method does not depend on carefully selecting public data.

5.3 HOMOGENEOUS MODEL EXPERIMENTS

The objective of the experiments is to show that FedSAB can effectively leverage information from
other clients, and further collaboratively train local models under data heterogeneous scenario. Thus,
we report the averaged global accuracy and the worst test accuracy on local test sets. One can ob-
serve from Figure 3 that DESA can effectively leverage information from other clients and outper-
forms other methods in both averaged global accuracies and worst local accuracies. DESA con-
sistently performs the best regarding the averaged global accuracies. For the worst accuracy, only
Scaffold can outperform DESA in CIFAR10C(0.2) experiment. We believe this is because Scaffold
corrects client drift to the server model with the global gradient information on the server side, while
DESA does not require global model or server.
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Figure 4: Ablation studies for DESA.

5.4 ABLATION STUDIES FOR DESA

The effectiveness of DESA relies on the novel designs of synthetic anchor data and the losses. To
evaluate how these designs influences the performance of DESA, we vary the number of synthetic
anchor data and the hyperparameters (λ′s) in our loss function. Furthermore, we will discuss how
the size of synthetic dataset affects the performance. Lastly, we show that DESA is robust under
different local epochs. The ablation studies are run on DIGITS and compare with default hyperpa-
rameters under model heterogeneity setting, and we report the averaged intra- and inter-accuracies.

Evaluation of λ Selections. λKD and λREG play an important role to help the clients to learn
generalized information as well as improving the performance on local data. We vary λKD between
0 to 1 along with λREG different selections as shown in Figure 4(a). One can observe that when
λKD increases, the inter-accuracy increases. In Figure 4(b), we change λREG between 0 to 0.1 and
show that and λREG helps improve the intra-accuracy as well as the inter-accuracy within a certain
range (observe the peak inter-accuracy at λREG = 0.01). Overall, λKD helps the local model learn
information from other clients’ models, and λREG improves the local performance by enforcing the
local model to learn generalized features.

Evaluation of Size of Synthetic Dataset. The size of synthetic data is a critical hyperparameter
for DESA as it represents the shared local information. Since DESA synthesizes class-balanced
data, we use Images-Per-Class (IPC) to represent the size of the synthetic data. One can observe
in Figure 4(c) that blindly increasing the IPC does not guarantee to obtain optimal intra- and inter-
accuracy. It will cause the loss function to be dominated by the last 2 terms of Eq. 8, i.e., by
synthetic data. However, synthesizing larger number of synthetic data may degrade its quality, and
the sampled batch for LREG may fail to capture the distribution.

Evaluation of Local Epoch. Here we present the effect of local epochs on DESA. To ensure fair
comparison, we fix the total training iterations for the three experiments, i.e.,we set FL communica-
tion rounds to 50 when local epochs is 2 to match up with total model updating iterations. Figure 4(d)
shows that DESA is robust to various local epoch selections.

6 CONCLUSION

A novel and effective method, DESA, is presented that utilizes synthetic data to deal with both data
and model heterogeneities in serverless decentralized FL. In particular, DESA introduces a pipeline
that involves synthetic data generalization, and we propose a new scheme that incorporates the syn-
thetic data as anchor points in decentralized FL model training. To address heterogeneity issues, we
utilize the synthetic anchor data and propose two regularization losses: anchor loss and knowledge
distillation loss. We provide theoretical analysis on the generalization bound to justify the effec-
tiveness of DESA using the synthetic anchor data. Empirically, the resulted client models not only
achieve compelling local performance but also can generalize well onto other clients’ data distri-
butions, boosting inter and intra-domain performance. Through extensive experiments on various
classification tasks, we show that DESA robustly improves the efficacy of collaborative learning
when compared with state-of-the-art methods, under both model and data heterogeneous settings.
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Road Map of Appendix Our appendix is organized into five sections. The theoretical analysis and
proof is in Appendix A. Appendix B shows the results for Membership Inference Attack (MIA) on
DESA trained models using DIGITS datasets. Appendix C discusses how we inject DP mechanism
in our data synthesis process, and shows that using DP synthetic anchor data for DESA can still
yeilds comparable performance. Appendix E introduce the selected datasets and how we synthesize
anchor data in detail. Appendix F describes the model architectures (ConvNet and AlexNet) we
use in our experiments. Finally, Appendix G provides a detailed literature review about the related
works. Our code and model checkpoints are available along with the supplementary materials.

A THEORETICAL ANALYSIS AND PROOFS

A.1 PROOF FOR THEOREM 1

Proof. The training data at ith client are from as three distributions: 1) the local source data; 2) the
global virtual data; 3) the extended KD data. The data from first two groups are used to construct
the cross-entropy loss and those from the third one is for the knowledge distillation loss. Without
loss of generality, at ith client, we set the weight for Pi, PSyn and PSynKD as α, αSyn and αSynKD ,
respectively. For notation simplicity, we assume α + αSyn + αSynKD = 1. Then the training source
data at ith client is PSi = αPi + αSynPSyn + αSynKDP

Syn
KD .

From Theorem 2 in Ben-David et al. (2010), it holds that

ϵPT (Mi) ≤ ϵPi
(Mi) +

1

2
dMi∆Mi

(Pi, P
T ) + λ(Pi) (10)

where 1
2dMi∆Mi

(Pi, P
T ) = supM,M ′∈Mi

|Px∼Pi
[M(x) ̸= M ′(x)] − Px∼PT [M(x) ̸= M ′(x)]|

and λ(Pi) = minM∈Mi ϵPi(M) + ϵPT (M) is a constant. Then with (10) and Lemma 1, we have
that

ϵPT (Mi) ≤ϵPS
i
(Mi) +

α

2
dH∆H(Pi, P

T ) + αiλ(Pi) + αSyn(sup
ρ,ρ′

|ϵψ◦PT (ρ, ρ′)− ϵψ◦PSyn(ρ, ρ′)|

+ ϵPT (fSyn)) + αSynKD (sup
ρ,ρ′

|ϵψ◦PT (ρ, ρ′)− ϵψ◦PSyn(ρ, ρ′)|+ ϵPT
KD

(fSyn))

≤ϵPS
i
(Mi) +

α

2
dH∆H(Pi, P

T ) + αλ(Pi) + αSynϵPT (fSyn) + αSynKD ϵPT
KD

(fSyn)

+ (αSyn + αSynKD ) sup
ρ,ρ′

|ϵψ◦PT (ρ, ρ′)− ϵψ◦PSyn(ρ, ρ′)| (11)

With the condition that ψ ◦ PSyn → ψ ◦ PT , the above bound can be simplified as

ϵPT (Mi) ≤ϵPS
i
(Mi) +

α

2
dH∆H(Pi, P

T ) + αλ(Pi) + αSynϵPT (fSyn) + αSynKD ϵPT (fSynKD ). (12)

A.2 INTERPRETATION FOR THEOREM 1

From Eq. (8), it can be seen that the generalization bound for Mi consists of five terms and relies on
a single assumption. The assumption holds true because of the domain invariance imposed by our
anchor loss in equation 4.

• The first term ϵPS
i
(h) is the error bound with respect to the training source data distribu-

tion. With Claim 1 in appendix, minimizing this term is equivalent to optimizing the loss
αE(x,y)∼Pi

LCE + αSynE(x,y)∼PSynLCE + αSynKD E(x,y)∼PSynLKD

• The second and third terms are inherited from the original generalization bound in Ben-
David et al. (2010) with the local training data. For our case, it can be controlled by the
component weight α. If we rely less on the local data (i.e. smaller α), then these terms will
be vanishing.
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• The fourth term is to measure the discrepancy between real labeling and the synthetic data
labeling mechanisms. This discrepancy will be low because of our synthetic data generation
process. The distributions of real and synthetic data are matched using MMD in Equation
3. Therefore,the synthetic data labelling fsyn will be similar to the real labelling fT , and
the error ϵPT

(fsyn) will be minimized.
• The fifth term originates from the knowledge distillation loss in equation 6. Here, we use

the consensus knowledge from neighbour models to improve the local model. The labelling
function of the extended KD data fsynKD , changes as training continues and the neighbour
models learn to generalize well. Towards the end of training, predictions from the consen-
sus knowledge should match the predictions of the true labeling function, therefore, fsynKD
will be close to fT

Remark: In order to get a tight generalization guarantee, we only need one of the fourth or fifth
terms to be small. Since, if either any one of them is small, we can adjust the component weights α
(practically λREG and λKD) to get a better generalization guarantee.

A.3 PROOF FOR PROPOSITION 2

Proof. Without loss of generality, let’s start with

sup
M∈Mi

|ϵPSyn(M)− ϵPT (M)|+ϵPT (fSyn) ≤

inf
M∈Mi

|ϵPi(M)− ϵPT (M)|+ 1

2
dMi∆Mi(Pi, P

T ) + λ(Pi).

(13)

Then it holds that for any M ∈ Mi,

ϵPSyn(M)− ϵPT (M) + ϵPT (fSyn) ≤ ϵPi(M)− ϵPT (M) +
1

2
dMi∆Mi(Pi, P

T ) + λ(Pi)

⇒ ϵPSyn(M) + ϵPT (fSyn) ≤ ϵPi(M) +
1

2
dMi∆Mi(Pi, P

T ) + λ(Pi) (14)

Note that the right side of (14) is the original bound in Theorem 2 in Ben-David et al. (2010).
Similarly, we can achieve

ϵPSyn
KD

(M) + ϵPT (fSynKD ) ≤ ϵPi
(M) +

1

2
dMi∆Mi

(Pi, P
T ) + λ(Pi) (15)

Combining (14-15) together, we can conclude that our global generalization bound is tighter than
the original bound.

A.4 SOME USEFUL LEMMAS AND CLAIMS

Lemma 1. Denote the model as M = ρ ◦ ψ ∈ M. The global generalization bound holds as

ϵPT (M) ≤ ϵP (M) + sup
ρ,ρ′

|ϵψ◦PT (ρ, ρ′)− ϵψ◦P (ρ, ρ
′)|+ ϵPT (f), (16)

where (P, f) could be either (PSyn, fSyn) or (PSynKD , f
Syn
KD ) pair.

Proof. For any model M = ρ ◦ ψ ∈ M, we have the following bound for the global virtual data
distribution:

ϵPT (M)− ϵPSyn(M)
(a)
= ϵPT (M,fT )− ϵPSyn(M,fSyn)

(b)

≤ |ϵPT (M,fSyn) + ϵPT (fSyn, fT )− ϵPSyn(M,fSyn)|
≤ |ϵPT (M,fSyn)− ϵPSyn(M,fSyn)|+ ϵPT (fSyn)

= |ϵPT (ρ ◦ ψ, fSyn)− ϵPSyn(ρ ◦ ψ, fSyn)|+ ϵPT (fSyn)

= |ϵψ◦PT (ρ, fSyn ◦ ψ−1)− ϵψ◦PSyn(ρ, fSyn ◦ ψ−1)|+ ϵPT (fSyn)

≤ sup
ρ,ρ′

|ϵψ◦PT (ρ, ρ′)− ϵψ◦PSyn(ρ, ρ′)|+ ϵPT (fSyn) (17)
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where (a) is by definitions and (b) relies on the triangle inequality for classification error Ben-David
et al. (2006); Crammer et al. (2008). Thus, we have that

ϵPT (M) ≤ ϵPSyn(M) + sup
ρ,ρ′

|ϵψ◦PT (ρ, ρ′)− ϵψ◦PSyn(ρ, ρ′)|+ ϵPT (fSyn). (18)

Similarly, as the the extended KD dataset shares the same feature distribution with the global virtual
dataset, thus the above bound also holds for fSynKD .

Lemma 2 (Appendix A Feng et al. (2021)). For the extended source domain (xSyn, ŷSyn) ∼ P̂Syn,
training the related model with the knowledge distillation loss LKD = DKD(ŷ

Syn∥h(x)) equals to
optimizing the task risk ϵP̂Syn = P(xSyn,ŷSyn)∼P̂Syn [h(x) ̸= argmax ŷSyn].

Claim 1. With the training source data at ith client as PSi with the component weight α =

[α, αSyn, αSynKD ]⊤ on the local data, virtual data and extended KD data, ϵPS
i
(h) is minimized by

optimizing the loss:

min
M∈M

αE(x,y)∼Pi
LCE(y,M(x))+αSynE(x,y)∼PSynLCE(y,M(x))+αSynKDE(x,y)∼PSyn

KD
LKL(y∥M(x))

(19)

Proof. Note that

min
M∈M

E
(x,y)∼P (S)

i
LKL(y∥M(x))

∝ min
M∈M

αE(x,y)∼Pi
LKL(y∥M(x))+αSynE(x,y)∼PSynLKL(y∥M(x))+αSynKDE(x,y)∼PSyn

KD
LKL(y∥M(x))

(a)
∝ min
M∈M

αE(x,y)∼Pi
LCE(y,M(x))+αSynE(x,y)∼PSynLCE(y,M(x))+αSynKDE(x,y)∼PSyn

KD
LKL(y∥M(x))

where (a) is becauseLKL(y∥h(x)) = LCE(y, h(x))−H(y), whereH(y) = −y log(y) is a constant
depending on data distribution. With Lemma 2 and Pinsker’s inequality, it is easy to show that
ϵPS

i
(h) is minimized by optimizing the above loss.
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B MEMBERSHIP INFERENCE ATTACK

We show what under the basic setting of DESA (i.e., not applying Differential Privacy when gener-
ating local synthetic data), we can better protect the membership information of local real data than
local training or FedAvg (McMahan et al., 2017) on local real data only when facing Membership
Inference Attack (MIA) on trained local models. Although we share the logits during communi-
cation, it’s important to note that these logits are from synthetic anchor data and not real data that
needs protection. Therefore, we cannot use MIA methods that rely on logits. Instead, we perform a
strong MIA attack recently proposed and evaluate it following the approach in Carlini et al. (2022a).
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Figure 5: MIA on the models trained by SVHN, SynthDigits, and MNIST-M clients. Observe that
the synthetic data sharing of DESA does not reveal other clients’ local data identity information.

The goal of the experiment is to investigate whether our local model is vulnerable to MIA, namely
leaking information about local real datasets’ membership. To compare and demonstrate the effec-
tiveness of the chosen attack, we also present results from local training and FedAvg training. We
conduct MIA experiments using DIGITS. The MIA for local training and FedAvg is related to real
local training data. Since we use synthetic anchor data generated from other clients with data distil-
lation, we also provide MIA results for inferring real data of other clients. For example, if attacking
SVHN’s local model, local training and FeAvg report the MIA results on SVHN only, while we also
report MIA results on MNIST, USPS, SynthDigits, MNIST-M for DESA.

Using the metric in Carlini et al. (2022a), the results are shown in Figure 5. The Ref(diagonal) line
indicates MIA cannot tell the differences between training and testing data. If the line bends towards
True Positive Rate, it means the membership form the training set can be inferred. It is shown that
all the MIA curves of targeted and other cients lie along the Ref line for DESA’s model, which
indicates that the membership of each training sets is well protected given the applied attack. While
the curves for the MIA attacks on FedAvg and local training with SVHN dataset are all offset the
Ref (diagonal) line towards True Positive, indicating they are more vulnerable to MIA and leaking
training data information.

C DIFFERENTIAL PRIVACY FOR DATA SYNTHESIS

To enhance the data privacy-preservation on shared synthetic anchor data, we apply the Differential
Privacy stochastic gradient descent (DP-SGD) (Abadi et al., 2016) for the synthetic image gener-
ation. DP-SGD protects local data information via noise injection on clipped gradients. In our
experiments, we apply Gaussian Mechanism for the inejcted noise. Specifically, we first sample a
class-balanced subset from the raw data to train the objective 3. We set up the batch size as 256. For
each iteration, we clip the gradient so that its l2-norm is 2. The injected noises are from N (0, 1.2).
This step ensures (ϵ, δ)-DP with (ϵ, δ) values in {(7.622, 0.00015), (10.3605, 0.00021), (8.6677,
0.00017), (7.3174, 0.00014), (7.6221, 0.00015)} guarantees for {MNIST, SVHN, USPS, SynthDig-
its, MNIST-M}, respectively. We visualize the non-DP and DP synthetic images from each clients
in DIGITS in Figure 6 and Figure 7, respectively. One can observe that the synthetic data with DP
mechanism is noisy and hard to inspect the individual information of the raw data.
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(a) Mnist (b) SVHN (c) USPS (d) SynthDigits (e) Mnist-M

Figure 6: Visualization of the global and local synthetic images from the DIGITS dataset. (a)
visualized the MNIST client; (b) visualized the SVHN client; (c) visualized the USPS client; (d)
visualized the SynthDigits client; (e) visualized the MNIST-M client; (f) visualized the server syn-
thetic data.

(a) Mnist (b) SVHN (c) USPS (d) SynthDigits (e) Mnist-M

Figure 7: Visualization of the global and local synthetic images from the DIGITS dataset with DP
mechanism. (a) visualized the MNIST client; (b) visualized the SVHN client; (c) visualized the
USPS client; (d) visualized the SynthDigits client; (e) visualized the MNIST-M client; (f) visualized
the server synthetic data.

We replace the synthetic data by DP synthetic data and perform DIGITS experiments, and the result
is shown in Table 3. It can be observed that although DESA’s performance slightly drops due to
the DP mechanism, the averaged inter and intra-accuracy are in the second place, which indicates
that DESA is robust as long as we can synthesize images that roughly captures the global data
distribution.

Table 3: We add the the results for DESA trained with DP synthetic anchor data into our Table 2.
The best result is marked as bold, and the second best is marked as blue. The table shows that DESA
with DP synthetic anchor data can still has comparable results as DESA with non-DP synthetic data.

DIGITS
MN(C) SV(A) US(C) Syn(A) MM(C) Avg

FedHe intra 98.89 83.33 98.76 93.89 94.31 93.84
inter 49.67 62.50 37.67 70.77 65.89 57.30

FedDF
C intra 92.29 20.73 86.18 15.19 51.57 53.19

inter 34.85 12.39 18.28 17.21 37.28 24.00

F intra 92.59 19.56 93.33 77.86 69.83 70.63
inter 39.03 18.21 30.66 54.02 54.26 39.24

FCCL
C intra 11.25 19.10 13.66 10.08 11.25 13.07

inter 13.52 11.56 12.92 13.82 13.52 13.07

F intra 95.01 72.92 94.73 86.11 90.10 87.78
inter 34.29 58.04 29.62 57.28 60.46 47.94

DESA(DSyn
VHL)

intra 98.69 80.09 98.66 90.68 94.40 92.50
inter 43.33 57.51 28.26 62.02 67.69 51.76

DESA intra 98.78 86.42 98.87 95.21 94.54 94.77
inter 65.59 80.14 64.14 78.97 69.98 71.76

DESA(DP) intra 98.80 86.15 98.55 94.42 94.21 94.42
inter 62.17 74.45 55.09 76.64 69.01 67.47
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D COMMUNICATION OVERHEAD

As noted in Section 3.1, DESA only requires sharing logits w.r.t. Global synthetic data during train-
ing. Thus it has a relatively low communication overhead compared to baseline methods which
require sharing model parameters. For fair comparison, we analyze the communication cost based
on the number of parameters Pre-FL and During-FL in Table 4. Note that we show the number of
parameters for one communication round for During-FL, and the total communication cost depends
on the number of global iterations. One can observe that sharing logits can largely reduce the com-
munication overhead. For example, if we use ConvNet as our model, set IPC=50, and train for 100
global iteration, the total number of parameters for communication for DeSA will be 30.7 K × 50
(Pre-FL) + 10 (number of classes) × 50 (images/class) × 10 (logits/image) × 100 (global iteration)
= 2.04M. In comparison, baseline methods need to share 0 (Pre-FL) + 320K (parameters/iteration)
× 100 (global iteration) = 32M, which is much larger than DeSA. Under model heterogeneity ex-
perimental setting, clients using AlexNet would suffer even higher total communication cost, which
is 0 (Pre-FL) + 1.87M (parameters/iteration) × 100 (global iteration) = 187M.

Table 4: Comparison of communication overhead. Note that for DESA, we only share virtual global
anchor logits during training. The total communication cost counts the total parameter transferred
for 100 global iterations.

ConvNet AlexNet Global Anchor Logits
Pre-FL 0 0 30.7 K × IPC
During-FL 320 K 1.87 M 100 × IPC
Total 32M 187M 40.7K × IPC

E DATASETS AND SYNTHETIC IMAGES

Detailed Information of Selected Datasets 1) DIGITS={MNIST (LeCun et al., 1998),
SVHN (Netzer et al., 2011), USPS (Hull, 1994), SynthDigits (Ganin & Lempitsky, 2015), MNIST-
M (Ganin & Lempitsky, 2015)} consists of 5 digit datasets with handwritten, real street and synthetic
digit images of 0, 1, · · · , 9. Thus, we assume 5 clients for this set of experiments. We use DIGITS
as baseline to show DESA can handle FL under large domain shift.
2) OFFICE={Amazon (Saenko et al., 2010), Caltech (Griffin et al., 2007), DSLR (Saenko et al.,
2010), and WebCam (Saenko et al., 2010)} consists of four data sources from Office-31 (Saenko
et al., 2010) (Amazon, DSLR, and WebCam) and Caltech-256 (Griffin et al., 2007) (Caltech), re-
sulting in four clients. Each client possesses images that were taken using various camera devices in
different real-world environments, each featuring diverse backgrounds. We show DESA can handle
FL under large domain shifted real-world images using OFFICE.
3) CIFAR10C consists subsets extracted from Cifar10-C (Hendrycks & Dietterich, 2019), a col-
lection of augmented Cifar10 (Krizhevsky et al., 2009) that applies 19 different corruptions. We
employ a Dirichlet distribution with β = 2 for the purpose of generating three partitions within each
distorted non-IID dataset. As a result, we have 57 clients with domain- and label-shifted datasets.

Synthetic Data Generation We fix ConvNet as the backbone for data synthesis to avoid addi-
tional domain shift caused by different model architectures. We set learning rate to 1 and use SGD
optimizer with momentum = 0.5. The batch size for DIGITS and CIFAR10 is set to 256, while we
use 32 for OFFICE as it’s clients has fewer data points. For the same reason, e use 500 synthetic data
points for DIGITS and CIFAR10C, and we set 100 synthetic data points for OFFICE. The training
iteration for DIGITS and OFFICE is 1000, and we set 2000 for CIFAR10C since it contains more
complex images. The numbers of synthetic data for clients are 500 for {DIGITS, CIFAR10C} and
100 for {OFFICE}, respectively.

We show the local synthetic images and global anchor images of DIGITS, OFFICE, and
CIFAR10C in Figure 8, Figure 9, and Figure 10, respectively.
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(a) Mnist (b) SVHN (c) USPS

(d) SynthDigits (e) Mnist-M (f) Average

Figure 8: Visualization of the sampled global and local synthetic images from the DIGITS dataset.
(a) visualized the MNIST client; (b) visualized the SVHN client; (c) visualized the USPS client;
(d) visualized the SynthDigits client; (e) visualized the MNIST-M client; (f) visualized the server
synthetic data.

F MODEL ARCHITECTURES

We use ConvNet to perform data distillation for the best synthesis quality. For model hetero genenity
scenarios, we randomly select classification model architectures from {AlexNet, ConvNet}.

Table 5: AlexNet architecture. For the convolutional layer (Conv2D), we list parameters with a
sequence of input and output dimensions, kernel size, stride, and padding. For the max pooling
layer (MaxPool2D), we list kernel and stride. For a fully connected layer (FC), we list input and
output dimensions.

Layer Details
1 Conv2D(3, 128, 5, 1, 4), ReLU, MaxPoo2D(2, 2)
2 Conv2D(128, 192, 5, 1, 2), ReLU, MaxPoo2D(2, 2)
3 Conv2D(192, 256, 3, 1, 1), ReLU
4 Conv2D(256, 192, 3, 1, 1), ReLU
5 Conv2D(192, 192, 3, 1, 1), ReLU, MaxPoo2D(2, 2)

22 FC(3072, num class)

G MORE RELATED WORK

G.1 MODEL HOMOGENEOUS FEDERATED LEARNING

We list down different Model Homogeneous FL approaches in decentralized FL and collaborative
methods that are relevant to our setting.
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(a) Amazon (b) Caltech (c) DSLR

(d) Webcam (e) Average

Figure 9: Visualization of the sampled global and local synthetic images from the OFFICE dataset.
(a) visualized the Amazon client; (b) visualized the Caltech client; (c) visualized the DSLR client;
(d) visualized the Webcam client; (e) visualized the averaged synthetic data.

Table 6: ConvNet architecture. For the convolutional layer (Conv2D), we list parameters with a
sequence of input and output dimensions, kernel size, stride, and padding. For the max pooling
layer (MaxPool2D), we list kernel and stride. For a fully connected layer (FC), we list the input and
output dimensions. For the GroupNormalization layer (GN), we list the channel dimension.

Layer Details
1 Conv2D(3, 128, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
2 Conv2D(128, 118, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
3 Conv2D(128, 128, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
4 FC(1152, num class)

G.1.1 DECENTRALIZED FEDERATED LEARNING

In order to tackle training a global model without a server, Decentralized FL methods communicate
a set of models through diverse decentralized client-network topologies (such as a ring - (Chang
et al., 2018), Mesh - (Roy et al., 2019), or a sequential line (Assran et al., 2019)) using different
communication protocols such as Single-peer(gossip) or Multiple-Peer(Broadcast). (Yuan et al.,
2023a; Sheller et al., 2019; 2020) pass a single model from client to client similar to an Incremen-
tal Learning setup. In this continual setting, only a single model is trained. (Pappas et al., 2021;
Roy et al., 2019; Assran et al., 2019) pass models and aggregate their weights similar to conven-
tional FL. Since these models use averaged aggregation techniques similar to FedAvg, most of these
methods assume client model homogeneity. DESA’s client network topology is similar to that of
a Mesh using the broadcast-gossip protocol, where every client samples certain neighbours in each
communication round for sharing logits.

None of the works above aim to train various client model types without a server, which is our goal.
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(a) Client0 (b) Client1 (c) Client2

(d) Client3 (e) Client4 (f) Average

Figure 10: Visualization of the sampled global and local synthetic images from the first 5 clients
in CIFAR10C dataset. (a) visualized the first client; (b) visualized the second client; (c) visualized
the third client; (d) visualized the forth client; (e) visualized the fifth client; (f) visualized the server
synthetic data.

G.1.2 COLLABORATIVE METHODS

Fallah et al. (2020) uses an MAML(model agnostic meta learning) framework to explicitly train
model homogeneous client models to personalize well. The objective function of MAML evaluates
the personalized performance assuming a one-step gradient descent update on the subsequent task.
(Huang et al., 2021b) modifies the personalized objective by adding an attention inducing term to
the objective function which promotes collaboration between pairs of clients that have similar data.

Ghosh et al. (2022) captures settings where different groups of users have their own objectives
(learning tasks) but by aggregating their private data with others in the same cluster (same learning
task), they can leverage the strength in numbers in order to perform more efficient personalized fed-
erated learning (Donahue & Kleinberg, 2021) uses game theory to analyze whether a client should
jointly train with other clients in a conventional FL setup [2.1] assuming it’s primary objective is
to minimize the MSE loss on its own private dataset. They also find techniques where it is more
beneficial for the clients to create coalitions and train one global model.

All the above works either slightly change the intra-client objective to enable some collaboration
between model-homogeneous clients or explicitly create client clusters to collaboratively learn from
each other. They do not tackle the general objective function that we do- 2

G.2 MODEL HETEROGENEOUS FEDERATED LEARNING

Model heterogeneous FL approaches relevant to DESA broadly come under the following two types.

G.2.1 KNOWLEDGE DISTILLATION METHODS

Gong et al. (2022) proposes FedKD that is a one-shot centralized Knowledge distillation approach
on unlabelled public data after the local training stage in-order to mitigate the accuracy drop due to
the label shift amongst clients. DENSE (Zhang et al., 2022a) propose one-shot federated learning
to generate decision boundary-aware synthetic data and train the global model on the server side.
FedFTG (Zhang et al., 2022b) finetunes the global model by knowledge distillation with hard sample
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mining. Yang et al. (2021) introduces a method called Personalized Federated Mutual Learning
(PFML), which leverages the non-IID properties to create customized models for individual parties.
PFML incorporates mutual learning into the local update process within each party, enhancing both
the global model and personalized local models. Furthermore, mutual distillation is employed to
expedite convergence. The method assumes homogeneity of models for global server aggregation.
However, all the above methods are centralized.

G.2.2 MUTUAL LEARNING METHODS

Papers in this area predominantly use ideas from deep-mutual learning (Zhang et al., 2018) Matsuda
et al. (2022) uses deep mutual learning to train heterogeneous local models for the sole purpose of
personalization. The method creates clusters of clients whose local models have similar outputs.
Clients within a cluster exchange their local models in-order to tackle label shift amongst the data
points. However, the method is centralized and each client maintains two copies of models, one
which is personalized and one that is exchanged. Li et al. (2021a) has a similar setting to Chan
& Ngai (2021), but instead solves the problem in a peer to peer decentralized manner using soft
logit predictions on the local data of a client itself. It makes its own baselines that assume model
homogeneity amongst clients, also their technique assumes that there is no covariate shift because
it only uses local data for the soft predictions. However, their technique can be modified for model
heterogeneity. They report personalization(Intra) accuracies only.

G.3 DATASET DISTILLATION

Data distillation methods aim to create concise data summaries Dsyn that can effectively substitute
the original dataset D in tasks such as model training, inference, and architecture search. Moreover,
recent studies have justified that data distillation also preserves privacy (Dong et al., 2022; Carlini
et al., 2022b) which is critical in federated learning. In practice, dataset distillation is used in health-
care for medical data sharing for privacy protection (Li et al., 2022). We briefly mention two types
of Distillation works below.

G.3.1 GRADIENT AND TRAJECTORY MATCHING TECHNIQUES

Gradient Matching (Zhao et al., 2020) is proposed to make the deep neural network produce simi-
lar gradients for both the terse synthetic images and the original large-scale dataset. The objective
function involves matching the gradients of the loss w.r.t weights(parameters) evaluated on both D
and Dsyn at successive parameter values during the optimization on the original dataset D. Usually
the cosine distance is used to measure the difference in gradient direction. Other works in this area
modify the objective function slightly, by either adding class contrastive signals for better stabil-
ity Lee et al. (2022) or by adding same image-augmentations(such as crop, rotate to both D and
Dsyn)(Zhao & Bilen, 2021). A similar technique is that of (Cazenavette et al., 2022) which tries
to match the intermediate parameters in the optimization trajectory of both D and DSyn. It is very
computationally expensive because of a gradient unrolling in the optimization. TESLA (Cui et al.,
2023) attempts at using linear-algebraic manipulations to give better computational guarantees for
Trajectory matching

G.3.2 DISTRIBUTION MATCHING TECHNIQUES

Distribution matching (Zhao & Bilen, 2023) solves the distillation task via a single-level optimiza-
tion, leading to a vastly improved scalability. More specifically, instead of matching the quality
of models on D vs. Dsyn, distribution-matching techniques directly match the distribution of D
vs. Dsyn in a latent encoded space. See 3 for the objective function. CAFE (Wang et al., 2022)
further refines the distribution-matching idea by solving a bilevel optimization problem for jointly
optimizing a single encoder and the data summary, rather than using a pre-determined set of en-
coders Adversarial techniques using Distribution matching such as IT-GAN (Zhao & Bilen, 2022)
and GAN (Goodfellow et al., 2014) aren’t suitable for a serverless setting. Since we aim to mitigate
drifts in client-distribution across using our synthetic data, Distribution Matching is a more natural
option for our work.
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