
Under review as a conference paper at ICLR 2021

CONSTRAINING LATENT SPACE TO IMPROVE DEEP
SELF-SUPERVISED E-COMMERCE PRODUCTS EMBED-
DINGS FOR DOWNSTREAM TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The representation of products in a e-commerce marketplace is a key aspect to be
exploited when trying to improve the user experience on the site. A well known
example of the importance of a good product representation are tasks such as prod-
uct search or product recommendation. There is however a multitude of lesser
known tasks relevant to the business, examples are the detection of counterfeit
items, the estimation of package sizes or the categorization of products, among
others. It is in this setting that good vector representations of products that can be
reused on different tasks are very valuable. Past years have seen a major increase
in research in the area of latent representations for products in e-Commerce. Ex-
amples of this are models like Prod2Vec or Meta-Prod2Vec which leverage from
the information of a user session in order to generate vectors of the products that
can be used in product recommendations. This work proposes a novel deep en-
coder model for learning product embeddings to be applied in several downstream
tasks. The model uses pairs of products that appear together in a browsing session
of the users and adds a proximity constraint to the final latent space in order to
project the embeddings of similar products close to each other. This has a regu-
larization effect which gives better features representations to use across multiple
downstream tasks, we explore such effect in our experimentation by assessing its
impact on the performance of the tasks. Our experiments show effectiveness in
transfer learning scenarios comparable to several industrial baselines.

1 INTRODUCTION

The e-Commerce environment has been growing at a fast rate in recent years. As such, new tasks
propose new challenges to be resolved. Some key tasks like product search and recommendation
usually have large amounts of data available and dedicated teams to work on them. On the other
hand, some lesser known but still valuable tasks have less quality annotated data available and the
main goal is to resolve them with a small investment. Examples of the latter are counterfeit/forbidden
product detection, package size estimation, etc. For these scenarios, the use of complex systems is
discouraged in favor of industry proven baselines like bag-of-words or fastText (Joulin et al., 2016).

In particular, with the advent of “Feature Stores” (Li et al., 2017), industrial applications are seeing
a rise in the adoption of organization-wide representations of business entities (customers, products,
etc.). These are needed in order to speed up the process of building machine learning pipelines to
enable both batch training and real-time predictions with as low effort as possible.

In the present work we explore the representation learning of marketplace products to apply in
downstream tasks. More specifically we aim to train an encoder that that can transform products
into embeddings to be used as features of a linear classifier for a specific task, thus avoiding feature
engineering for the task. The encoder model training is done is a self-supervised fashion by leverag-
ing browsing session data of users in our marketplace. Using product metadata and an architecture
inspired on the recent work of Grill et al. (2020), we explore how the use of pairs of products in a
session can enable transfer learning into several downstream tasks. As we discuss further in Section
3, we extend on the work of Grill et al. (2020) with a new objective function that combines their

1



Under review as a conference paper at ICLR 2021

original idea with a cross entropy objective. Our experiments show that the added objective helps
the model converge to better representations for our tasks.

We also show, through experimental evaluation, that the encoder model learns good representations
that achieve comparable results with several strong baselines including fastText (Joulin et al., 2016),
Meta-Prod2Vec (Vasile et al., 2016), Text Convolutional Networks (Kim, 2014) and BERT (Devlin
et al., 2018) in a set of downstream tasks that come from some of our industrial datasets.

This paper is structured as follows: Section 2 presents other works in the area of product represen-
tation and also the works we take inspiration to design the encoder model and establish how our
approach differs from the previous literature. Section 3 describes in detail all the components of
our proposed architecture. Section 4 lists our experimental evaluation setup. Section 5 shows the
results of our experimentation. Finally, in Section 6 we summarize our findings and delimit our line
of future work.

2 BACKGROUND

Recent years have seen a dramatic increase of latent representations, which have proven to be more
relevant in transfer learning scenarios in Computer Vision with the aid of large pre-trained models
(Raina et al., 2007; Huh et al., 2016); and, more recently, with the aid of architectures for train-
ing unsupervised language models like LSTMs (Merity et al., 2017) or the attention mechanism
(Vaswani et al., 2017), transfer learning has seen an explosion of applications in Natural Language
Processing (Howard & Ruder, 2018; Devlin et al., 2018; Radford et al., 2018). For the case of the
e-commerce environment, there is extensive research work in the area of latent representation for
some of the main tasks.

In the area of recommender systems there is a very large body of work in which the idea is to use
information of the user shopping session to generate latent representations of the products. The
Prod2Vec algorithm (Grbovic et al., 2015) proposed the use of word2vec (Mikolov et al., 2013) in
a sequence of product receipts coming from emails. The Meta-Prod2Vec algorithm (Vasile et al.,
2016) extended upon Prod2Vec by adding information on the metadata of a user shopping session.

Using metadata of the products during a stream of user clicks is explored with the aid of parallel
recurrent neural networks (Hidasi et al., 2016) where the authors use images and text of an product
to expand in order to have richer features to model the products in the session.

Other works that uses more metadata, in this case the user review of an product, is DeepCoNN
(Zheng et al., 2017), which consists of two parallel neural networks coupled in the last layers. One
network learns user behaviour and the other learns product properties, based on the reviews written.

There is also work in the area of modelling information on session-aware recommender systems
(Twardowski, 2016), where the user information is not present and the focus of the task is leaning
towards using the session information to recommend products.

This extensive research of representation learning for marketplace products is heavily influenced
with the end goal of recommendation. Many of them also leverage from the unsupervised informa-
tion available such as sessions, reviews, metadata, etc.

In this work the end goal of the representations is not recommendations, but different downstream
tasks that we have available from challenges we face in our marketplace. For that we propose a
deep encoder architecture that follows the work presented in “Bootstrap Your Own Latent” (BYOL)
(Grill et al., 2020) with the intended objective of learning embeddings of products of the same
session close to each other in the latent space. However, our experiments showed that this was not
enough to ensure the transfer of knowledge, as such we extended the learning objective of BYOL to
have a cross entropy objective using the product category as target and we explore how the correct
combination of each part of the objective function impacts on the quality of the final embeddings.

The main contributions of our paper are the following: 1) a novel deep encoder architecture that can
be trained on pairs of products found in user browsing sessions, 2) a study of how this architecture
performs for downstream tasks compared to some strong proposed baselines, 3) an extension to the
BYOL architecture to a different domain from the proposed by Grill et al. (2020) and how it impacts
on the final results.

2



Under review as a conference paper at ICLR 2021

3 METHOD

3.1 BROWSING SESSION DATA

The data needed to train our Product Embeddings are browsing sessions of different users in the
marketplace. Each product a user visits (i.e. check the details) is part of the browsing session of the
user. A session ends when at least T minutes have passed without new visits.

More formally, given a sequence of products s = (p1, ..., pn) where pi is an product and T (pi) is
the timestamp of the accessed product, we have that T (pi+1)− T (pi) ≤ T for a fixed time window
T in minutes. Each product pj in the session is represented by two attributes: the title t(pj) and the
category c(pj). The title of the product is written by the user of the marketplace. It contains a brief
description of the product with some information such as brand, model, measures, etc. It depends
on the product itself, and the same product can appear with different titles. Some products have an
associated id to identify that they are the same product sold by different users, but that is not always
the case. As the language of our marketplace is Spanish, the titles are normalized by stripping
accents, removing stopwords and punctuation, lowercase of words and whitespace normalization.
The category of the product is selected by the user from a list of fixed categories. These make both
attributes susceptible to noise as are driven by the user’s actions (e.g. are spelling errors on the title
or missing categories for one-of-a-kind products).

We use the titles of these products as their appear in the sessions to build a sentence piece tokenizer
(SPM) (Kudo & Richardson, 2018). This same tokenizer is applied to the titles to reduce out-of-
vocabulary related issues. The titles are finally represented to the model as a sequence of sub-word
tokens from the SPM.

We see all the possible combinations without replacement with two products between all the prod-
ucts of a session. Each product pair is what we feed to our model. The main concept here is that
we are interested in products that are part of the same session, regardless of the order they were
accessed by the user. We also remove all duplicate products in a single session (since it is common
for the user to access the same product more than once in the time frame).

3.2 PROPOSED MODEL

We are interested in finding an encoder to map the product title to a latent space that minimizes
the distance of embeddings of a product in the same session while maximizes the distance between
products of different sessions. Once we have the encoder function, it is used on the product titles of
downstream tasks where the session information is not available. We transfer knowledge from the
sessions into the tasks and train a linear model for the task.

More formally, given an encoding function fθ we use the information of the browsing session to
calculate the parameters θ. Then given a task dataset S = {(x1, y1), ..., (xn, yn)}, we use fθ to
encode {fθ(x1), ..., fθ(xn)} and use those features to train a linear classifier gω on the weights ω
while freezing the weights θ.

3.2.1 BOOTSTRAP YOUR OWN LATENT

To constraint the latent space in order to minimize the distance between products of the same session
while maximizing the distance with products of other sessions we originally aim at the idea of
unsupervised visual representation learning methods such as SimCLR (Chen et al., 2020) and MoCo
(He et al., 2020). Both these methods rely on contrasting positive and negative examples in order
to learn better representations, finding good negative examples in our environment was non-trivial.
We then came across “Boostrap Your Own Latent” (BYOL) (Grill et al., 2020) which expanded
the previous architectures with an interesting concept that didn’t require the explicit sampling of
negative examples and we based our architecture on it1.

1We need to point out that according to https://untitled-ai.github.io/
understanding-self-supervised-contrastive-learning.html the reason why BYOL
works is an implicit contrastive learning given by the use of batch normalization. We haven’t done an extensive
research but some preliminary experiments did show that removing batch normalization had a negative effect
on the overall performance of the representations.

3

https://untitled-ai.github.io/understanding-self-supervised-contrastive-learning.html
https://untitled-ai.github.io/understanding-self-supervised-contrastive-learning.html


Under review as a conference paper at ICLR 2021

title embedding representation projection

category prediction

predictionproduct pair

online

target

Figure 1: The model’s architecture is based on BYOL (Grill et al., 2020). The model receives as
input a pair of products pi and pj . One product is projected through the online network until obtained
the projector value qθ(z). The other product is projected through the target network until obtained
the value z′. The projection y of pi is also used to obtain the predicted category c̃pj of pj with aid
of the category predictor hθ. The model is trained on the weights θ by minimizing the objective
functions LBY OL, which is the distance between qθ and sg(z′) (where sg means stop-gradient) and
the cross entropy loss LCE between the predicted category c̃pj and the category cpj of pj .

3.2.2 MODEL’S ARCHITECTURE

Figure 1 shows the model architecture. The core idea of the model is to learn a representation y
that can be used for downstream tasks. As it is shown in the Figure, the base of our architecture is
heavily inspired by the model proposed in Grill et al. (2020).

In the original architectures of SimCLR, MoCo and BYOL, the input of the model is a single image
that is augmented with different views of it. This is the self-supervision given by image itself. In our
scenario, our main hypothesis is that different products of the same browsing session can be thought
as different augmentations of the same session.

In our original set of experiments, the products were solely represented by their title. The generation
of the representation y depends on the encoder we apply to obtain a feature vector of the title of the
product. In our setup this encoder is the Text Convolutional Neural Network of Kim (2014) as
experiments show that the nature of these networks function very well with the type of text data we
have.

More formally, given a pair of products that are part of the same session: a key product pi and a query
product pj , the BYOL model consists on two paths: the online network and the target network. The
online network is defined by a set of weights θ and is comprised of five stages: an embedding lookup
tθ, a representation encoder fθ (in our case a Text CNN), a projector gθ, and a predictor qθ.

The target network has a very similar architecture to that of the online network, except for the
predictor qθ, it also has a different set of weights ξ. The weights of the target network are not
optimized with the data, but are obtained by a slow exponential moving average of the online pa-
rameters θ, given a target decay rate τ ∈ [0, 1], after each training step the weights ξ are updated:
ξ ← τξ + (1− τ)θ. Both θ and ξ are initialized to the same values when creating the networks.

After training the model, we are interested in the encoder fθ ◦ tθ that gives us the feature vector y to
use on downstream tasks. The rest of the model is discarded.

3.2.3 BYOL OBJECTIVE

The approach proposed by Grill et al. (2020) is to train the online network by minimizing the distance
between the prediction qθ and the projection z′ of the target network. As seen in Figure 1, with the

4



Under review as a conference paper at ICLR 2021

use of the stop-gradient function “sg”, the idea is to avoid optimizing over the weights ξ of the target
network. This is to avoid the collapse given by the trivial solution of output a constant value for
the embedded space. The weights ξ of the target network are obtained instead by a slow-moving
average of the weights θ of the online network.

From the key product pi, the online network outputs a representation y = fθ(tθ(pi)) and a projection
z = gθ(y). The target network outputs from the query product pj the target representation y′ =
fξ(tξ(pj)) and the target projection z′ = gξ(y). In the final stage, the online network outputs a
prediction qθ(z) of z′. The final step is to take the loss between the L2-normalized versions of the
predictions qθ(z) and the target projections z′:

LBY OL = 2− 2 · 〈qθ(z), z′〉
‖qθ(z)‖2 · ‖z′‖2

(1)

3.2.4 CATEGORY PREDICTION

In our original setup we explored the use of the BYOL optimization objective alone. However we
found it difficult in some scenarios to really achieve knowledge transfer to some of the tasks we had.
As such, we decided to take advantage of some of the others meta-data available for the products. In
particular, for this work we are using the product category which is one of the most common meta
data available at our marketplace.

Inspired by the idea of Meta-Prod2Vec (Vasile et al., 2016) we added an extra optimization step to
the original BYOL architecture. In this case, we add a new predictor hθ that maps the representation
of the key product pi to the category cpj of the query product pj : c̃pj = (hθ ◦ fθ ◦ tθ)(pi). Then we
optimize the cross entropy loss:

LCE = − log

(
ec̃pj∑C
l e

c̃l

)
(2)

3.2.5 FINAL OPTIMIZATION OBJECTIVE

Given that the losses in Eq. 1 and Eq. 2 only refer to one way of the product pair pi, pj , we can
make the final loss of the model symmetric by swapping the key and the query products, and give
them as input to the networks using pj as the key and pi as the query:

L = (LBY OLpi
+ LBY OLpj

) + (LCEpi
+ LCEpj

) (3)

3.2.6 IMPORTANCE OF EACH OBJECTIVE

The question that arises is how important each optimization objective is to the overall performance
of the representations learnt. A first approximation is to sum them as in Eq. 3. However, our
experiments show that this is not the best case. Moreover, one hypothesis we originally had is that
the transfer of knowledge was solely obtained because we added the cross entropy objective LCE .
Our experimental results however show a different story. To see the importance of each part of the
loss in the final performance, we added an extra hyperparameter α ∈ [0, 1] that weights the final
objective in a complementary fashion:

L = α(LBY OLpi
+ LBY OLpj

) + (1− α)(LCEpi
+ LCEpj

) (4)

Successive experiments showed us that at larger values of α, with more focus on the LBY OL ob-
jective we had better representations for the downstream tasks. However, if α takes the value of 1,
completely cancelling the influence of LCE , the representations cannot achieve good results.

5



Under review as a conference paper at ICLR 2021

4 EXPERIMENTAL EVALUATION

4.1 DATASETS

The experiments need two kind of datasets: one for the self-supervised training of the Product
Embeddings and the others for the downstream tasks. For better validation of our hypothesis, we
experimented with data coming from two countries where our marketplace is present. Each country
has it own sets of session data and downstream tasks data, although the objective is the same, the
data distribution is not. For the scope of this work we present 4 binary classification tasks:

Counterfeit Products A dataset based on the users reported counterfeit objects that are being sold
in our marketplace.

Forbidden Products A dataset of products that are prohibited to commercialize in our marketplace.
Free Shipment Eligible A dataset with products sizes (height, length and width). The task is to de-

termine if the product is eligible for free shipment, this happens when all of the dimensions
are smaller than 70 cm.

Product Condition A binary classification to check if the product is new or used.

The tasks datasets were divided into train, test and validation with a 60/20/20 split. The validation set
is for hyperparameter tuning and the final results are taken from the test set. We are interested in how
the model works when there is a limited data availability. For this we run experiments on subsamples
of the train data, using 100, 500, 1000, 5000, 10000, 50000 and 100000 randomly chosen instances.
To assess the impact of selecting the data, we run experiments on 5 samples for each training size.
We report the results of mean and standard deviation for each training sample on each task. These
tasks are represented by the title and the label of the task. The titles are pre-processed with the same
text normalization as for the sessions dataset.

Note on the data Due to the sensitive nature of these datasets, we are working on the anonymiza-
tion and future release of them. We cannot guarantee the availability at reviewing time, but we are
doing our best efforts in order to have them available along the code to reproduce the experiments
for the camera ready.

4.2 MODELS

The self-supervised encoder fθ◦tθ is used to extract the representations of each of the tasks products
and we use those representations with a logistic regression classifier. We use the validation data to
select the α value (we assess the impact using 5 values of α: 0, 0.1, 0.5, 0.9 and 1). Due to space
limitations we leave the detailed hyperparameters for the reader to see in Appendix A.1.

We compare the with the following baselines: fastText, Text CNN, Spanish BERT with logistic
regression, and Meta-Prod2Vec with K Nearest Neighbors. For a more detailed explanation of how
the baselines are applied please refer to Appendix A.2.

The metric used for comparison of performance is the Area Under ROC (or AUCROC), which
measures the performance of the classifier being independent of the threshold.

5 RESULTS AND DISCUSSIONS

5.1 IMPACT OF THE LOSSES IN THE FINAL REPRESENTATION

Figure 2 shows the learning curves that measure the impact of the selection of the α hyperparameter
that controls the importance of each of the losses in Eq. 4. Each graphs represents a task for each
site. The x axis represents the size of the training set and the y axis represents the the performance
on the validation set measured by AUCROC. The graphs on the left represent Site A and the ones on
the right represent of Site B. The color intensity and the style of the line represents the value of α.
A higher value of α is represented by a darker shade of blue. As we can observer, in almost all plots
the pattern is clear, the better performance is for the value of α of 0.9 specially at very low training
samples when the curve is more steep for cases of α equal to 0.9. However when we reach the value

6



Under review as a conference paper at ICLR 2021

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Forbidden Product Detection - Site: A

0.0 0.1 0.5 0.9 1.0 random

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Forbidden Product Detection - Site: B

0.0 0.1 0.5 0.9 1.0 random

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Free Shipment Eligible - Site: A

0.0 0.1 0.5 0.9 1.0 random

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Free Shipment Eligible - Site: B

0.0 0.1 0.5 0.9 1.0 random

0 2000 4000 6000 8000 10000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Counterfeit Product Detection - Site: A

0.0 0.1 0.5 0.9 1.0 random

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Counterfeit Product Detection - Site: B

0.0 0.1 0.5 0.9 1.0 random

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Product Condition - Site: A

0.0 0.1 0.5 0.9 1.0 random

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Product Condition - Site: B

0.0 0.1 0.5 0.9 1.0 random

Alpha Hyperparameter Selection

Figure 2: Impact of weighting each loss differently in the performance of the models for the down-
stream tasks. The darker the color, the higher the α. For the black line, the encoder is random (i.e.
no self supervised training). The x axis represents the amount of training data. The y represents the
AUCROC at different training sizes.

of α equal to one the model collapses. For comparison sake we also plot the value of a random
encoder (i.e. not trained with the self-supervised task), represented by the black line. It is to notice
that in some cases, a lower value of α or a value of α equal to 1, the model performs worse than
random. This results support the hypothesis that both LBY OL and LCE are essential for the model
to transfer knowledge, and showcase the importance of LBY OL which is the part of the objective
function in charge of shortening the distance between products of the same session.

5.2 COMPARISON WITH BASELINES

Figure 3 presents the comparison of our model (named “Product Embeddings” in the plot) to the
baselines defined in previous sections. Similarly to the case of Fig. 2, the x axis represents the
size of the training set and the y axis represents the performance measured by AUCROC. In this
case, however, the performance is measured over the test set of each task. Each line of different
color represents the model. The shade around the lines represents the confidence interval since each
model was run on 5 different subsamples of each training size. The plots show a clear advantage of
more complex models like TextCNN and Spanish BERT, specially as the amount of data available
increases. However our model does not fall behind, specially since the tuning of hyperparameters

7



Under review as a conference paper at ICLR 2021

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Forbidden Product Detection - Site: A

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Forbidden Product Detection - Site: B

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Free Shipment Eligible - Site: A

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Free Shipment Eligible - Site: B

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 2000 4000 6000 8000 10000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Counterfeit Product Detection - Site: A

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Counterfeit Product Detection - Site: B

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Product Condition - Site: A

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

0 20000 40000 60000 80000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

AU
CR

OC
 (H

ig
he

r i
s b

et
te

r)

Product Condition - Site: B

Product Embeddings Meta-Prod2Vec Text CNN Spanish BERT fastText

Downstream Tasks Results Comparison

Figure 3: Results of the experiments. Each graph represents the performance comparison in different
downstream tasks. The different models are presented the different colors. The x axis represents
the amount of training data. The y axis, depending on the task, represents results using different
metrics. The y axis depends on the task, represents the metric associated with the task.

was minimal. This is important since TextCNN requires GPU for training on each task, and BERT
require GPU at inference time. Our model was trained on GPU for the self-supervised task, but the
downstream task the model is only used for inference and does not require a GPU to do so. On the
other hand the model outperforms both Meta-Prod2Vec and specially fastText. The case of Meta-
Prod2Vec is particularly important since our model achieves better results by only encoding based
on the title, without the need of generating one embedding per product nor any other metadata at
inference time.

6 CONCLUSIONS

In this work we presented a novel deep encoder model trained on self-supervised fashion from a
marketplace environment and used as a feature extractor for downstream tasks. We extended the
work of Grill et al. (2020) to a new domain and proved that, with some adjustments, is a feasible
solution worth exploring. The model shows good performance in comparison to some industrial
baselines with advantages over many of them. Future work will include the exploration of different
learning objectives with aid of other metadata present in the items.

8



Under review as a conference paper at ICLR 2021

REFERENCES

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, and Jorge Pérez. Spanish pre-trained bert model
and evaluation data. In to appear in PML4DC at ICLR 2020, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. J. Mach. Learn. Res., 9:1871–1874, June 2008. ISSN 1532-
4435.

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla, Varun
Bhagwan, and Doug Sharp. E-commerce in your inbox: Product recommendations at scale. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, pp. 1809–1818, New York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450336642. doi: 10.1145/2783258.2788627. URL https://doi.
org/10.1145/2783258.2788627.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020.

Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. Parallel recurrent
neural network architectures for feature-rich session-based recommendations. In Proceedings
of the 10th ACM Conference on Recommender Systems, RecSys ’16, pp. 241–248, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450340359. doi: 10.1145/
2959100.2959167. URL https://doi.org/10.1145/2959100.2959167.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification,
2018.

Minyoung Huh, Pulkit Agrawal, and Alexei A. Efros. What makes imagenet good for transfer
learning?, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–
1751, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/
D14-1181. URL https://www.aclweb.org/anthology/D14-1181.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent sub-
word tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations, pp.
66–71, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-2012. URL https://www.aclweb.org/anthology/D18-2012.

Li Erran Li, Eric Chen, Jeremy Hermann, Pusheng Zhang, and Luming Wang. Scaling machine
learning as a service. volume 67 of Proceedings of Machine Learning Research, pp. 14–29,
Microsoft NERD, Boston, USA, 11–12 Oct 2017. PMLR. URL http://proceedings.
mlr.press/v67/li17a.html.

9

https://doi.org/10.1145/2783258.2788627
https://doi.org/10.1145/2783258.2788627
https://doi.org/10.1145/2959100.2959167
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D18-2012
http://proceedings.mlr.press/v67/li17a.html
http://proceedings.mlr.press/v67/li17a.html


Under review as a conference paper at ICLR 2021

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2018. URL https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught learn-
ing: Transfer learning from unlabeled data. In Proceedings of the 24th International Confer-
ence on Machine Learning, ICML ’07, pp. 759–766, New York, NY, USA, 2007. Associa-
tion for Computing Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273592. URL
https://doi.org/10.1145/1273496.1273592.

Bartłomiej Twardowski. Modelling contextual information in session-aware recommender systems
with neural networks. In Proceedings of the 10th ACM Conference on Recommender Systems,
RecSys ’16, pp. 273–276, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450340359. doi: 10.1145/2959100.2959162. URL https://doi.org/10.
1145/2959100.2959162.

Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Product embeddings us-
ing side-information for recommendation. In Proceedings of the 10th ACM Conference on
Recommender Systems, RecSys ’16, pp. 225–232, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450340359. doi: 10.1145/2959100.2959160. URL
https://doi.org/10.1145/2959100.2959160.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items using re-
views for recommendation. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, WSDM ’17, pp. 425–434, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450346757. doi: 10.1145/3018661.3018665. URL
https://doi.org/10.1145/3018661.3018665.

A EXPERIMENTAL SETUP HYPERPARAMETERS

A.1 ARCHITECTURE AND MODEL TRAINING

The selected architecture was an embedding lookup tθ for 30,000 tokens of the vocabulary of the
sentence piece tokenizer and dimension 512.

10

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1145/1273496.1273592
https://doi.org/10.1145/2959100.2959162
https://doi.org/10.1145/2959100.2959162
https://doi.org/10.1145/2959100.2959160
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/3018661.3018665


Under review as a conference paper at ICLR 2021

The representation encoder fθ is a Text CNN with 4 kernels of size 2, 3, 4 and 5 tokens (as these are
1D CNN), a total of 128 filters for each kernel size with a global max pooling operation. The output
dimension of the encoder is 512.

The projection encoder gθ is a multi-layer perceptron (MLP) that takes the 512 and expands it to a
hidden layer of size 1025, followed by batch normalization Ioffe & Szegedy (2015) with a decay rate
of 0.9, rectified linear unit Nair & Hinton (2010) and a final linear layer of size 128. The predictor
qθ uses the same architecture of the projector. Similarly, the category predictor hθ follows the same
architecture previously defined, except for the final linear layer which will project to the cardinality
of the set of product categories. The exponential moving average of the target networks is updated
with an initial τ of 0.996, and following the update defined in Grill et al. (2020).

As we have two datasets of sessions, one for each country, we trained two models. In both cases
the models were trained by running one epoch over the whole dataset. The datasets contained
12,421,493 pairs of products for site A and 7,978,613 for site B. Those pairs of items were obtained
from a set of 300,000 users sessions for each site. To avoid a combinatorial explosion, we limited
the pairs in each session by truncating each session to a maximum of 10 products. This however
resulted in some problems when trying to directly compare to Meta-Prod2Vec as for the latter we use
directly the full 300,000 sessions datasets. It is something to address in future releases. The batch
size was of 4096. We used Stochastic Gradient Descent with a learning rate of 0.45, a momentum
of 0.9 and a weight decay of 1e-5. The learning rate was scaled to the batch size following the
parameters given in Grill et al. (2020), as well as a Cosine Anealing rating schedule as established
by the BYOL work.

With the encoder model we trained a Logistic Regression classifier for maximum of 1000 iterations
and the liblinear solver Fan et al. (2008) of the implementation in the Scikit-Learn Pedregosa et al.
(2011) package (we leave the rest of the parameters in it’s default values).

A.2 BASELINES

The detailed baselines are the following:

fastText For classification tasks we use fastText’s text categorization Joulin et al. (2016) engine.
This is the main baseline working for that kind of downstream tasks in production environ-
ments.

Bag-of-Words + LR We did some preliminary experiments using bag-of-words with a linear clas-
sifier (i.e. logistic regression) but we decided to discard it as it consistently showed less
performance than fastText.

Text CNN Both for the classification and regression tasks we are interested in how the encoder can
perform if trained from zero (including the embeddings) for the specified task. We use a
Text CNN with the same parameters as the encoder fθ ◦ tθ. It is trained for a maximum of
25 epochs over the whole dataset with an early stopping of of 5 iterations without gaining
in the validation data. For this case, each experiment in each training sample (as explained
in the next session) is run 5 times under different random seeds and we report the mean of
the results.

BETO (Spanish BERT) We evaluate our model using the Spanish version of BERT Devlin et al.
(2018), named BETO Cañete et al. (2020), since our dataset is in Spanish. Like for our
model, we only use the encoded version of the data, i.e. the embedding for the [CLS]
token. We use the implementation of the Huggingface Library Wolf et al. (2019). We feed
the encoded [CLS] to a logistic regression classifier with the same characteristics as the
one used to evaluate our self-supervised model (described in the previous section). The
reason for showing our results using BETO and not multilingual BERT is because some
preliminary results showed that BETO consistently had at least the same performance of
BERT and generally outperformed it, which makes sense because it is trained specifically
on Spanish text.

Meta-Prod2Vec + KNN The Meta-Prod2Vec algorithm was used for comparison purposes, al-
though unlike the rest of the baselines, it depends on metadata that might not be present
(e.g. the id of an item or the category). It was used alongside a K Nearest Neighbor classi-
fier or regressor, depending on the task. The value of K was 5. To train the embeddings for

11



Under review as a conference paper at ICLR 2021

this algorithm we used the full dataset sessions for each country, with the id of the item as
the main vector and the title and category of the item as the metadata.

12


	Introduction
	Background
	Method
	Browsing Session Data
	Proposed model
	Bootstrap Your Own Latent
	Model's Architecture
	BYOL Objective
	Category Prediction
	Final Optimization Objective
	Importance of Each Objective


	Experimental Evaluation
	Datasets
	Models

	Results and Discussions
	Impact of the Losses in the Final Representation
	Comparison with Baselines

	Conclusions
	Experimental Setup Hyperparameters
	Architecture and Model Training
	Baselines


