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Abstract

Prototypical neural networks have gained prominence in001
computer vision due to their inherent interpretability, en-002
abling decisions based on representative examples with-003
out the need for post-hoc explainability methods. However,004
many prototype-based models overlook the hierarchical re-005
lationships within image features, treating them indepen-006
dently and often resulting in suboptimal performance for007
tasks requiring complex structural understanding. To ad-008
dress this limitation, we propose HAPPI (Hierarchical And009
PrototyPical Image recognition), a framework that lever-010
ages hyperbolic geometry to organize prototypes hierarchi-011
cally within a Lorentzian manifold. By arranging generic012
features near the origin of the hyperboloid and specific fea-013
tures farther away, HAPPI enables the learning of generic014
prototypes for consistent and defining patterns and specific015
prototypes for fine-grained and variable details, effectively016
capturing hierarchical relationships in image data. Our ap-017
proach is model-agnostic and can be applied to various018
prototypical neural networks and backbones. We evalu-019
ate HAPPI across several prototypical model baselines and020
datasets, demonstrating its versatility and showing that hy-021
perbolic prototypes consistently match or outperform their022
Euclidean counterparts in quantitative accuracy while pro-023
viding additional interpretability. Qualitative visualizations024
reveal that generic prototypes capture consistent, semanti-025
cally important distinctions between classes. In contrast,026
specific prototypes capture fine-grained variations within027
each class, providing essential nuances for detailed clas-028
sification and enhancing the model’s ability to differentiate029
across multiple levels of abstraction. Our code can be found030
at github.com/*********************.031

1. Introduction032

Prototypical neural networks have emerged as a prominent033
field in computer vision due to their ability to make034
interpretable and explainable decisions. They hold an035
advantage over traditional black-box models as they can036
provide the reasoning behind their results without reliance037

Figure 1. Organization of hierarchical prototypes in hyperbolic
space, where generic prototypes that capture defining consistent
features, entail specific prototypes that capture intra-class varia-
tions such as color, texture, and orientation.

on post-hoc explainability methods, leading to more 038
trustworthy decision making. Prototypical neural networks 039
such as ProtoPNet [1], ProtoPNet variants [3, 27] and 040
PIP-Net [22] have shown success in a variety of image 041
classification tasks. 042

043

A common shortcoming of many prototype-based mod- 044
els is their tendency to treat image features independently, 045
without considering the hierarchical relationships between 046
them. This limitation can result in suboptimal perfor- 047
mance on tasks requiring a deeper understanding of im- 048
age structure, such as object recognition, scene under- 049
standing, and fine-grained classification. In real-world im- 050
ages, features are often organized hierarchically, with more 051
generic features capturing consistent and defining charac- 052
teristics, while more specific features reflect variable de- 053
tails. Generic features are particularly effective for distin- 054
guishing broad categories due to their relevance and distinc- 055
tiveness across classes. However, when differentiating be- 056
tween visually similar classes—such as distinguishing be- 057
tween dog breeds—specific features become more valuable, 058
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as they capture fine-grained variations necessary for precise059
classification. Therefore, by neglecting this hierarchy, ex-060
isting prototypical models may miss critical context needed061
for accurate predictions.062

As illustrated in Fig. 1, organizing prototypes hierarchi-063
cally allows models to capture both defining and variable064
class features in a structured manner. Generic prototypes fo-065
cus on fundamental and consistent traits that reliably char-066
acterize a class—for instance, in animal images, they may067
capture the typical shape of a nose, a paw, or an ear that068
remains stable across variations. In contrast, specific proto-069
types highlight within-class diversity by attending to more070
variable aspects, such as different regions of the body (e.g.,071
a tail instead of a nose) or feature combinations that vary in072
color, texture, or orientation. By structuring prototypes this073
way, the model can differentiate classes based on both their074
defining traits and the finer variations that help distinguish075
similar-looking instances.076

To address this limitation, we introduce HAPPI, a077
Hierarchical And PrototyPical Image recognition method-078
ology, which learns prototypes in a hyperbolic space us-079
ing a Lorentzian manifold instead of Euclidean space. Our080
method structures the embedding space so that generic081
features—representing stable and defining characteristics082
of a class—are positioned near the hyperboloid origin,083
while specific features—capturing variations within the084
class—are positioned farther away. This arrangement en-085
ables the model to learn generic prototypes that focus on086
fundamental, class-defining traits, while specific prototypes087
capture within-class diversity, such as differences in body088
regions, color patterns, or pose variations. By explicitly089
modeling this hierarchy, our approach enhances the model’s090
ability to differentiate between classes while also capturing091
nuanced intra-class variations. While demonstrated on sev-092
eral backbones, our approach has the potential to generalize093
to other prototypical neural networks and image classifiers.094
Our contributions are as follows:095

• We propose a model-agnostic framework to optimize pro-096
totypical neural networks on the Lorentzian manifold in097
hyperbolic space. We explicitly learn generic and spe-098
cific prototypes while ensuring hierarchical consistency099
among prototypes of each class. These prototypes are100
structured and learned within the hyperboloid to preserve101
class relationships.102

• Extensive experiments across various prototypical archi-103
tectures and datasets demonstrate that our hyperbolic104
approach consistently outperforms existing Euclidean-105
based optimization methods.106

2. Related Works 107

2.1. Prototypical Neural Networks 108

Prototypical neural networks are inherently interpretable 109
models due to their structure. These models evaluate in- 110
puts explicitly based on their similarity to learned discrim- 111
inative features, or “prototypes”, for each class. By visual- 112
izing the appearance and location of prototypes, as well as 113
the coefficients relating prototype similarity to the class log- 114
its, users can validate the model’s decision-making process. 115
ProtoPNet [1] introduced the approach of classification us- 116
ing representative prototypes from each of the classes in the 117
training set and providing visual validation by highlighting 118
feature proximity and localization within input images. 119

Subsequent work has focused on enhancing inter- 120
pretability and prototype efficiency. ProtoPool [28] and 121
ProtoPShare [27] reduce the total number of prototypes 122
by sharing them across classes. PIP-Net [22] adopts a 123
self-supervised approach to produce sparse prototypes and 124
human-understandable features, while XProtoNet [13] ex- 125
tends interpretability by allowing different prototype sizes, 126
applying prototypical neural networks successfully to radi- 127
ology datasets. SPANet [32] further improves explainability 128
by combining part prototypes with semantic concepts, pro- 129
viding clearer interpretations of what each prototype rep- 130
resents. These approaches enhance interpretability by ei- 131
ther structuring prototypes more efficiently or aligning them 132
with semantically meaningful concepts, supporting more 133
intuitive and transparent decision-making. 134

Other approaches have modified the learning formula- 135
tion to improve performance. TesNet [35] employs a Grass- 136
mann manifold to create distinct class subspaces, and ST- 137
ProtoPNet [34] introduces an SVM-like method to learn 138
boundary-supporting prototypes. Prototypical networks 139
have also been integrated into transformer architectures [4], 140
as seen in ProtoPFormer [37], ProtoFormer [5], and most 141
recently, ProtoViT [16]. ProtoTree [21] uses a decision- 142
tree structure to reduce the number of prototype compar- 143
isons, enhancing classification efficiency. Recently, ProtoP- 144
NeXt [36] demonstrated that cosine similarity and Bayesian 145
tuning could improve ProtoPNet’s transparency and perfor- 146
mance across various architectures and classification meth- 147
ods. 148

Beyond interpretability and architectural improve- 149
ments, recent works have explored hierarchical represen- 150
tations within prototypical networks. MCPNet [33] and 151
HPDR [10] introduce hierarchical prototypes, albeit in dif- 152
ferent ways. MCPNet learns hierarchical representations 153
through multi-scale prototypes, while HPDR refines fea- 154
ture distributions using hierarchical prototypes in hyper- 155
bolic space. These methods leverage hierarchy to better 156
capture structural relationships within data, enhancing rep- 157
resentation learning and classification performance. 158
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2.2. Hierarchical Representations159

Image datasets inherently exhibit diverse types of hierar-160
chical relationships. One such hierarchy involves clear-161
ambiguous relationships, where clear images are associated162
with specific classes, while ambiguous images (e.g., blurred163
or occluded) are more generic and tend to exhibit features164
that overlap with multiple classes. Another type of hier-165
archy is the whole-part relationship, where a global view166
captures whole objects or scenes, while local views focus167
on finer details of objects or scene parts. Each global view168
is associated with multiple local views, allowing local fea-169
tures to be contextualized within the broader scope of the170
image (e.g. a leaf is part of a tree and a tree is part of a171
park). Recognizing these hierarchical relationships is es-172
sential for understanding the intricate relationships within173
complex visual objects or scenes [12, 24].174

Prior works have proposed explicit methods to represent175
hierarchical concepts within images. For example, Pyra-176
midCLIP [6] captured multi-granular image representations177
by learning at global (whole image), intermediate (large im-178
age patch), and local levels (cropped object images). This179
approach modeled relationships across these levels using180
self-supervised learning guided by language, resulting in181
more separable representation spaces and improved zero-182
shot classification.183

2.3. Hyperbolic Learning184

Hyperbolic learning has demonstrated strong potential for185
capturing hierarchical structures within data [18]. Unlike186
Euclidean space, which has a flat manifold and struggles to187
represent hierarchical relationships effectively, hyperbolic188
manifolds offer a curved geometry that naturally preserves189
these relationships. It can accurately reflect the tree-like190
structure of hierarchical data, where leaf nodes are more191
specialized and represent local features and intermediate192
nodes represent higher-level features. There are two main193
approaches to learning visual representations in hyperbolic194
space: the Poincaré model [11, 12, 17] and the Lorentzian195
model. The Poincaré model represents hyperbolic space as196
the interior of a disk (in 2D) or a ball (in higher dimensions)197
within Euclidean space. Distances and angles in this model198
are distorted to reflect the negative curvature of hyperbolic199
geometry. However, the Poincaré approach is challenging200
to optimize due to its susceptibility to vanishing gradient201
problems, which hinder the model’s convergence [20].202

The Lorentzian model is a more recently proposed203
hyperbolic representation approach that is less prone to204
vanishing gradient problems, and therefore much eas-205
ier to optimize [20]. Empirically, approaches using the206
Lorentzian model have superior performance to those us-207
ing the Poincaré model [15, 23]. Prior works show that the208
Lorentzian model leads to a better latent space with hierar-209
chical representations and improvement in image retrieval210

and classification tasks [2, 26]. Desai et al. [2] used the 211
Lorentz model to enhance vision-language representation 212
learning. Their proposed approach, MERU, learned a con- 213
trastive model (i.e. CLIP) in hyperbolic space where hierar- 214
chy in visual and language concepts was preserved. MERU 215
adapted the contrastive loss to minimize the proximity be- 216
tween the associated image and text using Lorentzian dis- 217
tance instead of cosine similarity. Additionally, MERU pro- 218
posed an entailment loss that enables the model to learn that 219
text represents more abstract, generic concepts than corre- 220
sponding images (e.g., text of ’dog’ encompasses many dog 221
images). The entailment loss pushes image embeddings re- 222
lated to a specific text to exist within a cone-shaped space 223
emanating from the text embedding, indicating that the text 224
entails a set of associated images. Inspired by MERU, 225
our work, HAPPI, extends these ideas to prototypical neu- 226
ral networks, tailoring the embedding space and loss func- 227
tions for prototype-based learning. While prior work has 228
explored hyperbolic prototypes, these approaches typically 229
compute prototypes as the mean of class embeddings in hy- 230
perbolic space, rather than explicitly learning class-specific 231
prototypes [7, 8, 12, 14]. In contrast, HAPPI learns dis- 232
tinct, optimizable prototypes directly within the hyperbolic 233
space, ensuring they capture both generic and specific class 234
features beyond simple class averages. 235

3. Method 236

3.1. Prototypical Classification Framework 237

Prototypical methods classify inputs by measuring their 238
similarity to class-specific prototypes. Given an input x, 239
a feature extractor f(·) generates a feature map f(x) ∈ 240
RH×W×D, where H and W are spatial dimensions and 241
D is feature depth. These features are then processed for 242
comparison with prototypes. Let Veuc ∈ RD denote each 243
extracted feature in Euclidean space to be compared with 244
prototypes. Prototypes are denoted as pc,k ∈ RD, where 245
c and k represent the class and the index of the prototype 246
within that class, respectively, with typically K prototypes 247
per class. The comparison between Veuc and pc,k yields 248
similarity scores s(Veuc, pc,k), usually computed using Eu- 249
clidean distance or cosine similarity. These scores are then 250
fed into a fully connected layer FC : RK×C → RC , pro- 251
ducing class prediction scores ŷ ∈ RC , where C is the num- 252
ber of classes. This prototype-based approach enhances 253
interpretability by basing classifications on similarities to 254
known examples, facilitating clearer pattern identification 255
in the data. 256

3.2. Transition to Hyperbolic Space 257

Our method extends traditional prototypical networks by 258
projecting the prototypes and extracted features into hyper- 259
bolic space, specifically using the Lorentz model of the hy- 260
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Figure 2. An overview of our proposed approach. We use a given prototypical network’s feature encoder to extract both generic and specific
features, then lift those features to the hyperboloid using exponential mapping. The lifted features are then compared to their respective
prototypes, and similarity scores are generated based on their distances to the prototypes. These similarity scores ultimately result in the
activations that are averaged to create the class logits.

perboloid. In this model, the Veuc is mapped to a (D + 1)-261
dimensional hyperbolic space by adding an additional time262
dimension. This mapping results in a hyperbolic feature263
Vh = [Vspace, Vtime], where Vspace ∈ RD represents the spa-264
tial components and Vtime ∈ R is the time dimension [19].265
This representation can capture hierarchical relationships266
and varying levels of detail more effectively than Euclidean267
space.268

To obtain the Vspace, a mapping operation, shown as H(.)269
in Figure 2, projects Euclidean space features Veuc onto the270
hyperboloid. In our case, we use the simplifying assump-271
tion from [2] which considers only the exponential map cen-272
tered at the origin. Under these conditions, the map simpli-273
fies to:274

Vspace =
sinh (

√
c∥Veuc∥)√

c∥Veuc∥
Veuc (1)275

where c is the negative curvature of the hyperbolic space.276
Since the hyperbolic features are constrained to reside on277
the hyperboloid manifold, the time dimension Vtime can be278
derived based on Vspace as follows:279

Vtime =

√
1

c
+ ∥Vspace∥2 (2)280

As a result, we can effectively map the Veuc from Euclidean281
space into the hyperboloid by calculating both Vspace and282
Vtime. We can then calculate the Lorentzian distance of the283
resulting features from the learnable prototypes to identify284
the most prominent prototypes and classify the input image.285

For example, let a = [aspace, atime] and b = [bspace, btime] 286
denote two points on the hyperboloid. The Lorentzian dis- 287
tance dL(a, b) is defined as: 288

dL(a, b) =
1√
c
cosh−1(−c⟨a, b⟩L), (3) 289

where ⟨·, ·⟩L denotes the Lorentzian inner product. This 290
inner product is defined as: 291

⟨a, b⟩L = ⟨aspace, bspace⟩ − atimebtime, (4) 292

where ⟨·, ·⟩ is the standard Euclidean inner product. This 293
distance metric is foundational in aligning the prototypes 294
with features in the embedding space. 295

3.3. Hyperbolic-Based Losses and Prototypes 296

In this section, we introduce the adaptation of prototypi- 297
cal losses and prototype structures to hyperbolic space. We 298
describe the conversion of Euclidean-based clustering and 299
separation losses to their hyperbolic counterparts and intro- 300
duce generic prototypes for capturing defining and consis- 301
tent features. We also present an entailment loss inspired by 302
MERU [2] to encourage hierarchical structure in hyperbolic 303
space. Prototype optimization methods (such as clustering 304
and separation losses [1]) are based on hyperbolic distances. 305

3.3.1. Feature Extraction and Prototype Assignment 306

We introduce two types of prototypes per class: generic pro- 307
totypes, which capture defining class features, and specific 308
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prototypes, which capture fine-grained variations such as309
pose, color, or texture. Generic features are explicitly ex-310
tracted based on the backbone architecture:311

• Transformer-based: We use the [CLS] token to extract312
generic features, following ProtoPFormer [37].313

• CNN-based: Attention maps, interpreted as occurrence314
maps, are applied to extract generic features, inspired by315
XProtoNet [13].316

In contrast, specific features naturally emerge from the host317
architecture’s feature extraction pipeline and are used di-318
rectly without additional processing.319

For both feature types, we dedicate corresponding proto-320
types: generic prototypes for generic features and specific321
prototypes for specific features. Once extracted, we utilize322
Equations 1 and 2 to project both generic (Veuc-g) and spe-323
cific (Veuc-s) features to the hyperbolic space, forming Vh-g324
and Vh-s, respectively. Their corresponding prototypes are325
also projected, resulting in hyperbolic generic prototypes326
Ph-g and hyperbolic specific prototypes Ph-s.327

3.3.2. Prototype-based Classification328

Prototype-based classification leverages both generic and329
specific prototypes to enhance predictive accuracy. We330
compute the similarities of extracted features to both sets331
of prototypes. To obtain the final class activation logits, we332
calculate two separate sets of logits based on these similar-333
ities. Each set of similarities is passed through a distinct334
final layer to produce corresponding logits: zs for specific335
prototypes and zg for generic prototypes. The final activa-336
tion is a joint decision that is computed as the average of337
these two sets of logits. This approach allows the model to338
integrate both generic and specific information for classi-339
fication, improving its ability to perform effectively across340
varying levels of granularity.341

3.3.3. Clustering and Separation Losses342

Clustering and separation losses are designed to encourage343
the learning of effective prototypes that capture the struc-344
ture of the data. Clustering loss promotes intra-class com-345
pactness by encouraging features to be close to the proto-346
types of their corresponding classes, while separation loss347
enhances inter-class separability by pushing features away348
from prototypes of different classes [1]. Similar to exist-349
ing prototypical approaches, we cluster extracted specific350
and generic features that are mapped to the hyperboloid,351
Vh, with the prototypes of the corresponding classes. Like-352
wise, we separate the lifted features from the prototypes of353
different classes, using the following equations:354

Lclst = min
i

dL(V
i
t , P

y
i ), Lsep = −Ec̸=y,i [dL(Vt), P

c
i )] ,

(5)355
where Vt represents generic (g) or specific (s) feature em-356
beddings, and P c

i denotes class-specific prototypes. Both357

clustering and separation criteria, denoted for specific pro- 358
totypes as Lspecific

clst and Lspecific
sep , and generically as Lgeneric

cluster 359

and Lgeneric
sep respectively, utilize the Lorentzian distance, 360

Equation 3, as dL(Vh, p) where p represents the prototype 361
of interest. This adaptation maintains clustering and sepa- 362
ration fidelity in hyperbolic space. 363

3.3.4. Entailment Loss 364

Entailment loss is designed to encourage a hierarchical 365
structure in the hyperbolic space by enforcing relationships 366
between specific and generic prototypes. It ensures that 367
each specific prototype is entailed by at least one generic 368
prototype of its class, creating a coherent hierarchy of rep- 369
resentations. To encourage this hierarchical encoding, we 370
implement an entailment loss based on MERU’s formula- 371
tion [2]. This is achieved by minimizing the exterior angle 372
of ext(Vh-g, Vh-s) relative to the half-aperture aper(Vh-g): 373

Lentail(Vh-g, Vh-s) = max(0, ext(Vh-g, Vh-s)− aper(Vh-g)).
(6) 374

The half-aperture of a cone for entailment relationships is 375
calculated as: 376

aper(a) = sin−1

(
2R√

c∥aspace∥

)
, (7) 377

where R is a constant that controls the boundary conditions 378
near the origin. Furthermore, the exterior angle between 379
two points on the hyperboloid is given by: 380

ext(a, b) = cos−1

(
btime + atime · c⟨a, b⟩L

∥aspace∥
√
(c⟨a, b⟩L)2 − 1

)
. (8) 381

3.3.5. Combined Loss Function 382

The overall loss function L uses cross entropy, LCE , for 383
classification and integrates generic and specific clustering 384
and separation losses, entailment loss as shown below: 385

L = LCE + λclst gLgeneric
clst + λsep gLgeneric

sep

+ λclst sLspecific
clst + λsep sLspecific

sep + λentailLentail
(9) 386

where each λ denotes the coefficient corresponding to each 387
loss value. 388

4. Experiments 389

4.1. Datasets 390

We used two different datasets for our evaluations: CUB- 391
200-2011 and Oxford-IIIT Pets. 392

• CUB-200-2011 (Caltech-UCSD Birds 200) [31]: The 393
CUB-200-2011 dataset is a widely-used benchmark for 394
fine-grained classification tasks, focusing specifically on 395
bird species recognition. It consists of 11,788 images 396
across 200 bird species, each with a varying number of 397
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images. The dataset is split into 5,994 images for training398
and 5,794 images for testing.399

• Oxford-IIIT Pets [25]: The Oxford-IIIT Pets dataset is400
used for pet breed classification and includes a balanced401
mix of cat and dog breeds. It contains 7,349 images span-402
ning 37 breeds, with around 200 images per breed. The403
dataset is split into 3,680 images for training and 3,669404
images for testing.405

While each of these datasets has additional attribute an-406
notations such as bounding boxes or segmentations, we407
only used the labels to train our models. We selected408
these datasets for their frequent use in prototypical neural409
network research and their diversity: CUB includes 200410
classes, while Pets includes 37 classes.411

4.2. Implementation Details412

To ensure a comprehensive evaluation, we selected a range413
of backbone architectures that cover diverse structural ap-414
proaches. Specifically, we included part-based prototyp-415
ical neural networks like ProtoPNet and ST-ProtoPNet,416
which use patch-based prototypes; XProtoNet, which uses417
adaptable prototype sizes; and ProtoPFormer, which uses418
transformer-based backbone. For CNN-based evaluations,419
all models were tested with a ResNet-50 backbone [9],420
while different transformer-based models were also evalu-421
ated to assess performance across architectural types. Ad-422
ditionally, a black-box version of the backbone classifica-423
tion model was evaluated for comparison, as shown in the424
results section. We also evaluated MCPNet [33], a state-of-425
the-art hierarchical prototypical model in Euclidean space,426
and PIPNet [22], a state-of-the-art prototypical model. All427
evaluations were performed using 10 specific prototypes per428
class, a standard choice in prototypical neural network liter-429
ature, along with 2 generic prototypes per class, determined430
empirically. The entailment loss coefficient, λentail, was set431
to 0.1 and R was set to 0.1. The loss weights, λ, for the432
remaining components were selected to match the values433
used in the baseline model. Input images were resized to434
224x224, with shear and flip transformations for data aug-435
mentation, while test images were resized to 224x224 with-436
out additional cropping to maintain consistency.437

For ProtoPFormer, we adopted their approach of using438
the CLS token as a generic prototype and image tokens as439
specific prototypes. Instead of ProtoPFormer’s prototypical440
part concentration (PPC) loss, we implemented our cluster-441
ing and separation loss functions. While PPC loss focuses442
on concentrating prototypes on distinct, centralized repre-443
sentative parts for each class, our clustering and separation444
losses also enforce the learning of distinct and represen-445
tative prototypes, with a formulation that translates more446
effectively to hyperbolic space. For ProtoPNet and XPro-447
toNet, we report two accuracy metrics: end-to-end (E2E)448
training accuracy where the prototypes and features are op-449

timized jointly, and multi-stage training accuracy. Multi- 450
stage training consists of initial prototype warm-up epochs, 451
followed by joint training, and then final layer optimiza- 452
tion for additional epochs. To ensure a fair comparison, we 453
retained the original backbone feature learning rates from 454
each model’s source paper. Further implementation details 455
can be found in the supplementary materials. 456

4.3. Quantitative Results 457

Our method consistently delivers strong quantitative perfor- 458
mance across prototypical architectures, often surpassing or 459
matching state-of-the-art baselines. This highlights the ef- 460
fectiveness of our hierarchical approach in enhancing fea- 461
ture representation. 462

As shown in Table 1, HAPPI significantly improves per- 463
formance over simpler prototypical architectures like Pro- 464
toPNet. On CUB-200-2011, ProtoPNet achieves 45.24% 465
accuracy, whereas integrating HAPPI boosts it to 61.44%, 466
a notable 16.2% improvement. Similarly, on Oxford-IIIT 467
Pets, hyperbolic ProtoPNet achieves 88.25%, up from the 468
baseline’s 54.65%, an increase of over 33.6%. These re- 469
sults demonstrate HAPPI’s ability to mitigate the limita- 470
tions of simpler methods by capturing complex hierarchical 471
relationships. 472

For more advanced architectures such as XProtoNet 473
and ST-ProtoPNet, which already incorporate sophisticated 474
feature representations, performance gains are smaller. 475
On CUB-200-2011, XProtoNet improves from 73.82% to 476
75.46% with HAPPI, while ST-ProtoPNet sees a marginal 477
increase from 86.54% to 87.21%. A similar trend is ob- 478
served for transformer-based models like ProtoPFormer 479
with DeiT-Ti and DeiT-S backbones, where improvements 480
range between 0.5% and 4.0%. This suggests that while 481
HAPPI enhances all architectures, its impact is most pro- 482
nounced in simpler baselines, where hierarchical model- 483
ing in hyperbolic space provides the greatest benefit. This 484
behavior likely reflects a saturation of feature representa- 485
tion in advanced architectures, where additional hierarchi- 486
cal structuring yields diminishing returns in accuracy. How- 487
ever, even for these high-performing models, HAPPI still 488
enhances interpretability by structuring feature representa- 489
tions hierarchically, ensuring that both generic and specific 490
prototypes contribute meaningfully to decision-making. 491

Despite its consistent advantages, HAPPI does not al- 492
ways yield improvements. In some configurations, such as 493
ProtoPFormer with a DeiT-Ti backbone on cropped CUB- 494
200-2011, accuracy remains unchanged at 79.65%. A likely 495
explanation is that DeiT-Ti, being the smallest model tested, 496
lacks the capacity to fully leverage hyperbolic represen- 497
tations, limiting performance gains. This suggests that 498
HAPPI’s effectiveness depends on model complexity and 499
dataset-specific optimization strategies. Future work could 500
explore adaptive hyperbolic scaling for smaller backbones 501
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Backbone Methods
CUB CUB Cropped Pets

Baseline
(Euclidean)

HAPPI
(Hyper-
bolic)

Baseline
(Euclidean)

HAPPI
(Hyper-
bolic)

Baseline
(Euclidean)

HAPPI
(Hyper-
bolic)

ResNet50 [9]

Black-box 75.16 - 76.34 - 90.49 -
PIP-Net [22] 73.52 - 82.00 - 88.50 -
MCPNet [33] 74.28 - 70.78 - 90.32 -
ProtoPNet [1] 45.24 61.44 62.30 80.51 54.65 88.25
ProtoPNet - E2E 67.04 76.44 71.53 82.39 77.35 88.34
XProtoNet [13] 73.82 75.46 80.84 81.03 89.48 89.40
XProtoNet - E2E 75.87 77.91 82.09 82.90 90.00 91.50
ST-ProtoPNet [34] 86.54 87.21 86.94 86.92 77.43 81.93

DeiT-Ti [29] Black-box 75.27 - 78.13 - 88.85 -
ProtoPFormer [37] 77.30 76.18 79.65 79.65 86.89 86.89

DeiT-S [29] Black-box 79.86 - 82.53 - 92.23 -
ProtoPFormer [37] 77.68 78.67 80.60 84.59 88.72 91.25

CaiT-XXS-24 [30] Black-box 80.76 - 82.56 - 92.86 -
ProtoPFormer [37] 80.86 80.81 82.24 83.91 91.47 91.88

Table 1. Classification accuracy (%) on full / cropped CUB-200-2011 and Oxford-IIIT Pets using various backbones and methods.

or refined tuning strategies to address these limitations.502
Compared to black-box baselines, HAPPI achieves503

competitive accuracy while significantly improving inter-504
pretability. On CUB-200-2011, the ResNet-50 black-box505
model attains 75.16% accuracy, whereas HAPPI-enhanced506
ProtoPNet reaches 76.44%, a modest improvement. How-507
ever, this gain comes with the added benefit of interpretabil-508
ity, as HAPPI’s generic and specific prototypes provide509
insight into the model’s decision-making process. Simi-510
larly, on Oxford-IIIT Pets, hyperbolic XProtoNet achieves511
91.50% accuracy, surpassing the ResNet-50 black-box512
model’s 90.49%. These results highlight HAPPI’s ability513
to balance high performance with transparency, offering a514
compelling alternative to opaque black-box models.515

4.4. Qualitative Results516

To illustrate the qualitative effectiveness of HAPPI, we pro-517
vide visualizations of generic and specific prototypes in518
Figure 3, learned using the XProtoNet-E2E architecture on519
the Oxford-IIIT Pets [25] dataset. The figure includes four520
classes: Abyssinian (top left), Bengal (bottom left), Amer-521
ican Bulldog (top right), and Basset Hound (bottom right).522
Each group has two rows—the bottom row shows a heatmap523
overlay highlighting attended regions, while the top row524
masks less relevant areas by shadowing them.525

Generic prototypes capture consistent features that526
broadly distinguish classes. Across all classes, they focus527
on the nose and mouth area, a key trait distinguishing not528
only between cats and dogs but also among different breeds529
within each group. The American Bulldog’s generic proto-530
types highlight facial wrinkles and white fur, while the Bas-531
set Hound’s emphasize long ears and a brown head. The532

Abyssinian cat’s prototypes focus on fur texture, nose, and 533
eyes, while the Bengal cat’s emphasize its distinct tiger-like 534
fur pattern. 535

In contrast, specific prototypes capture variations in body 536
shapes, poses, and colors. The American Bulldog’s specific 537
prototypes highlight a different color combination—white 538
and brown—unlike its generic prototypes, which focus only 539
on white fur. In the last specific prototypes of both the 540
American Bulldog and Bengal cat, a diffused heatmap or 541
less pronounced shadowing suggests a broader focus, cap- 542
turing some background details. 543

Overall, generic prototypes identify prominent class- 544
defining features, while specific prototypes capture fine- 545
grained variations, ensuring a hierarchical, multi-level un- 546
derstanding of class distinctions. This layered approach en- 547
hances the model’s capacity to differentiate classes across 548
various levels of abstraction. 549

Specific prototypes, in contrast, provide complementary 550
information that captures specific body shapes, poses, and 551
angles, adding variable, fine-grained detail that further sup- 552
ports classification. This layered approach, where generic 553
prototypes identify defining distinctions and specific proto- 554
types capture detailed variations, enhances the model’s ca- 555
pacity to differentiate classes across multiple levels of ab- 556
straction. 557

4.5. Ablation Study 558

We performed an ablation study using XProtoNet-E2E to 559
assess the impact of hyperbolic space and hierarchical 560
structuring. As shown in Table 2, transitioning to hy- 561
perbolic space and introducing generic and specific pro- 562
totypes improved performance over the Euclidean base- 563
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Figure 3. Qualitative visualization of learned prototypes in the XProtoNet-E2E architecture for the Oxford-IIIT Pets dataset [25]. Generic
prototypes capture defining class features, such as a ‘white American Bulldog’ (top right), while specific prototypes capture intra-class
variations like color differences. As prototype distance from the hyperboloid root increases, it covers broader areas or more variations.

line, even without entailment loss (λentail = 0). In-564
creasing λentail slightly reduced accuracy, highlighting a565
tradeoff between classification performance and hierarchi-566
cal structuring, consistent with observations in [2]. Larger567
λentail values enhanced structure but posed optimization568
challenges. With λentail = 0.1, the model maintained high569
accuracy while preserving a meaningful hierarchy, making570
it the preferred setting.571

To further analyze the effect of prototype allocation, we572
varied the number of generic (Kg) and specific (Ks) proto-573
types per class, as shown in Table 3. Increasing the number574
of prototypes generally improved performance, but gains575
plateaued around Kg = 2 and Ks = 5. Notably, models576
with more specific prototypes performed better than those577
with more generic ones, reinforcing the importance of cap-578
turing intra-class variability. The setup with Kg = 5 and579
Ks = 1 performed worse than Kg = 1 and Ks = 5, in-580
dicating that generic prototypes alone are not sufficient for581
fine-grained classification. When specific prototypes were582
sufficient, reducing the number of generic prototypes from583
5 to 2 further improved optimization stability. These re-584
sults suggest that the ideal prototype configuration depends585
on the complexity of the dataset. A careful balance be-586
tween generic and specific prototypes is crucial, as different587
datasets may require different levels of hierarchical struc-588
turing to achieve optimal performance.589

5. Conclusion590

In this paper, we introduced HAPPI, a model-agnostic ap-591
proach for adapting prototypical networks to hyperbolic592
space to effectively learn hierarchical image representa-593
tions. Our method showed quantitative improvements over594
single-scale Euclidean baselines across diverse datasets,595

Method λentail
0 0.1 0.2 0.5

Euclidean 90.00 - - -
Hyperbolic 91.50 91.50 91.47 91.20

Table 2. Ablation study, using XProtoNet-E2E, on the use of hy-
perbolic space and entailment in terms of Accuracy (%) on the Pets
dataset. The first row refers to the Euclidean model which has 10
prototypes per class, while the other rows are hyperbolic versions
with 2 generic and 10 specific prototypes.

Ks

1 2 5 10
Kg 1 88.83 90.27 91.06 91.06

2 90.19 90.90 91.91 91.50
5 90.79 88.53 91.77 91.52

Table 3. Accuracy (%) by number of generic and specific proto-
types on the Pets dataset.

highlighting its ability to capture complex, structured rela- 596
tionships within the data. Furthermore, qualitative analyses 597
reveal that HAPPI provides an interpretable understanding 598
of image hierarchies, allowing insights into the features the 599
model attends to when making predictions. Our findings 600
suggest that hyperbolic prototypical networks, as exempli- 601
fied by HAPPI, hold significant potential for applications 602
requiring both hierarchical understanding and interpretabil- 603
ity in visual tasks. 604
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data-efficient image transformers & distillation through at-730
tention. In International conference on machine learning,731
pages 10347–10357. PMLR, 2021. 7732

[30] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,733
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