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Abstract

Prototypical part networks have gained prominence in com-
puter vision due to their inherent interpretability, enabling
decisions based on representative part features without
post-hoc explanations. However, existing prototypical net-
works learn part-based features in flat Euclidean space,
yet they could better capture the natural hierarchical rela-
tionships within image features to enhance performance on
tasks requiring structural understanding. To address this
opportunity, we propose HAPPI (Hierarchical And Part
Prototypical Image recognition), a framework that lever-
ages hyperbolic geometry to organize prototypical part fea-
tures hierarchically within a Lorentzian manifold. By ar-
ranging localized generic features near the hyperboloid
origin and broader specific features farther away, HAPPI
learns generic prototypes for defining local patterns and
specific prototypes that aggregate broader discriminative
cues, effectively capturing hierarchy in image data. Our
approach is model-agnostic and can be applied to various
prototypical neural networks and backbones. We evaluate
HAPPI on several baselines and datasets, showing that hy-
perbolic prototypes match or outperform Euclidean ones
while adding interpretability. Qualitative results reveal that
generic prototypes highlight localized, class-defining traits,
while specific prototypes capture broader patterns across
larger regions, enabling differentiation through both lo-
cal and contextual features. Our code can be found at
http://github.com/DeepRCL/HAPPI.

1. Introduction
Prototypical part networks have emerged as a prominent
field in computer vision due to their ability to make inter-
pretable and explainable decisions. They hold an advantage
over traditional black-box models as they can provide the
reasoning behind their results without reliance on post-hoc
explainability methods, leading to more trustworthy deci-
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Figure 1. Organization of hierarchical part prototypes in hyper-
bolic space, where generic part prototypes, that capture localized,
class-defining traits, entail specific part prototypes that capture
broader contextual variations across larger regions.

sion making. Models such as ProtoPNet [2], ProtoPNet
variants [4, 27] and PIP-Net [24] have shown success in a
variety of image classification tasks.

While effective, existing prototypical part networks learn
each prototype in a flat embedding space, without explicitly
modeling the inherent hierarchical relationships between
part features at different scales This can limit performance
on tasks needing deeper structural understanding, such as
object recognition, scene understanding, or fine-grained
classification. In real-world images, features are naturally
organized hierarchically, where generic features capture lo-
calized class-defining characteristics, while specific fea-
tures aggregate broader patterns that help distinguish be-
tween similar classes. Generic features, through their local-
ized focus on key class characteristics, provide clear dis-
criminative signals for initial class separation. However,
when differentiating between visually similar classes—such
as distinguishing between dog breeds—specific features be-
come more valuable, as they aggregate broader contextual
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patterns necessary for precise classification. Therefore, by
neglecting this hierarchy, existing prototypical models may
miss critical context needed for accurate predictions.

As illustrated in Fig. 1, organizing prototypes hierarchi-
cally allows models to capture both localized and broader
class features in a structured manner. Generic prototypes
focus on fundamental and consistent traits that reliably
characterize a class—for instance, in animal images, they
may capture the typical shape of a nose, a paw, or an
ear that remains stable across variations. In contrast, spe-
cific prototypes aggregate broader patterns by attending to
larger regions of the image, combining multiple features
and their relationships across wider areas (e.g., the overall
body structure, or patterns spanning multiple body parts).
By structuring part prototypes this way, the model can dif-
ferentiate classes based on both their localized distinctive
traits and the broader contextual patterns that help distin-
guish similar-looking instances.

To address this opportunity, we introduce HAPPI,
a Hierarchical And Part Prototypical Image recognition
methodology, which learns part prototypes in a hyperbolic
space using a Lorentzian manifold instead of Euclidean
space. Our method structures the embedding space so that
localized generic features—representing key class-defining
characteristics—are positioned near the hyperboloid ori-
gin, while broader specific features—aggregating patterns
across larger regions—are positioned farther away. This
arrangement enables the model to learn generic part pro-
totypes that focus on distinctive local traits, while specific
part prototypes capture broader contextual patterns that help
distinguish between similar classes. By explicitly model-
ing this hierarchy, our approach enhances the model’s abil-
ity to differentiate between classes through both localized
and broader-scale features. While demonstrated on sev-
eral backbones, our approach has the potential to generalize
to other prototypical neural networks and image classifiers.
Our contributions are as follows:
• We propose a model-agnostic framework to optimize

part-based prototypical networks on the Lorentzian man-
ifold in hyperbolic space. We explicitly learn localized
generic and broader specific prototypes while ensuring hi-
erarchical consistency among prototypes of each class.

• Extensive experiments across various prototypical ar-
chitectures and datasets show our hyperbolic approach
matches or outperforms Euclidean counterparts while
structuring prototypes into a more interpretable hierarchy.

2. Related Works

2.1. Prototypical Part Networks

Prototypical part networks are inherently interpretable mod-
els due to their structure. These models evaluate inputs ex-
plicitly based on their similarity to learned discriminative

features, or “part prototypes,” for each class. By visualiz-
ing the appearance and location of prototypes, as well as the
coefficients relating input-prototype similarity to class log-
its, users can validate the model’s decision-making process.
ProtoPNet [2] introduced classification using representative
part prototypes for each class in the training set and provid-
ing visual validation by highlighting feature proximity and
localization within input images.

Subsequent work has focused on enhancing inter-
pretability and prototype efficiency. ProtoPool [28] and
ProtoPShare [27] reduce the total number of prototypes
by sharing them across classes. PIP-Net [24] adopts a
self-supervised approach to produce sparse prototypes and
human-understandable features, while XProtoNet [16] ex-
tends interpretability by allowing different prototype sizes,
applying prototypical neural networks successfully to radi-
ology datasets. SPANet [34] further improves explainability
by combining part prototypes with semantic concepts, pro-
viding clearer interpretations of what each prototype rep-
resents. These approaches enhance interpretability by ei-
ther structuring prototypes more efficiently or aligning them
with semantically meaningful concepts, supporting more
intuitive and transparent decision-making.

Other approaches have modified the learning formula-
tion to improve performance. TesNet [37] employs a Grass-
mann manifold to create distinct class subspaces, and ST-
ProtoPNet [36] introduces an SVM-like method to learn
boundary-supporting prototypes. Prototypical networks
have also been integrated into transformer architectures [5],
as seen in ProtoPFormer [39], ProtoFormer [6], and most
recently, ProtoViT [18]. ProtoTree [23] uses a decision-
tree structure to reduce the number of prototype compar-
isons, enhancing classification efficiency. Recently, ProtoP-
NeXt [38] demonstrated that cosine similarity and Bayesian
tuning could improve ProtoPNet’s transparency and perfor-
mance across various architectures and classification meth-
ods.

Beyond interpretability and architectural improvements,
recent works have explored hierarchical representations
within prototypical part networks. MCPNet [35] and
HPDR [12] introduce hierarchical prototypes, albeit in dif-
ferent ways. MCPNet learns hierarchical representations
through multi-scale prototypes, while HPDR refines fea-
ture distributions using hierarchical part prototypes in hy-
perbolic space. These methods leverage hierarchy to better
capture structural relationships within data, enhancing rep-
resentation learning and classification performance.

2.2. Hierarchical Representations

Image datasets inherently exhibit diverse types of hierar-
chical relationships. One such hierarchy involves clear-
ambiguous relationships, where clear images are associated
with specific classes, while ambiguous images (e.g., blurred



or occluded) are more generic and tend to exhibit features
that overlap with multiple classes. Another type of hier-
archy is the whole-part relationship, where a global view
captures whole objects or scenes, while local views focus
on finer details of objects or scene parts. Each global view
is associated with multiple local views, allowing local fea-
tures to be contextualized within the broader scope of the
image (e.g. a leaf is part of a tree and a tree is part of a
park). Recognizing these hierarchical relationships is es-
sential for understanding the intricate relationships within
complex visual objects or scenes [15, 25].

Prior works have proposed explicit methods to represent
hierarchical concepts within images. For example, Pyra-
midCLIP [7] captured multi-granular image representations
by learning at global (whole image), intermediate (large im-
age patch), and local levels (cropped object images). This
approach modeled relationships across these levels using
self-supervised learning guided by language, resulting in
more separable representation spaces and improved zero-
shot classification.

2.3. Hyperbolic Learning

Hyperbolic learning has demonstrated strong potential for
capturing hierarchical structures within data [21]. Unlike
Euclidean space, which has a flat manifold, hyperbolic man-
ifolds offer a curved geometry that naturally preserves hi-
erarchical relationships. It can effectively represent tree-
like structures where nodes at different levels capture fea-
tures at different scales of abstraction. There are two main
approaches to learning visual representations in hyperbolic
space: the Poincaré model [13, 15, 20] and the Lorentzian
model. The Poincaré model represents hyperbolic space as
the interior of a disk (in 2D) or a ball (in higher dimensions)
within Euclidean space. The Lorentzian model represents
hyperbolic space through a hyperboloid manifold embed-
ded in Minkowski space. Both models have been success-
fully applied in computer vision tasks. In our work, we
adopt the Lorentzian model due to its numerical stability
and optimization advantages in practice, following recent
works like MERU [3] and HyCoClip [25].

Desai et al. [3] used the Lorentz model to enhance
vision-language representation learning. Their proposed
approach, MERU, learned a contrastive model (i.e. CLIP)
in hyperbolic space where hierarchy in visual and language
concepts was preserved. MERU adapted the contrastive loss
to minimize the proximity between the associated image
and text using Lorentzian distance instead of cosine similar-
ity. Additionally, MERU proposed an entailment loss that
enables the model to learn that text represents more abstract,
generic concepts than corresponding images (e.g., text of
’dog’ encompasses many dog images). The entailment loss
pushes image embeddings related to a specific text to exist
within a cone-shaped space emanating from the text em-

bedding, indicating that the text entails a set of associated
images.

Inspired by MERU, our work, HAPPI, extends these
ideas to prototypical part networks, tailoring the embed-
ding space and loss functions for prototype-based learn-
ing. While prior work has explored hyperbolic proto-
types [1, 8, 9, 15, 17], these approaches focus on class-level
prototypes, whether learned or computed as class means.
In contrast, HAPPI is the first method to learn feature-
level (part-based) prototypes in hyperbolic space, where we
learn multiple, spatially grounded prototypes per class that
are structured hierarchically via Lorentzian entailment loss.
This enables interpretable, part-based reasoning (’this part
looks like that’) not supported by single-prototype embed-
ding methods, providing transparency in how model predic-
tions are derived by showing which parts of training images
contributed to the classification decision.

3. Method

3.1. Prototypical Classification Framework
Prototypical part networks classify inputs by measuring
their similarity to class-specific part prototypes. Given an
input x, a feature extractor f(·) generates a feature map
f(x) ∈ RH×W×D, where H and W are spatial dimensions
and D is feature depth. These features are then processed
for comparison with prototypes. Let Veuc ∈ RD denote
each extracted feature in Euclidean space to be compared
with prototypes. Prototypes are denoted as pc,k ∈ RD,
where c and k represent the class and the index of the pro-
totype within that class, respectively, with typically K pro-
totypes per class. The comparison between Veuc and pc,k
yields similarity scores s(Veuc, pc,k), usually computed us-
ing Euclidean distance or cosine similarity. These scores are
then fed into a fully connected layer FC : RK×C → RC ,
producing class prediction scores ŷ ∈ RC , where C is the
number of classes. This prototype-based approach enhances
interpretability by basing classifications on similarities to
known examples, facilitating clearer pattern identification
in the data.

3.2. Transition to Hyperbolic Space
Our method extends traditional prototypical networks by
projecting the prototypes and extracted features into hy-
perbolic space, specifically using the Lorentz model of
the hyperboloid. Following MERU’s successful approach
to adapting CLIP to hyperbolic space [3], we maintain
the backbone’s feature extraction in Euclidean space and
project these features to the Lorentzian manifold after-
wards. This design choice allows us to leverage well-
established CNN and Transformer architectures while gain-
ing the benefits of hyperbolic geometry for prototype orga-
nization. In this model, the Veuc is mapped to a (D + 1)-



Figure 2. An overview of our proposed approach. We use a given prototypical network’s feature encoder to extract both generic and specific
features, then lift those features to the hyperboloid using exponential mapping. The lifted features are then compared to their respective
prototypes, and similarity scores are generated based on their distances to the prototypes. These similarity scores ultimately result in the
activations that are averaged to create the class logits.

dimensional hyperbolic space by adding an additional time
dimension. This mapping results in a hyperbolic feature
Vh = [Vtime, Vspace], where Vspace ∈ RD represents the
spatial components and Vtime ∈ R is the time-like dimen-
sion [22]. This representation can capture hierarchical rela-
tionships and varying levels of detail more effectively than
Euclidean space.

To obtain the Vspace, a mapping operation, shown as H(.)
in Figure 2, projects Euclidean space features Veuc onto the
hyperboloid. In our case, we use the simplifying assump-
tion from [3] which considers only the exponential map cen-
tered at the origin. Under these conditions, the map simpli-
fies to:

Vspace =
sinh (

√
c∥Veuc∥)√

c∥Veuc∥
Veuc (1)

where c is the negative curvature of the hyperbolic space.
Since the hyperbolic features are constrained to reside on
the hyperboloid manifold, the time dimension Vtime can be
derived based on Vspace as follows:

Vtime =

√
1

c
+ ∥Vspace∥2 (2)

As a result, we can effectively map the Veuc from Euclidean
space into the hyperboloid by calculating both Vspace and
Vtime. We can then calculate the Lorentzian distance of the
resulting features from the learnable prototypes to identify
the most prominent prototypes and classify the input image.
For example, let a = [atime, aspace] and b = [btime, bspace]

denote two points on the hyperboloid. The Lorentzian dis-
tance dL(a, b) is defined as:

dL(a, b) =
1√
c
cosh−1(−c⟨a, b⟩L), (3)

where ⟨·, ·⟩L denotes the Lorentzian inner product. This
inner product is defined as:

⟨a, b⟩L = ⟨aspace, bspace⟩ − atimebtime, (4)

where ⟨·, ·⟩ is the standard Euclidean inner product. This
distance metric is foundational in aligning the prototypes
with features in the embedding space.

3.3. Hyperbolic-Based Losses and Prototypes
In this section, we introduce the adaptation of prototypi-
cal losses and prototype structures to hyperbolic space. We
describe the conversion of Euclidean-based clustering and
separation losses to their hyperbolic counterparts and intro-
duce generic prototypes for capturing defining and consis-
tent features. We also present an entailment loss inspired by
MERU [3] to encourage hierarchical structure in hyperbolic
space. Prototype optimization methods (such as clustering
and separation losses [2]) are based on hyperbolic distances.

3.3.1. Feature Extraction and Prototype Assignment
We introduce two types of prototypes per class: generic
prototypes, which capture localized, distinctive features,
and specific prototypes, which aggregate broader contex-
tual patterns across larger regions of the image. Generic



features are extracted explicitly according to the backbone
architecture:
• Transformer-based: the [CLS] token is used to represent

generic features, following ProtoPFormer [39].
• CNN-based: Attention maps, interpreted as occurrence

maps, are applied to extract generic features, inspired by
XProtoNet [16].

Specific features, in contrast, are taken directly from the
host architecture’s feature extraction pipeline without ad-
ditional processing. without additional processing.

For both feature types, we dedicate corresponding pro-
totypes: generic and specific prototypes. Once extracted,
we utilize Equations 1 and 2 to project both generic (Veuc-g)
and specific (Veuc-s) features to the hyperbolic space, form-
ing Vh-g and Vh-s, respectively. Their corresponding pro-
totypes are also projected, resulting in hyperbolic generic
prototypes Ph-g and hyperbolic specific prototypes Ph-s.

3.3.2. Prototype-based Classification
Prototype-based classification leverages both generic and
specific prototypes to enhance predictive accuracy. We
compute the similarities of extracted features to both sets
of prototypes. To obtain the final class activation logits, we
calculate two separate sets of logits based on these similar-
ities. Each set of similarities is passed through a distinct
final layer to produce corresponding logits: zs for specific
prototypes and zg for generic prototypes. The final activa-
tion is a joint decision that is computed as the average of
these two sets of logits. This approach allows the model to
integrate both generic and specific information for classi-
fication, improving its ability to perform effectively across
varying levels of granularity.

3.3.3. Clustering and Separation Losses
Clustering and separation losses are designed to encourage
the learning of effective prototypes that capture the struc-
ture of the data. Clustering loss promotes intra-class com-
pactness by encouraging features to be close to the proto-
types of their corresponding classes, while separation loss
enhances inter-class separability by pushing features away
from prototypes of different classes [2]. Similar to exist-
ing prototypical approaches, we cluster extracted specific
and generic features that are mapped to the hyperboloid,
Vh, with the prototypes of the corresponding classes. Like-
wise, we separate the lifted features from the prototypes of
different classes, using the following equations:

Lclst = min
i

dL(V
i
t , P

y
i ), Lsep = −Ec ̸=y,i [dL(Vt), P

c
i )] ,

(5)
where Vt represents generic (g) or specific (s) feature em-
beddings, and P c

i denotes class-specific prototypes. Both
clustering and separation criteria, denoted for specific pro-
totypes as Lspecific

clst and Lspecific
sep , and generically as Lgeneric

cluster

and Lgeneric
sep respectively, utilize the Lorentzian distance,

Equation 3, as dL(Vh, p) where p represents the prototype
of interest. This adaptation maintains clustering and sepa-
ration fidelity in hyperbolic space.

3.3.4. Entailment Loss
Entailment loss is designed to encourage a hierarchical
structure in the hyperbolic space by enforcing relationships
between specific and generic prototypes. It ensures that
each specific prototype is entailed by at least one generic
prototype of its class, creating a coherent hierarchy of rep-
resentations. To encourage this hierarchical encoding, we
implement an entailment loss based on MERU’s formula-
tion [3]. This is achieved by minimizing the exterior angle
of ext(Vh-g, Vh-s) relative to the half-aperture aper(Vh-g):

Lentail(Vh-g, Vh-s) = max(0, ext(Vh-g, Vh-s)− aper(Vh-g)).
(6)

The half-aperture of a cone for entailment relationships is
calculated as:

aper(a) = sin−1

(
2R√

c∥aspace∥

)
, (7)

where R is a constant that controls the boundary conditions
near the origin. Furthermore, the exterior angle between
two points on the hyperboloid is given by:

ext(a, b) = cos−1

(
btime + atime · c⟨a, b⟩L

∥aspace∥
√
(c⟨a, b⟩L)2 − 1

)
. (8)

3.3.5. Combined Loss Function
The overall loss function L uses cross entropy, LCE , for
classification and integrates generic and specific clustering
and separation losses, entailment loss as shown below:

L = LCE + λclst gLgeneric
clst + λsep gLgeneric

sep

+ λclst sLspecific
clst + λsep sLspecific

sep + λentailLentail
(9)

where each λ denotes the coefficient corresponding to each
loss value.

4. Experiments
4.1. Datasets
We used two different datasets for our evaluations: CUB-
200-2011 and Oxford-IIIT Pets.
• CUB-200-2011 (Caltech-UCSD Birds 200) [33]: The

CUB-200-2011 dataset is a widely-used benchmark for
fine-grained classification tasks, focusing specifically on
bird species recognition. It consists of 11,788 images
across 200 bird species, each with a varying number of
images. The dataset is split into 5,994 images for training
and 5,794 images for testing.



• Oxford-IIIT Pets [26]: The Oxford-IIIT Pets dataset is
used for pet breed classification and includes a balanced
mix of cat and dog breeds. It contains 7,349 images span-
ning 37 breeds, with around 200 images per breed. The
dataset is split into 3,680 images for training and 3,669
images for testing.

While each of these datasets has additional attribute an-
notations such as bounding boxes or segmentations, we
only used the labels to train our models. We selected
these datasets for their frequent use in prototypical neural
network research and their diversity: CUB includes 200
classes, while Pets includes 37 classes.

4.2. Implementation Details
To ensure a comprehensive evaluation, we selected a range
of backbone architectures that cover diverse structural ap-
proaches. Specifically, we included part-based prototyp-
ical neural networks like ProtoPNet and ST-ProtoPNet,
which use patch-based prototypes; XProtoNet, which uses
adaptable prototype sizes; and ProtoPFormer, which uses
transformer-based backbone. For CNN-based evaluations,
all models were tested with a ResNet-50 backbone [10],
while different transformer-based models were also evalu-
ated to assess performance across architectural types. Ad-
ditionally, a black-box version of the backbone classifica-
tion model was evaluated for comparison, as shown in the
results section. We also evaluated MCPNet [35], a state-of-
the-art hierarchical prototypical model in Euclidean space,
and PIPNet [24], a state-of-the-art prototypical model. All
evaluations were performed using 10 specific prototypes per
class, a standard choice in prototypical neural network liter-
ature, along with 2 generic prototypes per class, determined
empirically. The entailment loss coefficient, λentail, was set
to 0.1 and R was set to 0.1. The loss weights, λ, for the
remaining components were selected to match the values
used in the baseline model. Input images were resized to
224x224, with shear and flip transformations for data aug-
mentation, while test images were resized to 224x224 with-
out additional cropping to maintain consistency.

For ProtoPFormer, we adopted their approach of using
the CLS token as a generic prototype and image tokens as
specific prototypes. Instead of ProtoPFormer’s prototypical
part concentration (PPC) loss, we implemented our cluster-
ing and separation loss functions. While PPC loss focuses
on concentrating prototypes on distinct, centralized repre-
sentative parts for each class, our clustering and separation
losses also enforce the learning of distinct and represen-
tative prototypes, with a formulation that translates more
effectively to hyperbolic space. For ProtoPNet and XPro-
toNet, we report two accuracy metrics: end-to-end (E2E)
training accuracy where the prototypes and features are op-
timized jointly, and multi-stage training accuracy. Multi-
stage training consists of initial prototype warm-up epochs,

followed by joint training, and then final layer optimiza-
tion for additional epochs. To ensure a fair comparison, we
retained the original backbone feature learning rates from
each model’s source paper. Further implementation details
can be found in the supplementary materials.

4.3. Quantitative Results

Our method delivers strong performance across prototypical
architectures, often matching or surpassing baselines. For
fair comparison, all methods are implemented with consis-
tent data preprocessing adopted from PipNet [24], though
this leads to some differences from originally reported re-
sults. As shown in Table 1, HAPPI substantially improves
performance on simpler architectures: on CUB-200-2011,
ProtoPNet improves from 45.24% to 61.44%, while on
Oxford-IIIT Pets it increases from 54.65% to 88.25%, gains
of 16.2% and 33.6%, respectively. In contrast, more ad-
vanced models show smaller improvements: XProtoNet
rises from 73.82% to 75.46%, ST-ProtoPNet from 86.54%
to 87.21%, and ProtoPFormer backbones by only 0.5-4.0%
on CUB-200-2011.

These differences may stem from the decision-making
behavior of different architectures. Jiang et al. [14] show
that transformers are more compositional, integrating evi-
dence across regions, while standard CNNs behave more
disjunctively, relying on localized cues. HAPPI there-
fore yields the largest gains on simple CNN-based ProtoP-
Net, where hierarchical hyperbolic prototypes complement
the disjunctive behavior. In contrast, transformers already
benefit from compositional reasoning, so their gains are
smaller. Some CNN variants such as XProtoNet and ST-
ProtoPNet introduce mechanisms (variable prototype sizes
or support/trivial prototypes) that resemble this composi-
tional behavior, explaining their more modest improve-
ments. Still, HAPPI consistently improves interpretability
by imposing a hierarchical structure where both generic and
specific prototypes contribute to decision-making.

Despite these overall advantages, HAPPI does not al-
ways improve performance. For example, ProtoPFormer
with a DeiT-Ti backbone on cropped CUB-200-2011 re-
mains unchanged at 79.65%, likely due to limited model
capacity. These outcomes suggest that the benefits of hy-
perbolic embeddings can be model- and dataset-dependent.

Compared to black-box baselines, HAPPI achieves
competitive accuracy while significantly improving inter-
pretability. On CUB-200-2011, the ResNet-50 black-
box model attains 75.16% accuracy, whereas HAPPI-
augmented ProtoPNet reaches 76.44%. On Oxford-IIIT
Pets, hyperbolic XProtoNet achieves 91.50% accuracy, sur-
passing the ResNet-50 black-box model’s 90.49%. These
results highlight HAPPI’s ability to balance high perfor-
mance with transparency, offering a compelling alternative
to opaque black-box models.



Backbone Methods
CUB CUB Cropped Pets

Baseline
(Euclidean)

HAPPI
(Hyper-
bolic)

Baseline
(Euclidean)

HAPPI
(Hyper-
bolic)

Baseline
(Euclidean)

HAPPI
(Hyper-
bolic)

ResNet50 [10]

Black-box 75.16 - 76.34 - 90.49 -
PIP-Net [24] 73.52 - 82.00 - 88.50 -
MCPNet [35] 74.28 - 70.78 - 90.32 -
ProtoPNet [2] 45.24 61.44 62.30 80.51 54.65 88.25
ProtoPNet - E2E 67.04 76.44 71.53 82.39 77.35 88.34
XProtoNet [16] 73.82 75.46 80.84 81.03 89.48 89.40
XProtoNet - E2E 75.87 77.91 82.09 82.90 90.00 91.50
ST-ProtoPNet [36] 86.54 87.21 86.94 86.92 77.43 81.93

DeiT-Ti [29] Black-box 75.27 - 78.13 - 88.85 -
ProtoPFormer [39] 77.30 76.18 79.65 79.65 86.89 86.89

DeiT-S [29] Black-box 79.86 - 82.53 - 92.23 -
ProtoPFormer [39] 77.68 78.67 80.60 84.59 88.72 91.25

CaiT-XXS-24 [30] Black-box 80.76 - 82.56 - 92.86 -
ProtoPFormer [39] 80.86 80.81 82.24 83.91 91.47 91.88

Table 1. Classification accuracy (%) on full / cropped CUB-200-2011 and Oxford-IIIT Pets using various backbones and methods. All
methods implemented with consistent data preprocessing for fair comparison.

4.4. Qualitative Results

To illustrate the qualitative effectiveness of HAPPI, we vi-
sualize individual learned prototypes in Figure 3, using the
XProtoNet-E2E architecture on the Oxford-IIIT Pets [26]
dataset. The figure includes four classes: Abyssinian (top
left), Bengal (bottom left), American Bulldog (top right),
and Basset Hound (bottom right). Each group has two
rows—the bottom row shows a heatmap overlay highlight-
ing attended regions, while the top row masks less relevant
areas by shadowing them.

Generic prototypes capture consistent features that
roughly distinguish classes. Across all classes, they focus
on the nose and mouth area, a key trait distinguishing not
only between cats and dogs but also among different breeds
within each group. The American Bulldog’s generic proto-
types highlight facial wrinkles and white fur, while the Bas-
set Hound’s emphasize long ears and a brown head. The
Abyssinian cat’s prototypes focus on fur texture, nose, and
eyes, while the Bengal cat’s emphasize its distinct tiger-like
fur pattern.

In contrast, specific prototypes capture broader context
and variations in body shapes, poses, and colors. The Amer-
ican Bulldog’s specific prototypes highlight a different color
combination—white and brown—unlike its generic proto-
types, which focus only on white fur. In the last specific
prototypes of both the American Bulldog and Bengal cat, a
diffused heatmap or less pronounced shadowing suggests a
broader focus, capturing some background details.

Overall, generic prototypes identify localized, distinc-
tive features, while specific prototypes aggregate broader

patterns across larger regions, ensuring a hierarchical un-
derstanding from local to global scales. This complemen-
tary approach enables the model to differentiate classes
through both fine-grained local characteristics and broader
contextual patterns, leveraging information at multiple spa-
tial scales.

4.5. Ablation Study
We performed an ablation study using XProtoNet-E2E to
assess the impact of hyperbolic space and hierarchical
structuring. As shown in Table 2, transitioning to hy-
perbolic space and introducing generic and specific pro-
totypes improved performance over the Euclidean base-
line, even without entailment loss (λentail = 0). Increas-
ing λentail slightly reduced accuracy as it constrains the
embedding space to enforce hierarchical structure, where
localized generic features must entail their corresponding
broader specific features. This trade-off between accuracy
and structural organization is consistent with observations
in [3]. With λentail = 0.1, the model achieved a balance
between maintaining high accuracy and ensuring meaning-
ful hierarchical relationships between localized and broader
features, making it our preferred setting.

To further analyze the effect of prototype allocation, we
varied the number of generic (Kg) and specific (Ks) proto-
types per class, as shown in Table 3. Increasing the number
of prototypes generally improved performance, but gains
plateaued around Kg = 2 and Ks = 5. Notably, models
with more specific prototypes performed better than those
with more generic ones, reinforcing the importance of cap-
turing intra-class variability. The setup with Kg = 5 and



Figure 3. Qualitative visualization of learned prototypes in the XProtoNet-E2E architecture for the Oxford-IIIT Pets dataset [26]. Generic
prototypes near the hyperboloid origin capture localized, distinctive features (e.g., specific facial features of a ’white American Bulldog’),
while specific prototypes farther from the origin aggregate broader patterns across larger regions (e.g., overall body structure and patterns).
As prototype distance from the hyperboloid root increases, features transition from localized characteristics to broader contextual patterns.

Method λentail
0 0.1 0.2 0.5

Euclidean 90.00 - - -
Hyperbolic 91.50 91.50 91.47 91.20

Table 2. Ablation study, using XProtoNet-E2E, on the use of hy-
perbolic space and entailment in terms of Accuracy (%) on the Pets
dataset. The first row refers to the Euclidean model which has 10
prototypes per class, while the other rows are hyperbolic versions
with 2 generic and 10 specific prototypes.

Ks 1 2 5 10
Kg 1 88.83 90.27 91.06 91.06

2 90.19 90.90 91.91 91.50
5 90.79 88.53 91.77 91.52

Table 3. Accuracy (%) by number of generic and specific proto-
types on the Pets dataset.

Ks = 1 performed worse than Kg = 1 and Ks = 5, in-
dicating that generic prototypes alone are not sufficient for
fine-grained classification. When specific prototypes were
sufficient, reducing the number of generic prototypes from
5 to 2 further improved optimization stability. These re-
sults suggest that the ideal prototype configuration depends
on the complexity of the dataset. A careful balance be-
tween generic and specific prototypes is crucial, as different
datasets may require different levels of hierarchical struc-
turing to achieve optimal performance.

5. Conclusion

In this paper, we introduced HAPPI, a model-agnostic ap-
proach for adapting prototypical part networks to hyper-
bolic space to effectively learn hierarchical representations
from local to global scales. Our method showed comparable
or improved performance over Euclidean baselines across
diverse datasets while providing enhanced interpretability
through its hierarchical structure. Qualitative analyses re-
veal that HAPPI organizes prototypes meaningfully, with
localized generic prototypes capturing distinctive features
near the hyperboloid origin and specific prototypes aggre-
gating broader patterns farther away. Our findings suggest
that hyperbolic prototypical networks, as exemplified by
HAPPI, hold significant potential for applications requiring
both multi-scale understanding and interpretability in visual
tasks.

Future work could extend HAPPI in several directions.
First, incorporating explicit label hierarchies (e.g., super-
class–subclass structures in CUB or Pets) may help guide
the embedding space, improving how generic and specific
prototypes are learned, strengthening entailment, and fur-
ther enhancing class separation. Second, our clustering
and separation losses used the same coefficients as their
Euclidean backbones; analyzing alternative weightings and
running systematic sensitivity studies could yield better op-
timization and clarify robustness to hyperparameters. Third,
applying HAPPI to larger hierarchical datasets such as iNat-
uralist [32] or TreeOfLife [11, 19] would test its scalability
in settings with richer label structures. Finally, exploring
adaptive prototype allocation and hyperbolic scaling strate-
gies could tailor HAPPI more effectively to different back-
bones and datasets.
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ryna Lewandowska, Jacek Tabor, and Bartosz Zieliński. In-
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data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 7

[30] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
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