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Abstract

We study data-driven decision-making problems in the Bayesian framework, where
the expectation in the Bayes risk is replaced by a risk-sensitive entropic risk
measure with respect to the posterior distribution. We focus on problems where
calculating the posterior distribution is intractable, a typical situation in modern
applications with large datasets and complex data generating models. We leverage
a dual representation of the entropic risk measure to introduce a novel risk-sensitive
variational Bayesian (RSVB) framework for jointly computing a risk-sensitive pos-
terior approximation and the corresponding decision rule. Our general framework
includes loss-calibrated VB [16] as a special case. We also study the impact of
these computational approximations on the predictive performance of the inferred
decision rules. We compute the convergence rates of the RSVB approximate poste-
rior and the corresponding optimal value. We illustrate our theoretical findings in
parametric and nonparametric settings with the help of three examples.

1 Introduction

This paper focuses on risk-sensitive Bayesian decision-making, considering objective functions of
the form

min
a∈A

ϱγΠn
(R(a, θ)) := γ−1 logEΠn

[exp(γR(a, θ))]. (SO)

Here A is the decision/action space, θ is a random model parameter lying in an arbitrary measurable
space (Θ, T ), and R(a, θ) : A×Θ 7→ R is a problem-specific model risk function. For any B ⊆ Θ,
Πn(B) := Π(B|X̃n) is the Bayesian posterior distribution over the parameters given observations
X̃n from the true model Pn

θ0
(≡ Pn

0 ) with parameter θ0 ∈ Θ. The scalar γ ∈ R is user-specified
and characterizes the sensitivity of the decision-maker (DM) to the distribution Πn. Recall that
the posterior distribution is obtained by updating a prior probability distribution Π(·), capturing
subjective beliefs of the decision maker over Θ, according to the Bayes rule

dΠ(θ|X̃n) ∝ dΠ(θ)dPn
θ (X̃n), (1)

where dPn
θ (X̃n) is the likelihood of observing X̃n. We denote the corresponding densities (if they

exist) for the model, prior, and posterior as pnθ (·), π(·), and π(·|X̃n) respectively.

The functional ϱγ· in (SO) is also known as the entropic risk measure, and models a range of risk-
averse or risk-seeking behaviors in a succinct manner through the parameter γ. Consider only
strictly positive γ, and observe that limγ↓0

1
γ logEΠn [exp(γR(a, θ))] = EΠn(R(a, θ)); that is, there

is no sensitivity to potential risks due to large tail effects and the decision-maker is risk neutral.
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On the other hand, limγ→+∞ ϱγΠn
(R(a, θ)) = ess supΠn

(R(a, θ)), the essential supremum of the
model risk R(a, θ). In other words, a decision maker is completely risk averse and anticipates the
worst possible realization (Πn-almost surely). Observe that (SO) strictly generalizes the standard
Bayesian decision-theoretic formulation of a decision-making problem, where the goal is to solve
mina∈A EΠn

[R(a, θ)].

The risk-sensitive formulation (SO) is very general and can be used to model a wide variety of decision-
making problems in machine learning [16, 15], operations research/management science [24, 7, 20],
simulation optimization [6, 32], and finance [17, 1, 4]. However, solving (SO) to compute an optimal
decision over A is challenging. The difficulty mainly stems from the fact that, with the exception of
conjugate models, the posterior distribution in (1) is an intractable quantity. Canonically, posterior
intractability is addressed using either a sampling- or optimization-based approach. Sampling-based
approaches, such as Markov chain Monte Carlo (MCMC), offer a tractable way to compute the
integrals and theoretical guarantees of exact inference in the large computational budget limit.

Optimization-based methods such as variational Bayes (VB) or variational inference (VI) have
emerged as a popular alternative [3]. The VB approximation of the true posterior is a tractable
distribution chosen from a ‘simpler’ family of distributions known as a variational family by min-
imizing the discrepancy between the true posterior and members of that family. Kullback-Liebler
(KL) divergence is the most often used measure of the approximation discrepancy, although other
divergences (such as the α-Rényi divergence [19, 28, 14]) have been used. The minimizing member,
termed the VB approximate posterior, can be used as a proxy for the true posterior. Empirical studies
have shown that VB methods are computationally faster and far more scalable to higher-dimensional
problems and large datasets. Theoretical guarantees, such as large sample statistical inference, have
been a topic of recent interest in the theoretical statistics community, with asymptotic properties such
as convergence rate and asymptotic normality of the VB approximate posterior recently established
in [34, 21] and [31, 14] respectively.

Our ultimate goal is not to merely approximate the posterior distribution but also to make decisions
when that posterior is intractable. A näive approach would be to plug in the VB approximation in
place of the true posterior in (SO) and compute the optimal decision. However, it has been noted
in [16] that such a naive loss-unaware approach can be suboptimal. In particular, [16] demonstrated,
through an example, that a naive posterior approximation only captures the most dominant mode of
the true posterior, which may not be relevant from a decision-making perspective. Consequently, they
proposed a loss-calibrated variational Bayesian (LCVB) algorithm for solving Bayesian decision-
making problems where the underlying risk function is discrete. [15] extended their approach to
continuous risk functions. Despite these algorithmic advances in developing decision-centric VB
methods, their statistical properties, such as asymptotic consistency and convergence rates of the
loss-aware posterior approximation and the associated decision rule are not well understood. With an
aim to address these gaps, we summarize our contribution in this paper below:

1. In Section 2, we introduce a minimax optimization framework titled ‘risk-sensitive varia-
tional Bayes’ (RSVB), extracted from the dual representation of (SO) using the so-called
Donsker-Varadhan variational free-energy principle [9]. The decision-maker computes
a risk-sensitive approximation to the true posterior (termed as RSVB posterior) and the
decision rule simultaneously by solving a minimax optimization problem. Moreover, we
recover the LCVB approach [16] as a special case of RSVB (with γ = 1).

2. In Section 3, we identify verifiable regularity conditions on the prior, likelihood model and
the risk function under which the RSVB posterior enjoys the same rate of convergence as
the true posterior to a Dirac delta distribution concentrated at the true model parameter θ0,
as the sample size increases. Using this result, we also prove the rate of convergence of
the RSVB decision rule when the decision space A is compact. Our theoretical results also
imply the asymptotic properties of the LCVB posterior and the associated decision rule.

3. In Section 4, we demonstrate our theoretical results with the help of three widely studied
decision-making problems, including Gaussian process classification and a newsvendor
problem. For each example, we show that the rate of convergence of the respective RSVB
approximate posterior matches that of the corresponding true posterior.

4. In Section 4, we also present some simulation results with the single product (1-d) newsven-
dor problem, which is summarized here in Figure 1. The figures demonstrate the effect
of changing γ on the optimality gap in values (see Definition 2.1) and the variance of the
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RSVB posterior for a given n. In particular, we observe that for smaller n, increasing γ
(after a certain value) results in a significantly more risk-averse decision; however, the effect
of increasing γ on risk-averse decision-making reduces as n increases. This observation
demonstrates the fact that when there is enough certainty in the parameter estimation, the
need to be risk-sensitive to parametric uncertainty diminishes. The Figure 1 also compares
the optimality gap in values evaluated at RSVB decision rules and variance of the RSVB
posterior for various values of γ against the näive VB approach and against the true posterior
when the conjugate prior is used.
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Figure 1: (a) Optimality gap in values and (b) variance of the RSVB posterior (mean over 100 sample
paths) against the number of samples (n) for various values of γ.

2 Risk-Sensitive Variational Bayes

Our approach exploits the dual representation of the log-exponential risk measure in (SO), which is
convex (or extended coherent) risk measure [23, 10]. From the Donsker-Varadhan variational free
energy principle [9] observe that,

ϱγΠn
(a) = max

Q∈M

{
EQ[R(a, θ)]− γ−1KL(Q||Πn)

}
γ > 0, (DV)

where M is the set of all distribution functions that are absolutely continuous with respect to the
posterior distribution Πn and ‘KL’ represents the Kullback-Leibler divergence. Formally, for any
two distributions P and Q defined on measurable space (Θ, T ), the KL divergence is defined as
KL(Q∥P ) =

∫
Θ
dQ(θ) log dQ(θ)

dP (θ) , when measureQ is absolutely continuous with respect to P and ∞
otherwise. Notice that this dual formulation exposes the reason we choose to use the log-exponential
risk – the ‘free-energy’ objective on the RHS provides a combined assessment of the risk associated
with model estimation (the KL divergence KL(Q∥Πn)) and the decision risk under the estimated
posterior Q (EQ[R(a, θ)]).

As stated above, the reformulation presented in (DV) offers no computational gains. However,
restricting ourselves to an appropriately chosen subset Q ⊂ M, that consists of distributions where
the integral Eq[R(a, θ)] and KL(Q||Πn) can be tractably computed and optimized, we immediately
obtain a risk-sensitive variational Bayesian (RSVB) formulation from (DV):

γ−1 logEΠn

[
eγR(a,θ)

]
≥ max

Q∈Q

{
EQ[R(a, θ)]− γ−1KL(Q||Πn)

}
=: F(a;Q(·), X̃n, γ). (RSVB)

RSVB is our framework for data-driven risk-sensitive decision-making. The family of distributions Q
is popularly known as the variational family. Our analysis in Section 3.1 reveals general guidelines
on how to choose Q that ensures a small optimality gap (defined below) with high probability.

With an appropriate choice of Q, the optimization on the RHS can yield a good approximation to the
log-exponential risk measurement on the left hand side (LHS). For brevity, for a given a ∈ A we
define the RSVB approximation to the true posterior Π(θ|X̃n) as

Q∗
a,γ(θ|X̃n) := argmax{Q ∈ Q : F(a;Q(·), X̃n, γ)}
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and the RSVB optimal decision as

a∗RS := argmina∈A F(a;Q∗
a,γ(θ|X̃n), X̃n, γ) = argmina∈A max

Q∈Q
F(a;Q(·), X̃n, γ).

Observe that Q∗
a,γ(θ|X̃n) and a∗RS are random quantities, conditional on the data X̃n.

Examples of Q include the family of Gaussian distributions, delta functions, or the family of factorized
‘mean-field’ distributions that discard correlations between components of θ. The choice of Q is
decisive in determining the performance of the algorithm. Part of the analysis in this paper is to
articulate sufficient conditions on Q that ensure small optimality gap (defined below) for the optimal
decision, a∗RS. This establishes the statistical “goodness” of the procedure as number of samples
increase. In this paper, we analyze the efficacy of the decision rules obtained using the RSVB
approximation, by providing high-probability bounds on the optimality gap. We define the optimality
gap for any a ∈ A with value V = R(a, θ0) as,
Definition 2.1 (Optimality Gap). Let V ∗

0 := mina∈AR(a, θ0) be the optimal value for the true
model parameter θ0. Then, the optimality gap in the value is the difference V − V ∗

0 .

A similar performance measure was used in [15], to measure the effectiveness of loss-calibrated
VB (LCVB) approach, which can be obtained by setting γ = 1. We provide definitions of some
standard terminologies that we use in the subsequent sections, such as covering number, test functions,
Γ-convergence, and primal feasibility in the Appendix A for ready reference. In the following section,
we lay down important assumptions used throughout the paper to establish our theoretical results.

2.1 Assumptions

In order to bound the optimality gap, we require some control over how quickly the posterior
distribution concentrates at the true parameter θ0. Our next assumption in terms of a verifiable
test condition on the model (sub-)space is one of the conditions required to quantify this rate. Let
Ln : Θ×Θ 7→ [0,∞) be a distance metric on the model space.
Assumption 2.1 (Model indentifiability). Fix n ≥ 1. Then, for any ϵ > ϵn such that ϵn → 0 as n→
∞ and nϵ2n ≥ 1, there exists a measurable sequence of test functions ϕn,ϵ : X̃n 7→ [0, 1] and sieve set
Θn(ϵ) ⊆ Θ such that (i) EPn

0
[ϕn,ϵ] ≤ C0 exp(−Cnϵ2), and (ii) sup

{θ∈Θn(ϵ):Ln(θ,θ0)≥C1nϵ2}
EPn

θ
[1−

ϕn,ϵ] ≤ exp(−Cnϵ2).
Observe that Assumption 2.1(i) quantifies the rate at which a Type I error diminishes with the sample
size, while the condition in Assumption 2.1(ii) quantifies that of a Type II error. Notice that both
of these are stated through test functions; indeed, what is required are consistent test functions.
[11, Theorem 7.1] (stated in Appendix as Lemma C.7 for completeness) roughly implies that an
appropriately bounded model subspace {Pn

θ , θ ∈ Θ} guarantees the existence of consistent test
functions, to test the null hypothesis that the true parameter is θ0 against an alternate hypothesis – the
alternate being defined using the distance function Ln. Subsequently, we will use a specific distance
function to obtain finite sample bounds for the optimality gap in decisions and values. Note that
in some cases, it is also possible to construct consistent test functions directly without recourse to
Lemma C.7. We demonstrate this in Section 4.1 below. Next, we assume a condition on the prior
distribution that ensures that it provides sufficient mass to the sieve set Θn(ϵ) ⊆ Θ, as defined above
in Assumption 2.1.
Assumption 2.2. Fix n ≥ 1. Then, for any ϵ > ϵn such that ϵn → 0 as n → ∞ and nϵ2n ≥ 1, the
prior distribution satisfies Π(Θc

n(ϵ)) ≤ exp(−Cnϵ2).
Notice that Assumption 2.2 is trivially satisfied if Θn(ϵ) = Θ. The next assumption ensures that the
prior distribution places sufficient mass around a neighborhood of the distribution Pn

0 .
Assumption 2.3 (Prior thickness). Fix n ≥ 1 and a constant λ > 0. Let An :=

{
θ ∈ Θ : D1+λ

(Pn
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where D1+λ (P

n
0 ∥Pn

θ ) := 1
λ log

∫ (dPn
0

dPn
θ

)λ
dPn

0 is the Rényi divergence
between Pn

0 and Pn
θ , assuming Pn

0 is absolutely continuous with respect to Pn
θ . The prior distribution

satisfies Π(An) ≥ exp(−nC2ϵ
2
n).

This assumption guarantees that the prior distribution covers the neighborhood with positive mass. The
above three assumptions are adopted from [11] and has also been used in [34] to prove convergence
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rates of variational posteriors. Interested readers may refer to [11] and [34] to read more about the
above assumptions.

It is apparent by the first term in (RSVB) that in addition to Assumption 2.1, 2.2, and 2.3, we also
require regularity conditions on the risk function R(a, ·). The next assumption restricts the prior
distribution with respect to R(a, θ).
Assumption 2.4. Fix n ≥ 1 and γ > 0. For any ϵ > ϵn, a ∈ A, EΠ[1{γR(a,θ)>C4(γ)nϵ2}e

γR(a,θ)] ≤
exp(−C5(γ)nϵ

2), where C4(γ) and C5(γ) are scalar positive functions of γ.

Note that the set
{
γR(a, θ) > C4(γ)nϵ

2
}

represents the subset of the model space where
the risk R(a, θ) (for a fixed decision a) is large, and the prior is assumed to place suf-
ficiently small mass over such sets. Moreover, using the Cauchy-Schwarz inequality ob-
serve that EΠ[1{γR(a,θ)>C4(γ)nϵ2}e

γR(a,θ)] ≤
(
EΠ[1{γR(a,θ)>C4(γ)nϵ2}]

)1/2 (EΠ[e
2γR(a,θ)]

)1/2 ≤
e−C4(γ)nϵ

2EΠ[e
2γR(a,θ)], which implies that if the risk function is bounded in (a, θ), then the as-

sumption is trivially satisfied. Finally, we also require the following condition lower bounding the
risk function R.
Assumption 2.5. R(a, θ) is assumed to satisfy W := infθ∈Θ infa∈A e

R(a,θ) > 0.

Note that any risk function which is bounded from below in both the arguments satisfies this condition.
In the next section, we establish high-probability bounds on the optimality gap in values and decision
rules computed using RSVB approach for sufficiently large n.

3 Asymptotic Analysis of the Optimality Gaps

Our first result, establishes an upper bound on the expected deviation from the true model Pn
0 ,

measured using distance function Ln(·, θ0), under the RSVB approximate posterior. We also note
that the following result generalizes Theorem 2.1 of [34], which is exclusively for the case when
γ → 0+. Our proof techniques follows that of Theorem 2.1 in [34].
Theorem 3.1. Fix a′ ∈ A and γ > 0. For any Ln(θ, θ0) ≥ 0, under Assumptions 2.1, 2.2, 2.3,
2.4, and 2.5, and for min(C,C4(γ) + C5(γ)) > C2 + C3 + C4(γ) + 2 and ηRn (γ) :=
1
n infQ∈Q EPn

0

[
KL(Q(θ)∥Π(θ|X̃n))− γ infa∈A EQ[R(a, θ)]

]
, for sufficiently large n the RSVB

approximator of the true posterior Q∗
a′,γ(θ|X̃n) satisfies,

EPn
0

[∫
Θ

Ln(θ, θ0)dQ
∗
a′,γ(θ|X̃n)

]
≤ n

(
M(γ)ϵ2n +MηRn (γ)

)
, (2)

for a positive number M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1

min(C,λ,1) .

Proof sketch. For brevity we denote the likelihood ratio as LRn(θ, θ0) =
p(X̃n|θ)
p(X̃n|θ0)

. We prove this

result using a series of lemma. The first Lemma C.1 separates the term ηRn (γ), which is later analyzed
using Assumption 3.1 in Section 3.1. Lemma C.1 establish that

ζEPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

+ logEPn
0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
+ nηRn (γ). (3)

The proof of Lemma C.1 uses simple arguments that follow easily from Jensen’s inequality and the
definition of the posterior distribution.

To analyze the first term in the above display, we define the setKn := {θ ∈ Θ : Ln(θ, θ0) > C1nϵ
2},

with an aim to control the exponential moment of Ln(θ, θ0) by characterizing its tails. Also, notice
that set Kn is the set of alternate hypotheses as defined in Assumption 2.1 through Lemma C.2. For

brevity, define ΠR(Kn|X̃n) :=
∫
Kn

eγR(a′,θ) LRn(θ,θ0)dΠ(θ)∫
Θ

eγR(a′,θ) LRn(θ,θ0)dΠ(θ)
. Next, we divide the expected calibrated

posterior probability of the set Kn as follows:

EPn
0

[
ΠR(Kn|X̃n)

]
≤ EPn

0
ϕn,ϵ + EPn

0

[
1BC

n

]
+ EPn

0

[
(1− ϕn,ϵ)1Bn

ΠR(Kn|X̃n)
]
, (4)
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where recall that {ϕn,ϵ} is the sequence of test function from Assumption 2.1 and set Bn ={
X̃n :

∫
Θ
LRn(θ, θ0)dΠ(θ) ≥ e−(1+C3)nϵ

2

Π(An)
}

with set An is defined in Assumption 2.3.
Set Bn is introduced to separately control (by lower bounding) the denominator in the defini-
tion of the posterior distribution in the last term of (4). In addition, the Assumption 2.3 is
used to show that Pn

0 (B
C
n ) ≤ e−λnϵ2 . The first term can be controlled by Assumption 2.1 (i).

Now, it remains to analyze the last term in (4). Using Assumption 2.3 and 2.5 observe that
on set Bn,

∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ) ≥ W γe−(1+C2+C3)nϵ

2

. This observation, with the
application of Fubini’s theorem, enables us to bifurcate further the last term in (4) on the set
Sγ(θ) := {eγR(a′,θ) > eC4(γ)nϵ

2} as

EPn
0

[
(1− ϕn,ϵ)1BnΠR(Kn|X̃n)

]
≤W−γeC̃nϵ2

[∫
Kn∩Sγ(θ)

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+ e−C4(γ)nϵ
2

∫
Kn∩Sγ(θ)

eγR(a′,θ)dΠ(θ)

]
, (5)

C̃ = 1+C2 +C3 +C4(γ). Observe that the last term above can be controlled using Assumption 2.4.
The first integral in (5) can be further bounded by

∫
Kn∩Θn(ϵ)

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ) + Π(Θn(ϵ)

c),
where Θn(ϵ) is defined in Assumption 2.1 and both the terms can be exponentially bounded using
Assumption 2.1 (ii) and 2.2 respectively. The last term in (3) can be bounded using a similar set of
arguments and techniques.

Remark: We note that while deriving the bound in Lemma C.1, we can interchange the order of
expectation and infimum and compute a tighter bound. However, this bring us back to the RSVB
optimizer, the very objective of the whole analysis. Taking expectation before infimum enables us
to derive a more interpretable and meaningful bound. This is mainly because it is easier to control
the expectation of the RSVB objective than its infimum through Assumption 3.1, as presented in
Section 3.1.

The detailed proof of Theorem 3.1 is provided in the Appendix C.2. Now recall that ϵn is the
convergence rate of the true posterior [11, Theorem 7.3]. Notice that the additional term ηRn (γ)
emerges from the posterior approximation and depends on the choice of the variational family Q,
risk function R(·, ·), and the parameter γ. The appearance of ηRn (γ) in the bound also signifies that
to minimize the expected gap (under the RSVB posterior) between the true model and any other
model (defined using n−1Ln(θ, θ0)) the expected RSVB objective has to be maximized. Later in this
section, we specify the conditions that ensure ηRn (γ) → 0 as n → ∞. Moreover, we also identify
mild regularity conditions on Q to show that ηRn (γ) is O(ϵ2n) and show that as γ increases ηRn (γ)
decreases. We discuss this result and the bound therein later in the next subsection. Before that, we
establish our main result (the bounds on the optimality gap) using the theorem above. We now fix

Ln(θ, θ0) = n

(
sup
a∈A

|R(a, θ)−R(a, θ0)|
)2

. (6)

Notice that for a given θ, n−1/2
√
Ln(θ, θ0) is the uniform distance between theR(a, θ) andR(a, θ0).

Intuitively, Theorem 3.1 implies that the expected uniform difference 1
nLn(θ, θ0) with respect to the

RSVB approximate posterior is O(M(γ)ϵ2n+MηRn (γ)), and if M(γ)ϵ2n+MηRn (γ) → 0 as n→ ∞
then it converges to zero at that rate.

Also, note that in order to use (6) we must demonstrate that it satisfies Assumption 2.1. This can be
achieved by constructing bespoke test functions for a given R(a, θ). We demonstrate this approach
by an example in Section B.2. We also provide sufficient conditions for the existence of the test
functions in the appendix. These conditions are typically easy to verify when the loss function R(·, ·)
is bounded, for instance. Next, we bound the optimality gap between R(a∗RS, θ0) and V ∗

0 .
Theorem 3.2. Fix γ > 0. Suppose the set A is compact. Then, under Assumptions 2.1, 2.2, 2.3, 2.4,
and 2.5, for min(C,C4(γ) + C5(γ)) > C2 + C3 + C4(γ) + 2 and any τ > 0, the Pn

0 − probability

of
{
X̃n : R(a∗RS, θ0) − infa∈AR(a, θ0) ≤ 2τ

[
M(γ)ϵ2n +MηRn (γ)

] 1
2

}
is at least 1 − τ−1, for a

positive mapping M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1

min(C,λ,1) for sufficiently large n.
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3.1 Properties of ηRn (γ)

Evidently, the bounds obtained in both the results that we have proved so far depend on ηRn (γ).
Consequently, we establish some important properties of ηRn (γ) with respect to n and γ, under
additional regularity conditions. In order to characterize ηRn (γ), we specify conditions on variational
family Q such that ηRn (γ) = O(ϵ′2n ), for some ϵ′n ≥ 1√

n
and ϵ′n → 0. We impose the following

condition on the variational family Q that lets us obtain a bound on ηRn (γ) in terms of n and γ.
Assumption 3.1. There exists a sequence of distributions {qn(·)} in the variational family Q such
that for a positive constant C9,

1

n

[
KL (Qn(θ)∥Π(θ)) + EQn(θ)

[
KL
(
dPn

0 (X̃n)∥dPn
θ (X̃n)

)]]
≤ C9ϵ

′2
n . (7)

If the observations in X̃n are i.i.d, then observe that 1
nEQn(θ)

[
KL
(
dPn

0 (X̃n)∥dPn
θ (X̃n)

)]
=

EQn(θ) [KL (dP0∥dPθ)] . Intuitively, this assumption implies that the variational family must contain
a sequence of distributions weakly convergent to a Dirac delta distribution concentrated at the true
parameter θ0 otherwise the second term in the LHS of (7) will be non-zero. Also, note that the above
assumption does not imply that the minimizing sequence Q∗

a′,γ(θ|X̃n) (automatically) converges
weakly to a Dirac-delta distribution at the true parameter θ0. Furthermore, unlike Theorem 2.3 of
[34], our condition on Q in Assumption 3.1, to obtain a bound on ηRn ( γ), does not require the support
of the distributions in Q to shrink to the true parameter θ0 at some appropriate rate, as the numbers of
samples increases.

The condition that the variational family contains Dirac delta distributions at each point in the param-
eter space is a mild and reasonable requirement for consistency. Further, Assumption 3.1 requires
that Q contains sequences of distributions that weakly converge to each Dirac delta distribution at
a certain rate. This is easily satisfied if Q has no “holes”, e.g. if it is the family of Gaussians with
all means and variances, then we can always construct sequences converging to any Dirac delta at
any rate. A similar assumption has also been made in [31], and is true for most exponential family
distributions. For instance, in the newsvendor application, we fix the variational family to a class of
shifted-Gamma distributions and choose a sequence of distributions with parameter sequence α = n
and β = n/θ0. This implies that the sequence of distributions has mean θ0 and variance θ20/n, and,
therefore, it converges to a Dirac delta distribution at θ0. Next, we show that
Proposition 3.1. Under Assumption 3.1 and for a constant C8 = − infQ∈Q infa∈A EQ[R(a, θ)]
and C9 > 0, ηRn (γ) ≤ γn−1C8 + C9ϵ

′2
n .

In Section 4, we present an example where the likelihood is exponentially distributed, the prior is
inverse-gamma (non-conjugate), and the variational family is the class of gamma distributions, where
we construct a sequence of distributions in the variational family that satisfies Assumption 3.1. We
also provide another example where the likelihood is multivariate Gaussian with unknown mean and
variational family is uncorrelated Gaussian restricted to a compact subset of Rd with a uniform prior
on the same compact set satisfy Assumption 3.1.

By definition ϵ2n → 0 and ϵ′n → 0 as n → ∞, and therefore it follows from Proposition 3.1 that
M(γ)ϵ2n +MηRn (γ) → 0. However, the bound obtained in the last proposition might be loose with
respect to γ, when C8 < 0. To see this, we prove the following result.
Proposition 3.2. If the solution to the optimization problem in ηRn (γ) is primal feasible then ηRn (γ)
decreases as γ increases.

4 Applications

In the examples below, we use three examples to study the interplay between sample size n and
the risk parameter γ, and their effect on the optimality gap in values. Additionally, we consider a
multi-product newsvendor example in the Appendix B.2.

4.1 Single-product Newsvendor Model
We start with a canonical data-driven decision-making problem with a ‘well-behaved’ risk function
R(a, θ), the data-driven newsvendor model. This problem has received extensive study in the
literature and remains a cornerstone of inventory management [25, 2, 18]. Recall that the newsvendor
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loss function is defined as ℓ(a, ξ) := h(a− ξ)+ + b(ξ − a)+ where h (underage cost) and b (overage
cost) are given positive constants, ξ ∈ [0,∞) the random demand, and a the inventory or decision
variable, typically assumed to take values in a compact decision space A with a := min{a : a ∈ A}
and ā := max{a : a ∈ A}, and a > 0. The distribution over the random demand, Pθ is assumed to
be exponential with unknown rate parameter θ ∈ (0,∞). The model risk R(a, θ) := EPθ

[ℓ(a, ξ)] =

ha− h
θ +(b+h) e

−aθ

θ , which is convex in a. We assume that X̃n := {ξ1, ξ2 . . . ξn} be n observations
of the random demand, assumed to be i.i.d random samples drawn from P0.

We fix the model space Θ = [T,∞) for some T > 0 and assume that θ0 lies in the interior of Θ.
We now assume a non-conjugate truncated inverse-gamma (Inv − Γ) prior distribution restricted to
Θ, with shape and rate parameter α and β respectively, that is for a set A ⊆ Θ, we define Π(A) =
Inv−ΓΘ(A;α, β) = Inv−Γ(A∩Θ;α, β)/Inv−Γ(Θ;α, β) . We verify Assumptions 2.2, 2.1, 2.3, 2.5
and 2.4 (in that order) in this newsvendor setting and provide the proofs in the Appendix B.1. Next,
we bound the optimality gap in values for the single product newsvendor model risk.
Theorem 4.1. Fix γ > 0. Suppose that the set A is compact. Then, for the newsvendor model
with exponentially distributed demand with rate θ ∈ Θ = [T,∞), prior distribution Π(·) =
Inv−ΓΘ(·;α, β) = Inv−Γ(A∩Θ;α, β)/Inv−Γ(Θ;α, β), and the variational family fixed to shifted
(by T > 0) gamma distributions, and for any τ > 0, the Pn

0 − probability of the following event{
X̃n : R(a∗RS, θ0) − infz∈AR(z, θ0) ≤ 2τM ′(γ)

(
logn
n

)1/2}
is at least 1 − τ−1 for sufficiently

large n and for some known mapping M ′ : R+ → R+, where R(·, θ) is the newsvendor model risk.

The proof of the theorem above is a direct consequence of Theorem 3.2 and Proposition 3.2, and
Lemmas B.1, B.2, B.3, B.4, B.5 stated in the Appendix. We also extend the analysis above to a
multi-product newsvendor problem. The details are provided in Appendix B.2.

Next, we demonstrate the effect of varying the risk-sensitivity parameter γ. We fix θ0 = 0.1, b = 1,
h = 5, α = 1, and β = 4.1. We run RSVB algorithm with γ ∈ {0( naive ), 1, 2, 4.5, 5, 6} and
repeat the experiment over 100 sample paths. We plot the results in Figure 1. In Figure 1(a) we plot
the optimality gap in values that is R(a∗RS(γ), θ0)−R(a∗0, θ0) for various values of γ. We observe
that the gap decreases when n increases. This observation supports our results in Propositions 3.1
and 3.2 that establishes the properties of ηRn (γ) as n increases. Lastly, in Figure 1(b), we plot the
variance of the RSVB posterior as n increases for various values of γ; as anticipated, the variance
reduces as n increases. To observe the effect of γ, first recall that as γ increases the decision maker
becomes more risk averse, and so is our algorithmic framework RSVB. Indeed, from the rightmost
variance plot in Figure 1, it is evident that for a larger value of γ (> 4), the RSVB posterior is more
concentrated on the subset of Θ, where risk is more and consequently we observe large optimality
gaps in values. Moreover, as n increases, the effect of larger γ reduces, since as n increases, the
incentive to deviate from the posterior reduces (due to increased KL divergence dominance for
larger n in RSVB). We also observe that the decision rule learned using the conjugate prior (Gamma
distribution for exponential models) has a similar performance as the näive approach. However, the
variance of the true conjugate posterior is higher than those computed through the RSVB and VI
approach, corresponding to the well known fact that the variational approximations underestimate the
true posterior variance ([28, 19]).

4.2 Gaussian process classification

Consider a problem of classifying an input pattern or features Y lying in measure space ([0, 1]d,Y, ν)
(with sigma algebra Y and probability measure ν) into one of two classes {−1, 1}. Let Y 7→
ξ(Y ) ∈ {−1, 1} denote the class of Y . For a given Y , we model the classifier using a Bernoulli
distribution p(ξ|Y, θ) = Ψξ(θ(Y )), where θ : [0, 1]d → R is a non-parametric model parame-
ter in a separable Banach space (Θ, ∥ · ∥) and measurable functions Ψ1(x) = (1 + e−x)−1 and
Ψ−1(x) = 1 − Ψ1(x). Note that Ψ1(·) is a logistic function. We denote ψ(·) as the derivative of
Ψ1(·). Assume that the features Y are generated independently of ξ. Thus the sequence of inde-
pendent observations {Ỹn, X̃n} = {(Y1, ξ1), (Y2, ξ2), . . . , (Yn, ξn)} are assumed to be generated
from the model dPθ(a, y) = Pθ(ξ = a, Y ∈ dy) = p(ξ = a|Y = y, θ)ν(dy). In the above binary
classification problem, the objective is to estimate θ(·) using the observation vector {Ỹn, X̃n}.

We posit a Gaussian process (GP) prior Π(·) on θ(·) ∈ Θ defined as W (·) =∑J̄α

j=1

∑2jd

k=1 µjZj,kϑj,k(·), where {µj} is a sequence that decreases with j, {Zi,j} are i.i.d. standard
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Gaussian random variables and {ϑj,k} form a double-indexed orthonormal basis (with respect to mea-
sure ν), that is Eν [ϑj,kϑl,m] = 1{j=l,k=m}). J̄α is the smallest integer satisfying 2J̄αd = nd/(2α+d)

for a given α > 0. This prior construction is motivated from the work in [30]. We also as-
sume that ν(·) is known, and we do not place any prior on it. The posterior distribution over θ(·)
given observations {Ỹn, X̃n} can be defined as dΠ(θ|{Ỹn, X̃n}) =

dΠ(θ)
∏n

i=1 Ψξi
(θ(Yi))ν(Yi)∫ ∏n

i=1 Ψξi
(θ(Yi))ν(Yi)dΠ(θ)

=

dΠ(θ)
∏n

i=1 Ψξi
(θ(Yi))∫ ∏n

i=1 Ψξi
(θ(Yi))dΠ(θ)

. Consider the loss function ℓ(a, ξ) = {0, if a = ξ; c+, if a = +1, ξ =

−1; c−, if a = −1, ξ = +1}, where c+ and c− are known positive constants. For a given feature
Y , the model risk is given by

R(a, θ) = EPθ
[ℓ(a, ξ)] =

{
c+Eν [Ψ−1(θ(Y ))], a = +1,

c−Eν [Ψ1(θ(Y ))], a = −1.
(8)

We fix the variational family QGP is a class of Gaussian distributions on Θ, defined as N (mq, Cq),
mq belongs to Θ and Cq is the covariance operator defined as Cq = C1/2(I − S)C1/2, for any S
which is a symmetric and Hilbert-Schmidt (HS) operator on Θ (eigenvalues of HS operator are square
summable). Note that S and mq span the distributions in QGP . We can show, using the technical
lemmas derived in Section B.3 in Appendix, that the optimality gap in values of the binary GP
classification problem converges to zero at a minimax optimal rate (upto logarithmic factors).
Theorem 4.2. Fix γ > 0 and for a given J ∈ N. For the binary GP classification problem with
GP prior induced by W =

∑J
j=1

∑2jd

k=1 µjZj,kϑj,k, where µj = 2−jd/2−ja for some a > 0, {Zi,j}
are i.i.d. standard Gaussian random variables and {ϑj,k} form a double-indexed orthonormal
basis (with respect to measure ν), and ∥θ0∥β;∞,∞ < ∞, and θJ0 (y) lie in the Cameron-Martin
space Im(C1/2), the variational family QGP , and for any τ > 0, the Pn

0 − probability of
{
X̃n :

R(a∗RS, θ0) − infz∈AR(z, θ0) ≤ 2τM ′(γ)ϵn
}

is at least 1 − τ−1 for sufficiently large n and for
some mapping M ′ : R+ → R+, where R(·, θ) is defined in (8) and

ϵn =

{
n−

β
(2α+d) log n ∀β ∈ [a, α]; n−

α
(2α+d) log n ∀α ∈ [a, β];

n−
a

(2a+d) (log n)
d

(2a+d) , ∀a ∈ [α, β]; n−
β

(2a+d) (log n)
d

(2a+d) ∀β ∈ [α, a].
(9)

A similar Gaussian process classification problem was studied empirically in [16].

4.3 Eight-schools model

We consider the eight-schools problem [33, 15], where the objective is to study the effectiveness of
the special coaching program for SAT exams, offered in 8 schools. Each school reported the treatment
effect yi and its standard deviation σi, where i ∈ {1, 2, 3, . . . , 8}. The observations {yi, σi}8i=1 are
modeled using the following hierarchical Bayesian model : 1) Prior distributions: µ ∼ N (·|0, 5) , τ ∼
half-Cauchy(·|0, 5), 2) θi ∼ N (·|µ, τ2) and yi ∼ N (·|θi, σ2

i ) for each i ∈ {1, 2, 3, . . . , 8}, where
{σi}8i=1 are assumed to be a known sequence of covariates. The posterior distribution is defined as
π8(µ, τ, {θi}8i=1|{yi, σi}8i=1) ∝ N (·|0, 5)half-Cauchy(·|0, 5)∏8

i=1 N (θi|µ, τ2)N (yi|θi, σ2
i ). For a

given treatment effect for eight schools y ∈ R8, the loss function is defined as:

ℓ(y, a) =

8∑
i=1

l(yi, ai), where l(yi, ai) =
{
0.2 |ai − yi|, yi ≥ ai
(1− 0.2) |ai − yi|, yi < ai,

(10)

where the decision variable a = {a1, a2, . . . , a8} denotes the effectiveness level. We de-
fine R(a, θ) = log

∫
p(y|θ, {σi}8i=1)ℓ(y, a)dy, θ ∈ R8 considering {σi}8i=1 is a given se-

quence of covariates. Now for any γ > 0, RSVB joint-optimization problem is defined as
mina∈A maxQ∈Q

{
Eq[R(a, θ)]− 1

γ KL(q||π8)
}
. We fix the variational family Q to be the mean-

field variational family, that is qΛ(µ, τ, θ18i=1) = Nµ(·|λ9)Nτ (·|λ10)
∏8

i=1 Nθi(|λi), where Λ =
{λ1, λ2, . . . , λ10}, λi is the mean and variance parameter for each Gaussian distribution. Follow-
ing [15], we measure the performance of the RSVB method using the metric called empirical risk re-
duction (ERR) , I = ERVB − ERRSVB(γ), where , ERalg = 1

NY

∑NY

j=1 l(y
test
j , aalg), where ERalg de-

note the empirical risk evaluated at the decision rule aalg obtained using method alg ∈ {VB,RSVB(γ)}
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for various values of γ, and NY is the size of the test data {ytest
j }. Note that ERR is the empirical

approximation of the difference of optimality gap between the two-step näive VB approach and
RSVB(γ) approach. Recall, in the näive VB method, we first compute the KL minimizer of the true
posterior and then compute the optimal decision using this approximate posterior. Following [15],
due to small size of the dataset in this example, the ERR is evaluated on the training data itself.

We modified the experiments in [15] by introducing γ = {5, 2.5, 1, 0.5} = {0.2−1, 0.4−1, 1−1, 2−1}
and obtain the results as summarized in Figure 2(a) and (b). In Figure 2(a), we observe that as γ
increases, the ERR also increases, which implies that the decisions are more optimistic as empirical
loss of the RSVB decision rule decreases as γ increases. Also, observe from Figure 2(b) that, as γ
increases, the RSVB posterior (joint marginal posterior distritbution for (θ3, τ)) approaches the true
posterior, and the variance of the approximate posterior also reduces.

(a) ERR

0 2 4 6 8 10
τ

−10

0

10

20

θ 3

Posterior

RSVB-γ−1 =0.2

RSVB-γ−1 =0.4

RSVB-γ−1 =1

RSVB-γ−1 =2
VI/VB

(b) {θ3, τ}

Figure 2: a) Empirical risk reduction plot for different level of risk sensitivity , b) Joint RSVB
posterior distribution of {θ3, τ}, plotted for different level of risk sensitivity.

Notice that it is not obvious that the variance of the RSVB posterior will reduce as γ increases. We
believe that it depends on the landscape of the expected risk function and the choice of the variational
family. Intuitively, a possible explanation of this phenomenon can be provided using the equation
(RSVB). Consider the RSVB formulation and note that KL > 0, therefore as γ increases, there is
more incentive to deviate from the true posterior and choose Q ∈ Q that maximizes expected risk
for a given a ∈ A. Note that a Q that places more mass near the θ that maximizes the risk will be
preferred over the one with more spread.

5 Discussion and Future Work

The RSVB formulation as stated in this paper requires us to solve a stochastic minimax optimization
problem to compute a decision rule. This is often difficult to solve, particularly in the nonconvex-
nonconcave setting of RSVB, and indeed, we are not aware of any computationally efficient methods
for solving such problems in all generality [8]. To circumvent this, the authors in the LCVB literature
maximize utility instead of minimizing risk, and thus convert the whole problem to a much simpler
max-max optimization problem. If we replace risk with utility in the RSVB derivation, we will also
get a max-max problem. In this formulation, as you increase γ, the incentive to deviate from the
posterior and maximize the maximum utility increases. Therefore, increasing γ corresponds to being
more optimistic in making decisions than being more risk averse in the risk setting, as observed in
the empirical results for the eight schools model in Section 4.3.

We note that we assumed the risk-function is lower-bounded, this is a natural assumption to place
on risk functions. Converting our problem to a max-max problem would further require the risk
to be upper bounded, which is also assumed for the methodologies presented (without theory)
in [16, 15]. We emphasize that our theoretical results will continue to hold in this setting, but since
our emphasis was on the statistical aspects of this problem, we chose to present our results with
minimum assumptions. Developing an algorithm for solving general minimax optimization in RSVB
without transforming it into a max-max problem is open and a part of our future work. Also an
interesting topic for future work is identifying minimum additional assumptions to theoretically
characterize computational aspects of this problem.
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A Additional definitions

We provide the definitions of important terms used throughout the paper. First, recall the definition
of covering numbers:
Definition A.1 (Covering numbers). Let P := {Pθ, θ ∈ Θ} be a parametric family of distributions
and d : P × P 7→ [0,∞) be a metric. An ϵ−cover of a subset PK := {Pθ : θ ∈ K ⊂ Θ} of the
parametric family of distributions is a set K ′ ⊂ K such that, for each θ ∈ K there exists a θ′ ∈ K ′

that satisfies d(Pθ, Pθ′) ≤ ϵ. The ϵ−covering number of PK is N(ϵ,PK , d) = min{card(K ′) :
K ′ is an ϵ−cover of K}, where card(·) represents the cardinality of the set.

Next, recall the definition of a test function [26]:
Definition A.2 (Test function). Let X̃n be a sequence of random variables on measurable space
(
⊗

n X ,Sn). Then any Sn-measurable sequence of functions {ϕn}, ϕn : X̃n 7→ [0, 1] ∀n ∈ N, is a
test of a hypothesis that a probability measure on Sn belongs to a given set against the hypothesis
that it belongs to an alternative set. The test ϕn is consistent for hypothesis Pn

0 against the alternative
Pn ∈ {Pn

θ : θ ∈ Θ\{θ0}} if EPn [ϕn] → 1{θ∈Θ\{θ0}}(θ),∀θ ∈ Θ as n → ∞, where 1{·} is an
indicator function.

A classic example of a test function is ϕKS
n = 1{KSn>Kν}(θ) that is constructed using the Kolmogorov-

Smirnov statistic KSn := supt |Fn(t) − Fθ(t)|, where Fn(t) and Fθ(t) are the empirical and true
distribution respectively, and Kν is the confidence level. If the null hypothesis is true, the Glivenko-
Cantelli theorem [29, Theorem 19.1] shows that the KS statistic converges to zero as the number of
samples increases to infinity.

Furthermore, we define the Hellinger distance h(θ1, θ2) between the two probability distributions

Pθ1 and Pθ2 is defined as dH(θ1, θ2) =
(∫ (√

dPθ1 −
√
dPθ2

)2)1/2
. We define the one-sided

Hausdorff distance H(A∥B) between sets A and B in a metric space D with distance function d is
defined as:

H(A∥B) = sup
x∈A

dh(x,B), where dh(x,B) = inf
y∈B

d(x, y).

Next, we define an arbitrary loss function Ln : Θ × Θ 7→ R that measures the distance between
models (Pn

θ1
, Pn

θ2
)∀{θ1, θ2} ∈ Θ. At the outset, we assume that Ln(θ1, θ2) is always positive. We

define {ϵn} as a sequence such that ϵn → 0 as n→ ∞ and nϵ2n ≥ 1.

We also define
Definition A.3 (Γ−convergence). A sequence of functions Fn : U 7→ R, for each n ∈ N,
Γ−converges to F : U 7→ R, if

• for every u ∈ U and every {un, n ∈ N} such that un → u, F (x) ≤ lim infn→∞ Fn(un);

• for every u ∈ U , there exists some {un, n ∈ N} such that un → u, F (x) ≥
lim supn→∞ Fn(un).

In addition, we define
Definition A.4 (Primal feasibility). For any two functions f : U 7→ R and b : U 7→ R, a point
u∗ ∈ U is primal feasible to the following constraint optimization problem

inf
u∈U

f(u) subject to b(u) ≤ c,

if b(u∗) ≤ c, for a given c ∈ R.

B Applications

B.1 Single product newsvendor problem (cont.)

First, we fix the sieve set Θn(ϵ) = Θ, which clearly implies that the restricted inverse-gamma prior
Π(θ), places no mass on the complement of this set and therefore satisfies Assumption 2.2.

Second, under the condition that the true demand distribution is exponential with parameter θ0 (and
P0 ≡ Pθ0 ), we demonstrate the existence of test functions satisfying Assumption 2.1.
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Lemma B.1. Fix n ≥ 5. Then, for any ϵ > ϵn := 1√
n

with ϵn → 0, and nϵ2n ≥ 1, there exists

a test function ϕn (depending on ϵ) such that LNV
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2

satisfies Assumption 2.1 with C0 = 20 and C = C1

2 (KNV
1 )−2 for a constant C1 > 0 and KNV

1 =

dH(T, θ0)
−1

[(
h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2]1/2
.

The proof of the above result follows by showing that dNV
L = n−1/2

√
LNV
n (θ, θ0) can be bounded

above by the Hellinger distance between two exponential distributions on Θ (under which a test
function exists) in Lemma C.10 in the appendix.

Third, we show that there exist appropriate constants such that the inverse-gamma prior satisfies
Assumption 2.3 when the demand distribution is exponential.

Lemma B.2. Fix n2 ≥ 2 and any λ > 1. Let An :=
{
θ ∈ Θ : D1+λ (P

n
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where

D1+λ (P
n
0 ∥Pn

θ ) is the Rényi divergence between Pn
0 and Pn

θ . Then for ϵ2n = logn
n and any C3 > 0

such C2 = αC3 ≥ 2, the truncated inverse-gamma prior Inv − ΓΘ(A;α, β) satisfies Π(An) ≥
exp(−nC2ϵ

2
n),∀n ≥ n2.

Fourth, it is straightforward to see that the newsvendor model risk R(a, θ) is bounded below for a
given a ∈ A.

Lemma B.3. For any a ∈ A and positive constants h and b, the newsvendor model risk R(a, θ) =(
ha− h

θ + (b+ h) e
−aθ

θ

)
≥
(

ha2θ∗

(1+aθ∗)

)
, where a := min{a ∈ A} and θ∗ satisfies h − (b +

h)e−aθ∗
(1 + aθ∗) = 0.

This implies that R(a, θ) satisfies Assumption 2.5. Finally, we also show that the newsvendor model
risk satisfies Assumption 2.4.

Lemma B.4. Fix n ≥ 1 and γ > 0. For any ϵ > ϵn and any a ∈ A, R(a, θ) satis-
fies EΠ[1{R(a,θ)γ>C4(γ)nϵ2}e

γR(a,θ)] ≤ exp(−C5(γ)nϵ
2), for any C4(γ) > 2γ

(
ha+ b

T

)
and

C5(γ) = C4(γ)− 2γ
(
ha+ b

T

)
, where a := max{a ∈ A}.

Note that Lemma B.1 implies that C = C1

2(KNV
1 )2

for any constant C1 > 0. Fixing α = 1 and
using Lemma B.2 we can choose C2 = C3 = 2. Now, C1 can be chosen large enough such that
C > C4(γ) + C5(γ) for a given risk sensitivity γ > 0. Therefore, the condition on constants
in Theorem 3.1 reduces to C5(γ) > 2 + C2 + C3 = 5, and it can be satisfied easily by fixing
C5(γ) = 5.1(say).

These lemmas show that when the demand distribution is exponential and with a non-conjugate
truncated inverse-gamma prior, our result in Theorem 3.2 can be used for RSVB method to bound the
optimality gap in decisions and values for various values of the risk-sensitivity parameter γ. Recall
that the bound obtained in Theorem 3.2 depends on ϵ2n and ηRn (γ).

Lemma B.2 implies that ϵ2n = logn
n , but in order to get the complete bound we further need to

characterize ηRn (γ). Recall that, as a consequence of Assumption 3.1 in Proposition 3.1, for a given
C8 = − infQ∈Q infa∈A EQ[R(a, θ)] that C9 > 0 and ηRn (γ) ≤ γn−1C8 + C9ϵ

′2
n .

Therefore, in our next result, we show that in the newsvendor setting, we can construct a sequence
{Qn(θ)} ⊂ Q that satisfies Assumption 3.1, and thus identify ϵ′n and the constant C9. We fix Q to
be the family of shifted gamma distributions with support [T,∞).

Lemma B.5. Let {Qn(θ)} be a sequence of shifted gamma distributions with shape parameter a = n
and rate parameter b = n

θ0
, then for truncated inverse gamma prior and exponentially distributed

likelihood model

1

n

[
KL (Qn(θ)∥Π(θ)) + EQn(θ)

[
KL
(
dPn

0 (X̃n))∥dPn
θ (X̃n)

)]]
≤ C9ϵ

′2
n ,

where ϵ′2n = logn
n and C9 = 1

2 + max
(
0, 2 + 2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
and prior

parameters are chosen such that C9 > 0.
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B.2 Multi-product newsvendor problem

Analogous to the one-dimensional newsvendor loss function, the loss function in its multi-product
version is defined as

ℓ(a, ξ) := hT (a− ξ)+ + bT (ξ − a)+

where h and b are given vectors of underage and overage costs respectively for each product and
mapping (·)+ is defined component-wise. We assume that there are d items or products and ξ ∈ Rd

denotes the random vector of demands. Let a ∈ A ⊂ Rd
+ be the inventory or decision variable,

typically assumed to take values in a compact decision space A with a := {{min{ai : ai ∈ Ai}}di=1

and ā := {{max{ai : ai ∈ Ai}}di=1, and a > 0, where Ai is the marginal set of ith component
of A. The random demand is assumed to be multivariate Gaussian, with unknown mean parameter
θ ∈ Rd but with known covariance matrix Σ. We also assume that Σ is a symmetric positive
definite matrix and can be decomposed as QTΛQ, where Q is an orthogonal matrix and Λ is a
diagonal matrix consisting of respective eigenvalues of Σ. We also define Λ = maxi∈{1,2,...d} Λii

and Λ = mini∈{1,2,...d} Λii. The model risk

R(a, θ) = EPθ
[ℓ(a, ξ)] =

d∑
i=1

EPθi
[hi(ai − ξi)

+ + bi(ξi − ai)
+]

=

d∑
i=1

[
(hi + bi)aiΦ

(
(ai − θi)

σii

)
− biai + θi(bi − hi)

+ σii

h ϕ
(

(ai−θi)
σii

)
Φ
(

(ai−θi)
σii

) + b
ϕ
(

(ai−θi)
σii

)
1− Φ

(
(ai−θi)

σii

)
], (11)

which is convex in a. Here Pθi is the marginal distribution of ξ for ith product, ϕ(·) and Φ(·)
are probability and cumulative distribution function of the standard Normal distribution. We also
assume that the true mean parameter θ0 lies in a compact subspace Θ ⊂ Rd. We fix the prior to be
uniformly distributed on Θ with no correlation across its components, that is π(A) = m(A

⋂
Θ)

m(Θ) =∏d
i=1

m(Ai
⋂

Θi)
m(Θi)

, where m(B) is the Lebesgue measure (or volume) of B ⊂ Rd As in the previous
example, we fix the sieve set Θn(ϵ) = Θ, which clearly implies that Π(θ) places no mass on the
complement of this set and therefore satisfies Assumption 2.2.

Then under the condition that the true demand distribution has a multivariate Gaussian distribution
(with known Σ) and mean θ0 (P0 ≡ Pθ0), we demonstrate the existence of test functions satisfying
Assumption 2.1 by constructing a test function unlike the single-product newsvendor problem with
exponential demand.
Lemma B.6. Fix n ≥ 1. Then, for any ϵ > ϵn := 1√

n
with ϵn → 0, and nϵ2n ≥ 1 and

test function ϕn,ϵ := 1{
X̃n:∥θ̂n−θ0∥>

√
C̃ϵ2

}, LMNV
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2

satisfies Assumption 2.1 with C0 = 1, C1 = 4K2C and C = 1/8
(

C̃
dΛ

− 1
)

for sufficiently large C̃

such that C > 1 and Λ = maxi∈{1,2,...d} Λii, where K = supA,Θ ∥∂θR(a, θ)∥.

In the following result, we show that there exist appropriate constants such that prior distribution
satisfies Assumption 2.3 when the demand distribution is a multivariate Gaussian with unknown
mean.
Lemma B.7. Fix n2 ≥ 2 and any λ > 1. Let An :=

{
θ ∈ Θ : D1+λ (P

n
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where

D1+λ (P
n
0 ∥Pn

θ ) is the Rényi Divergence between Pn
0 and Pn

θ . Then for ϵ2n = logn
n and any C3 > 0

such that C2 = 4d

Λ(λ+1)(
∏d

i=1 m(Θi))
2/dC3 ≥ 2 and for large enough n, the uncorrelated uniform

prior restricted to Θ satisfies Π(An) ≥ exp(−nC2ϵ
2
n).

Next, it is straightforward to see that the multi-product newsvendor model risk R(a, θ) is bounded
below for a given a ∈ A on a compact set Θ and thus it satisfies Assumption 2.5. Finally, we also
show that the newsvendor model risk satisfies Assumption 2.4.
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Lemma B.8. Fix n ≥ 1 and γ > 0. For any ϵ > ϵn and a ∈ A, R(a, θ) satisfies
EΠ[1{G(a,θ)γ>C4(γ)nϵ2}e

γG(a,θ)] ≤ exp(−C5(γ)nϵ
2
n), for any C4(γ) > 2γ sup{a,θ}∈A⊗ΘG(a, θ)

and C5(γ) = C4(γ)− 2γ sup{a,θ}∈A⊗ΘG(a, θ).

Similar to single product example, in our next result, we show that in the multi-product newsvendor
setting, we can construct a sequence {Qn(θ)} ∈ Q that satisfies Assumption 3.1, and thus identify
ϵ′n and constant C9. We fix Q to be the family of uncorrelated Gaussian distributions restricted to Θ.

Lemma B.9. Let {Qn(θ)} be a sequence of product of d univariate Gaussian distribution defined as

qin(θ) ∝ 1√
2πσ2

i,n

e
− 1

2σ2
i,n

(θ−µi,n)
2

1Θi =
N (θi|µi,n,σi,n)1Θi

N (Θi|µi,n,σi,n)
and fix σi,n = 1/

√
n and θi = θi0 for all

i ∈ {1, 2, . . . , d}. Then for uncorrelated uniform distribution restricted to Θ and multivariate normal

likelihood model 1
n

[
KL (Qn(θ)∥Π(θ)) + EQn(θ)

[
KL
(
dPn

0 (X̃n))∥dPn
θ (X̃n)

)]]
≤ C9ϵ

′2
n , where

ϵ′2n = logn
n and C9 := d

2 +max
(
0,−∑d

i=1[log(
√
2πe)− log(m(Θi))] +

d
2Λ

−1
)

.

Now, using the result established in lemmas above, we bound the optimality gap in values for the
multi-product newsvendor model risk.

Theorem B.1. Fix γ > 0. Suppose that the set A is compact. Then, for the multi-product newsvendor
model with multivariate Gaussian distributed demand with known covariance matrix Σ and unknown
mean vector θ lying in a compact subset Θ ⊂ Rd, prior Π(·) =∏d

i=1
m({·}∩Θi)

m(Θi)
, and the variational

family fixed to uncorrelated Gaussian distribution restricted to Θ, and for any τ > 0, the Pn
0 −

probability of the following event
{
X̃n : R(a∗RS, θ0)− infz∈AR(z, θ0) ≤ 2τM ′(γ)

(
logn
n

)1/2}
is

at least 1− τ−1 for sufficiently large n and for some mapping M ′ : R+ → R+, where R(·, θ) is the
multi-product newsvendor model risk.

Proof. The proof is a direct consequence of Theorem 3.2, Lemmas B.6, B.7, B.8, B.9, and Proposi-
tion 3.2.

B.3 Gaussian process classification (cont.)

We define the distance function as LGP
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2. In anticipation

of demonstrating that the binary classification model with GP prior and distance function LGP
n satisfy

the desired set of assumptions, we recall the following result, from [30], which will be central in
establishing Assumptions 2.1, 2.2, and 2.3.

Lemma B.10. [Theorem 2.1 [30]] Let θ(·) be a Borel measurable, zero-mean Gaussian random
element in a separable Banach space (Θ, ∥ · ∥) with reproducing kernel Hilbert space (RKHS)
(H, ∥ · ∥H) and let θ0 be contained in the closure of H in Θ. For any ϵ > ϵn satisfying φθ0(ϵ) ≤ nϵ2 ,
where

φθ0(ϵ) = inf
h∈H:∥h−θ0∥<ϵ

∥h∥2H − log Π(∥θ∥ < ϵ) (12)

and any C10 > 1 with e−C10nϵ
2
n < 1/2, there exists a measurable set Θn(ϵ) ⊂ Θ such that

logN(3ϵ,Θn(ϵ), ∥ · ∥) ≤ 6C10nϵ
2, (13)

Π(θ /∈ Θn(ϵ)) ≤ e−C10nϵ
2

, (14)

Π(∥θ − θ0∥ < 4ϵn) ≥ e−nϵ2n . (15)

The proof of the lemma above can be easily adapted from the proof of [30, Theorem 2.1], which is
specifically for ϵ = ϵn. Notice that the result above is true for any norm ∥ · ∥ on the Banach space if
that satisfies φθ0(ϵ) ≤ nϵ2. Moreover, if φθ0(ϵn) ≤ nϵ2n is true, then it also holds for any ϵ > ϵn,
since by definition φθ0(ϵ) is a decreasing function of ϵ.

All the results in the previous lemma depend on φθ0(ϵ) being less than nϵ2. In particular, observe
that the second term in the definition of φθ0(ϵ) depends on the prior distribution on Θ. Therefore,
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[30, Theorem 4.5] show that φθ0(ϵn) ≤ nϵ2n ( with ∥ · ∥ as supremum norm and for ϵn as defined
later in (9) ) is satisfied by the Gaussian prior of type

W (·) =
J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(·), (16)

where {µj} is a sequence that decreases with j, {Zi,j} are i.i.d. standard Gaussian random vari-
ables and {ϑj,k} form a double-indexed orthonormal basis (with respect to measure ν), that is
Eν [ϑj,kϑl,m] = 1{j=l,k=m}). J̄α is the smallest integer satisfying 2J̄αd = nd/(2α+d) for a given
α > 0. In particular, the GP above is constructed using the function class that is supported on
[0, 1]d and has a wavelet expansion, w(·) =∑∞

j=1

∑2jd

k=1 wj,kϑj,k(·). The wavelet function space is

equipped with the L2−norm: ∥w∥2 =
∑∞

j=1

(∑2jd

k=1 |wj,k|2
)1/2

; the supremum norm: ∥w∥∞ =∑∞
j=1 2

jd max1≤k≤2jd |wj,k|; and the Besov (β,∞,∞)−norm: ∥w∥β;∞,∞ = sup1≤j<∞ 2jβ2jd

max1≤k≤2jd |wj,k|. Note thatW induces a measure over the RKHS H, defined as a collection of trun-

cated wavelet functions w(·) =∑J̄α

j=1

∑2jd

k=1 wj,kϑj,k(·), with norm induced by the inner-product on

H as ∥w∥2H =
∑J̄α

j=1

∑2jd

k=1

w2
j,k

µ2
j
. The RKHS kernel K : [0, 1]d × [0, 1]d 7→ R can be easily derived

as

K(x, y) = E[W (x)W (y)] = E

 J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(y)

 J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(x)


=

J̄α∑
j=1

2jd∑
k=1

µ2
jϑj,k(y)ϑj,k(x).

Indeed, by the definition of this kernel and inner product, observe that
⟨K(x, ·), w(·)⟩ =

∑J̄α

j=1

∑2jd

k=1 wj,kµ
2
jϑj,k(x)

1
µ2
j

= w(x). Moreover, ⟨K(x, ·),K(y, ·)⟩ =∑J̄α

j=1

∑2jd

k=1 µ
2
jϑj,k(x)µ

2
jϑj,k(y)

1
µ2
j
= K(x, y). It is clear from its definition that W is a centered

Gaussian random field on the RKHS.

Next, using the definition of the kernel, we derive the covariance operator of the Gaussian random field
W . Recall that Y ∼ ν, which enables us to define the covariance operator C, following [27, (6.19)]
as (Chν)(x) =

∫
[0,1]d

K(x, y)hν(y)dν(y). Also, observe that {µ2
j , φj,k} is the eigenvalue and eigen

function pair of the covariance operator C. Consequently, using Karhunen Loéve expansion [27,
Theorem 6.19] the prior induced by W on H is a Gaussian distribution denoted as N (0, C). We also
recall the Cameron-Martin space denoted as Im(C1/2) associated with a Gaussian measure N (0, C)
on H to be the intersection of all linear spaces of full measure under N (0, C) [27, (page 530)]. In
particular, Im(C1/2) is the Hilbert space with inner product ⟨·, ·⟩C = ⟨C−1/2·, C−1/2·⟩.
Next, we show the existence of test functions in the following result.
Lemma B.11. For any ϵ > ϵn with ϵn → 0, nϵ2n ≥ 2 log 2, and φθ0(ϵ) ≤ nϵ2, there exists a test
function ϕn (depending on ϵ) such that LGP

n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies
Assumption 2.1 with C = 1/6, C0 = 2 and C1 = (max(c+, c−))

2.

Assumption 2.2 is a direct consequence of (14) in Lemma B.10. Next, we prove that prior distribution
and the likelihood model satisfy Assumption 2.3 using (15) of Lemma B.10.
Lemma B.12. For any λ > 1, let An :=

{
θ ∈ Θ : D1+λ (P

n
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where

D1+λ (P
n
0 ∥Pn

θ ) is the Rényi Divergence between Pn
0 and Pn

θ . Then for any ϵ > ϵn satisfying
φθ0(ϵ) ≤ nϵ2 and C3 = 16(λ+ 1) and C2 = 1, the GP prior satisfies Π(An) ≥ exp(−nC2ϵ

2
n).

Assumption 2.4 and 2.5 are straightforward to satisfy since the model risk functionR(a, θ) is bounded
from above and below.

Now, suppose the variational family QGP is a class of Gaussian distributions on Θ, defined as
N (mq, Cq), mq belongs to Θ and Cq is the covariance operator defined as Cq = C1/2(I − S)C1/2,
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for any S which is a symmetric and Hilbert-Schmidt (HS) operator on Θ (eigenvalues of HS operator
are square summable). Note that S and mq span the distributions in QGP .

The following lemma verifies Assumption 3.1, for a specific sequence of distributions in Q.

Lemma B.13. For a given J ∈ N, let {Qn} be a sequence variational distribution such

that Qn is the measure induced by a GP, WQ(·) = θJ0 (y) +
∑J

j=1

∑2jd

k=1 ζ
2
jZj,kϑj,k(·), where

θJ0 (·) =
∑J

j=1

∑2jd

k=1 θ0;j,kϑj,k(·) and ζ2j =
µ2
j

1+nϵ2nτ
2
j

. Then for GP prior induced by W =∑J
j=1

∑2jd

k=1 µjZj,kϑj,k and µj = 2−jd/2−ja for some a > 0, ∥θ0∥β;∞,∞ < ∞, and θJ0 (y) lie in
the Cameron-Martin space Im(C1/2), we have 1

nKL(N (θ̄J0 , Cq)∥N (0, C)) + 1
nEQn

KL(Pn
0 ∥Pn

θ ) ≤
C9ϵ

2
n, where ϵn is defined in 9 and C9 := max

(
∥θ0∥2β,∞,∞,

2−2a−2−2Ja−2a

1−2−2a , 2d/(2d − 1), C ′
)

,

where C ′ is a positive constant satisfying ∥θ0(y)− θJ0 (y))∥2∞ ≤ C ′2−2Jβ .

Using the result above together with Proposition 3.2 implies that the RSVB posterior converges at
the same rate as the true posterior, where the convergence rate of the true posterior is derived in [30,
Theorem 4.5] for the binary GP classification problem with truncated wavelet GP prior. Finally, we
use the results above to obtain bound on the optimality gap in values of the binary GP classification
problem.

C Proofs

C.1 Alternative derivation of LCVB

We present the alternative derivation of LCVB. Consider the logarithm of the Bayes posterior risk,

logEΠ(θ|X̃n)
[exp(R(a, θ))] = log

∫
Θ

exp(R(a, θ))dΠ(θ|X̃n)

= log

∫
Θ

dQ(θ)

dQ(θ)
exp(R(a, θ))dΠ(θ|X̃n)

≥ −
∫
Θ

dQ(θ) log
dQ(θ)

exp(R(a, θ))dΠ(θ|X̃n)
=: F(a;Q(·), X̃n) (17)

where the inequality follows from an application of Jensen’s inequality (since, without loss of
generality, exp(R(a, θ)) > 0 for all a ∈ A and θ ∈ Θ), and Q ∈ Q. Then, it follows that

min
a∈A

logEΠ(θ|X̃n)
[exp(R(a, θ))] ≥ min

a∈A
max
q∈Q

F(a;Q(θ), X̃n)

= min
a∈A

max
q∈Q

− KL
(
Q(θ)||Π(θ|X̃n)

)
+

∫
Θ

R(a, θ)dQ(θ). (18)

C.2 Proof of Theorem 3.1

We prove our main result after a series of important lemmas. For brevity we denote LRn(θ, θ0) =
p(X̃n|θ)
p(X̃n|θ0)

.

Lemma C.1. For any a′ ∈ A, γ > 0, and ζ > 0,

EPn
0

[
ζ

∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn

0

[
KL(Q(θ)∥Π(θ|X̃n))

− γ inf
a∈A

EQ[R(a, θ)]

]
+ logEPn

0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
. (19)
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Proof. For any fixed a′ ∈ A, γ > 0, and ζ > 0, and using the fact that KL is non-negative, observe
that the integral in the LHS of equation (19) satisfies,

ζEQ∗
a′,γ(θ|X̃n)

[Ln(θ, θ0)] ≤ EQ∗
a′,γ(θ|X̃n)

[
log eζLn(θ,θ0)

]
+ KL

(
dQ∗

a′,γ(θ|X̃n)

∥∥∥∥ eζLn(θ,θ0)eγR(a′,θ) dΠ(θ|X̃n)∫
Θ
eζLn(θ,θ0)eγR(a′,θ) dΠ(θ|X̃n)

)
= EQ∗

a′,γ(θ|X̃n)

[
log eζLn(θ,θ0)

]
+ logEΠn

[
eζLn(θ,θ0)eγR(a′,θ)

]
+ EQ∗

a′,γ(θ|X̃n)

[
log

dQ∗
a′,γ(θ|X̃n)

eζLn(θ,θ0)eγR(a′,θ) dΠ(θ|X̃n)

]

= logEΠn

[
eζLn(θ,θ0)eγR(a′,θ)

]
+ EQ∗

a′,γ(θ|X̃n)

[
log

dQ∗
a′,γ(θ|X̃n)

eγR(a′,θ) dΠ(θ|X̃n)

]
.

Next, using the definition of Q∗
a′,γ(θ|X̃n) in the second term of last equality, for any other Q(·) ∈ Q

ζEQ∗
a′,γ(θ|X̃n)

[Ln(θ, θ0)] ≤ logEΠn

[
eζLn(θ,θ0)eγR(a′,θ)

]
+ EQ

[
log

dQ(θ)

eγR(a′,θ) dΠ(θ|X̃n)

]
.

Finally, it follows from the definition of the posterior distribution that

ζEQ∗
a′,γ(θ|X̃n)

[Ln(θ, θ0)]

≤ log

∫
Θ

eζLn(θ,θ0)eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

+ EQ

[
log

dQ(θ)

eγR(a′,θ) dΠ(θ|X̃n)

]
,

= log

∫
Θ

eζLn(θ,θ0)
eγR(a′,θ)LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ)LRn(θ, θ0)dΠ(θ)

+ EQ

[
log

dQ(θ)

eγR(a′,θ) dΠ(θ|X̃n)

]
+ log

∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

, (20)

where the last equality follows from adding and subtracting logEΠ

[
eγR(a′,θ)LRn(θ, θ0)

]
. Now

taking expectation on either side of equation (20) and using Jensen’s inequality on the first and the
last term in the RHS yields

EPn
0

[
ζEQ∗

a′,γ(θ|X̃n)
[Ln(θ, θ0)]

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn

0

[
KL(Q∥Πn)

− γ inf
a∈A

EQ [R(a, θ)]

]
+ logEPn

0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
, (21)

where in the second term in RHS of (20), we first take infimum over all a ∈ A which upper bounds
the second term in (20) and then take infimum over all Q ∈ Q, since the LHS does not depend on
Q.

Next, we state a technical result that is important in proving our next lemma.
Lemma C.2 (Lemma 6.4 of [34]). Suppose random variable X satisfies

P(X ≥ t) ≤ c1 exp(−c2t),
for all t ≥ t0 > 0. Then for any 0 < β ≤ c2/2,

E[exp(βX)] ≤ exp(βt0) + c1.

Proof. Refer Lemma 6.4 of [34].
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In the following result, we bound the first term on the RHS of equation (19). The arguments in the
proof are essentially similar to Lemma 6.3 in [34]
Lemma C.3. Under Assumptions 2.1, 2.2, 2.3, 2.4, and 2.5 and for min(C,C4(γ) + C5(γ)) >
C2 + C3 + C4(γ) + 2 and any ϵ ≥ ϵn,

EPn
0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ eζC1nϵ

2

+ (1 + C0 + 3W−γ), (22)

for 0 < ζ ≤ C10/2, where C10 = min{λ,C, 1}/C1 for any λ > 0.

Proof. First define the set

Bn :=

{
X̃n :

∫
Θ

LRn(θ, θ0)dΠ(θ) ≥ e−(1+C3)nϵ
2

Π(An)

}
, (23)

where set An is defined in Assumption 2.3. We demonstrate that, under Assumption 2.3, Pn
0 (Bc

n) is
bounded above by an exponentially decreasing(in n) term. Note that for An as defined in Assump-
tion 2.3:

Pn
0

(
1

Π(An)

∫
Θ

LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nϵ
2

)
≤ Pn

0

(
1

Π(An)

∫
Θ∩An

LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nϵ
2

)
. (24)

Let dΠ̃(θ) :=
1{Θ∩An}(θ)

Π(An)
dΠ(θ), and use this in (24) for any λ > 0 to obtain,

Pn
0

(∫
Θ

LRn(θ, θ0)dΠ̃(θ) ≤ e−(1+C3)nϵ
2

)
= Pn

0

([∫
Θ

LRn(θ, θ0)dΠ̃(θ)

]−λ

≥ e(1+C3)λnϵ
2

)
.

Then, using the Markov’s inequality in the last equality above, we have

Pn
0

(∫
Θ

LRn(θ, θ0)dΠ̃(θ) ≤ e−(1+C3)nϵ
2

)
≤ e−(1+C3)λnϵ

2

EPn
0

([∫
Θ

LRn(θ, θ0)dΠ̃(θ)

]−λ
)

≤ e−(1+C3)λnϵ
2

[∫
Θ

EPn
0

(
[LRn(θ, θ0)]

−λ
)
dΠ̃(θ)

]
= e−(1+C3)λnϵ

2

[∫
Θ

exp(λDλ+1 (P
n
0 ∥Pn

θ ))dΠ̃(θ)

]
≤ e−(1+C3)λnϵ

2

eλC3nϵ
2
n ≤ ϵ−λnϵ2 , (25)

where the second inequality follows from first applying Jensen’s inequality (on the term inside [·])
and then using Fubini’s theorem, and the penultimate inequality follows from Assumption 2.3 and
the definition of Π̃(θ).

Next, define the set Kn := {θ ∈ Θ : Ln(θ, θ0) > C1nϵ
2}. Notice that set Kn is the set of alternate

hypothesis as defined in Assumption 2.1. We bound the calibrated posterior probability of this set
Kn to get a bound on the first term in the RHS of equation (19). Recall the sequence of test function
{ϕn,ϵ} from Assumption 2.1. Observe that

EPn
0

[∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

= EPn
0

[
(ϕn,ϵ + 1− ϕn,ϵ)

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ EPn

0
[ϕn,ϵ] + EPn

0

[
(1− ϕn,ϵ)1BC

n

]
+ EPn

0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

≤ EPn
0
ϕn,ϵ + EPn

0

[
1BC

n

]
+ EPn

0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
, (26)
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where in the second inequality, we first divide the second term over set Bn and its complement

and then use the fact that
∫
Kn

eγR(a′,θ) LRn(θ,θ0)dΠ(θ)∫
Θ

eγR(a′,θ) LRn(θ,θ0)dΠ(θ)
≤ 1. The third inequality is due the fact that

ϕn,ϵ ∈ [0, 1]. Next, using Assumption 2.3 and 2.5 observe that on set Bn∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ) ≥W γ

∫
Θ

LRn(θ, θ0)dΠ(θ)

≥W γe−(1+C2+C3)nϵ
2
n ≥W γe−(1+C2+C3)nϵ

2

.

Substituting the equation above in the third term of equation (26), we obtain

EPn
0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

≤W−γe(1+C2+C3)nϵ
2

EPn
0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤W−γe(1+C2+C3)nϵ

2

EPn
0

[
(1− ϕn,ϵ)

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
. (⋆)

Now using Fubini’s theorem observe that,

(⋆) =W−γe(1+C2+C3)nϵ
2

∫
Kn

eγR(a′,θ)EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

≤W−γe(1+C2+C3+C4(γ))nϵ
2

[∫
Kn∩{eγR(a′,θ)≤eC4(γ)nϵ2}

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+ e−C4(γ)nϵ
2

∫
Kn∩{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]
,

where in the last inequality, we first divide the integral over set {θ ∈ Θ : eγR(a′,θ) ≤ eC4(γ)nϵ
2} and

its complement and then use the upper bound on eγR(a′,θ) in the first integral. Now, it follows that

(⋆) ≤W−γe(1+C2+C3+C4(γ))nϵ
2

[∫
Kn

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+e−C4(γ)nϵ
2

∫
{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]

=W−γe(1+C2+C3+C4(γ))nϵ
2

[∫
Kn∩Θn(ϵ)

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+

∫
Kn∩Θn(ϵ)c

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ) + e−C4(γ)nϵ

2

∫
{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]
≤W−γe(1+C2+C3+C4(γ))nϵ

2

[∫
Kn∩Θn(ϵ)

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ) + Π(Θn(ϵ)

c)

+ e−C4(γ)nϵ
2

∫
{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]
,

where the second equality is obtained by dividing the first integral on set Θn(ϵ) and its complement,
and the second inequality is due the fact that ϕn,ϵ ∈ [0, 1]. Now, using the equation above and
Assumption 2.1, 2.2, and 2.4 observe that

EPn
0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤W−γe(1+C2+C3+C4(γ))nϵ

2
[
2e−Cnϵ2 + e−(C5(γ)+C4(γ))nϵ

2
]
.

Hence, choosingC,C2, C3, C4(γ) andC5(γ) such that −1 > 1+C2+C3+C4(γ)−min(C, (C4(γ)+
C5(γ))) implies
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EPn
0

[
(1− ϕn,ϵ)IBn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ 3W−γe−nϵ2 . (27)

By Assumption 2.1, we have

EPn
0
ϕn,ϵ ≤ C0e

−Cnϵ2 . (28)

Therefore, substituting equation (25), equation (27), and (28) into (26), we obtain

EPn
0

[∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ (1 + C0 + 3W−γ)e−C10C1nϵ

2

, (29)

where C10 = min{λ,C, 1}/C1. Using Fubini’s theorem, observe that the LHS in the equation (29)
can be expressed as µ(Kn), where

dµ(θ) = EPn
0

[ LRn(θ, θ0)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
Π(θ)eγR(a′,θ)dθ.

Next, recall that the set Kn = {θ ∈ Θ : Ln(θ, θ0) > C1nϵ
2}. Applying Lemma C.2 above with

X = Ln(θ, θ0), c1 = (1 + C0 + 3W−γ) , c2 = C10 , t0 = C1nϵ
2
n, and for 0 < ζ ≤ C10/2, we

obtain

EPn
0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)Π(θ)∫

Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

dθ

]
≤ eζC1nϵ

2
n + (1 + C0 + 3W−γ). (30)

Further, we have another technical lemma, that will be crucial in proving the subsequent lemma that
upper bounds the last term in the equation (19).
Lemma C.4. Suppose a positive random variable X satisfies

P(X ≥ et) ≤ c1 exp(−(c2 + 1)t),

for all t ≥ t0 > 0, c1 > 0, and c2 > 0. Then,

E[X] ≤ exp(t0) +
c1
c2
.

Proof. For any Z0 > 1,

E[X] ≤ Z0 +

∫ ∞

Z0

P(X ≥ x)dx

= Z0 +

∫ ∞

lnZ0

P(X ≥ ey)eydy ≤ Z0 + c1

∫ ∞

lnZ0

exp(−c2y)dy.

Therefore, choosing Z0 = exp(t0),

E[X] ≤ exp(t0) +
c1
c2

exp(−c2t0) ≤ exp(t0) +
c1
c2
.

Next, we establish the following bound on the last term in equation (19).
Lemma C.5. Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, and for C5(γ) > C2 + C3 + 2,

EPn
0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ eC4(γ)nϵ

2
n + 2C4(γ). (31)

for any λ ≥ 1 + C4(γ).
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Proof. Define the set

Mn := {θ ∈ Θ : eγR(a′,θ) > eC4(γ)nϵ
2}. (32)

Using the set Bn in equation (23), observe that the measure of the set Mn, under the posterior
distribution satisfies,

EPn
0

[∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ EPn

0

[
1Bc

n

]
+ EPn

0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
. (33)

Now, the second term of equation (33) can be bounded as follows: recall Assumption 2.3 and the
definition of set Bn, both together imply that,

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nϵ

2

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nϵ

2

EPn
0

[∫
Mn

LRn(θ, θ0)dΠ(θ)

]
. (⋆⋆)

Then, using Fubini’s Theorem (⋆⋆) = e(1+C2+C3)nϵ
2

Π(Mn). Next, using the definition of set Mn

and then Assumption 2.4, we obtain

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nϵ

2

e−C4(γ)nϵ
2

∫
Mn

eγR(a′,θ)dΠ(θ)

≤ e(1+C2+C3)nϵ
2

e−C4(γ)nϵ
2

e−C5(γ)nϵ
2

,

Hence, choosing the constants C2, C3, C4(γ) and C5(γ) such that −1 > 1 + C2 + C3 − C5(γ)
implies

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ e−(1+C4(γ))nϵ

2

(34)

Therefore, substituting (25) and (34) into (33)

EPn
0

[∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ 2e−C4(γ)(C11(γ)+1)nϵ2 , (35)

where C11(γ) = min{λ, 1 + C4(γ)}/C4(γ) − 1. Using Fubini’s theorem, observe that the RHS
in (35) can be expressed as ν(Mn), where the measure

dν(θ) = EPn
0

[ LRn(θ, θ0)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
dΠ(θ).

Applying Lemma C.4 for X = eγR(a′,θ),c1 = 2 , c2 = C11(γ) , t0 = C4(γ)nϵ
2
n and λ ≥ 1+C4(γ),

we obtain

EPn
0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ eC4(γ)nϵ

2
n +

2

C11(γ)
≤ eC4(γ)nϵ

2
n + 2C4(γ). (36)

Proof. Proof of Theorem 3.1: Finally, recall (19),

ζEPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn

0

[
KL(Q∥Πn)

− γ inf
a∈A

EQ[R(a, θ)]

]
+ logEPn

0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
. (37)
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Substituting (31) and (22) into the equation above and then using the definition of ηRn (γ), we get

EPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤1

ζ

{
log(eζC1nϵ

2
n + (1 + C0 + 3W−γ)) + log

(
eC4(γ)nϵ

2
n + 2C4(γ)

)
+ nηRn (γ)

}
≤
(
C1 +

1

ζ
C4(γ)

)
nϵ2n +

1

ζ
nηRn (γ) +

(1 + C0 + 3W−γ)e(−ζC1nϵ
2
n) + 2C4(γ)e

−C4(γ)nϵ
2
n

ζ
,

where the last inequality uses the fact that log x ≤ x− 1. Choosing ζ = C10/2 = min(C,λ,1)
2C1

,

EPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤M(γ)n(ϵ2n) +M ′nηRn (γ) +

2(1 + C0 + 3W−γ)e(−
C10
2 nϵ2n) + 4C4(γ)e

−C4(γ)nϵ
2
n

C10
(38)

where M(γ) = C1 +
1
ζC4(γ) and M ′ = 1

ζ depend on C,C1, C4(γ),W and λ. Since the last two
terms in (38) decrease and the first term increases as n increases, we can choose M ′ large enough,
such that for all n ≥ 1

M ′nηRn (γ) >
2(1 + C0 + 3W−γ)

C10
+

4C4(γ)

C10
,

and therefore for M = 2M ′,

EPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤M(γ)n(ϵ2n) +MnηRn (γ). (39)

Also, observe that the LHS in the above equation is always positive, therefore M(γ)ϵ2n +MηRn (γ) ≥
0 ∀n ≥ 1 and γ > 0.

C.3 Proof of Theorem 3.2

Lemma C.6. Given a′ ∈ A and for a constant M, as defined in Theorem 3.1

EPn
0

[
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ0)
∣∣∣] ≤ [M(γ)ϵ2n +MηRn (γ)

] 1
2 . (40)

Proof. First, observe that(
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ)
∣∣∣)2

≤
(
EQ∗

a′,γ(θ|X̃n)

[
sup
a∈A

|R(a, θ)−R(a, θ0)|
])2

≤EQ∗
a′,γ(θ|X̃n)

[(
sup
a∈A

|R(a, θ)−R(a, θ0)|
)2
]
,

where the last inequality follows from Jensen’s inequality. Now, using the Jensen’s inequality again(
EPn

0

[
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ0)
∣∣∣])2

≤ EPn
0

[(
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ0)
∣∣∣)2
]
.

Now, using Theorem 3.1 the result follows immediately.
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Proof of Theorem 3.2. Observe that

R(a∗RS, θ0)− inf
z∈A

R(z, θ0)

= |R(a∗RS, θ0)− inf
z∈A

R(z, θ0)|

= R(a∗RS, θ0)− EQ∗
a∗RS,γ

(θ|X̃n)
[R(a∗RS, θ)] + EQ∗

a∗RS,γ
(θ|X̃n)

[R(a∗RS, θ)]− inf
z∈A

R(z, θ0)

≤
∣∣∣∣R(a∗RS, θ0)− EQ∗

a∗RS,γ
(θ|X̃n)

[R(a∗RS, θ)]

∣∣∣∣+ ∣∣∣∣EQ∗
a∗RS,γ

(θ|X̃n)
[R(a∗RS, θ)]− inf

a∈A
R(a, θ0)

∣∣∣∣
≤ 2 sup

a∈A

∣∣∣∣∫ R(a, θ)dQ∗
a∗RS,γ

(θ|X̃n)−R(a, θ0)

∣∣∣∣ . (41)

Given a∗RS ∈ A and for a constant M (defined in Theorem 3.1), we have from Lemma C.6 for a′ = a∗RS

EPn
0

[
sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗
a∗RS,γ

(θ|X̃n)−R(a, θ0)

∣∣∣∣] ≤ [M(γ)ϵ2n +MηRn (γ)
] 1

2 . (42)

It follows from above that the Pn
0 − probability of the following event is at least 1− τ−1:{

X̃n : R(a∗RS, θ0)− inf
z∈A

R(z, θ0) ≤ 2τ
[
M(γ)ϵ2n +MηRn (γ)

] 1
2

}
. (43)

C.4 Proofs in Section 3.1

Proof of Proposition 3.1. Using the definition of ηRn (γ) and the posterior distribution Π(θ|X̃n),
observe that

nηRn (γ) = inf
Q∈Q

EPn
0

[
KL(Q∥Πn)− γ inf

a∈A
EQ[R(a, θ)]

]
= inf

Q∈Q
EPn

0

[
KL(Q∥Π) +

∫
Θ

dQ(θ) log

(∫
dΠ(θ)p(X̃n|θ)
p(X̃n|θ)

)
− γ inf

a∈A
EQ[R(a, θ)]

]

= inf
Q∈Q

[
KL(Q∥Π)− γ inf

a∈A
EQ[R(a, θ)] + EPn

0

[
EQ

[
log

(∫
dΠ(θ)p(X̃n|θ)
p(X̃n|θ)

)]]]
.

Now, using Fubini’s in the last term of the equation above, we obtain

nηRn (γ) = inf
Q∈Q

[
KL(Q(θ)∥Π(θ))− γ inf

a∈A
EQ[R(a, θ)]

+ EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)
− KL

(
dPn

0

∥∥∥∥∫ dΠ(θ)p(X̃n|θ)
)]]

. (44)

Observe that,
∫
Xn

∫
dΠ(θ)p(X̃n|θ)dX̃n = 1. Since, KL is always non-negative, it follows from the

equation above that

ηRn (γ)

≤ 1

n
inf
Q∈Q

[
KL (Q(θ)∥Π(θ))− γ inf

a∈A
EQ[R(a, θ)] + EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]]

≤ 1

n
inf
Q∈Q

[
KL (Q(θ)∥Π(θ)) + EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]]

− γ

n
inf
Q∈Q

inf
a∈A

EQ[R(a, θ)], (45)

where the last inequality follows from the following fact, for any functions f(·) and g(·),
inf(f − g) ≤ inf f − inf g.
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Recall ϵ′n ≥ 1√
n

. Now, using Assumption 3.1, it is straightforward to observe that the first term
in (45),

1

n
inf
Q∈Q

[
KL (Q(θ)∥Π(θ)) + EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]]

≤ C9ϵ
′2
n . (46)

Now consider the last term in (45). Notice that the coefficient of 1
n is independent of n and is bounded

from below. Therefore, there exist a constant C8 = − infQ∈Q infa∈A EQ[R(a, θ)], such that with
equation (46) it follows that ηRn (γ) ≤ γn−1C8 + C9ϵ

′2
n and the result follows.

Proof of Proposition 3.2. First recall that

nηRn (γ) = inf
Q∈Q

EPn
0

[
KL(Q(θ)∥Π(θ|X̃n))− γ inf

a∈A
EQ[R(a, θ)]

]
= inf

Q∈Q
EPn

0

[
KL(Q(θ)∥Π(θ|X̃n))

]
− γ inf

a∈A
EQ[R(a, θ)]. (47)

Observe that the optimization problem is equivalent to solving :

min
Q∈Q

EPn
0

[
KL(Q(θ)∥Π(θ|X̃n))

]
s.t. − inf

a∈A
EQ[R(a, θ)] ≤ 0. (48)

Now for any γ > 0, Q∗
γ(θ) ∈ Q that minimizes the objective in (47) is primal feasible if

− inf
a∈A

∫
Θ

dQ∗
γ(θ)R(a, θ) ≤ 0.

Therefore, it is straightforward to observe that as γ increases nηRn (γ) decreases that is

EPn
0

[∫
Θ

dQ∗
γ(θ) log

dQ∗
γ(θ)

dΠ(θ|X̃n)
− γ inf

a∈A

∫
Θ

dQ∗
γ(θ)R(a, θ)

]
.

C.5 Sufficient conditions on R(a, θ) for existence of tests

To show the existence of test functions, as required in Assumption 2.1, we will use the following
result from [11, Theorem 7.1], that is applicable only to distance measures that are bounded above
by the Hellinger distance.
Lemma C.7 (Theorem 7.1 of [11]). Suppose that for some non-increasing function D(ϵ), some
ϵn > 0 and for every ϵ > ϵn,

N
( ϵ
2
, {Pθ : ϵ ≤ m(θ, θ0) ≤ 2ϵ} ,m

)
≤ D(ϵ),

where m(·, ·) is any distance measure bounded above by Hellinger distance. Then for every ϵ > ϵn,
there exists a test ϕn (depending on ϵ > 0) such that, for every j ≥ 1,

EPn
0
[ϕn] ≤ D(ϵ) exp

(
−1

2
nϵ2
)

1

1− exp
(
− 1

2nϵ
2
) , and

sup
{θ∈Θn(ϵ):m(θ,θ0)>jϵ}

EPn
θ
[1− ϕn] ≤ exp

(
−1

2
nϵ2j

)
.

Proof of Lemma C.7: Refer Theorem 7.1 of [11].

For the remaining part of this subsection we assume that Θ ⊆ Rd. In the subsequent paragraph, we
state further assumptions on the risk function to show Ln(·, ·) as defined in (6) satisfies Assump-
tion 2.1. For brevity we denote n−1/2

√
Ln(θ, θ0) by dL(θ, θ0), that is
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dL(θ1, θ2) := sup
a∈A

|R(a, θ1)−R(a, θ2)|, ∀{θ1, θ2} ∈ Θ (49)

and the covering number of the set T (ϵ) := {Pθ : dL(θ, θ0) < ϵ} as N(δ, T (ϵ), dL), where δ > 0 is
the radius of each ball in the cover. We assume that the risk function R(a, ·) satisfies the following
bound.
Assumption C.1. The model risk satisfies

dL(θ1, θ2)| ≤ K1dH(θ, θ0),

where dH(θ1, θ2) is the Hellinger distance between two models Pθ1 and Pθ2 .

For instance, suppose the definition of model risk is R(a, θ) =
∫
X ℓ(x, a)p(y|θ)dx, where ℓ(x, a)

is an underlying loss function. Then, observe that Assumption C.1 is trivially satisfied if ℓ(x, a) is
bounded in x for a given a ∈ A and A is compact, since dL(θ1, θ2) can be bounded by the total
variation distance dTV (θ1, θ2) =

1
2

∫
|dPθ1(x)− dPθ2(x)| and total variation distance is bounded

above by the Hellinger distance [12]. Under the assumption above it also follows that we can apply
Lemma C.7 to the metric dL(·, ·) defined in (49). Now, we will also assume an additional regularity
condition on the risk function.
Assumption C.2. For every {θ1, θ2} ∈ Θ, there exists a constant K2 > 0 such that

dL(θ1, θ2) ≤ K2∥θ1 − θ2∥,

We can now show that the covering number of the set T (ϵ) satisfies
Lemma C.8. Given ϵ > δ > 0, and under Assumption C.2,

N(δ, T (ϵ), dL) <

(
2ϵ

δ
+ 2

)d

. (50)

Proof of Lemma C.8: For any positive k and ϵ, let θ ∈ [θ0 − kϵ, θ0 + kϵ]d ⊂ Θ ⊂ Rd. Now consider
a set Hi = {θ0i , θ1i , . . . θJi , θJ+1

i } and H =
⊗

dHi with J = ⌊ 2kϵ
δ′ ⌋, where θji = θ0 − kϵ+ iδ′ for

j = {0, 1, . . . , J} and θJ+1
i = θ0 + kϵ. Observe that for any θ ∈ [θ0 − kϵ, θ0 + kϵ]d, there exists

a θj ∈ H such that ∥θ − θj∥ < δ′. Hence, union of the δ′−balls for each element in set H covers
[θ0 − kϵ, θ0 + kϵ]d, therefore N(δ′, [θ0 − kϵ, θ0 + kϵ]d, ∥ · ∥) = (J + 2)d.

Now, due to Assumption C.2, for any θ ∈ [θ0 − kϵ, θ0 + kϵ]d

dL(θ, θ0) ≤ K2∥θ − θj∥ ≤ K2δ
′,

For brevity, we denote n−1Ln(θ, θ0) by dL(θ, θ0), that is

dL(θ1, θ2) := sup
a∈A

|R(a, θ1)−R(a, θ2)|, ∀{θ1, θ2} ∈ Θ, (51)

and the covering number of the set T (ϵ) := {Pθ : dL(θ, θ0) < ϵ} as N(δ, T (ϵ), dL), where δ > 0 is
the radius of each ball in the cover.

Hence, δ′-cover of set [θ0 − kϵ, θ0 + kϵ]d is K1δ
′ cover of set T (ϵ) with k = 1/K2. Finally,

N(K2δ
′, T (ϵ), dL) ≤ (J + 2)d ≤

(
2kϵ

δ′
+ 2

)d

=

(
2ϵ

K2δ′
+ 2

)d

which implies for δ = K2δ
′,

N(δ, T (ϵ), dL) ≤
(
2ϵ

δ
+ 2

)s

.

Observe that the RHS in (50) is a decreasing function of δ, infact for δ = ϵ/2, it is a constant in ϵ.
Therefore, using Lemmas C.7 and C.8, we show in the following result that Ln(θ, θ0) in (6) satisfies
Assumption 2.1.
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Lemma C.9. Fix n ≥ 1. For a given ϵn > 0 and every ϵ > ϵn, such that nϵ2n ≥ 1. Under
Assumption C.1 and C.2, Ln(θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies

EPn
0
[ϕn] ≤ C0 exp(−Cnϵ2), (52)

sup
{θ∈Θ:Ln(θ,θ0)≥C1nϵ2}

EPn
θ
[1− ϕn] ≤ exp(−Cnϵ2), (53)

where C0 = 2 ∗ 10s and C = C1

2K2
1

for a constant C1 > 0.

Proof of Lemma C.9: Recall dL(θ, θ0) = (supa∈A |R(a, θ)−R(a, θ0)|) and T (ϵ) = {Pθ :
dL(θ, θ0) < ϵ}. Using Lemma C.8, observe that for every ϵ > ϵn > 0,

N
( ϵ
2
, {θ : ϵ ≤ dL(θ, θ0) ≤ 2ϵ}, dL

)
≤ N

( ϵ
2
, {θ : dL(θ, θ0) ≤ 2ϵ}, dL

)
< 10d.

Next, using Assumption C.1 we have

dL(θ, θ0) ≤ K1dH(θ, θ0).

It follows from the above two observations and Lemma 2 that, for every ϵ > ϵn > 0, there exist tests
{ϕn,ϵ} such that

EPn
0
[ϕn,ϵ] ≤ 10d

exp(−C ′nϵ2)

1− exp(−C ′nϵ2)
, (54)

sup
{θ∈Θ:dL(θ,θ0)≥ϵ}

EPn
θ
[1− ϕn,ϵ] ≤ exp(−C ′nϵ2), (55)

where C ′ = 1
2K2

1
. Since the above two conditions hold for every ϵ > ϵn, we can choose a constant

K > 0 such that for every ϵ > ϵn

EPn
0
[ϕn,ϵ] ≤ 10d

exp(−C ′K2nϵ2)

1− exp(−C ′K2nϵ2)
≤ 2(10d)e−C′K2nϵ2 , (56)

sup
{θ∈Θ:Ln(θ,θ0)≥K2nϵ2}

EPn
θ
[1− ϕn,ϵ] = sup

{θ∈Θ:dL(θ,θ0)≥Kϵ}
EPn

θ
[1− ϕn,ϵ] ≤ e−C′K2nϵ2 , (57)

where the second inequality in (56) holds ∀n ≥ n0, where n0 := min{n ≥ 1 : C ′K2nϵ2 ≥ log(2)}
Hence, the result follows for C1 = K2 and C = C ′K2.

Since Ln(θ, θ0) =
1
nd

2
L satisfies Assumption 2.1, Theorem 3.1 implies the following bound.

Corollary C.1. Fix a′ ∈ A and γ > 0. Let ϵn be a sequence such that ϵn → 0 as n→ ∞, nϵ2n ≥ 1
and

Ln(θ, θ0) = n

(
sup
a∈A

|R(a, θ)−R(a, θ0)|
)2

.

Then under the Assumptions of Theorem 3.1 and Lemma C.9 ; for C = C1

2K2
1

, C0 = 2 ∗ 10s, C1 > 0

such that min(C,C4(γ)+C5(γ)) > C2+C3+C4(γ)+2 , and for ηRn (γ) as defined in Theorem 3.1,
the RSVB approximator of the true posterior Q∗

a′,γ(θ|X̃n) satisfies,

EPn
0

[∫
Θ

Ln(θ, θ0)Q
∗
a′,γ(θ|X̃n)dθ

]
≤ n(M(γ)ϵ2n +MηRn (γ)), (58)

for sufficiently large n and for a function M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1

min(C,λ,1) .

Proof of Corollary C.1: Using Lemma C.9 observe that for any Θn(ϵ) ⊆ Θ, Ln(θ, θ0) satisfies
Assumption 2.1 with C0 = 2 ∗ 10s, C = C1

2K2
1

and for any C1 > 0, since

sup
{θ∈Θn(ϵ):Ln(θ,θ0)≥C1nϵ2n}

EPn
θ
[1− ϕn,ϵ] ≤ sup

{θ∈Θ:Ln(θ,θ0)≥C1nϵ2n}
EPn

θ
[1− ϕn,ϵ] ≤ e−Cnϵ2n .

Hence, applying Theorem 3.1 the proof follows.

28



C.6 Newsvendor Problem

We fix n−1/2
√
LNV
n (θ, θ0) = (supa∈A |R(a, θ)−R(a, θ0)|). Next, we aim to show that the expo-

nentially distributed model Pθ satisfies Assumption 2.1, for distance function LNV
n (θ, θ0). To show

this, in the next result we first prove that dNV
L (θ, θ0) = n−1/2

√
LNV
n (θ, θ0) satisfy Assumption C.1.

Also, recall that the square of Hellinger distance between two exponential distributions with rate

parameter θ and θ0 is d2H(θ, θ0) = 1− 2
√
θθ0

θ+θ0
= 1− 2

√
θ0/θ

1+θ0/θ
.

Lemma C.10. For any θ ∈ Θ = [T,∞), and a ∈ A,

dNV
L (θ, θ0) ≤


(

h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)


1/2

dH(θ, θ0)

where a := min{a ∈ A} and a > 0 and θ0 lies in the interior of Θ.

Proof. Observe that for any a ∈ A,
|R(a, θ)−R(a, θ0)|2

=

∣∣∣∣ hθ0 − h

θ
+ (b+ h)

(
e−aθ

θ
− e−aθ0

θ0

)∣∣∣∣2
=

(
h

θ0
− h

θ

)2

+ (b+ h)2
(
e−aθ

θ
− e−aθ0

θ0

)2

+ 2

(
h

θ0
− h

θ

)
(b+ h)

(
e−aθ

θ
− e−aθ0

θ0

)
≤
(
h

θ0
− h

θ

)2

+ (b+ h)2
(
e−aθ

θ
− e−aθ0

θ0

)2

, (59)

where the last inequality follows since for θ ≥ θ0,
(

h
θ0

− h
θ

)
≥ 0 and

(
e−aθ

θ − e−aθ0

θ0

)
< 0 and vice

versa if θ < θ0 that together makes the last term in the penultimate equality negative for all θ ∈ Θ.
Moreover, the first derivative of the upperbound with respect to θ is

2

(
h

θ0
− h

θ

)
h

θ2
− 2(b+ h)2

(
e−aθ

θ
− e−aθ0

θ0

)
e−aθ

[
1

θ2
+
a

θ

]
,

and it is negative when θ ≤ θ0 and positive when θ > θ0 for all b > 0, h > 0, and a ∈ A. Therefore,
the upperbound in (59) above is decreasing function of θ for all θ ≤ θ0 and increasing function of θ
for all θ > θ0. The upperbound is tight at θ = θ0.

Now recall that the squared Hellinger distance between two exponential distributions with rate
parameter θ and θ0 is

d2H(θ, θ0) = 1− 2

√
θθ0

θ + θ0
= 1− 2

√
θ0/θ

1 + θ0/θ
=

(1−
√
θ0/θ)

2

1 + (
√
θ0/θ)2

.

Note that for θ ≤ θ0, d2H(θ, θ0) is a decreasing function of θ and for all θ > θ0 it is an increasing
function of θ. Also, note that as θ → ∞, the squared Hellinger distance as well as the upperbound
computed in (59) converges to a constant for a given h, b, θ0 and a. However, as θ → 0, the
d2H(θ, θ0) → 1 but the upperbound computed in (59) diverges.

Since, Θ = [T,∞) for some T > 0 and T ≤ θ0, observe that if we scale d2H(θ, θ0) by factor by
which the upperbound computed in (59) is greater than dH at θ = T , then(

h

θ0
− h

θ

)2

+ (b+ h)2
(
e−aθ

θ
− e−aθ0

θ0

)2

≤

(
h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)

d2H(θ, θ0)

≤

(
h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)

d2H(θ, θ0),
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where a = inf{a : a ∈ A} and in the last inequality we used the fact that
(

e−aT

T − e−aθ0

θ0

)2
is a

decreasing function of a for any b, h, T, and θ0 . Since, the RHS in the equation above does not
depend on a, it follows from the result in (59) and the definition of LNV

n (θ, θ0) that

dNV
L (θ, θ0) ≤


(

h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)


1/2

dH(θ, θ0).

Lemma C.11. For any θ ∈ Θ = [T,∞), for sufficiently small T > 0, and θ0 lying in the interior of
Θ, we have

d2H(θ, θ0) = 1− 2

√
θθ0

θ + θ0
≤
(

θ0
(T + θ0)2

(√
θ0
T

−
√
T

θ0

))
|θ − θ0|.

Proof. Observe that

∂d2H(θ, θ0)

∂θ
= −2

(θ + θ0)
√
θ0

2
√
θ
−

√
θθ0

(θ + θ0)2
=

θ0
(θ + θ0)2

(√
θ

θ0
−
√
θ0
θ

)
.

Observe that θ → 0, ∂d2
H(θ,θ0)
∂θ → ∞. Since,θ ∈ Θ = [T,∞), therefore the supθ∈Θ

∣∣∣∂d2
H(θ,θ0)
∂θ

∣∣∣ <
∞. In fact, for sufficiently small T > 0, supθ∈Θ

∣∣∣∂d2
H(θ,θ0)
∂θ

∣∣∣ =

∣∣∣∣ θ0
(T+θ0)2

(√
T
θ0

−
√

θ0
T

)∣∣∣∣ =(
θ0

(T+θ0)2

(√
θ0
T −

√
T
θ0

))
. Now the result follows immediately since the derivative of d2H(θ, θ0)

is bounded on Θ, which implies that d2H(θ, θ0) is Lipschitz on Θ.

Lemma C.12. For any θ ∈ Θ = [T,∞), and a ∈ A,

dNV
L (θ, θ0) ≤

h

T 2
|θ − θ0|.

Proof. Recall,

R(a, θ) = ha− h

θ
+ (b+ h)

e−aθ

θ
.

First, observe that for any a ∈ A,

∂R(a, θ)

∂θ
=

h

θ2
− a(b+ h)

e−aθ

θ
− (b+ h)

e−aθ

θ2
=

1

θ2
(
h− (b+ h)e−aθ(1 + aθ)

)
≤ h

θ2
. (60)

The result follows immediately, since supθ∈Θ
∂R(a,θ)

∂θ ≤ h
T 2 .

Proof. Proof of Lemma B.1

It follows from Lemma C.10 that dNV
L (θ, θ0) for any θ ∈ Θ = [T,∞) and θ0 lying the interior of Θ,

satisfies Assumption C.1 with

K1 =


(

h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)


1/2

:= KNV
1

. Similarly, it follows from Lemma and C.12 that for sufficiently small T > 0, dNV
L (θ, θ0) satisfies

Assumption C.2 with K2 = h/T 2 := KNV
2 . Now using similar arguments as used in Lemma C.8

and Lemma 2.1, for a given ϵn > 0 and every ϵ > ϵn, such that nϵ2n ≥ 1, it can be shown that ,
LNV
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies
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EPn
0
[ϕn] ≤ C0 exp(−Cnϵ2), (61)

sup
{θ∈Θ:LNV

n (θ,θ0)≥C1nϵ2}
EPn

θ
[1− ϕn] ≤ exp(−Cnϵ2), (62)

where C0 = 20 and C = C1

2(KNV
1 )2

for a constant C1 > 0.

Proof. Proof of Lemma B.2:

First, we write the Rényi divergence between Pn
0 and Pn

θ ,

D1+λ (P
n
0 ∥Pn

θ ) =
1

λ
log

∫ (
dPn

0

dPn
θ

)λ

dPn
0 = n

1

λ
log

∫ (
dP0

dPθ

)λ

dP0

= n

(
log

θ0
θ

+
1

λ
log

θ0
(λ+ 1)θ0 − λθ

)
,

when ((λ+ 1)θ0 − λθ) > 0 and D1+λ (P
n
0 ∥Pn

θ ) = ∞ otherwise. Also, observe that,
D1+λ (P

n
0 ∥Pn

θ ) is non-decreasing in λ (this also follows from non-decreasing property of the
Rényi divergence with respect to λ). Therefore, observe that

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ C3nϵ
2
n) ≥ Π(D∞ (Pn

0 ∥Pn
θ ) ≤ C3nϵ

2
n) = Π

(
0 ≤ log

θ0
θ

≤ C3ϵ
2
n

)
= Π

(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
.

Now, recall that for a set A ⊆ Θ = [T,∞), we define Π(A) = Inv − Γ(A ∩Θ)/Inv − Γ(Θ). Now,
observe that for sufficiently small T and large enough n, we have

Π
(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
≥ Inv − Γ

(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
The cumulative distribution function of inverse-gamma distribution is Inv − Γ({θ ∈ Θ : θ < t}) :=
Γ(α, βt )
Γ(α) , where α(> 0) is the shape parameter, β(> 0) is the scale parameter, Γ(·) is the Gamma

function, and Γ(·, ·) is the incomplete Gamma function. Therefore, it follows for α > 1 that

Inv − Γ
(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
=

Γ (α, β/θ0)− Γ
(
α, β/θ0e

C3ϵ
2
n

)
Γ(α)

=

∫ β/θ0e
C3ϵ2n

β/θ0
e−xxα−1dx

Γ(α)

≥ e−β/θ0e
C3ϵ2n+αC3ϵ

2
n

αΓ(α)

(
β

θ0

)α [
1− e−αC3ϵ

2
n

]
≥ e−β/θ0e

C3

αΓ(α)

(
β

θ0

)α [
e−αC3nϵ

2
n

]
where the penultimate inequality folows since 0 < ϵ2n < 1 and the last inequality follows from the
fact that, 1− e−αC3ϵ

2
n ≥ e−αC3nϵ

2
n , for large enough n. Also note that, 1− e−αC3ϵ

2
n ≥ e−αC3nϵ

2
n

can’t hold true for ϵ2n = 1/n. However, for ϵ2n = logn
n it holds for any n ≥ 2 when αC3 > 2.

Therefore, for inverse-Gamma prior restricted to Θ, C2 = αC3 and any λ > 1 the result follows for
sufficiently large n.

Proof. Proof of Lemma B.3: Recall,

R(a, θ) = ha− h

θ
+ (b+ h)

e−aθ

θ
.

First, observe that for any a ∈ A,

∂R(a, θ)

∂θ
=

h

θ2
− a(b+ h)

e−aθ

θ
− (b+ h)

e−aθ

θ2
=

1

θ2
(
h− (b+ h)e−aθ(1 + aθ)

)
. (63)
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Using the above equation the (finite) critical point θ∗ must satisfy, h− (b+ h)e−aθ∗
(1 + aθ∗) = 0.

Therefore,

R(a, θ) ≥ R(a, θ∗) = h

(
a− 1

θ∗
+

1

θ∗(1 + aθ∗)

)
=

ha2θ∗

(1 + aθ∗)
.

Since h, b > 0 and aθ∗ > 0, hence

R(a, θ) ≥ ha2θ∗

(1 + aθ∗)
,

where a := min{a ∈ A} and a > 0.

Proof. Proof of Lemma B.4:

First, observe that R(a, θ) is bounded above in θ for a given a ∈ A

R(a, θ) = ha− h

θ
+ (b+ h)

e−aθ

θ

≤ ha+
b

θ
.

Using the above fact and the Cauchy-Schwarz inequality, we obtain∫
{
eγR(a,θ)>eC4(γ)nϵ2n

} eγR(a,θ)π(θ)dθ

≤
(∫

e2γR(a,θ)π(θ)dθ

)1/2(∫
1
eγR(a,θ)>eC4(γ)nϵ2n

π(θ)dθ

)1/2

≤
(∫

e2γ(ha+
b
θ )π(θ)dθ

)1/2(∫
1
{eγ(ha+ b

θ )>eC4(γ)nϵ2n}
π(θ)dθ

)1/2

≤ e−C4(γ)nϵ
2
n

(∫
e2γ(ha+

b
θ )π(θ)dθ

)
, (64)

where the last inequality follows from using the Chebyshev’s inequality.

Now using the definition of the prior distribution, which is an inverse gamma prior restricted to
Θ = [T,∞), we have∫

{
eγR(a,θ)>eC4(γ)nϵ2n

} eγR(a,θ)π(θ)dθ ≤ e−C4(γ)nϵ
2
n

(∫
e2γ(ha+

b
θ )π(θ)dθ

)
≤ e−C4(γ)nϵ

2
ne2γ(ha+

b
T ),

where a := max{a ∈ A} and a > 0. Since nϵ2n ≥ 1, we must fix C4(γ) such that eC4(γ) >

e2γ(ha+
b
T ), that is C4(γ) > 2γ

(
ha+ b

T

)
and C5(γ) = C4(γ)− 2γ

(
ha+ b

T

)
.

Proof. Proof of Lemma B.5: Since family Q contains all shifted-gamma distributions, observe that

{qn(·) ∈ Q}∀n ≥ 1. By definition, qn(θ) = nn

θn
0 Γ(n) (θ − T )n−1e−n

(θ−T )
θ0 . Now consider the first

term; using the definition of the KL divergence it follows that

KL(qn(θ)∥π(θ)) =
∫ ∞

T

qn(θ) log(qn(θ))dθ −
∫ ∞

T

qn(θ) log(π(θ))dθ. (65)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term, we obtain∫ ∞

T

qn(θ) log(qn(θ))dθ

= (n− 1)

∫ ∞

T

log(θ − T )
nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ − n+ log

(
nn

θn0Γ(n)

)
= − log θ0 + (n− 1)

∫ ∞

T

log
θ − T

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ − n+ log

(
nn

Γ(n)

)
(66)
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Now consider the second term in the equation above. Substitute θ = tθ0
n + T into the integral, we

have ∫ ∞

T

log
θ − T

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ =

∫ ∞

0

log
t

n

1

Γ(n)
tn−1e−tdt

≤
∫ (

t

n
− 1

)
1

Γ(n)
tn−1e−tdt = 0. (67)

Substituting the above result into (66), we get∫ ∞

T

qn(θ) log(qn(θ))dθ ≤ − log θ0 − n+ log

(
nn

Γ(n)

)
≤ − log θ0 − n+ log

(
nn√

2πnnn−1e−n

)
= − log

√
2πθ0 +

1

2
log n, (68)

where the second inequality uses the fact that
√
2πnnne−n ≤ nΓ(n). Recall π(θ) = βα

Γ(α)θ
−α−1e−

β
θ .

Now consider the second term in (65). Using the definition of inverse-gamma prior and expanding
the logarithm function, we have

−
∫ ∞

T

qn(θ) log(π(θ))dθ

= − log

(
βα

Γ(α)

)
+ (α+ 1)

∫ ∞

T

log θ
nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ + β
n

(n− 1)θ0

= − log

(
βα

Γ(α)

)
+

∫ ∞

T

log
θ

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ

+ β
n

(n− 1)θ0
+ (α+ 1) log θ0

≤ − log

(
βα

Γ(α)

)
+

∫ ∞

T

θ − T

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ

+ β
n

(n− 1)θ0
+ (α+ 1) log θ0

= − log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0, (69)

where the first inequality is due to fact that Eqn [β/θ] ≤ Eqn [β/(θ − T )] for any θ > T and the
penultimate inequality follows from the observation in (67) and the fact that log θ

θ0
≤ θ

θ0
−1 ≤ θ

θ0
− T

θ0
for any θ0 > T . Substituting (69) and (68) into (65) and dividing either sides by n, we obtain

1

n
KL(qn(θ)∥π(θ))

≤ 1

n

(
− log

√
2πθ0 +

1

2
log n− log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0

)
=

1

2

log n

n
+ β

1

(n− 1)θ0
+

1

n

(
− log

√
2π − log

(
βα

Γ(α)

)
+ (α) log θ0

)
. (70)

Now consider the second term in the assertion of the lemma. Since ξi, i ∈ {1, 2 . . . n} are independent
and identically distributed, we obtain

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0∥p(ξ|θ))]
Now using the expression for KL divergence between the two exponential distributions, we have

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

=

∫ ∞

T

(
log

θ0
θ

+
θ

θ0
− 1

)
nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ

≤ n

n− 1
+ 1− 2 =

1

n− 1
, (71)
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where second inequality uses the fact that log x ≤ x−1 ≤ x− T
θ0

for θ0 > T . Combined together (71)
and (70) for n ≥ 2 implies that

1

n

[
KL (qn(θ)∥π(θ)) + Eqn(θ)

[
KL
(
dPn

0 )∥p(X̃n|θ)
)]]

≤ 1

2

log n

n
+

1

n

(
2 +

2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
≤ C9

log n

n
. (72)

where C9 := 1
2 +max

(
0, 2 + 2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
and the result follows.

Proof. Proof of Lemma B.5: Since family Q contains all gamma distributions, observe that {qn(·) ∈
Q}∀n ≥ 1. By definition, qn(θ) = nn

θn
0 Γ(n)θ

n−1e−n θ
θ0 . Now consider the first term; using the

definition of the KL divergence it follows that

KL(qn(θ)∥π(θ)) =
∫
qn(θ) log(qn(θ))dθ −

∫
qn(θ) log(π(θ))dθ. (73)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term, we obtain∫
qn(θ) log(qn(θ))dθ = (n− 1)

∫
log θ

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ − n+ log

(
nn

θn0Γ(n)

)
= − log θ0 + (n− 1)

∫
log

θ

θ0

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ − n+ log

(
nn

Γ(n)

)
(74)

Now consider the second term in the equation above. Substitute θ = tθ0
n into the integral, we have∫

log
θ

θ0

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ =

∫
log

t

n

1

Γ(n)
tn−1e−tdt

≤
∫ (

t

n
− 1

)
1

Γ(n)
tn−1e−tdt = 0. (75)

Substituting the above result into (74), we get∫
qn(θ) log(qn(θ))dθ ≤ − log θ0 − n+ log

(
nn

Γ(n)

)
≤ − log θ0 − n+ log

(
nn√

2πnnn−1e−n

)
= − log

√
2πθ0 +

1

2
log n, (76)

where the second inequality uses the fact that
√
2πnnne−n ≤ nΓ(n). Recall π(θ) = βα

Γ(α)θ
−α−1e−

β
θ .

Now consider the second term in (73). Using the definition of inverse-gamma prior and expanding
the logarithm function, we have

−
∫
qn(θ) log(π(θ))dθ

= − log

(
βα

Γ(α)

)
+ (α+ 1)

∫
log θ

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ + β
n

(n− 1)θ0

= − log

(
βα

Γ(α)

)
+ (α+ 1)

∫
log

θ

θ0

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ

+ β
n

(n− 1)θ0
+ (α+ 1) log θ0

≤ − log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0, (77)
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where the last inequality follows from the observation in (75). Substituting (77) and (76) into (73)
and dividing either sides by n, we obtain

1

n
KL(qn(θ)∥π(θ))

≤ 1

n

(
− log

√
2πθ0 +

1

2
log n− log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0

)
=
1

2

log n

n
+ β

1

(n− 1)θ0
+

1

n

(
− log

√
2π − log

(
βα

Γ(α)

)
+ (α) log θ0

)
. (78)

Now, consider the second term in the assertion of the lemma. Since, ξi, i ∈ {1, 2 . . . n} are indepen-
dent and identically distributed, we obtain

1

n
Eq(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0∥p(ξ|θ))]

Now using the expression for KL divergence between the two exponential distributions, we have

1

n
Eq(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

=

∫ (
log

θ0
θ

+
θ

θ0
− 1

)
nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ

≤ n

n− 1
+ 1− 2 =

1

n− 1
, (79)

where second inequality uses the fact that log x ≤ x− 1. Combined together (79) and (78) for n ≥ 2
implies that

1

n

[
KL (q(θ)∥π(θ)) + Eq(θ)

[
KL
(
dPn

0 )∥p(X̃n|θ)
)]]

≤ 1

2

log n

n
+

1

n

(
2 +

2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
≤ C9

log n

n
. (80)

where C9 := 1
2 +max

(
0, 2 + 2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
and the result follows.

C.7 Multi-product Newsvendor problem

In the multi-dimensional newsvendor problem, we fix n−1/2
√
LMNV
n (θ, θ0) =

(supa∈A |R(a, θ) − R(a, θ0)|), where R(a, θ) =
∑d

i=1

[
(hi + bi)aiΦ(ai) − biai + θi(bi − hi)

+σii

[
h ϕ((ai−θi)/σii)
Φ((ai−θi)/σii)

+ b ϕ((ai−θi)/σii)
1−Φ((ai−θi)/σii)

] ]
.

For brevity, we denote dMNV
L (θ, θ0) = n−1/2

√
LMNV
n (θ, θ0). First, we show that

Lemma C.13. For any compact decision space A and compact model space Θ,

dMNV
L (θ, θ0) ≤ K∥θ − θ0∥,

for a constant K depending on compact sets A and Θ and given b, h and Σ.

Proof. Observe that

∂θiR(a, θ)

= (bi − hi) + (ai − θi)/σiiϕ((ai − θi)/σii)

[
h

Φ((ai − θi)/σii)
+

b

1− Φ((ai − θi)/σii)

]
+ σiiϕ

(
(ai − θi)

σii

)[
hϕ((ai − θi)/σii)

σiiΦ((ai − θi)/σii)2
− bϕ((ai − θi)/σii)

σii(1− Φ((ai − θi)/σii))2

]
= (bi − hi) + (ai − θi)/σiiϕ((ai − θi)/σii)

[
h

Φ((ai − θi)/σii)
+

b

1− Φ((ai − θi)/σii)

]
+ ϕ

(
(ai − θi)

σii

)[
hϕ((ai − θi)/σii)

Φ((ai − θi)/σii)2
− bϕ((ai − θi)/σii)

(1− Φ((ai − θi)/σii))2

]
. (81)
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Since, A and Θ are compact sets, therefore {(ai − θi)/σii}di=1 lie in a compact set. Consequently,
ϕ((ai−θi)/σii) and Φ((ai−θi)/σii) also lie in bounded subset of R and thus supA,Θ ∥∂θiR(a, θ)∥ ≤
K for a given b, h and Σ. Since , the norm of the derivative of R(a, θ) is bounded on Θ for any
a ∈ A, therefore, dMNV

L (θ, θ0) is uniformly Lipschitz in A with Lipschitz constant K, that is

dMNV
L (θ, θ0) ≤ K∥θ − θ0∥.

Next, we show that the Pθ satisfies Assumption 2.1, for distance function LMNV
n (θ, θ0).

Proof. Proof of Lemma B.6:

First consider the following test function, constructed using X̃n = {ξ1, ξ2, . . . , ξn}.
ϕn,ϵ := 1{X̃n:∥θ̂n−θ0∥>√

Cϵ2},

where θ̂n =
∑n

i=1 ξi
n . Note that θ̂n − θ0 ∼ N (·|0, 1

nΣ), where 1
nΣ is a symmetric positive definite

matrix. Therefore it can be decomposed as Σ = QTΛQ, where Q is an orthogonal matrix and Λ is a
daigonal matrix consisting of respective eigen values and consequently θ̂n − θ0 ∼ QN (·|0, 1

nΛ). So,
we have ∥θ̂n − θ0∥2 ∼ ∥N (·|0, 1

nΛ)∥2. Notice that ∥N (·|0, 1
nΛ)∥2 is a linear combination of d χ2

(1)

random variable weighted by elements of the diagonal matrix 1
nΛ. Using this observation, we first

verify that ϕn,ϵ satisfies condition (i) of the Lemma. Observe that

EPn
0
[ϕn] = Pn

0

(
X̃n :

∥∥∥θ̂n − θ0

∥∥∥2 > Cϵ2
)

= Pn
0

(
X̃n : ∥N (·|0,Λ)∥2 > Cnϵ2

)
.

Note that χ2
(1) is Γ distributed with shape 1/2 and scale 2, which implies χ2

(1)−1 is a sub-gamma ran-

dom variable with scale factor 2 and variance factor 2. Now observe that for Λ̂ = maxi∈{1,2,...d} Λii,

Pn
0

(
X̃n : ∥N (·|0,Λ)∥2 > Cnϵ2

)
≤ Pn

0

(
X̃n : χ2

(1) >
1

dΛ̂
Cnϵ2

)
≤ Pn

0

(
X̃n : χ2

(1) >
1

dΛ̂
Cnϵ2

)
= Pn

0

(
X̃n : χ2

(1) − 1 >
1

dΛ̂
Cnϵ2 − 1

)

≤ e
−

( 1
dΛ̂

Cnϵ2−1)
2

2(2+2( 1
dΛ̂

Cnϵ2−1))

≤ e−1/8 1
dΛ̂

Cnϵ2+1/8 ≤ e−1/8( C
dΛ̂

−1)nϵ2 , (82)
where in the third inequality we used the well known tail bound for sub-gamma random variable
(Lemma 3.12 [5]) assuming that C is sufficiently large such that

(
1
dΛ̂
Cnϵ2 − 1

)
> 1 and in the last

inequality follows from the assumption that nϵ2 > nϵ2n ≥ 1.

Now, we fix the alternate set to be {θ ∈ Rd : ∥θ− θ0∥ ≥ 2
√
Cϵ2}. Next, we verify that ϕn,ϵ satisfies

condition (ii) of the lemma. First, observe that

EPn
θ
[1− ϕn] = Pn

θ

(
X̃n :

∥∥∥θ̂n − θ0

∥∥∥2 ≤ Cϵ2
)

≤ Pn
θ

(
X̃n : ∥θ̂n − θ∥ ≥ ∥θ − θ0∥ −

√
Cϵ2

)
,

(83)

where in the last inequality, we used the fact that ∥θ − θ0∥ ≤ ∥θ̂n − θ∥ +
∥∥∥θ̂n − θ0

∥∥∥. Now on

alternate set {θ ∈ Rd : ∥θ − θ0∥ ≥ 2
√
Cϵ2},

EPn
θ
[1− ϕn] ≤ Pn

θ

(
X̃n : ∥θ̂n − θ∥ ≥ ∥θ − θ0∥ −

√
Cϵ2

)
≤ Pn

θ

(
X̃n : ∥θ̂n − θ∥ ≥ ∥θ − θ0∥ −

√
Cϵ2

)
≤ Pn

θ

(
X̃n : ∥θ̂n − θ∥ ≥

√
Cϵ2

)
. (84)
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Now, it follows from (82) and Θ ⊂ Rd that

EPn
0
[ϕn] ≤ e−1/8( C

dΛ̂
−1)nϵ2 ,

sup
{θ∈Θ:∥θ−θ0∥≥2

√
Cϵ2}

EPn
θ
[1− ϕn] ≤ sup

{θ∈Rd:∥θ−θ0∥≥2
√
Cϵ2}

EPn
θ
[1− ϕn] ≤ e−1/8( C

dΛ̂
−1)nϵ2 .

Using Lemma C.13, {θ ∈ Θ : n−1/2
√
LMNV
n (θ, θ0) ≥ 2K

√
Cϵ2} = {θ ∈ Θ : dMNV

L (θ, θ0) ≥
2K

√
Cϵ2} ⊆ {θ ∈ Θ : ∥θ − θ0∥ ≥ 2

√
Cϵ2}, which implies that

sup
{θ∈Θ:LMNV

n (θ,θ0)≥4K2Cnϵ2}
EPn

θ
[1− ϕn] ≤ sup

{θ∈Θ:∥θ−θ0∥≥2
√
Cϵ2}

EPn
θ
[1− ϕn].

Therefore, Pθ for θ ∈ Θ, satisifes Assumptions 2.1 for Ln(θ, θ0) = LMNV
n (θ, θ0) for C0 = 1,

C1 = 4K2C and C = 1/8
(

C
dΛ̂

− 1
)

.

Proof. Proof of Lemma B.7:

First, we write the Rényi divergence between two multivariate Gaussian distribution with known Σ as

D1+λ(N (·|θ0)∥N (·|θ)) = λ+ 1

2
(θ − θ0)

TΣ(θ − θ0), (85)

and D1+λ(N (·|θ)∥N (·|θ0)) <∞ if and only if Σ−1 is positive definite [13].

Since, we assumed that the sequence of models are iid, therefore, D1+λ (P
n
0 ∥Pn

θ ) =

1
λ log

∫ (dPn
0

dPn
θ

)λ
dPn

0 = n 1
λ log

∫ (
dP0

dPθ

)λ
dP0 = n

(
λ+1
2 (θ − θ0)

TΣ(θ − θ0)
)
, when Σ−1 is posi-

tive definite and D1+λ (P
n
0 ∥Pn

θ ) = ∞ otherwise. Now observe that

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) = Π

((
(θ − θ0)

TΣ(θ − θ0)
)
≤ 2

λ+ 1
C3ϵ

2
n

)
= Π

((
[(θ − θ0)Q]TΛ[Q(θ − θ0)]

)
≤ 2

λ+ 1
C3ϵ

2
n

)
≥ Π

((
[(θ − θ0)Q]T [Q(θ − θ0)]

)
≤ 2

Λ̂(λ+ 1)
C3ϵ

2
n

)
,

= Π

((
[(θ − θ0)]

T [(θ − θ0)]
)
≤ 2

Λ̂(λ+ 1)
C3ϵ

2
n

)
, (86)

where Λ̂ = maxi∈{1,2,...d} Λii and in the second equality we used eigen value decomposition of
Σ = QTΛQ. Next, observe that,

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) = Π

((
[(θ − θ0)]

T [(θ − θ0)]
)
≤ 2

Λ̂(λ+ 1)
C3ϵ

2
n

)

= Π

(
∥(θ − θ0)∥ ≤

√
2

Λ̂(λ+ 1)
C3ϵ2n

)

≥ Π

(
∥(θ − θ0)∥∞ ≤

√
2

Λ̂(λ+ 1)
C3ϵ2n

)

=

d∏
i=1

Πi

(
|(θi − θi0)| ≤

√
2

Λ̂(λ+ 1)
C3ϵ2n

)
,

where in the last equality we used the fact that the prior distribution is uncorrelated. Now, the result
follows immediately for sufficiently large n, if the prior distribution is uncorrelated and uniformly
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distributed on the compact set Θi, for each i ∈ {1, 2, . . . , d} . In particular observe that for large
enough n, we have

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) ≥

d∏
i=1

θi0 +
√

2
Λ̂(λ+1)

C3ϵ2n − θi0 +
√

2
Λ̂(λ+1)

C3ϵ2n

m(Θi)

=
2d
(

2
Λ̂(λ+1)

C3ϵ
2
n

)d/2
∏d

i=1m(Θi)
=

 8

(Λ̂(λ+ 1))

(
d∏

i=1

m(Θi)

)−2/d

C3ϵ
2
n

d/2

,

where m(A) is the Lebesgue measure (volume) of any set A ⊂ R. Now if ϵ2n = logn
n , then for

8

Λ̂(λ+1)(
∏d

i=1 m(Θi))
2/dC3 > 2, 8

Λ̂(λ+1)(
∏d

i=1 m(Θi))
2/dC3ϵ

2
n ≥ e

− 8

Λ̂(λ+1)(∏d
i=1

m(Θi))
2/d

C3nϵ
2
n

for all

n ≥ 2, therefore,

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) ≥ e

− 4d

Λ̂(λ+1)(∏d
i=1

m(Θi))
2/d

C3nϵ
2
n

.

Proof. Proof of Lemma B.9: Since family Q contains all uncorrelated Gaussian distribu-
tions restricted to Θ, observe that {qn(·) ∈ Q}∀n ≥ 1. By definition, qin(θ) ∝

1√
2πσ2

i,n

e
− 1

2σ2
i,n

(θ−µi,n)
2

1Θi =
N (θi|µi,n,σi,n)1Θi

N (Θi|µi,n,σi,n)
and fix σi,n = 1/

√
n and θi = θi0 for all

i ∈ {1, 2, . . . , d}. Now consider the first term; using the definition of the KL divergence it fol-
lows that

KL(qn(θ)∥π(θ)) =
∫
qn(θ) log(qn(θ))dθ −

∫
qn(θ) log(π(θ))dθ. (87)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term, we obtain∫
qn(θ) log(qn(θ))dθ =

d∑
i=1

∫
qin(θi) log(q

i
n(θi))dθi

≤
d∑

i=1

∫
N (θi|µi,n, σi,n) logN (θi|µi,n, σi,n)dθi

= −
d∑

i=1

[log(
√
2πe) + log σi,n], (88)

where in the last equality, we used the well known expression for the differential entropy of Gaussian
distributions. Recall π(θ) =

∏d
i=1

1
m(Θi)

. Now consider the second term in (87). It is straightforward
to observe that,

−
∫
qn(θ) log(π(θ))dθ =

d∑
i=1

log(m(Θi)). (89)

Substituting (89) and (88) into (87) and dividing either sides by n and substituting σi,n, we obtain

1

n
KL(qn(θ)∥π(θ)) ≤ − 1

n

d∑
i=1

[log(
√
2πe)− log(m(Θi))−

1

2
log n]

=
d

2

log n

n
− 1

n

d∑
i=1

[log(
√
2πe)− log(m(Θi))]. (90)

Now, consider the second term in the assertion of the lemma. Since ξi, i ∈ {1, 2 . . . n} are independent
and identically distributed, we obtain

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0∥p(ξ|θ))]
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Now using the expression for KL divergence between the two multivariate Gaussian distributions,
we have

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

=
1

2
Eqn(θ)

[
(θ − θ0)

TΣ−1(θ − θ0)
]

≤ Λ̌−1

2
Eqn(θ)

[
(θ − θ0)

T (θ − θ0)
]

≤ d

n

Λ̌−1

2
(91)

where Λ̌ = mini∈{1,2,...d} Λii, and Σ−1 = QTΛ−1Q, where Q is an orthogonal matrix and Λ is a
daigonal matrix consisting of the respective eigen values of Σ. Combined together (91) and (90)
implies that

1

n

[
KL (qn(θ)∥π(θ)) + Eqn(θ)

[
KL
(
dPn

0 )∥p(X̃n|θ)
)]]

≤ d

2

log n

n
− 1

n

d∑
i=1

[log(
√
2πe)− log(m(Θi))] +

d

n

Λ̌−1

2
≤ C9

log n

n
. (92)

whereC9 := d
2+max

(
0,−∑d

i=1[log(
√
2πe)− log(m(Θi))] +

d
2 Λ̌

−1
)

and the result follows.

C.8 Gaussian process classification

Proof of Lemma B.11. In view of Theorem 7.1 in [11], it suffices to show that

N (ϵ,Θn(ϵ), dTV) ≤ eC̄nϵ2 ,

for some C̄ > 0. Now, first observe that

dTV(Pθ(y), Pθ0(y)) =
1

2
Eν (|Ψ1(θ(y))−Ψ1(θ0(y))|+ |Ψ−1(θ(y))−Ψ−1(θ0(y))|)

= Eν (|Ψ1(θ(y))−Ψ1(θ0(y))|)
≤ Eν (|θ(y)− θ0(y)|) ≤ ∥θ(y)− θ0(y)∥∞, (93)

where the second equality uses the definition of Ψ−1(·). Since, total-variation distance above is
bounded above by supremum norm, there exists a constant 0 < c′ < 1/2, such that

N (ϵ,Θn(ϵ), dTV) ≤ N (c′ϵ,Θn(ϵ), ∥ · ∥∞) ≤ e
2
3 c

′2C10nϵ
2

, (94)
where the last inequality follows from (13) in Lemma B.10. Then if follows from Theorem 7.1 in [11]
that for every ϵ > ϵn, there exists a test ϕn (depending on ϵ > 0) such that, for every j ≥ 1,

EPn
0
[ϕn] ≤ e

2
3 c

′2C10nϵ
2

e−
1
2nϵ

2 1

1− exp
(
− 1

2nϵ
2
) , and

sup
{θ∈Θn(ϵ):dTV (Pθ,Pθ0

)>jϵ}
EPn

θ
[1− ϕn] ≤ exp

(
−1

2
nϵ2j

)
.

Now for all n such that nϵ2 > nϵ2n > 2 log 2 and C10 = c′−2/4 > 1 and j = 1, we have

EPn
0
[ϕn] ≤ 2e−

1
3nϵ

2

, and (95)

sup
{θ∈Θn(ϵ):dTV (Pθ,Pθ0

)>ϵ}
EPn

θ
[1− ϕn] ≤ e−

1
2nϵ

2 ≤ e−
1
3nϵ

2

. (96)

Now observe that
sup
a∈A

|G(a, θ)−G(a, θ0)|

= max (c+|Eν [Ψ−1(θ(y))]− Eν [Ψ−1(θ0(y))]|, c−|Eν [Ψ1(θ(y))]− Eν [Ψ1(θ0(y))]|)
= max (c+|Eν [Ψ1(θ0(y))]− Eν [Ψ1(θ(y))]|, c−|Eν [Ψ1(θ(y))]− Eν [Ψ1(θ0(y))]|)
= max(c+, c−)|Eν [Ψ1(θ0(y))]− Eν [Ψ1(θ(y))]|
≤ max(c+, c−)Eν [|Ψ1(θ0(y))−Ψ1(θ(y))|]
≤ max(c+, c−)dTV (Pθ, Pθ0) (97)
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where the second equality uses the fact that Ψ−1(·) = 1−Ψ1(·).
Consequently,

{θ ∈ Θn(ϵ) : sup
a∈A

|G(a, θ)−G(a, θ0)| > max(c+, c−)ϵ} ⊆ {θ ∈ Θn(ϵ) : dTV (Pθ, Pθ0) > ϵ}

Therefore, it follows from (95) and (96) and the definition of Ln(θ, θ0) that

EPn
0
[ϕn] ≤ 2e−

1
3nϵ

2

, and (98)

sup
{θ∈Θn(ϵ):Ln(θ,θ0)>(max(c+,c−))2nϵ2}

EPn
θ
[1− ϕn] ≤ e−

1
2nϵ

2 ≤ e−
1
3nϵ

2

. (99)

Finally, the result follows for C = 1/3, C0 = 2 and C1 = (max(c+, c−))
2.

Proof of Lemma B.12. The Rényi divergence

D1+λ(P
n
0 ∥Pn

θ )

= n
1

λ
ln

∫ (
Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ +Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ
)
ν(dy)

= n
1

λ
ln

∫
eλ

1
λ ln(Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ+Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ)ν(dy). (100)

Note that the derivative of the exponent in the integrand above with respect to θ(y) is(
−λΨ1(θ0(y))

1+λΨ1(θ(y))
−λ−1ψ(θ(y)) + λΨ−1(θ0(y))

1+λΨ−1(θ(y))
−λ−1ψ(θ(y))

)
(Ψ1(θ0(y))1+λΨ1(θ(y))−λ +Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)

= λψ(θ(y))

(
−Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ−1 +Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ−1

)
(Ψ1(θ0(y))1+λΨ1(θ(y))−λ +Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)

= λ
ψ(θ(y))

Ψ1(θ(y))Ψ−1(θ(y))

(
−Ψ1(θ0(y))

1+λΨ−1(θ(y))
λ+1 +Ψ−1(θ0(y))

1+λΨ1(θ(y))
λ+1
)

(Ψ1(θ0(y))1+λΨ−1(θ(y))λ +Ψ−1(θ0(y))1+λΨ1(θ(y))λ)

= λ

(
−Ψ1(θ0(y))

1+λΨ−1(θ(y))
λ+1 +Ψ−1(θ0(y))

1+λΨ1(θ(y))
λ+1
)

(Ψ1(θ0(y))1+λΨ−1(θ(y))λ +Ψ−1(θ0(y))1+λΨ1(θ(y))λ)

= λ

(
−e−(λ+1)θ(y) + e−(1+λ)θ0(y)

)(
e−λθ(y) + e−(λ+1)θ0(y)

)
(1 + e−θ(y))

= λ
e−(1+λ)θ0(y)

(
1− e−(λ+1)(θ(y)−θ0(y))

)(
e−λθ(y) + e−(λ+1)θ0(y)

)
(1 + e−θ(y))

≤ λ
(λ+ 1)(θ(y)− θ0(y))(

e−λθ(y)+(λ+1)θ0(y) + 1
)
(1 + e−θ(y))

≤ λ(λ+ 1)|θ(y)− θ0(y)|, (101)

where in the fourth equality we used definition of the logistic function and the penultimate inequality
follows from the well known inequality that 1 − e−x ≤ x. Consequently, using Taylor’s theorem
it follows that the exponent in the integrand of the Rényi divergence in (100) is bounded above by
λ(λ+ 1)|θ(y)− θ0(y)|2 and thus by λ(λ+ 1)∥θ(y)− θ0(y)∥2∞. Therefore,

D1+λ(P
n
0 ∥Pn

θ )

= n
1

λ
ln

∫ (
Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ +Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ
)
ν(dy)

≤ n
1

λ
ln

∫
eλ(λ+1)∥θ(y)−θ0(y)∥2

∞ν(dy)

= n(λ+ 1)∥θ(y)− θ0(y)∥2∞.
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Now using the inequality for C3 = 16(λ+ 1) above observe that

Π(An) = Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ C3nϵ
2
n)

≥ Π(n(λ+ 1)∥θ(y)− θ0(y)∥2∞ ≤ C3nϵ
2
n)

= Π(∥θ(y)− θ0(y)∥∞ ≤ 4ϵn) ≥ e−nϵ2n (102)

and the result follows from (15) of Lemma B.10.

Proof of Lemma B.13. Let us first analyze the KL divergence between the prior distribution and
variational family. Recall that two Gaussian measures on infinite dimensional spaces are either
equivalent or singular. [27, Theorem 6.13] specify the condition required for the two Gaussian
measures to be equivalent. In particular, note that θJ0 (·) ∈ Im(C1/2). Now observe that the covariance

operator of Qn has eigenvalues {ζ2j }Jj=1
2jd

k=1
, therefore operator S in the definition of Cq has eigen-

values {1− ζ2j /µ
2
j}Jj=1

2jd

k=1
. For τ2j = 2−2ja−jd for any a > 0,

∑J
j=1 2

jd
(

nϵ2n2
−2ja−jd

1+nϵ2n2
−2ja−jd

)2
=∑J

j=1 2
−jd

(
nϵ2n2

−2ja

1+nϵ2n2
−2ja−jd

)2
<∞, therefore S is an HS operator.

For any integer J ≤ Jα define θ̄J0 =
∫
θJ0 (y)ν(dy), where θJ0 (·) =

∑J
j=1

∑2jd

k=1 θ0;j,kϑj,k(·). Since,
θJ0 (·) ∈ Im(C1/2) and S is a symmetric and HS operator, we invoke Theorem 5 in [22], to write

KL(N (θ̄J0 , Cq)∥N (0, C)) = 1

2
∥C−1/2θ̄J0 ∥2 −

1

2
log det(I − S) +

1

2
tr(−S),

=
1

2

J∑
j=1

2jd∑
k=1

θ20;k,j
µ2
j

− 1

2
log

J∏
j=1

2jd∏
k=1

(1− κ2j )−
1

2

J∑
j=1

2jd∑
k=1

κ2j

=
1

2

J∑
j=1

2jd∑
k=1

θ20;k,j
µ2
j

− 1

2
log

J∏
j=1

(1− κ2j )
2jd − 1

2

J∑
j=1

2jdκ2j

=
1

2

J∑
j=1

2jd∑
k=1

θ20;k,j
µ2
j

− 1

2

J∑
j=1

2jd log(1− κ2j )−
1

2

J∑
j=1

2jdκ2j .

Now for µj2
jd/2 = 2−ja, and using the definition of Besov norm of θ0 denoted as ∥θ0∥2β,∞,∞, and

denoting 1− κ2j = 1
1+nϵ2nτ

2
j

, we have

KL(N (θ̄J0 , Cq)∥N (0, C))

≤ 1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ − 1

2

J∑
j=1

2jd log(1− κ2j )−
1

2

J∑
j=1

2jdκ2j

=
1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ − 1

2

J∑
j=1

2jd
(
log(1− κ2j ) + κ2j

)
=

1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ +
1

2

J∑
j=1

2jd

(
log(1 + nϵ2nτ

2
j )−

nϵ2nτ
2
j

1 + nϵ2nτ
2
j

)

≤ 1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ +
1

2

J∑
j=1

2jd
(
nϵ2nτ

2
j

)
,
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where the last inequality follows from the fact that, log(1 + x) − x
1+x ≤ x2

1+x ≤ x for x > 0.
Substituting τ2j = 2−2ja−jd, we have

1

n
KL(N (θ̄J0 , Cq)∥N (0, C)) ≤ 1

2n

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ +
ϵ2n
2

J∑
j=1

2−2ja

≤
∥θ0∥2β,∞,∞

2n

J∑
j=1

2j(2a−2β+d) +
2−2a

2

1− 2−2Ja

1− 2−2a
ϵ2n.

The summation in the first term above is bounded by ϵ2n as derived in [30, Theorem 4.5]. Therefore,

1

n
KL(N (θ̄J0 , Cq)∥N (0, C)) ≤ max

(
∥θ0∥2β,∞,∞,

2−2a − 2−2Ja−2a

1− 2−2a

)
ϵ2n. (103)

Now consider the second term
1

n
EQn KL(Pn

0 ∥Pn
θ )

= EQn

∫ (
Ψ1(θ0(y)) log

Ψ1(θ0(y))

Ψ1(θ(y))
+ Ψ−1(θ0(y)) log

Ψ−1(θ0(y))

Ψ−1(θ(y))

)
ν(dy)

≤ EQn

∫
⟨θ(y)− θ0(y), θ(y)− θ0(y)⟩ν(dy)

= EQn

∫
∥θ(y)− θJ0 (y)− (θ0(y)− θJ0 (y))∥22ν(dy)

= EQn

∫
∥θ(y)− θJ0 (y)∥22 + ∥θ0(y)− θJ0 (y))∥22 − 2⟨θ(y)− θJ0 (y), θ0(y)− θJ0 (y)⟩ν(dy)

≤ EQn

∫
∥θ(y)− θJ0 (y)∥22ν(dy) + ∥θ0(y)− θJ0 (y))∥2∞

= EQn

∫
|

J∑
j=1

2jd∑
k=1

ζjZj,kϑj,k(y)|2ν(dy) + ∥θ0(y)− θJ0 (y))∥2∞

≤ EQn

J∑
j=1

2jd∑
k=1

ζ2jZ
2
j,k

∫
ϑj,k(y)

2ν(dy) + ∥θ0(y)− θJ0 (y))∥2∞

=

J∑
j=1

2jd∑
k=1

ζ2jEQn
[Z2

j,k] + ∥θ0(y)− θJ0 (y))∥2∞

=

J∑
j=1

2jd∑
k=1

µ2
j (1− κ2j ) + ∥θ0(y)− θJ0 (y))∥2∞

=

J∑
j=1

2jd
µ2
j

1 + nϵ2nτ
2
j

+ ∥θ0(y)− θJ0 (y))∥2∞

≤ 1

nϵ2n

J∑
j=1

2−2ja

τ2j
+ ∥θ0(y)− θJ0 (y))∥2∞

=
1

nϵ2n

J∑
j=1

2jd + ∥θ0(y)− θJ0 (y))∥2∞

=
2d

nϵ2n

2dJ − 1

2d − 1
+ ∥θ0(y)− θJ0 (y))∥2∞

≤ 2d/(2d − 1)

(log n)2
+ C ′ϵ2n,
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where in the second inequality, we used the second assertion of Lemma 3.2 [30] for logistic function,
the fifth inequality uses the fact that θ(y)− θJ0 (y) is orthogonal to θ0(y)− θJ0 (y). For any a ≤ α fix
J = Jα otherwise J = Ja, and then it is straightforward to check from the definition of ϵn given in the
assertion of the theorem that (2dJ−1/nϵ2n) ≤ (log n)−2. The term ∥θ0(y)−θJ0 (y))∥2∞ is also bounded
by C ′ϵ2n as shown in the proof of Theorem 4.5 in [30]. Consequently, the term 1

nEQn
KL(Pn

0 ∥Pn
θ ) is

bounded above by ϵ2n (upto a constant) for sufficiently large n since (log n)−2 < ϵ2n and the result
follows.

Proof of Theorem 4.2. The proof is a direct consequence of Theorem 3.2, Lemmas B.11, B.12, B.13,
and Proposition 3.2.
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