Can You Hear Me Now? A Benchmark for Long-Range Graph Propagation

Anonymous Author(s)

Affiliation Address email

Abstract

Effectively capturing long-range interactions remains a fundamental yet unresolved challenge in graph neural network (GNN) research, critical for applications across diverse fields of science. To systematically address this, we introduce ECHO (Evaluating Communication over long HOps), a novel benchmark specifically designed to rigorously assess the capabilities of GNNs in handling very long-range graph propagation. ECHO includes three synthetic graph tasks – single-source shortest paths, node eccentricity, and graph diameter – each constructed over diverse and structurally challenging topologies intentionally designed to introduce significant information bottlenecks. ECHO also includes a real-world dataset, ECHO-Chem, grounded on a novel chemically-grounded application involving the prediction of atomic partial charges in molecules, which critically depends on the ability to capture intricate long-range molecular interactions. We provide an extensive benchmarking on popular GNN architectures which reveals clear performance gaps, emphasizing the difficulty of true long-range propagation and highlighting models and design choices capable of overcoming inherent limitations. ECHO thereby sets a new standard for evaluating long-range information propagation, also providing a compelling example for its need in AI for science.

1 Introduction

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

25

26

27

29

30

31

32

33

34

Graphs are fundamental data structures used extensively to represent complex interconnected systems, ranging from social networks and biological pathways, to communication infrastructures and molecular structures. Graph Neural Networks (GNNs) [73] [32] [67] [10] [17] have emerged as a successful methodology within deep learning, whose research community was initially driven by the development of diverse architectures capable of capturing intricate relational patterns inherent to graph-structured data, as well as impactful applications across various domains [41] [18] [36] [33] [48].

More recently, the research community has shifted its focus towards understanding and overcoming fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been driven by the observation that effectively propagating information over long distances in graphs remains a significant challenge. Such challenges have been formally linked to phenomena like over-smoothing [12,63,65], over-squashing [2,19], and more generally, vanishing gradients [3], all of which hinder GNN performance in tasks that require capturing long-range dependencies.

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while looking into methodological advancements that can surpass or mitigate such shortcomings. A key enabler of this progress is the establishment of solid and challenging benchmarks that can accurately assess and validate long-range propagation capacities. The availability of controlled synthetic benchmarks, should be complemented by the introduction of compelling application-driven datasets which can clearly demonstrate the practical advantages of addressing long-range propagation issues.

Long-range propagation capacities, in this sense, have been noted to be central in key areas of science, such as in biology [42, 25], biochemistry [38], and climate [52].

Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks [8], [68] 39 81 74 78 45 24, often overlooking the unique challenges associated with distant information 40 propagation. More recently, the growing interest in this challenge has motivated the community to 41 develop a few benchmarks specifically designed to evaluate information propagation in GNNs. These include the Long-Range Graph Benchmark (LRGB) [25] and the Graph Property Prediction (GPP) dataset [34]. While this is a significant step forward compared to earlier benchmarks, it does not 44 fully account for the need to capture the true long-range dependencies present in some real-world 45 applications. This is due to limited size of the graphs, the absence of well-defined conditions on the 46 expected propagation range, and the focus of the benchmarks, which is often more aimed at specific 47 issues of over-smoothing and over-squashing, rather than providing a broader evaluation of long-range 48 propagation capabilities. Moreover, LRGB and GPP tasks are facing a natural performance saturation, 49 as novel methodologies are being developed and optimized on them.

Motivated by this, we introduce ECHO (Evaluating Communication over long HOps), a new benchmark 51 designed to assess the capabilities of GNNs to exploit long-range interactions. ECHO consists of 52 three synthetic tasks and one real-world chemically grounded task. The former are designed to 53 provide a controlled setting to assess propagation capabilities. They comprise the prediction of 54 shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph 55 diameter) across a diverse graph topologies. These have been defined to increase the difficulty of effective long-range communication, as they present structural bottlenecks for the information flow. The main characteristic of these tasks is that GNNs must heavily rely on global information and 58 effectively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford [7]. 59 The real-world task targets the prediction of long-range charge redistribution in molecules, a critical 60 and practically relevant challenge in computational chemistry [22], as it underlies many fundamental 61 processes such as chemical reactivity, molecular stability, and intermolecular interactions. Accurate 62 modeling of these effects is essential for drug design, materials science, and biology understanding. 63

Our contributions can be summarized as follows:

65

66

67

68

69

70

71

72

73

74

75

79

80

- We introduce ECHO, a novel benchmark featuring four new tasks specifically designed to evaluate the ability of GNNs to effectively handle long-range communication in both synthetic and real-world settings. ECHO includes three synthetic tasks (collectively referred to as ECHO-Synth) with a total of 10,080 graphs, and one real-world task (ECHO-Chem) comprising 196,545 graphs, where the required propagation ranges from 17 to 40 hops.
- We propose ECHO-Chem, the first task that targets long-range interactions at atomic level for the
 prediction of long-range charge redistribution in molecular graphs. This makes ECHO-Chem not
 only a valuable task for benchmarking long-range propagation in GNNs, but also for advancing
 computational chemistry, where accurately modeling such interactions is notoriously challenging
 and computationally demanding, as highlighted by the ≈ 3 weeks of computational time on our
 hardware configuration to produce the benchmark.
- We present a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range dependencies, providing a rigorous evaluation of GNNs' ability to propagate information over extended graph distances.
 - We conduct extensive experiments to establish strong baselines for each task in ECHO, providing a comprehensive reference point for future research on long-range graph propagation.

We openly release data at https://huggingface.co/datasets/gmander44/ECH0/tree/main and the code at https://anonymous.4open.science/r/ECH0-benchmarks

2 On the need of a new benchmark

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range propagation, in relation to existing datasets.

The most widely used benchmark for assessing these capabilities is arguably LRGB [25]. Its introduction in 2022 has certainly marked an important milestone and promoted the development of the field. However, despite initial rapid improvements, performance on LRGB has now plateaued, showing a noticeable deceleration in progress across the last year, as discussed in Appendix A

In addition to this, it has to be noted that recent works [76, 5] questions the long-range nature of several LRGB tasks, revealing that a subset of tasks is inherently local, rather than requiring longrange diffusion, and that the benchmark itself is highly sensitive to hyperparameter tuning. Other benchmarks propose synthetic tasks on generated structures, including the Tree-Neighborhood [2], Graph Property Prediction [34], graph transfer [19, 35], GLoRA [85], and Barbell and Clique graphs [4]. Indeed, most of these tasks are originally designed to address narrow challenges that prevent long-range propagation, such as over-smoothing [12, 63, 65] and over-squashing [2, 19]. These phenomena, while related, do not necessarily capture the full spectrum of challenges associated with long-range communication. Moreover, despite being designed to test the ability of GNNs to overcome these limitations, these datasets typically involve small graphs with limited-size diameters. This inherently restricts the propagation radius, creating a significant gap between the benchmark tasks and real-world problems that require much deeper propagation across significantly larger structures.

The limitations highlighted above suggest the need for a new benchmark that reflects the challenges and opportunities in long-range GNN research. An effective benchmark should provide tasks that explicitly test a model's capacity to traverse extensive graph structures, effectively aggregate global information, and adapt to diverse topological constraints. Moreover, as the field has matured and a wide range of models have been established, ranging from graph transformers [70, 64] to multi-hop GNNs [1], 39 and others [69], it seems timely to introduce a new benchmark that can accurately assess the long-range propagation skills of these families of models, now that they are well understood and consolidated.

ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-110 range propagation needs, providing a clear target for the evaluation of this property. Specifically, ECHO 111 tasks require computing either shortest paths between all nodes or long-range charge redistribution, 112 with clearly defined propagation ranges between 17 and 40 hops, depending on the specific graph 113 structure. This explicit range ensures that models failing to capture dependencies within this span are 114 underreaching and have poor long-range capabilities. 115

The ECHO-Chem molecular task has strong value per-se. It proposes a novel, practical and highimpact challenge for learning models in computational chemistry [22]. Previous popular benchmark 117 in this domain [74, 78, 45, 81, 25] focused on the prediction of molecular-level properties, such as 118 solubility or HIV inhibition, which are short-range tasks. This is evident when they can be reduced 119 to the problem of counting small-dimensional local substructures (ie with lenght smaller than 7) 120 Differently, ECHO-Chem is the first graph benchmark that targets long-range interactions at the 121 atomic level, i.e., the microscopic scale. ECHO-Chem task is not only inherently long-range, but 122 also particularly challenging as it requires accurate modeling of charge distributions and of the 123 complex atomic interactions. This makes it a computationally expensive task to be solved with 124 current computational chemistry tools. We provide further details on computational complexity of 125 the quantum simulations in Appendix G. 126

Therefore, ECHO-Chem sets a new standard for evaluating long-range graph information propagation, 127 as well as it provides a compelling application of AI for science and chemistry, enabling faster 128 predictions with potential impact on drug/material design or understanding biological functions.

3 The ECHO Benchmark

91

92

93

94

95

98

99

100

101

102

103

104

105

106

107

108

109

130

In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range 131 information propagation capabilities of GNNs. Our benchmark consists of two complementary 132 components: a set of algorithmically constructed tasks and a chemically grounded real-world dataset. 133

The synthetic component includes classical graph-theoretic problems—single-source shortest path, 134 node eccentricity, and graph diameter—posed across diverse graph topologies designed to induce 135 structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range 136 dependencies and enable controlled analysis of model behavior under varying topological conditions. 137

The chemical benchmark targets a practically relevant and physically grounded task in computational 138 chemistry: predicting long-range charge redistribution in molecules. This problem, rooted in elec-139 tronic structure modeling, reflects realistic charge transfer phenomena and builds upon prior work in quantum-accurate deep learning models for molecular systems [51] 84].

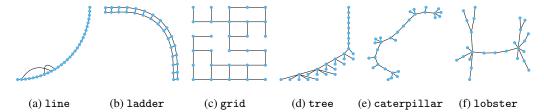


Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, N=30

3.1 The ECHO-Synth dataset

The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information propagation across a diverse set of graph topologies. It focuses on three graph property prediction tasks: Single Source Shortest Path (sssp), Node Eccentricity (ecc), and Graph Diameter (diam). Among these, sssp and ecc are node-level tasks requiring the prediction of a scalar value per node, while diam is a graph-level task requiring a single prediction for the entire graph. We refer to this dataset as ECHO-Synth.

These tasks were intentionally selected due to their heavy reliance on global information. For example, solving sssp from a given source node requires identifying shortest paths to all other nodes [20]—information that often spans the entire graph. Eccentricity builds on this by requiring the longest shortest path from each node, demanding complete graph awareness. Diameter is even more global, involving the longest shortest path between any two nodes [16]. Classical algorithms like Dijkstra's [20] and Bellman-Ford [7], which perform complete graph traversal, illustrate the challenge these tasks pose for GNNs, which rely on localized message passing. To prevent models from relying on input features rather than learning structural patterns, each node is assigned a uniformly distributed random scalar feature $r \sim \mathcal{U}(0,1)$. Additionally, for the sssp task, a binary indicator is included to mark the source node. This ensures that the model can distinguish the source while maintaining uniform input statistics across tasks.

Table 1: Statistics of the proposed dataset.

Dataset	# Graphs	Avg Nodes	Avg Deg.	Avg Edges	Avg Diam	# Node Feat	# Edge Feat	# Tasks
ECHO-Synth	10,080	$83.69_{\pm 66.24}$	$2.53_{\pm 1.19}$	$211.63_{\pm 209.39}$	$28.50_{\pm 6.92}$	2	None	3
line	1,680	$75.60_{+27.32}$	$2.37_{\pm0.10}$	90.10 _{±33.89}	28.50 _{±6.92}	2	None	3
ladder	1,680	56.52 ± 13.82	2.92 ± 0.02	82.54 ± 20.72	28.50 ± 6.92	2	None	3
grid	1,680	$193.10_{\pm 93.10}$	2.95 ± 0.12	288.32 ± 145.29	28.50 ± 6.92	2	None	3
Tree	1,680	$60.42_{\pm 17.17}$	$1.96_{\pm 0.01}$		28.50 + 6.92	2	None	3
caterpillar	1,680	$34.71_{\pm 7.96}$	$1.94_{\pm 0.02}$		$28.50_{\pm 6.92}$	2	None	3
lobster	1,680	$81.79_{\pm 25.46}$	1.97 ± 0.01	$80.79_{\pm 25.46}$	$28.50 {\scriptstyle \pm 6.92}$	2	None	3
ECHO-Chem	196,545	73.74 _{±13.23}	$2.09_{\pm 0.04}$	$76.92_{\pm 13.29}$	23.66±2.66	2	2	1

Dataset Construction. This dataset includes six distinct families of graph topologies i.e., line, ladder, grid, tree, caterpillar, and lobster (see Figure [1]), each selected to highlight different structural and propagation characteristics. The line graph (Figure [1](a)) serves as a simple but non-trivial baseline. To introduce non-local interactions, we modify it with stochastic skip connections: each node has a 20% chance of forming an edge to another node 2–6 hops away. Building on this, the ladder topology (Figure [1](b)) consists of two parallel line graphs connected by one-to-one cross-links, enabling richer routing possibilities and redundancy in message pathways. The grid topology (Figure [1](c)) represents a 2D lattice structure where edges are independently removed with a 20% probability. This results in irregular neighborhoods and broken spatial symmetries.

To model scale-free and hierarchical structures, we include tree-structured graphs (Figure I(d)) generated through preferential attachment. A new node connects to an existing one with probability proportional to k_i^{α} , where k_i represents the degree of the i-th node (with $\alpha=3$), leading to the formation of high-degree hubs and reflecting connectivity patterns often seen in natural networks. The caterpillar topology (Figure I(e)) augments a central linear backbone with peripheral nodes attached randomly along the spine, combining features of chain-like and tree-like graphs to create

moderate branching and directional flow. Extending this idea, the lobster graph (Figure [](f)) adds a third hierarchical layer: nodes in the outermost layer connect only to intermediate nodes, resulting in deeper branching while preserving an overall elongated structure. This configuration is especially useful for testing the limits of multi-hop message passing under structured constraints.

Beyond their long-range dependencies, the complexity of the synthetic tasks is further increased by the presence of **topological bottlenecks**, which pose significant challenges to GNN based on message passing [29]. Bottlenecks emerge in graphs where information flow between distant nodes is constrained to pass through a small subset of intermediary nodes, thereby restricting the bandwidth of information flow. This structural constraint can increse the risk of *over-squashing*, a phenomenon in which exponentially growing information is aggregated into the low-dimensional node representations [2]. As a result, critical signals may be compressed or lost during propagation, severely limiting the model's capacity to distinguish and preserve meaningful long-range interactions [77] [19].

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks. For example, in the line topology information between distant nodes must propagate sequentially through a single path, making each node along the path a critical bottleneck. Similarly, tree-structured graphs inherently introduce bottlenecks at branch points and hierarchical layers, where entire subtrees depend on narrow pathways for communication with the rest of the graph. The caterpillar and lobster graphs further reinforce this pattern by adding additional peripheral layers while maintaining centralized backbones, exacerbating the bottleneck effect in their hierarchical layouts. Even in the more uniform grid topology, bottlenecks are implicitly introduced through random edge deletions, which can disrupt regular pathways and force information to traverse suboptimal and congested routes.

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range $d \in [17, 40]$, capturing diverse long-range interaction scenarios. For each of the six graph topologies and each diameter value, we produce 70 unique graphs, yielding a total of $70 \times 24 \times 6 = 10,080$ graphs. To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign 40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees that all splits share the same distribution over both graph topologies and diameter values, which are uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the training set, avoiding distributional shifts and ensuring fair comparison across methods. Detailed dataset statistics are reported in Table 1 and Appendix 1.

3.2 ECHO-Chem Dataset

Molecular property prediction is a cornerstone application of GNNs, with common benchmarks involving graph-level prediction tasks such as molecular fingerprint [23], solubility, toxicity and various chemical properties [15] [46]. One fundamental task in this domain is the prediction of atomic partial charges—continuous, atom-level properties that reflect the electron distribution within a molecule. Accurate charge prediction is essential for modeling molecular interactions, reactivity, and electrostatic behavior. Figure [2] illustrates this task on the 3D molecular graph of caffeine, where each atom is colored according to its predicted partial charge.

Traditionally, partial charges are computed using quantum mechanical methods, especially Density Functional Theory (DFT) or other quantum chemical simulations. While these methods provide high accuracy, their computational cost—arising from solving complex equations—limits their scalability to large molecular datasets or high-throughput tasks. Specifically, high-accuracy simulations require several minutes to process a single molecule. We report a quantitative description of DFT and non-DFT quantum simulation efficiency in Appendix G.

A significant challenge for Machine Learning (ML) methods addressing partial charge prediction is effectively capturing long-range dependencies across molecular graphs. Specifically, here we will refer as "long-range" in the graph space, (e.g., node separated by many hops), rather than purely spatial distance. The three-dimensional configuration of molecules greatly intensifies this task complexity, as distant atoms in the graph topology can still exert significant influence on atomic electronic properties. Such non trivial, long-range interdependencies become increasingly challenging to model accurately as molecular graph diameter grow. To systematically address this challenge, we introduce ECHO-Chem, with the specific aim to stress long-range dependencies in a real-world

scenario. ECHO-Chem task is formulated as a node-level regression problem: for each molecular graph, the model must predict the partial charge of every atom.

Beyond serving as a rigorous benchmark for GNN architectures, this dataset has strong potential for practical impact in terms of ML application in science and chemistry. Capturing these sophisticated long-range interactions can significantly improve efficiency of predicting atomic partial charges, and potentially serving as accurate and computational inexpensive initialization for subsequent quantum mechanical simulations. Such improvements could substantially accelerate computational chemistry workflows, facilitating rapid exploration of the large molecular space.

Dataset Construction. Comprising approximately 200,000 molecular graphs selected for ChEMBL database [83], our dataset exclusively includes molecules with graph diameters between 17 and 40, clearly ensuring the presence of significant long range dependencies that thoroughly test model capabilities. In the ECHO-Chem dataset, each graph represent a single molecule (see Figure 2), and each node (i.e., atom) is labeled with the atomic number, essential for chemical identity, and spatial distance from the center of mass of the molecule, to provide geometrical context. Edges correspond to chemical bonds, and are labeled with bond type (single, double, triple, or aromatic) and bond length. Notably, this encoding of spatial information is invariant under the action of the E(3) group, meaning that relative geometric features such as distances remain invariant under global 3D rotations, reflections and translations of the molecular structure. This ensures that the spatial representation respects the underlying symmetries of molecular physics, essential for learning physically consistent models.

To generate the dataset, we employed a two-steps approach. Firstly, the generation process began with molecular 3D structure generation starting from ChEMBL SMILES [80] strings for all the molecules satisfying the given diameter constraint. In order to generate molecular conformations we opted for coordinates optimization using the Generalized Amber Force Field (GAFF) [37], a well-established force field, specifically

Figure 2: 3D molecular graph of *caffeine* annotated with atomic partial charges. Blue indicates regions of negative partial charge, while red corresponds to positive charge accumulation. Each node is labeled with the atomic number and its distance from the molecule's center of mass, while edges are labeled with bond type and length. The task is to predict the partial charge at each node.

designed for optimizing a wide variety of organic and medical interest compounds. These optimized structures, will serve as initialization for the subsequent quantum chemical calculations to determine accurate structures and partial charges. Specifically, we utilized the Hartree-Fock methods with three empirical corrections (HF-3c) [75]. The chosen approach balanced computational tractability with the chemical accuracy required for reliable molecular property annotation. All the computations were run thanks to the ORCA package for quantum chemistry [57] [59] [58]. A detailed description of the quantum simulations is provided in Appendix [6] along with information about the computing platform in Appendix [7].

Dataset Split. To evaluate model performance under consistent and reproducible conditions, we employed a random uniform sampling strategy to split the original ECHO-Chem dataset. This approach ensures a balanced distribution of molecular structures and charge ranges across the training, validation, and test sets, therefore minimizing potential sampling bias. The dataset was partitioned into 80% for training, 10% for validation, and 10% for testing. This standard 80/10/10 split allows for robust model selection and generalization assessment while preserving the diversity and complexity inherent to the original data.

4 Experiments

Baselines. We consider a diverse set of GNNs baselines that capture core directions in the development of graph neural architectures, spanning from classical GNNs to more recent approaches that demonstrate strong empirical performance in capturing long-range dependencies. As classical

Table 2: Test MAE (mean with standard deviation as subscript) for each model across the three synthetic tasks: diam, ecc, and sssp. Lower is better. Values are color-coded by performance, with darker green indicating lower error.

Model	$\texttt{diam} \downarrow$	ecc ↓	sssp ↓
GCN	3.832 ± 0.262	5.233 ± 0.034	2.102 ± 0.094
GraphCON	2.969 ± 0.189	5.474 ± 0.001	5.734 ± 0.011
GPS	2.160 ± 0.098	4.758 ± 0.021	0.472 ± 0.050
GCNII	2.005 ± 0.093	5.241 ± 0.030	2.128 ± 0.429
GIN	1.630 ± 0.161	4.869 ± 0.092	2.234 ± 0.271
PH-DGN	1.627 ± 0.398	5.068 ± 0.126	1.323 ± 0.485
DRew	1.243 ± 0.047	${\bf 4.651} \pm 0.020$	1.279 ± 0.011
A-DGN	1.151 ± 0.038	4.981 ± 0.037	1.176 ± 0.140
SWAN	${\bf 1.121} \pm 0.070$	4.840 ± 0.045	0.896 ± 0.232

baseline models, we include GCN [50], GIN [82], GINE] [47] and GCNII [13], which represent standard message-passing frameworks with strong theoretical grounding. We also considere multi-hop GNNs, i.e., DRew [39], which adaptively rewire the graph to to facilitate more effective information aggregation across distant nodes. Moreover, we evaluate GPS [64], an effective graph transformer that enables effective long-range propagation via attention mechanism between any pairs of nodes. Finally, we explore the performance of a family of GNNs that draw on principles from dynamical systems theory, namely differential-equation inspired GNNs (DE-GNNs). This includes GraphCON [66], which treats node features as coupled oscillators, as well as models explicitly designed to perform long-range propagation, whose architectures are based on non-dissipative or port-Hamiltoninan dynamics, such as A-DGN [34], SWAN [35], and PH-DGN [44]. Specific configurations of these methods are detailed in Appendix [D]

Model Architecture and hyperparameter selection. All models share a unified backbone design to enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer MLP applied directly to the node representations. For graph-level tasks, node representations are first aggregated using the mean, max, and sum operations, concatenated, and then processed by a two-layer MLP. This standardization ensures that differences in performance are attributable to the core propagation mechanisms rather than auxiliary architectural choices.

Training follows a consistent protocol across all models. We minimize the base-10 logarithm of the Mean Squared Error loss (MSE), $\log_{10}(\mathrm{MSE}(y_{\mathrm{true}}-y_{\mathrm{target}}))$, since the predicted values can be very small in magnitude and this scale-sensitive loss emphasizes small differences. We use the Adam [49] optimizer and adopt Early Stopping based on validation loss. with a patience of 100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility of our results. In order to ensure a fair and robust comparison across all methods and datasets, we employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset pair, we perform a Bayesian Optimization based on a Gaussian Process prior [72] in the chosen hyperparameter space, spanning 100 trials to explore the respective search space efficiently. We report the complete set of explored hyperparameters for each model, as well as with the selected hyperparameters, in Appendix [D] Finally, the best configuration found is validated through four independent training runs, each initialized with a different random seed. This multi-seed evaluation mitigates the effect of stochastic factors and ensures statistical soundness of the reported results.

Results on ECHO-Synth **dataset.** We report results on the synthetic benchmarks in Table 2. All the values are reported using the Mean Absolute Error (MAE). Additional training metrics, particularly MSE and the training loss $\log_{10}(\mathrm{MSE})$, are reported in the Appendix C. Table 4. We clearly observe that models employing global attention mechanisms significantly outperform traditional message-passing frameworks. Specifically, GPS demonstrates superior performance on the sssp task, achieving a remarkably low MAE of 0.472. In line with literature findings 25, this result suggests

¹We added GINE as a baseline to ECHO-Chem benchmark to overcome the limitations of GIN to process edge attributes.

that incorporating transformer-like global attention substantially mitigates inherent limitations in localized message-passing, which are pronounced in classic architectures such as GCN and GIN.

Interestingly, it is possible to notice that differential-equation-inspired architectures, particularly those employing non-dissipative or port-Hamiltonian formulations like SWAN, A-DGN, and PH-DGN, consistently perform well across tasks, with similar performance metrics. Notably, SWAN achieves the lowest MAE on the diam task (1.121), closely followed by A-DGN and PH-DGN. This highlights the benefit of incorporating non-dissipative dynamics to improve long-range information propagation, thereby preserving critical structural information across extensive message-passing steps. Moreover, the multi-hop GNN, DRew, reveals its effectiveness in the ecc task, attaining the lowest MAE (4.651). This success emphasizes the advantage of dynamically rewiring graph structures, thus effectively addressing topological bottlenecks critical for accurately capturing node eccentricities. Differently, GraphCON do not inherently outperform traditional methods, and show notably weaker performance relative to other models of the same architectural family (e.g., A-DGN and SWAN). Thus, mere message-passing dynamics without explicit structural constraints or weight regularization does not ensure superior performance in long-range tasks.

Finally, traditional message-passing models like GCN demonstrate consistent limitations across all benchmarks, indicative of fundamental constraints in purely localized message-passing architectures when facing extensive long-range dependencies as required in our ECHO-Synth benchmark suite. This limitation is most evident in the diam task, where GCN records the highest MAE (3.832), underscoring its inadequate capacity for global information aggregation.

Results on ECHO-Chem dataset. We finally detail the performance of all evaluated models on the atomic partial charge prediction task in Table 3. As anticipated, architectures capable of handling long-range dependencies demonstrate a clear advantage, given the nature of the task which requires precise modeling of subtle interatomic interactions spread across the molecular graph. Notably, GPS achieves the best performance across all metrics, with the lowest MAE (5.65×10^{-3}) and MSE (2.00×10^{-4}) , confirming the utility of global attention mechanisms in capturing distant influences that modulate partial charges. This highlights how transformer-style architectures can successfully overcome the locality bottleneck of standard message passing, particularly in chemically meaningful spatial graphs, at the cost of increased computational complexity (as shown in Appendix F).

Models like PH-DGN, A-DGN, and SWAN also yield competitive performance, consistently appearing among the top performers. Their success suggests that imposing non-dissipative priors-such as antis-symmetric weight-space regulation and port-Hamiltonian dynamics-not only regularizes the learning dynamics but also guides the model toward chemically plausible solutions. Indeed, PH-DGN achieves the second-best performance, achieving an MAE of 7.92×10^{-3} .

The multi-hop GNN, DRew, also achieve strong performance, closely rivaling A-DGN and PH-DGN. Its capacity to adapt the graph structure during training likely enables better long-range signal flow, addressing issues such as topological bottlenecks and poor gradient propagation that are prevalent in molecular graphs. In contrast, GraphCON, which relies on continuous-time dynamics without explicit structural adaptation or attention, fails to deliver comparable performance, achieving one of the worst MAEs (15.20×10^{-3}) . This reinforces that continuity alone is insufficient for tasks requiring fine-grained long-distance interactions.

Traditional message-passing networks, particularly GCN and GIN, again lag behind,

Figure 3: Visualization of prediction errors for the ECHO-Chem task using two different GNN architectures: GPS Transformer (a) and GCN layer (b). The coloring represents the logarithm of the absolute prediction error, $\log(|y_{\rm true}-y_{\rm pred}|)$. Lower values (in green) indicate better prediction accuracy, while higher values (in orange) correspond to larger errors.

with MAEs exceeding 12×10^{-3} . These results again confirm the hypothesis that localized aggregation—without mechanisms to integrate distant node information—is inadequate for atomic-level charge modeling. The ECHO-Chem benchmark thus clearly illustrates the necessity for architectures

Table 3: Test performance across models on the ECHO-Chem Metrics are reported as mean with standard deviation as subscript. MSE is scaled by 10^{-4} and MAE by 10^{-3} . Lower values are better. Cells are color-coded by performance, with darker green indicating lower error.

Model	Test Loss	Test MSE ($\times 10^{-4}$) \downarrow	Test MAE ($\times 10^{-3}$) \downarrow
A-DGN	-3.547 ± 0.05	2.98 ± 0.04	8.47 ± 0.05
DRew	-3.532 ± 0.03	3.08 ± 0.02	$8.37_{\pm0.06}$
GCNII	-3.453 ± 0.19	3.67 ± 0.17	9.26 ± 0.14
GCN	-3.136 ± 1.40	6.82 ± 2.01	12.31 ± 2.24
GIN	-3.118 ± 0.20	7.76 ± 0.36	13.29 ± 0.12
GPS	$\bf -3.769 \pm 0.04$	$\boldsymbol{2.00} \pm 0.03$	$\boldsymbol{5.65} \pm \boldsymbol{0.12}$
GraphCON	-3.186 ± 0.02	6.64 ± 0.03	15.20 ± 0.05
PH-DGN	-3.604 ± 0.02	2.63 ± 0.01	7.92 ± 0.07
SWAN	-3.505 ± 0.05	2.93 ± 0.03	8.79 ± 0.06
GINE	-3.481 ± 0.23	3.41 ± 0.31	8.15 ± 0.09

that either incorporate global attention or embed non-dissipative dynamics to effectively tackle the intricate and non-local dependencies inherent in molecular charge distribution.

We provide a visual depiction of charge prediction accuracy on a non-trivial molecule from the test set in Figure 3. The figure contrasts the prediction errors made by two representative GNN architectures: the GPS Transformer (a) and the standard GCN layer (b). Each atom in the molecule is colored according to the logarithm of its absolute prediction error, $\log(|y_{\text{true}} - y_{\text{pred}}|)$, with green tones indicating lower errors and orange tones marking larger discrepancies. As visible in panel (a), GPS yields significantly lower prediction errors across most atomic sites, especially in spatially peripheral regions, reflecting its capacity to capture long-range dependencies and global interactions. In contrast, the GCN model in panel (b) struggles with error accumulation in several areas, particularly at structurally distant or chemically sensitive atoms. This comparison visually underscores the advantage of global attention mechanisms for accurately modeling atomic properties in molecular graphs.

Although partial charges errors are small in absolute magnitude across baselines, even subtle deviations – as stated in [22] – on the order of $10^{-4} e$ to $10^{-6} e$, can lead to significant downstream effects in molecular modeling and reproducibility of results. Therefore, predictive models must target this level of granularity to produce chemically meaningful outputs.

Additional Experiments and Analysis. Additional results and a detailed analysis of baseline performance are provided in Appendix B We investigate the impact of model depth and graph diameter on test performance across all tasks. Training times are reported in Appendix F These analyses highlight the ability of different architectures to scale with increasing layer count and to handle long-range dependencies, revealing important differences in robustness and generalization behavior.

399 5 Conclusion

In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation in GNNs. Our benchmark included two main tasks – ECHO-Synth and ECHO-Chem – that target long-range communication in both synthetic and real-world settings. The synthetic tasks are designed to predict algorithmic and long-range-by-design graph properties, while the real-world task focuses on long-range charge distribution in molecules. We provided a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range dependencies, and we established strong baselines for each task to provide a comprehensive reference point for future research. We acknowledge some limitations in our current work in Appendix [I]. Our results highlight the limitations of current GNN architectures when faced with long-range propagation challenges, and we believe that ECHO will serve as a critical step toward building more robust, scalable, and generalizable GNNs capable of handling the full spectrum of graph-based learning tasks, posing a challenge to the community to push the boundaries of GNN design and evaluation.

Impact Statement. This work aims to advance the field of machine learning on graphs, focusing on accelerating and advancing the design of more effective GNNs. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

415 References

- [1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
 architectures via sparsified neighborhood mixing. In *International Conference on Machine Learning*, pages 21–29. PMLR, 2019.
- [2] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical
 Implications. In *International Conference on Learning Representations*, 2021.
- 422 [3] Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, 423 Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On Vanishing Gradients, Over-424 Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning, 2025.
- [4] Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael M. Bronstein. Bundle neural
 network for message diffusion on graphs. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Jacob Bamberger, Benjamin Gutteridge, Scott le Roux, Michael Bronstein, and Xiaowen Dong.
 On Measuring Long-Range Interactions in Graph Neural Networks. In *Proceedings of the 42th International Conference on Machine Learning*, Proceedings of Machine Learning Research.
 PMLR, 13–19 Jul 2025.
- 432 [6] Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 119–130, 2024.
- [7] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
- [8] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking. In *International Conference on Learning Representations*,
 2018.
- [9] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
 graph neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(1):657–668, 2023.
- 442 [10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally 443 connected networks on graphs, 2014.
- [11] Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and graph transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
 Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 3408–3430. PMLR, 23–29 Jul 2023.
- 449 [12] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. *arXiv preprint* 450 *arXiv:2006.13318*, 2020.
- In Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph Convolutional Networks. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 1725–1735. PMLR, 13–18 Jul 2020.
- Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph transformer. In Sharvaree Vadgama, Erik Bekkers, Alison Pouplin, Sekou-Oumar Kaba, Robin Walters, Hannah Lawrence, Tegan Emerson, Henry Kvinge, Jakub Tomczak, and Stephanie Jegelka, editors, *Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM)*, volume 251 of *Proceedings of Machine Learning Research*, pages 20–34. PMLR, 29 Jul 2024.
- [15] Connor W. Coley, Regina Barzilay, William H. Green, Tommi S. Jaakkola, and Klavs F. Jensen.
 Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction.
 Journal of Chemical Information and Modeling, 57(8):1757–1772, August 2017.

- 464 [16] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2022.
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
 on Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing
 Systems, volume 29. Curran Associates, Inc., 2016.
- [18] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
 Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal
 Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Velickovic.
 ETA Prediction with Graph Neural Networks in Google Maps. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, CIKM '21, page 3767–3776. Association for Computing Machinery, 2021.
- Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael Bronstein. On over-squashing in message passing neural networks: the impact of width, depth, and topology. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- Edsger W Dijkstra. A note on two problems in connexion with graphs. In *Edsger Wybe Dijkstra:* his life, work, and legacy, pages 287–290. 2022.
- Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for graph representation learning. In *Forty-first International Conference on Machine Learning*, 2024.
- [22] François-Yves Dupradeau, Adrien Pigache, Thomas Zaffran, Corentin Savineau, Rodolphe
 Lelong, Nicolas Grivel, Dimitri Lelong, Wilfried Rosanski, and Piotr Cieplak. The r.e.d. tools:
 advances in resp and esp charge derivation and force field library building. *Phys. Chem. Chem. Phys.*, 12:7821–7839, 2010.
- [23] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
 Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
 molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
 editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates,
 Inc., 2015.
- Yijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
 and Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 24(1), January
 2023.
- Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
 Luu, and Dominique Beaini. Long Range Graph Benchmark. In *Advances in Neural Information Processing Systems*, volume 35, pages 22326–22340. Curran Associates, Inc., 2022.
- [26] Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, and Carola Bibiane Schönlieb. GRAMA: Adaptive Graph Autoregressive Moving Average Models, 2025.
- [27] Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
 Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmoothing,
 oversquashing, and underreaching, 2024.
- [28] Simon Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral graph
 neural networks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
 and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
 49022–49080. Curran Associates, Inc., 2024.
- Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
 Neural message passing for Quantum chemistry. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *ICML'17*, page 1263–1272. JMLR.org, 2017.
- [30] Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++: Enhancing topological message passing, 2023.

- 513 [31] Daniel Glickman and Eran Yahav. Diffusing graph attention, 2023.
- [32] M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In
 Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
 pages 729–734. IEEE, 2005.
- 517 [33] Alessio Gravina and Davide Bacciu. Deep Learning for Dynamic Graphs: Models and Bench-518 marks. *IEEE Transactions on Neural Networks and Learning Systems*, pages 1–14, 2024.
- 519 [34] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable 520 architecture for Deep Graph Networks. In *The Eleventh International Conference on Learning* 521 *Representations*, 2023.
- 522 [35] Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane 523 Schönlieb. On oversquashing in graph neural networks through the lens of dynamical systems. 524 In *The 39th Annual AAAI Conference on Artificial Intelligence*, 2025.
- 525 [36] Alessio Gravina, Jennifer L. Wilson, Davide Bacciu, Kevin J. Grimes, and Corrado Priami.
 526 Controlling astrocyte-mediated synaptic pruning signals for schizophrenia drug repurposing
 527 with deep graph networks. *PLOS Computational Biology*, 18(5):1–19, 05 2022.
- 528 [37] Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab 529 initio parametrization of density functional dispersion correction (dft-d) for the 94 elements 530 h-pu. *J. Chem. Phys.*, 132:154104, 2010.
- [38] M.Michael Gromiha and S. Selvaraj. Importance of long-range interactions in protein folding.
 Biophysical Chemistry, 77(1):49–68, 1999.
- [39] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
 Dynamically rewired message passing with delay. In *International Conference on Machine Learning*, pages 12252–12267. PMLR, 2023.
- Thomas A. Halgren. Merck molecular force field. i. basis, form, scope, parameterization, and performance of mmff94. *Journal of Computational Chemistry*, 17(5-6):490–519, 1996.
- William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
 graphs. In *Proceedings of the 31st International Conference on Neural Information Processing* Systems, NIPS'17, page 1025–1035. Curran Associates Inc., 2017.
- [42] Ali Hariri and Pierre Vandergheynst. Graph learning for capturing long-range dependencies in protein structures. In David A Knowles and Sara Mostafavi, editors, *Proceedings of the 19th Machine Learning in Computational Biology meeting*, volume 261 of *Proceedings of Machine Learning Research*, pages 117–128. PMLR, 05–06 Sep 2024.
- [43] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann Lecun, and Xavier Bresson. A
 generalization of ViT/MLP-mixer to graphs. In Andreas Krause, Emma Brunskill, Kyunghyun
 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the* 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
 Learning Research, pages 12724–12745. PMLR, 23–29 Jul 2023.
- [44] Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu.
 Port-Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks. In
 The Thirteenth International Conference on Learning Representations, 2025.
- Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
 In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 22118–22133. Curran Associates, Inc., 2020.
- Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
 Leskovec. Strategies for pre-training graph neural networks. In *International Conference on Learning Representations*, 2020.

- [47] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
 Leskovec. Strategies for Pre-training Graph Neural Networks. In *International Conference on Learning Representations*, 2020.
- Bharti Khemani, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions. *Journal of Big Data*, 11(1):18, Jan 2024.
- [49] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua
 Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
 ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
- 570 [50] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In *International Conference on Learning Representations*, 2017.
- 572 [51] Tsz Wai Ko, Jonas A Finkler, Stefan Goedecker, and Jörg Behler. A fourth-generation high-573 dimensional neural network potential with accurate electrostatics including non-local charge 574 transfer. *Nature communications*, 12(1):398, 2021.
- [52] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
 Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
 Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir
 Mohamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting.
 Science, 382(6677):1416–1421, 2023.
- Guixiang Ma, Vy A. Vo, Theodore L. Willke, and Nesreen K. Ahmed. Augmenting recurrent
 graph neural networks with a cache. In *Proceedings of the 29th ACM SIGKDD Conference* on Knowledge Discovery and Data Mining, KDD '23, page 1608–1619, New York, NY, USA,
 2023. Association for Computing Machinery.
- Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
 Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
 In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
 Proceedings of Machine Learning Research, pages 23321–23337. PMLR, 23–29 Jul 2023.
- [55] Gaspard Michel, Giannis Nikolentzos, Johannes F. Lutzeyer, and Michalis Vazirgiannis. Path
 neural networks: Expressive and accurate graph neural networks. In Andreas Krause, Emma
 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
 Proceedings of Machine Learning Research, pages 24737–24755. PMLR, 23–29 Jul 2023.
- [56] R. S. Mulliken. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I.
 The Journal of Chemical Physics, 23(10):1833–1840, October 1955.
- Frank Neese. Software update: the orca program system, version 5.0. WIREs Comput. Mol.
 Sci., 12(1):e1606, 2022.
- 597 [58] Frank Neese. The shark integral generation and digestion system. *J. Comput. Chem.*, 44:381–396, 2023.
- [59] Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The ORCA quantum
 chemistry program package. *The Journal of Chemical Physics*, 152(22):224108, June 2020.
- [60] Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution graph transformers and
 wavelet positional encoding for learning long-range and hierarchical structures. *The Journal of Chemical Physics*, 159(3), July 2023.
- 604 [61] Noel M. O'Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and 605 Geoffrey R. Hutchison. Open Babel: An open chemical toolbox. *Journal of Cheminformatics*, 606 3(1):33, October 2011.
- [62] Noel M. O'Boyle, Chris Morley, and Geoffrey R. Hutchison. Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit. *Chemistry Central Journal*, 2(1):5, March 2008.

- [63] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power
 for Node Classification. In *International Conference on Learning Representations*, 2020.
- [64] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
 Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in
 Neural Information Processing Systems, 35, 2022.
- 614 [65] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmoothing in Graph Neural Networks. *arXiv preprint arXiv:2303.10993*, 2023.
- [66] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
 Bronstein. Graph-coupled oscillator networks. In *International Conference on Machine Learning*, pages 18888–18909. PMLR, 2022.
- 619 [67] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 620 The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.
- [68] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
 Pitfalls of Graph Neural Network Evaluation. *Relational Representation Learning Workshop,* NeurIPS 2018, 2018.
- [69] Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem
 on GNNs: Current Methods, Benchmarks and Challenges, 2023.
- Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
 Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. In
 Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
 pages 1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8
 2021.
- [71] Behzad Shirzad, Amir M. Rahmani, and Marzieh Aghaei. Exphormer: Sparse attention for graphs. *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2023.
- [72] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
 learning algorithms. In *Proceedings of the 26th International Conference on Neural Information Processing Systems Volume 2*, NIPS'12, page 2951–2959, Red Hook, NY, USA, 2012. Curran
 Associates Inc.
- [73] Alessandro Sperduti. Encoding labeled graphs by labeling raam. Advances in Neural Information Processing Systems, 6, 1993.
- [74] Teague Sterling and John J. Irwin. Zinc 15 ligand discovery for everyone. *Journal of Chemical Information and Modeling*, 55(11):2324–2337, Nov 2015.
- [75] Rebecca Sure and Stefan Grimme. Corrected small basis set Hartree-Fock method for large
 systems. *Journal of Computational Chemistry*, 34(19):1672–1685, 2013.
- [76] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
 reassessing the long-range graph benchmark. In *The Second Learning on Graphs Conference*,
 2023.
- [77] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
 Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
 In International Conference on Learning Representations, 2022.
- [78] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound
 retrieval and classification. In *Sixth International Conference on Data Mining (ICDM'06)*,
 pages 678–689, 2006.
- 652 [79] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph 653 sequence modeling with selective state spaces. *arXiv preprint arXiv:2402.00789*, 2024.
- [80] David Weininger. SMILES, a chemical language and information system. 1. Introduction to
 methodology and encoding rules. *Journal of Chemical Information and Computer Sciences*,
 28(1):31–36, February 1988.

- Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learning, 2018.
- [82] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
 Networks? In *International Conference on Learning Representations*, 2019.
- [83] Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett,
 Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, Maria Paula
 Magarinos, Nicolas Bosc, Ricardo Arcila, Tevfik Kizilören, Anna Gaulton, A Patrícia Bento,
 Melissa F Adasme, Peter Monecke, Gregory A Landrum, and Andrew R Leach. The ChEMBL
 Database in 2023: A drug discovery platform spanning multiple bioactivity data types and time
 periods. Nucleic Acids Research, 52(D1):D1180–D1192, January 2024.
- [84] Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto
 Car, et al. A deep potential model with long-range electrostatic interactions. *The Journal of Chemical Physics*, 156(12), 2022.
- [85] Dongzhuoran Zhou, Evgeny Kharlamov, and Egor V. Kostylev. GLora: A benchmark to
 evaluate the ability to learn long-range dependencies in graphs. In *The Thirteenth International* Conference on Learning Representations, 2025.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The contribution and the scope of the paper are included in the abstract and in Section ...

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A limitation section is included in the Appendix I

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: Our work is primarily empirical and focuses on the design, implementation, and evaluation of a novel architecture applied to real-world data. It does not involve the development of new theoretical results or require formal proofs.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if
 they appear in the supplemental material, the authors are encouraged to provide a short
 proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the details of the experiment, such as the information on hardware and software in Appendix H and Appendix G We also release the code and the dataset.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Data and code are publicly released. Hyperparameter to reproduce the main experiments are discussed in Appendix D.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We discuss dataset splits in Section 3, hyperparameters in Appendix D and training strategies in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments are performed over multiple seed initializations, and results are provided with average between runs and the standard deviation to verify the significance of results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide details on the computing resources in Appendices $\overline{\mathbf{F}}$ and $\overline{\mathbf{H}}$

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts after the conclusions. More potential positive impacts that our benchmark will bring are discussed throughout Sections 1 and 2. Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no particular risk of misuse for the models and datasets employed.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The datasets are original contribution of this work, for the models used we correctly cite and mention the work introducing them and relevant related studies. Licenses and terms of use are properly respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

934

935

936

937

938

939

940

941

942

943

944

945

946 947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Our dataset are well described throughout our paper. Moreover, we openly release the code including additional information on how to run the code and use the assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions
 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
 guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research does not involve LLMs as any important, original or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.