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Abstract

Effectively capturing long-range interactions remains a fundamental yet unresolved
challenge in graph neural network (GNN) research, critical for applications across
diverse fields of science. To systematically address this, we introduce ECHO (Evalu-
ating Communication over long HOps), a novel benchmark specifically designed
to rigorously assess the capabilities of GNNs in handling very long-range graph
propagation. ECHO includes three synthetic graph tasks — single-source shortest
paths, node eccentricity, and graph diameter — each constructed over diverse and
structurally challenging topologies intentionally designed to introduce significant
information bottlenecks. ECHO also includes a real-world dataset, ECHO-Chem,
grounded on a novel chemically-grounded application involving the prediction
of atomic partial charges in molecules, which critically depends on the ability
to capture intricate long-range molecular interactions. We provide an extensive
benchmarking on popular GNN architectures which reveals clear performance gaps,
emphasizing the difficulty of true long-range propagation and highlighting models
and design choices capable of overcoming inherent limitations. ECHO thereby sets
a new standard for evaluating long-range information propagation, also providing a
compelling example for its need in Al for science.

1 Introduction

Graphs are fundamental data structures used extensively to represent complex interconnected sys-
tems, ranging from social networks and biological pathways, to communication infrastructures and
molecular structures. Graph Neural Networks (GNNs) [[73} 132,167, 10} [17]] have emerged as a suc-
cessful methodology within deep learning, whose research community was initially driven by the
development of diverse architectures capable of capturing intricate relational patterns inherent to
graph-structured data, as well as impactful applications across various domains [41} |18} |36} 33} 48].

More recently, the research community has shifted its focus towards understanding and overcoming
fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been
driven by the observation that effectively propagating information over long distances in graphs
remains a significant challenge. Such challenges have been formally linked to phenomena like
over-smoothing [[12}163[65]], over-squashing [2,[19], and more generally, vanishing gradients [3]], all
of which hinder GNN performance in tasks that require capturing long-range dependencies.

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while
looking into methodological advancements that can surpass or mitigate such shortcomings. A key
enabler of this progress is the establishment of solid and challenging benchmarks that can accurately
assess and validate long-range propagation capacities. The availability of controlled synthetic
benchmarks, should be complemented by the introduction of compelling application-driven datasets
which can clearly demonstrate the practical advantages of addressing long-range propagation issues.
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Long-range propagation capacities, in this sense, have been noted to be central in key areas of science,
such as in biology [42, [25]], biochemistry [38]], and climate [S2].

Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks [8, |68}
811174, 78 145, [24]], often overlooking the unique challenges associated with distant information
propagation. More recently, the growing interest in this challenge has motivated the community to
develop a few benchmarks specifically designed to evaluate information propagation in GNNs. These
include the Long-Range Graph Benchmark (LRGB) [25] and the Graph Property Prediction (GPP)
dataset [34]]. While this is a significant step forward compared to earlier benchmarks, it does not
fully account for the need to capture the true long-range dependencies present in some real-world
applications. This is due to limited size of the graphs, the absence of well-defined conditions on the
expected propagation range, and the focus of the benchmarks, which is often more aimed at specific
issues of over-smoothing and over-squashing, rather than providing a broader evaluation of long-range
propagation capabilities. Moreover, LRGB and GPP tasks are facing a natural performance saturation,
as novel methodologies are being developed and optimized on them.

Motivated by this, we introduce ECHO (Evaluating Communication over long HOps), a new benchmark
designed to assess the capabilities of GNNs to exploit long-range interactions. ECHO consists of
three synthetic tasks and one real-world chemically grounded task. The former are designed to
provide a controlled setting to assess propagation capabilities. They comprise the prediction of
shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph
diameter) across a diverse graph topologies. These have been defined to increase the difficulty of
effective long-range communication, as they present structural bottlenecks for the information flow.
The main characteristic of these tasks is that GNNs must heavily rely on global information and
effectively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford [7].
The real-world task targets the prediction of long-range charge redistribution in molecules, a critical
and practically relevant challenge in computational chemistry [22], as it underlies many fundamental
processes such as chemical reactivity, molecular stability, and intermolecular interactions. Accurate
modeling of these effects is essential for drug design, materials science, and biology understanding.

Our contributions can be summarized as follows:

* We introduce ECHO, a novel benchmark featuring four new tasks specifically designed to evaluate
the ability of GNNs to effectively handle long-range communication in both synthetic and real-
world settings. ECHO includes three synthetic tasks (collectively referred to as ECHO-Synth) with
a total of 10,080 graphs, and one real-world task (ECHO-Chem) comprising 196,545 graphs, where
the required propagation ranges from 17 to 40 hops.

* We propose ECHO-Chem, the first task that targets long-range interactions at atomic level for the
prediction of long-range charge redistribution in molecular graphs. This makes ECHO-Chem not
only a valuable task for benchmarking long-range propagation in GNNSs, but also for advancing
computational chemistry, where accurately modeling such interactions is notoriously challenging
and computationally demanding, as highlighted by the ~ 3 weeks of computational time on our
hardware configuration to produce the benchmark.

* We present a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range
dependencies, providing a rigorous evaluation of GNNs’ ability to propagate information over
extended graph distances.

* We conduct extensive experiments to establish strong baselines for each task in ECHO, providing a
comprehensive reference point for future research on long-range graph propagation.

We openly release data at https://huggingface.co/datasets/gmander44/ECHO/tree/main
and the code athttps://anonymous.4open.science/r/ECHO-benchmarks

2 On the need of a new benchmark

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range
propagation, in relation to existing datasets.

The most widely used benchmark for assessing these capabilities is arguably LRGB [25]. Its
introduction in 2022 has certainly marked an important milestone and promoted the development of
the field. However, despite initial rapid improvements, performance on LRGB has now plateaued,
showing a noticeable deceleration in progress across the last year, as discussed in Appendix [A]


https://huggingface.co/datasets/gmander44/ECHO/tree/main
https://anonymous.4open.science/r/echo-benchmarks/
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In addition to this, it has to be noted that recent works [76} 5] questions the long-range nature of
several LRGB tasks, revealing that a subset of tasks is inherently local, rather than requiring long-
range diffusion, and that the benchmark itself is highly sensitive to hyperparameter tuning. Other
benchmarks propose synthetic tasks on generated structures, including the Tree-Neighborhood [2]],
Graph Property Prediction [34], graph transfer [[19}35], GLoRA [835]], and Barbell and Clique graphs
[4]. Indeed, most of these tasks are originally designed to address narrow challenges that prevent
long-range propagation, such as over-smoothing [12} 63} 65] and over-squashing [2, [19]. These
phenomena, while related, do not necessarily capture the full spectrum of challenges associated with
long-range communication. Moreover, despite being designed to test the ability of GNNs to overcome
these limitations, these datasets typically involve small graphs with limited-size diameters. This
inherently restricts the propagation radius, creating a significant gap between the benchmark tasks
and real-world problems that require much deeper propagation across significantly larger structures.

The limitations highlighted above suggest the need for a new benchmark that reflects the challenges
and opportunities in long-range GNN research. An effective benchmark should provide tasks that
explicitly test a model’s capacity to traverse extensive graph structures, effectively aggregate global
information, and adapt to diverse topological constraints. Moreover, as the field has matured and a
wide range of models have been established, ranging from graph transformers [70, 64] to multi-hop
GNNs [, 39] and others [69], it seems timely to introduce a new benchmark that can accurately
assess the long-range propagation skills of these families of models, now that they are well understood
and consolidated.

ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-
range propagation needs, providing a clear target for the evaluation of this property. Specifically, ECHO
tasks require computing either shortest paths between all nodes or long-range charge redistribution,
with clearly defined propagation ranges between 17 and 40 hops, depending on the specific graph
structure. This explicit range ensures that models failing to capture dependencies within this span are
underreaching and have poor long-range capabilities.

The ECHO-Chem molecular task has strong value per-se. It proposes a novel, practical and high-
impact challenge for learning models in computational chemistry [22]]. Previous popular benchmark
in this domain [[74} (78,145, [81, 25]] focused on the prediction of molecular-level properties, such as
solubility or HIV inhibition, which are short-range tasks. This is evident when they can be reduced
to the problem of counting small-dimensional local substructures (ie with lenght smaller than 7)
[9]]. Differently, ECHO-Chem is the first graph benchmark that targets long-range interactions at the
atomic level, i.e., the microscopic scale. ECHO-Chem task is not only inherently long-range, but
also particularly challenging as it requires accurate modeling of charge distributions and of the
complex atomic interactions. This makes it a computationally expensive task to be solved with
current computational chemistry tools. We provide further details on computational complexity of
the quantum simulations in Appendix [G.

Therefore, ECHO-Chem sets a new standard for evaluating long-range graph information propagation,
as well as it provides a compelling application of Al for science and chemistry, enabling faster
predictions with potential impact on drug/material design or understanding biological functions.

3 The ECHO Benchmark

In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range
information propagation capabilities of GNNs. Our benchmark consists of two complementary
components: a set of algorithmically constructed tasks and a chemically grounded real-world dataset.

The synthetic component includes classical graph-theoretic problems—single-source shortest path,
node eccentricity, and graph diameter—posed across diverse graph topologies designed to induce
structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range
dependencies and enable controlled analysis of model behavior under varying topological conditions.

The chemical benchmark targets a practically relevant and physically grounded task in computational
chemistry: predicting long-range charge redistribution in molecules. This problem, rooted in elec-
tronic structure modeling, reflects realistic charge transfer phenomena and builds upon prior work in
quantum-accurate deep learning models for molecular systems [S1} 84].
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Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, N = 30

3.1 The ECHO-Synth dataset

The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information
propagation across a diverse set of graph topologies. It focuses on three graph property prediction
tasks: Single Source Shortest Path (sssp), Node Eccentricity (ecc), and Graph Diameter (diam).
Among these, sssp and ecc are node-level tasks requiring the prediction of a scalar value per node,
while diam is a graph-level task requiring a single prediction for the entire graph. We refer to this
dataset as ECHO-Synth.

These tasks were intentionally selected due to their heavy reliance on global information. For
example, solving sssp from a given source node requires identifying shortest paths to all other nodes
[20]—information that often spans the entire graph. Eccentricity builds on this by requiring the
longest shortest path from each node, demanding complete graph awareness. Diameter is even more
global, involving the longest shortest path between any two nodes [16]]. Classical algorithms like
Dijkstra’s [20] and Bellman-Ford [[7]], which perform complete graph traversal, illustrate the challenge
these tasks pose for GNNs, which rely on localized message passing. To prevent models from relying
on input features rather than learning structural patterns, each node is assigned a uniformly distributed
random scalar feature r ~ U/(0, 1). Additionally, for the sssp task, a binary indicator is included
to mark the source node. This ensures that the model can distinguish the source while maintaining
uniform input statistics across tasks.

Table 1: Statistics of the proposed dataset.

Dataset # Graphs Avg Nodes  Avg Deg. Avg Edges Avg Diam # Node Feat # Edge Feat # Tasks
ECHO-Synth 10,080 83.69+66.24 2.5341.19 211.631209.39 28.5046.92 2 None 3
line 1,680 75.60+27.32 2.37+0.10 90.10+33.89 28.50+6.92 2 None 3
ladder 1,680  56.52413.82 2.9240.02 82.54 190,72 28.5046.92 2 None 3
grid 1,680 193.10+93.10 2.9540.12 288.324145.29 28.50+6.92 2 None 3
Tree 1,680 60.42:&17,17 1.96;&0,01 59.42i17_ 17 28450;&6.92 2 None 3
caterpillar 1,680 3471 47.96 1.9440.02 3371+7.96 28.50+6.92 2 None 3
lobster 1,680  81.79412546 1.97+0.01 80.79+25.46 28.50+6.92 2 None 3
ECHO-Chem 196,545 73.74+13.23 2.0940.04 76.924+13.29 23.664+2 66 2 2 1

Dataset Construction. This dataset includes six distinct families of graph topologies i.e., line, ladder,
grid, tree, caterpillar, and lobster (see Figure |I), each selected to highlight different structural and
propagation characteristics. The 1ine graph (Figure[I](a)) serves as a simple but non-trivial baseline.
To introduce non-local interactions, we modify it with stochastic skip connections: each node has
a 20% chance of forming an edge to another node 2—6 hops away. Building on this, the 1adder
topology (Figure [T (b)) consists of two parallel 1ine graphs connected by one-to-one cross-links,
enabling richer routing possibilities and redundancy in message pathways. The grid topology (Figure
(c)) represents a 2D lattice structure where edges are independently removed with a 20% probability.
This results in irregular neighborhoods and broken spatial symmetries.

To model scale-free and hierarchical structures, we include tree-structured graphs (Figure[T (d))
generated through preferential attachment. A new node connects to an existing one with probability
proportional to k¥, where k; represents the degree of the i-th node (with o = 3), leading to the
formation of high-degree hubs and reflecting connectivity patterns often seen in natural networks.
The caterpillar topology (Figure[l](e)) augments a central linear backbone with peripheral nodes
attached randomly along the spine, combining features of chain-like and tree-like graphs to create
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moderate branching and directional flow. Extending this idea, the lobster graph (Figure[I](f)) adds
a third hierarchical layer: nodes in the outermost layer connect only to intermediate nodes, resulting
in deeper branching while preserving an overall elongated structure. This configuration is especially
useful for testing the limits of multi-hop message passing under structured constraints.

Beyond their long-range dependencies, the complexity of the synthetic tasks is further increased
by the presence of topological bottlenecks, which pose significant challenges to GNN based on
message passing [29]]. Bottlenecks emerge in graphs where information flow between distant nodes is
constrained to pass through a small subset of intermediary nodes, thereby restricting the bandwidth of
information flow. This structural constraint can increse the risk of over-squashing, a phenomenon in
which exponentially growing information is aggregated into the low-dimensional node representations
[2]. As a result, critical signals may be compressed or lost during propagation, severely limiting the
model’s capacity to distinguish and preserve meaningful long-range interactions [[77} [19].

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks. For
example, in the 1ine topology information between distant nodes must propagate sequentially through
a single path, making each node along the path a critical bottleneck. Similarly, tree-structured
graphs inherently introduce bottlenecks at branch points and hierarchical layers, where entire subtrees
depend on narrow pathways for communication with the rest of the graph. The caterpillar and
lobster graphs further reinforce this pattern by adding additional peripheral layers while maintaining
centralized backbones, exacerbating the bottleneck effect in their hierarchical layouts. Even in the
more uniform grid topology, bottlenecks are implicitly introduced through random edge deletions,
which can disrupt regular pathways and force information to traverse suboptimal and congested
routes.

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range
d € [17,40], capturing diverse long-range interaction scenarios. For each of the six graph topologies
and each diameter value, we produce 70 unique graphs, yielding a total of 70 x 24 x6 = 10,080 graphs.
To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and
test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign
40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees
that all splits share the same distribution over both graph topologies and diameter values, which are
uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the
training set, avoiding distributional shifts and ensuring fair comparison across methods. Detailed
dataset statistics are reported in Table[I|and Appendix [E.

3.2 ECHO-Chem Dataset

Molecular property prediction is a cornerstone application of GNNs, with common benchmarks
involving graph-level prediction tasks such as molecular fingerprint [23]], solubility, toxicity and
various chemical properties [15} 46l]. One fundamental task in this domain is the prediction of
atomic partial charges—continuous, atom-level properties that reflect the electron distribution within
a molecule. Accurate charge prediction is essential for modeling molecular interactions, reactivity,
and electrostatic behavior. Figure [2|illustrates this task on the 3D molecular graph of caffeine, where
each atom is colored according to its predicted partial charge.

Traditionally, partial charges are computed using quantum mechanical methods, especially Density
Functional Theory (DFT) or other quantum chemical simulations. While these methods provide high
accuracy, their computational cost—arising from solving complex equations—Iimits their scalability
to large molecular datasets or high-throughput tasks. Specifically, high-accuracy simulations require
several minutes to process a single molecule. We report a quantitative description of DFT and
non-DFT quantum simulation efficiency in Appendix [G.

A significant challenge for Machine Learning (ML) methods addressing partial charge prediction
is effectively capturing long-range dependencies across molecular graphs. Specifically, here we
will refer as "long-range" in the graph space, (e.g., node separated by many hops), rather than
purely spatial distance. The three-dimensional configuration of molecules greatly intensifies this
task complexity, as distant atoms in the graph topology can still exert significant influence on atomic
electronic properties. Such non trivial, long-range interdependencies become increasingly challenging
to model accurately as molecular graph diameter grow. To systematically address this challenge,
we introduce ECHO-Chem, with the specific aim to stress long-range dependencies in a real-world
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scenario. ECHO-Chen task is formulated as a node-level regression problem: for each molecular
graph, the model must predict the partial charge of every atom.

Beyond serving as a rigorous benchmark for GNN architectures, this dataset has strong poten-
tial for practical impact in terms of ML application in science and chemistry. Capturing these
sophisticated long-range interactions can significantly improve efficiency of predicting atomic par-
tial charges, and potentially serving as accurate and computational inexpensive initialization for
subsequent quantum mechanical simulations. Such improvements could substantially accelerate
computational chemistry workflows, facilitating rapid exploration of the large molecular space.

Dataset Construction. Comprising approximately 200, 000
molecular graphs selected for ChREMBL database [83], our
dataset exclusively includes molecules with graph diameters
between 17 and 40, clearly ensuring the presence of significant
long range dependencies that thoroughly test model capabili-
ties. In the ECHO-Chem dataset, each graph represent a single
molecule (see Figure @, and each node (i.e., atom) is labeled
with the atomic number, essential for chemical identity, and spa-
tial distance from the center of mass of the molecule, to provide
geometrical context. Edges correspond to chemical bonds, and
are labeled with bond type (single, double, triple, or aromatic)
and bond length. Notably, this encoding of spatial information
is invariant under the action of the E(3) group, meaning that

relative geometric features such as distances remain invariant
under global 3D rotations, reflections and translations of the
molecular structure. This ensures that the spatial representa-
tion respects the underlying symmetries of molecular physics,
essential for learning physically consistent models.

Figure 2: 3D molecular graph of
caffeine annotated with atomic par-
tial charges. Blue indicates regions
of negative partial charge, while red
corresponds to positive charge ac-

cumulation. Each node is labeled
with the atomic number and its dis-
tance from the molecule’s center of
mass, while edges are labeled with
bond type and length. The task is
to predict the partial charge at each
node.

To generate the dataset, we employed a two-steps approach.
Firstly, the generation process began with molecular 3D struc-
ture generation starting from ChEMBL SMILES [80]] strings
for all the molecules satisfying the given diameter constraint.
In order to generate molecular conformations we opted for
coordinates optimization using the Generalized Amber Force
Field (GAFF) [37]], a well-established force field, specifically
designed for optimizing a wide variety of organic and medical interest compounds. These optimized
structures, will serve as initialization for the subsequent quantum chemical calculations to determine
accurate structures and partial charges. Specifically, we utilized the Hartree-Fock methods with three
empirical corrections (HF-3c) [[75]. The chosen approach balanced computational tractability with
the chemical accuracy required for reliable molecular property annotation. All the computations
were run thanks to the ORCA package for quantum chemistry [57, 159} 158]]. A detailed description of
the quantum simulations is provided in Appendix |G| along with information about the computing
platform in Appendix [H.

Dataset Split. To evaluate model performance under consistent and reproducible conditions, we
employed a random uniform sampling strategy to split the original ECHO-Chem dataset. This ap-
proach ensures a balanced distribution of molecular structures and charge ranges across the training,
validation, and test sets, therefore minimizing potential sampling bias. The dataset was partitioned
into 80% for training, 10% for validation, and 10% for testing. This standard 80/10/10 split allows for
robust model selection and generalization assessment while preserving the diversity and complexity
inherent to the original data.

4 Experiments

Baselines. We consider a diverse set of GNNs baselines that capture core directions in the devel-
opment of graph neural architectures, spanning from classical GNNs to more recent approaches
that demonstrate strong empirical performance in capturing long-range dependencies. As classical
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Table 2: Test MAE (mean with standard deviation as subscript) for each model across the three
synthetic tasks: diam, ecc, and sssp. Lower is better. Values are color-coded by performance, with

darker green indicating lower error.

Model diam | ecc | sssp |

GCN 3.832 1+ 0.262 5.233 £ 0.034 2.102 4+ 0.004
GraphCON 2-969i04189 5.474i04001 5.734i0,011
GPS 2.160 + 0.098 4.758 + 0.021 0.472 1 ¢.050
GCNII 2.005 + 0.093 5.241 + 0.030 2.128 + 0.429
GIN 1.630 + 0.161 4.869 + 0.092 2.234 1 g.2071
PH-DGN 1.627 + 0.398 5.068 +0.126 1.323 + 0.485
DRew 1.243:&0,047 4.651i0,020 1.279i0_011
A-DGN 1.151 4+ 0.038 4.981 1 0.037 1.176 + 0.140
SWAN 1.121 +0.070 4.840:!:0.045 0.896:‘:0,232

baseline models, we include GCN [50]], GIN [82]], GIN [47]and GCNII [13], which represent stan-
dard message-passing frameworks with strong theoretical grounding. We also considere multi-hop
GNNE, i.e., DRew [39], which adaptively rewire the graph to to facilitate more effective information
aggregation across distant nodes. Moreover, we evaluate GPS [64], an effective graph transformer that
enables effective long-range propagation via attention mechanism between any pairs of nodes. Finally,
we explore the performance of a family of GNNs that draw on principles from dynamical systems
theory, namely differential-equation inspired GNNs (DE-GNNs). This includes GraphCON [66]],
which treats node features as coupled oscillators, as well as models explicitly designed to perform
long-range propagation, whose architectures are based on non-dissipative or port-Hamiltoninan
dynamics, such as A-DGN [34]], SWAN [35]], and PH-DGN [44]]. Specific configurations of these
methods are detailed in Appendix [D.

Model Architecture and hyperparameter selection. All models share a unified backbone design to
enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack
of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer
MLP applied directly to the node representations. For graph-level tasks, node representations are
first aggregated using the mean, max, and sum operations, concatenated, and then processed by a
two-layer MLP. This standardization ensures that differences in performance are attributable to the
core propagation mechanisms rather than auxiliary architectural choices.

Training follows a consistent protocol across all models. We minimize the base-10 logarithm of
the Mean Squared Error loss (MSE), log;q(MSE(yuue — Yrarget)), since the predicted values can
be very small in magnitude and this scale-sensitive loss emphasizes small differences. We use
the Adam [49] optimizer and adopt Early Stopping based on validation loss. with a patience of
100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures
convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility
of our results. In order to ensure a fair and robust comparison across all methods and datasets, we
employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset
pair, we perform a Bayesian Optimization based on a Gaussian Process prior [72]] in the chosen
hyperparameter space, spanning 100 trials to explore the respective search space efficiently. We
report the complete set of explored hyperparameters for each model, as well as with the selected
hyperparameters, in Appendix [D. Finally, the best configuration found is validated through four
independent training runs, each initialized with a different random seed. This multi-seed evaluation
mitigates the effect of stochastic factors and ensures statistical soundness of the reported results.

Results on ECHO-Synth dataset. We report results on the synthetic benchmarks in Table[2} All the
values are reported using the Mean Absolute Error (MAE). Additional training metrics, particularly
MSE and the training loss log;,(MSE), are reported in the Appendix |C| Table E We clearly
observe that models employing global attention mechanisms significantly outperform traditional
message-passing frameworks. Specifically, GPS demonstrates superior performance on the sssp task,
achieving a remarkably low MAE of 0.472. In line with literature findings [25], this result suggests

'We added GINE as a baseline to ECHO-Chem benchmark to overcome the limitations of GIN to process edge
attributes.
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that incorporating transformer-like global attention substantially mitigates inherent limitations in
localized message-passing, which are pronounced in classic architectures such as GCN and GIN.

Interestingly, it is possible to notice that differential-equation-inspired architectures, particularly those
employing non-dissipative or port-Hamiltonian formulations like SWAN, A-DGN, and PH-DGN,
consistently perform well across tasks, with similar performance metrics. Notably, SWAN achieves
the lowest MAE on the diam task (1.121), closely followed by A-DGN and PH-DGN. This highlights
the benefit of incorporating non-dissipative dynamics to improve long-range information propagation,
thereby preserving critical structural information across extensive message-passing steps. Moreover,
the multi-hop GNN, DRew, reveals its effectiveness in the ecc task, attaining the lowest MAE (4.651).
This success emphasizes the advantage of dynamically rewiring graph structures, thus effectively
addressing topological bottlenecks critical for accurately capturing node eccentricities. Differently,
GraphCON do not inherently outperform traditional methods, and show notably weaker performance
relative to other models of the same architectural family (e.g., A-DGN and SWAN). Thus, mere
message-passing dynamics without explicit structural constraints or weight regularization does not
ensure superior performance in long-range tasks.

Finally, traditional message-passing models like GCN demonstrate consistent limitations across all
benchmarks, indicative of fundamental constraints in purely localized message-passing architectures
when facing extensive long-range dependencies as required in our ECHO-Synth benchmark suite.
This limitation is most evident in the diam task, where GCN records the highest MAE (3.832),
underscoring its inadequate capacity for global information aggregation.

Results on ECHO-Chem dataset. We finally detail the performance of all evaluated models on the
atomic partial charge prediction task in Table[3. As anticipated, architectures capable of handling
long-range dependencies demonstrate a clear advantage, given the nature of the task which requires
precise modeling of subtle interatomic interactions spread across the molecular graph. Notably, GPS
achieves the best performance across all metrics, with the lowest MAE (5.65 x 10~3) and MSE
(2.00 x 10~%), confirming the utility of global attention mechanisms in capturing distant influences
that modulate partial charges. This highlights how transformer-style architectures can successfully
overcome the locality bottleneck of standard message passing, particularly in chemically meaningful
spatial graphs, at the cost of increased computational complexity (as shown in Appendix [F).

Models like PH-DGN, A-DGN, and SWAN also yield competitive performance, consistently ap-
pearing among the top performers. Their success suggests that imposing non-dissipative priors-
such as antis-symmetric weght-space regualation and port-Hamiltonian dynamics-not only regu-
larizes the learning dynamics but also guides the model toward chemically plausible solutions.
Indeed, PH-DGN achieves the second-best performance, achieving an MAE of 7.92 x 1073,

The multi-hop GNN, DRew, also achieve N '2'
strong performance, closely rivaling A- (

DGN and PH-DGN. Its capacity to adapt
the graph structure during training likely
enables better long-range signal flow, ad-
dressing issues such as topological bot-
tlenecks and poor gradient propagation
that are prevalent in molecular graphs.
In contrast, GraphCON, which relies on .
continuous-time dynamics without explicit -4
structural adaptation or attention, fails to  Figure 3: Visualization of prediction errors for the
deliver comparable performance, achiev- ECHO-Chem task using two different GNN architectures:
ing one of the worst MAEs (15.20 X 107%).  GPS Transformer (a) and GCN layer (b). The coloring
This reinforces that continuity alone is in-  represents the logarithm of the absolute prediction error,
sufficient for tasks requiring ﬁne-grained 10g(|ytme — Ypred D Lower values (ln green) indicate bet-
long-distance interactions. ter prediction accuracy, while higher values (in orange)
correspond to larger errors.

Traditional message-passing networks, par-
ticularly GCN and GIN, again lag behind,
with MAEs exceeding 12 x 1073, These results again confirm the hypothesis that localized aggre-
gation—without mechanisms to integrate distant node information—is inadequate for atomic-level
charge modeling. The ECHO-Chem benchmark thus clearly illustrates the necessity for architectures
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Table 3: Test performance across models on the ECHO-Chem Metrics are reported as mean with
standard deviation as subscript. MSE is scaled by 10~* and MAE by 10~3. Lower values are better.
Cells are color-coded by performance, with darker green indicating lower error.

Model Test Loss Test MSE (x10™%) |  Test MAE (x107%) |
A-DGN —3.547i0,05 2.98i0.04 8.47i0_05
DRew —3.532 1+ 0.03 3.08 + 0.02 8.37 +0.06
GCNII —3.453 1 0.19 3.67+0.17 9.26 +0.14
GCN —3.136 + 1.40 6.82 1201 12.31 +2.24
GIN —3.118 £ 9.20 7.76 +0.36 13.29 £ 0.12
GPS —3.769 1 0.04 2.00 +0.03 5.65 1+ 0.12
GraphCON  —3.186 +0.02 6.64 1 0.03 15.20 £ 0.05
PH-DGN —3.604 1 9.02 2.63 +0.01 7.92 +0.07
SWAN —3.505 1 0.05 2.93 +£0.03 8.79 +0.06
GINE —3.481 1+ .23 3.41 +0.31 8.15 +0.00

that either incorporate global attention or embed non-dissipative dynamics to effectively tackle the
intricate and non-local dependencies inherent in molecular charge distribution.

We provide a visual depiction of charge prediction accuracy on a non-trivial molecule from the
test set in Figure [3. The figure contrasts the prediction errors made by two representative GNN
architectures: the GPS Transformer (a) and the standard GCN layer (b). Each atom in the molecule is
colored according to the logarithm of its absolute prediction error, 10g(|¥irue — Yprea|), With green tones
indicating lower errors and orange tones marking larger discrepancies. As visible in panel (a), GPS
yields significantly lower prediction errors across most atomic sites, especially in spatially peripheral
regions, reflecting its capacity to capture long-range dependencies and global interactions. In
contrast, the GCN model in panel (b) struggles with error accumulation in several areas, particularly
at structurally distant or chemically sensitive atoms. This comparison visually underscores the
advantage of global attention mechanisms for accurately modeling atomic properties in molecular
graphs.

Although partial charges errors are small in absolute magnitude across baselines, even subtle devia-
tions — as stated in [22]] — on the order of 10~* e to 10~ ¢, can lead to significant downstream effects
in molecular modeling and reproducibility of results. Therefore, predictive models must target this
level of granularity to produce chemically meaningful outputs.

Additional Experiments and Analysis. Additional results and a detailed analysis of baseline
performance are provided in Appendix [Bl We investigate the impact of model depth and graph
diameter on test performance across all tasks. Training times are reported in Appendix |[F} These
analyses highlight the ability of different architectures to scale with increasing layer count and to
handle long-range dependencies, revealing important differences in robustness and generalization
behavior.

5 Conclusion

In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation
in GNNs. Our benchmark included two main tasks — ECHO-Synth and ECHO-Chem — that target
long-range communication in both synthetic and real-world settings. The synthetic tasks are designed
to predict algorithmic and long-range-by-design graph properties, while the real-world task focuses
on long-range charge distribution in molecules. We provided a detailed analysis to demonstrate that
the tasks in ECHO genuinely capture long-range dependencies, and we established strong baselines
for each task to provide a comprehensive reference point for future research. We acknowledge some
limitations in our current work in Appendix [[. Our results highlight the limitations of current GNN
architectures when faced with long-range propagation challenges, and we believe that ECHO will serve
as a critical step toward building more robust, scalable, and generalizable GNNs capable of handling
the full spectrum of graph-based learning tasks, posing a challenge to the community to push the
boundaries of GNN design and evaluation.

Impact Statement. This work aims to advance the field of machine learning on graphs, focusing on
accelerating and advancing the design of more effective GNNs. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution and the scope of the paper are included in the abstract and in
Section[

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A limitation section is included in the Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work is primarily empirical and focuses on the design, implementation,
and evaluation of a novel architecture applied to real-world data. It does not involve the
development of new theoretical results or require formal proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the details of the experiment, such as the information on hardware
and software in Appendix [H and Appendix [G. We also release the code and the dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code are publicly released. Hyperparameter to reproduce the main
experiments are discussed in Appendix D!

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss dataset splits in Section [3, hyperparameters in Appendix [D]and
training strategies in Section 4}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments are performed over multiple seed initializations, and
results are provided with average between runs and the standard deviation to verify the
significance of results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details on the computing resources in Appendices[F|and [H.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts after the conclusions. More potential
positive impacts that our benchmark will bring are discussed throughout Sections [T]and 2]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no particular risk of misuse for the models and datasets
employed.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets are original contribution of this work, for the models used we
correctly cite and mention the work introducing them and relevant related studies. Licenses
and terms of use are properly respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our dataset are well described throughout our paper. Moreover, we openly
release the code including additional information on how to run the code and use the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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985 * Depending on the country in which research is conducted, IRB approval (or equivalent)

986 may be required for any human subjects research. If you obtained IRB approval, you
987 should clearly state this in the paper.

988 * We recognize that the procedures for this may vary significantly between institutions
989 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
990 guidelines for their institution.

991 * For initial submissions, do not include any information that would break anonymity (if
992 applicable), such as the institution conducting the review.

993 16. Declaration of LLM usage

994 Question: Does the paper describe the usage of LLMs if it is an important, original, or
995 non-standard component of the core methods in this research? Note that if the LLM is used
996 only for writing, editing, or formatting purposes and does not impact the core methodology,
997 scientific rigorousness, or originality of the research, declaration is not required.

998 Answer: [NA]

999 Justification: The core method development in our research does not involve LLMs as any
1000 important, original or non-standard components.

1001 Guidelines:

1002 * The answer NA means that the core method development in this research does not
1003 involve LLMs as any important, original, or non-standard components.

1004 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1005 for what should or should not be described.
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