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Abstract

Effectively capturing long-range interactions remains a fundamental yet unresolved1

challenge in graph neural network (GNN) research, critical for applications across2

diverse fields of science. To systematically address this, we introduce ECHO (Evalu-3

ating Communication over long HOps), a novel benchmark specifically designed4

to rigorously assess the capabilities of GNNs in handling very long-range graph5

propagation. ECHO includes three synthetic graph tasks – single-source shortest6

paths, node eccentricity, and graph diameter – each constructed over diverse and7

structurally challenging topologies intentionally designed to introduce significant8

information bottlenecks. ECHO also includes a real-world dataset, ECHO-Chem,9

grounded on a novel chemically-grounded application involving the prediction10

of atomic partial charges in molecules, which critically depends on the ability11

to capture intricate long-range molecular interactions. We provide an extensive12

benchmarking on popular GNN architectures which reveals clear performance gaps,13

emphasizing the difficulty of true long-range propagation and highlighting models14

and design choices capable of overcoming inherent limitations. ECHO thereby sets15

a new standard for evaluating long-range information propagation, also providing a16

compelling example for its need in AI for science.17

1 Introduction18

Graphs are fundamental data structures used extensively to represent complex interconnected sys-19

tems, ranging from social networks and biological pathways, to communication infrastructures and20

molecular structures. Graph Neural Networks (GNNs) [73, 32, 67, 10, 17] have emerged as a suc-21

cessful methodology within deep learning, whose research community was initially driven by the22

development of diverse architectures capable of capturing intricate relational patterns inherent to23

graph-structured data, as well as impactful applications across various domains [41, 18, 36, 33, 48].24

More recently, the research community has shifted its focus towards understanding and overcoming25

fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been26

driven by the observation that effectively propagating information over long distances in graphs27

remains a significant challenge. Such challenges have been formally linked to phenomena like28

over-smoothing [12, 63, 65], over-squashing [2, 19], and more generally, vanishing gradients [3], all29

of which hinder GNN performance in tasks that require capturing long-range dependencies.30

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while31

looking into methodological advancements that can surpass or mitigate such shortcomings. A key32

enabler of this progress is the establishment of solid and challenging benchmarks that can accurately33

assess and validate long-range propagation capacities. The availability of controlled synthetic34

benchmarks, should be complemented by the introduction of compelling application-driven datasets35

which can clearly demonstrate the practical advantages of addressing long-range propagation issues.36
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Long-range propagation capacities, in this sense, have been noted to be central in key areas of science,37

such as in biology [42, 25], biochemistry [38], and climate [52].38

Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks [8, 68,39

81, 74, 78, 45, 24], often overlooking the unique challenges associated with distant information40

propagation. More recently, the growing interest in this challenge has motivated the community to41

develop a few benchmarks specifically designed to evaluate information propagation in GNNs. These42

include the Long-Range Graph Benchmark (LRGB) [25] and the Graph Property Prediction (GPP)43

dataset [34]. While this is a significant step forward compared to earlier benchmarks, it does not44

fully account for the need to capture the true long-range dependencies present in some real-world45

applications. This is due to limited size of the graphs, the absence of well-defined conditions on the46

expected propagation range, and the focus of the benchmarks, which is often more aimed at specific47

issues of over-smoothing and over-squashing, rather than providing a broader evaluation of long-range48

propagation capabilities. Moreover, LRGB and GPP tasks are facing a natural performance saturation,49

as novel methodologies are being developed and optimized on them.50

Motivated by this, we introduce ECHO (Evaluating Communication over long HOps), a new benchmark51

designed to assess the capabilities of GNNs to exploit long-range interactions. ECHO consists of52

three synthetic tasks and one real-world chemically grounded task. The former are designed to53

provide a controlled setting to assess propagation capabilities. They comprise the prediction of54

shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph55

diameter) across a diverse graph topologies. These have been defined to increase the difficulty of56

effective long-range communication, as they present structural bottlenecks for the information flow.57

The main characteristic of these tasks is that GNNs must heavily rely on global information and58

effectively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford [7].59

The real-world task targets the prediction of long-range charge redistribution in molecules, a critical60

and practically relevant challenge in computational chemistry [22], as it underlies many fundamental61

processes such as chemical reactivity, molecular stability, and intermolecular interactions. Accurate62

modeling of these effects is essential for drug design, materials science, and biology understanding.63

Our contributions can be summarized as follows:64

• We introduce ECHO, a novel benchmark featuring four new tasks specifically designed to evaluate65

the ability of GNNs to effectively handle long-range communication in both synthetic and real-66

world settings. ECHO includes three synthetic tasks (collectively referred to as ECHO-Synth) with67

a total of 10,080 graphs, and one real-world task (ECHO-Chem) comprising 196,545 graphs, where68

the required propagation ranges from 17 to 40 hops.69

• We propose ECHO-Chem, the first task that targets long-range interactions at atomic level for the70

prediction of long-range charge redistribution in molecular graphs. This makes ECHO-Chem not71

only a valuable task for benchmarking long-range propagation in GNNs, but also for advancing72

computational chemistry, where accurately modeling such interactions is notoriously challenging73

and computationally demanding, as highlighted by the → 3 weeks of computational time on our74

hardware configuration to produce the benchmark.75

• We present a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range76

dependencies, providing a rigorous evaluation of GNNs’ ability to propagate information over77

extended graph distances.78

• We conduct extensive experiments to establish strong baselines for each task in ECHO, providing a79

comprehensive reference point for future research on long-range graph propagation.80

We openly release data at https://huggingface.co/datasets/gmander44/ECHO/tree/main81

and the code at https://anonymous.4open.science/r/ECHO-benchmarks82

2 On the need of a new benchmark83

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range84

propagation, in relation to existing datasets.85

The most widely used benchmark for assessing these capabilities is arguably LRGB [25]. Its86

introduction in 2022 has certainly marked an important milestone and promoted the development of87

the field. However, despite initial rapid improvements, performance on LRGB has now plateaued,88

showing a noticeable deceleration in progress across the last year, as discussed in Appendix A.89
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In addition to this, it has to be noted that recent works [76, 5] questions the long-range nature of90

several LRGB tasks, revealing that a subset of tasks is inherently local, rather than requiring long-91

range diffusion, and that the benchmark itself is highly sensitive to hyperparameter tuning. Other92

benchmarks propose synthetic tasks on generated structures, including the Tree-Neighborhood [2],93

Graph Property Prediction [34], graph transfer [19, 35], GLoRA [85], and Barbell and Clique graphs94

[4]. Indeed, most of these tasks are originally designed to address narrow challenges that prevent95

long-range propagation, such as over-smoothing [12, 63, 65] and over-squashing [2, 19]. These96

phenomena, while related, do not necessarily capture the full spectrum of challenges associated with97

long-range communication. Moreover, despite being designed to test the ability of GNNs to overcome98

these limitations, these datasets typically involve small graphs with limited-size diameters. This99

inherently restricts the propagation radius, creating a significant gap between the benchmark tasks100

and real-world problems that require much deeper propagation across significantly larger structures.101

The limitations highlighted above suggest the need for a new benchmark that reflects the challenges102

and opportunities in long-range GNN research. An effective benchmark should provide tasks that103

explicitly test a model’s capacity to traverse extensive graph structures, effectively aggregate global104

information, and adapt to diverse topological constraints. Moreover, as the field has matured and a105

wide range of models have been established, ranging from graph transformers [70, 64] to multi-hop106

GNNs [1, 39] and others [69], it seems timely to introduce a new benchmark that can accurately107

assess the long-range propagation skills of these families of models, now that they are well understood108

and consolidated.109

ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-110

range propagation needs, providing a clear target for the evaluation of this property. Specifically, ECHO111

tasks require computing either shortest paths between all nodes or long-range charge redistribution,112

with clearly defined propagation ranges between 17 and 40 hops, depending on the specific graph113

structure. This explicit range ensures that models failing to capture dependencies within this span are114

underreaching and have poor long-range capabilities.115

The ECHO-Chem molecular task has strong value per-se. It proposes a novel, practical and high-116

impact challenge for learning models in computational chemistry [22]. Previous popular benchmark117

in this domain [74, 78, 45, 81, 25] focused on the prediction of molecular-level properties, such as118

solubility or HIV inhibition, which are short-range tasks. This is evident when they can be reduced119

to the problem of counting small-dimensional local substructures (ie with lenght smaller than 7)120

[9]. Differently, ECHO-Chem is the first graph benchmark that targets long-range interactions at the121

atomic level, i.e., the microscopic scale. ECHO-Chem task is not only inherently long-range, but122

also particularly challenging as it requires accurate modeling of charge distributions and of the123

complex atomic interactions. This makes it a computationally expensive task to be solved with124

current computational chemistry tools. We provide further details on computational complexity of125

the quantum simulations in Appendix G.126

Therefore, ECHO-Chem sets a new standard for evaluating long-range graph information propagation,127

as well as it provides a compelling application of AI for science and chemistry, enabling faster128

predictions with potential impact on drug/material design or understanding biological functions.129

3 The ECHO Benchmark130

In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range131

information propagation capabilities of GNNs. Our benchmark consists of two complementary132

components: a set of algorithmically constructed tasks and a chemically grounded real-world dataset.133

The synthetic component includes classical graph-theoretic problems—single-source shortest path,134

node eccentricity, and graph diameter—posed across diverse graph topologies designed to induce135

structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range136

dependencies and enable controlled analysis of model behavior under varying topological conditions.137

The chemical benchmark targets a practically relevant and physically grounded task in computational138

chemistry: predicting long-range charge redistribution in molecules. This problem, rooted in elec-139

tronic structure modeling, reflects realistic charge transfer phenomena and builds upon prior work in140

quantum-accurate deep learning models for molecular systems [51, 84].141
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Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, N = 30

3.1 The ECHO-Synth dataset142

The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information143

propagation across a diverse set of graph topologies. It focuses on three graph property prediction144

tasks: Single Source Shortest Path (sssp), Node Eccentricity (ecc), and Graph Diameter (diam).145

Among these, sssp and ecc are node-level tasks requiring the prediction of a scalar value per node,146

while diam is a graph-level task requiring a single prediction for the entire graph. We refer to this147

dataset as ECHO-Synth.148

These tasks were intentionally selected due to their heavy reliance on global information. For149

example, solving sssp from a given source node requires identifying shortest paths to all other nodes150

[20]—information that often spans the entire graph. Eccentricity builds on this by requiring the151

longest shortest path from each node, demanding complete graph awareness. Diameter is even more152

global, involving the longest shortest path between any two nodes [16]. Classical algorithms like153

Dijkstra’s [20] and Bellman-Ford [7], which perform complete graph traversal, illustrate the challenge154

these tasks pose for GNNs, which rely on localized message passing. To prevent models from relying155

on input features rather than learning structural patterns, each node is assigned a uniformly distributed156

random scalar feature r ↑ U(0, 1). Additionally, for the sssp task, a binary indicator is included157

to mark the source node. This ensures that the model can distinguish the source while maintaining158

uniform input statistics across tasks.159

Table 1: Statistics of the proposed dataset.
Dataset # Graphs Avg Nodes Avg Deg. Avg Edges Avg Diam # Node Feat # Edge Feat # Tasks

ECHO-Synth 10,080 83.69±66.24 2.53±1.19 211.63±209.39 28.50±6.92 2 None 3

line 1,680 75.60±27.32 2.37±0.10 90.10±33.89 28.50±6.92 2 None 3
ladder 1,680 56.52±13.82 2.92±0.02 82.54±20.72 28.50±6.92 2 None 3
grid 1,680 193.10±93.10 2.95±0.12 288.32±145.29 28.50±6.92 2 None 3
Tree 1,680 60.42±17.17 1.96±0.01 59.42±17.17 28.50±6.92 2 None 3
caterpillar 1,680 34.71±7.96 1.94±0.02 33.71±7.96 28.50±6.92 2 None 3
lobster 1,680 81.79±25.46 1.97±0.01 80.79±25.46 28.50±6.92 2 None 3

ECHO-Chem 196,545 73.74±13.23 2.09±0.04 76.92±13.29 23.66±2.66 2 2 1

Dataset Construction. This dataset includes six distinct families of graph topologies i.e., line, ladder,160

grid, tree, caterpillar, and lobster (see Figure 1), each selected to highlight different structural and161

propagation characteristics. The line graph (Figure 1 (a)) serves as a simple but non-trivial baseline.162

To introduce non-local interactions, we modify it with stochastic skip connections: each node has163

a 20% chance of forming an edge to another node 2–6 hops away. Building on this, the ladder164

topology (Figure 1 (b)) consists of two parallel line graphs connected by one-to-one cross-links,165

enabling richer routing possibilities and redundancy in message pathways. The grid topology (Figure166

1 (c)) represents a 2D lattice structure where edges are independently removed with a 20% probability.167

This results in irregular neighborhoods and broken spatial symmetries.168

To model scale-free and hierarchical structures, we include tree-structured graphs (Figure 1 (d))169

generated through preferential attachment. A new node connects to an existing one with probability170

proportional to kωi , where ki represents the degree of the i-th node (with ω = 3), leading to the171

formation of high-degree hubs and reflecting connectivity patterns often seen in natural networks.172

The caterpillar topology (Figure 1 (e)) augments a central linear backbone with peripheral nodes173

attached randomly along the spine, combining features of chain-like and tree-like graphs to create174

4



moderate branching and directional flow. Extending this idea, the lobster graph (Figure 1 (f)) adds175

a third hierarchical layer: nodes in the outermost layer connect only to intermediate nodes, resulting176

in deeper branching while preserving an overall elongated structure. This configuration is especially177

useful for testing the limits of multi-hop message passing under structured constraints.178

Beyond their long-range dependencies, the complexity of the synthetic tasks is further increased179

by the presence of topological bottlenecks, which pose significant challenges to GNN based on180

message passing [29]. Bottlenecks emerge in graphs where information flow between distant nodes is181

constrained to pass through a small subset of intermediary nodes, thereby restricting the bandwidth of182

information flow. This structural constraint can increse the risk of over-squashing, a phenomenon in183

which exponentially growing information is aggregated into the low-dimensional node representations184

[2]. As a result, critical signals may be compressed or lost during propagation, severely limiting the185

model’s capacity to distinguish and preserve meaningful long-range interactions [77, 19].186

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks. For187

example, in the line topology information between distant nodes must propagate sequentially through188

a single path, making each node along the path a critical bottleneck. Similarly, tree-structured189

graphs inherently introduce bottlenecks at branch points and hierarchical layers, where entire subtrees190

depend on narrow pathways for communication with the rest of the graph. The caterpillar and191

lobster graphs further reinforce this pattern by adding additional peripheral layers while maintaining192

centralized backbones, exacerbating the bottleneck effect in their hierarchical layouts. Even in the193

more uniform grid topology, bottlenecks are implicitly introduced through random edge deletions,194

which can disrupt regular pathways and force information to traverse suboptimal and congested195

routes.196

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range197

d ↓ [17, 40], capturing diverse long-range interaction scenarios. For each of the six graph topologies198

and each diameter value, we produce 70 unique graphs, yielding a total of 70↔24↔6 = 10,080 graphs.199

To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and200

test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign201

40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees202

that all splits share the same distribution over both graph topologies and diameter values, which are203

uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the204

training set, avoiding distributional shifts and ensuring fair comparison across methods. Detailed205

dataset statistics are reported in Table 1 and Appendix E.206

3.2 ECHO-Chem Dataset207

Molecular property prediction is a cornerstone application of GNNs, with common benchmarks208

involving graph-level prediction tasks such as molecular fingerprint [23], solubility, toxicity and209

various chemical properties [15, 46]. One fundamental task in this domain is the prediction of210

atomic partial charges—continuous, atom-level properties that reflect the electron distribution within211

a molecule. Accurate charge prediction is essential for modeling molecular interactions, reactivity,212

and electrostatic behavior. Figure 2 illustrates this task on the 3D molecular graph of caffeine, where213

each atom is colored according to its predicted partial charge.214

Traditionally, partial charges are computed using quantum mechanical methods, especially Density215

Functional Theory (DFT) or other quantum chemical simulations. While these methods provide high216

accuracy, their computational cost—arising from solving complex equations—limits their scalability217

to large molecular datasets or high-throughput tasks. Specifically, high-accuracy simulations require218

several minutes to process a single molecule. We report a quantitative description of DFT and219

non-DFT quantum simulation efficiency in Appendix G.220

A significant challenge for Machine Learning (ML) methods addressing partial charge prediction221

is effectively capturing long-range dependencies across molecular graphs. Specifically, here we222

will refer as "long-range" in the graph space, (e.g., node separated by many hops), rather than223

purely spatial distance. The three-dimensional configuration of molecules greatly intensifies this224

task complexity, as distant atoms in the graph topology can still exert significant influence on atomic225

electronic properties. Such non trivial, long-range interdependencies become increasingly challenging226

to model accurately as molecular graph diameter grow. To systematically address this challenge,227

we introduce ECHO-Chem, with the specific aim to stress long-range dependencies in a real-world228
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scenario. ECHO-Chem task is formulated as a node-level regression problem: for each molecular229

graph, the model must predict the partial charge of every atom.230

Beyond serving as a rigorous benchmark for GNN architectures, this dataset has strong poten-231

tial for practical impact in terms of ML application in science and chemistry. Capturing these232

sophisticated long-range interactions can significantly improve efficiency of predicting atomic par-233

tial charges, and potentially serving as accurate and computational inexpensive initialization for234

subsequent quantum mechanical simulations. Such improvements could substantially accelerate235

computational chemistry workflows, facilitating rapid exploration of the large molecular space.236

Figure 2: 3D molecular graph of
caffeine annotated with atomic par-
tial charges. Blue indicates regions
of negative partial charge, while red
corresponds to positive charge ac-
cumulation. Each node is labeled
with the atomic number and its dis-
tance from the molecule’s center of
mass, while edges are labeled with
bond type and length. The task is
to predict the partial charge at each
node.

237

Dataset Construction. Comprising approximately 200, 000238

molecular graphs selected for ChEMBL database [83], our239

dataset exclusively includes molecules with graph diameters240

between 17 and 40, clearly ensuring the presence of significant241

long range dependencies that thoroughly test model capabili-242

ties. In the ECHO-Chem dataset, each graph represent a single243

molecule (see Figure 2), and each node (i.e., atom) is labeled244

with the atomic number, essential for chemical identity, and spa-245

tial distance from the center of mass of the molecule, to provide246

geometrical context. Edges correspond to chemical bonds, and247

are labeled with bond type (single, double, triple, or aromatic)248

and bond length. Notably, this encoding of spatial information249

is invariant under the action of the E(3) group, meaning that250

relative geometric features such as distances remain invariant251

under global 3D rotations, reflections and translations of the252

molecular structure. This ensures that the spatial representa-253

tion respects the underlying symmetries of molecular physics,254

essential for learning physically consistent models.255

To generate the dataset, we employed a two-steps approach.256

Firstly, the generation process began with molecular 3D struc-257

ture generation starting from ChEMBL SMILES [80] strings258

for all the molecules satisfying the given diameter constraint.259

In order to generate molecular conformations we opted for260

coordinates optimization using the Generalized Amber Force261

Field (GAFF) [37], a well-established force field, specifically262

designed for optimizing a wide variety of organic and medical interest compounds. These optimized263

structures, will serve as initialization for the subsequent quantum chemical calculations to determine264

accurate structures and partial charges. Specifically, we utilized the Hartree-Fock methods with three265

empirical corrections (HF-3c) [75]. The chosen approach balanced computational tractability with266

the chemical accuracy required for reliable molecular property annotation. All the computations267

were run thanks to the ORCA package for quantum chemistry [57, 59, 58]. A detailed description of268

the quantum simulations is provided in Appendix G, along with information about the computing269

platform in Appendix H.270

Dataset Split. To evaluate model performance under consistent and reproducible conditions, we271

employed a random uniform sampling strategy to split the original ECHO-Chem dataset. This ap-272

proach ensures a balanced distribution of molecular structures and charge ranges across the training,273

validation, and test sets, therefore minimizing potential sampling bias. The dataset was partitioned274

into 80% for training, 10% for validation, and 10% for testing. This standard 80/10/10 split allows for275

robust model selection and generalization assessment while preserving the diversity and complexity276

inherent to the original data.277

4 Experiments278

Baselines. We consider a diverse set of GNNs baselines that capture core directions in the devel-279

opment of graph neural architectures, spanning from classical GNNs to more recent approaches280

that demonstrate strong empirical performance in capturing long-range dependencies. As classical281
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Table 2: Test MAE (mean with standard deviation as subscript) for each model across the three
synthetic tasks: diam, ecc, and sssp. Lower is better. Values are color-coded by performance, with
darker green indicating lower error.

Model diam → ecc → sssp →
GCN 3.832± 0.262 5.233± 0.034 2.102± 0.094

GraphCON 2.969± 0.189 5.474± 0.001 5.734± 0.011

GPS 2.160± 0.098 4.758± 0.021 0.472± 0.050

GCNII 2.005± 0.093 5.241± 0.030 2.128± 0.429

GIN 1.630± 0.161 4.869± 0.092 2.234± 0.271

PH-DGN 1.627± 0.398 5.068± 0.126 1.323± 0.485

DRew 1.243± 0.047 4.651± 0.020 1.279± 0.011

A-DGN 1.151± 0.038 4.981± 0.037 1.176± 0.140

SWAN 1.121± 0.070 4.840± 0.045 0.896± 0.232

baseline models, we include GCN [50], GIN [82], GINE1 [47]and GCNII [13], which represent stan-282

dard message-passing frameworks with strong theoretical grounding. We also considere multi-hop283

GNNs, i.e., DRew [39], which adaptively rewire the graph to to facilitate more effective information284

aggregation across distant nodes. Moreover, we evaluate GPS [64], an effective graph transformer that285

enables effective long-range propagation via attention mechanism between any pairs of nodes. Finally,286

we explore the performance of a family of GNNs that draw on principles from dynamical systems287

theory, namely differential-equation inspired GNNs (DE-GNNs). This includes GraphCON [66],288

which treats node features as coupled oscillators, as well as models explicitly designed to perform289

long-range propagation, whose architectures are based on non-dissipative or port-Hamiltoninan290

dynamics, such as A-DGN [34], SWAN [35], and PH-DGN [44]. Specific configurations of these291

methods are detailed in Appendix D.292

Model Architecture and hyperparameter selection. All models share a unified backbone design to293

enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack294

of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer295

MLP applied directly to the node representations. For graph-level tasks, node representations are296

first aggregated using the mean, max, and sum operations, concatenated, and then processed by a297

two-layer MLP. This standardization ensures that differences in performance are attributable to the298

core propagation mechanisms rather than auxiliary architectural choices.299

Training follows a consistent protocol across all models. We minimize the base-10 logarithm of300

the Mean Squared Error loss (MSE), log10(MSE(ytrue ↗ ytarget)), since the predicted values can301

be very small in magnitude and this scale-sensitive loss emphasizes small differences. We use302

the Adam [49] optimizer and adopt Early Stopping based on validation loss. with a patience of303

100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures304

convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility305

of our results. In order to ensure a fair and robust comparison across all methods and datasets, we306

employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset307

pair, we perform a Bayesian Optimization based on a Gaussian Process prior [72] in the chosen308

hyperparameter space, spanning 100 trials to explore the respective search space efficiently. We309

report the complete set of explored hyperparameters for each model, as well as with the selected310

hyperparameters, in Appendix D. Finally, the best configuration found is validated through four311

independent training runs, each initialized with a different random seed. This multi-seed evaluation312

mitigates the effect of stochastic factors and ensures statistical soundness of the reported results.313

Results on ECHO-Synth dataset. We report results on the synthetic benchmarks in Table 2. All the314

values are reported using the Mean Absolute Error (MAE). Additional training metrics, particularly315

MSE and the training loss log10(MSE), are reported in the Appendix C, Table 4. We clearly316

observe that models employing global attention mechanisms significantly outperform traditional317

message-passing frameworks. Specifically, GPS demonstrates superior performance on the sssp task,318

achieving a remarkably low MAE of 0.472. In line with literature findings [25], this result suggests319

1We added GINE as a baseline to ECHO-Chem benchmark to overcome the limitations of GIN to process edge
attributes.
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that incorporating transformer-like global attention substantially mitigates inherent limitations in320

localized message-passing, which are pronounced in classic architectures such as GCN and GIN.321

Interestingly, it is possible to notice that differential-equation-inspired architectures, particularly those322

employing non-dissipative or port-Hamiltonian formulations like SWAN, A-DGN, and PH-DGN,323

consistently perform well across tasks, with similar performance metrics. Notably, SWAN achieves324

the lowest MAE on the diam task (1.121), closely followed by A-DGN and PH-DGN. This highlights325

the benefit of incorporating non-dissipative dynamics to improve long-range information propagation,326

thereby preserving critical structural information across extensive message-passing steps. Moreover,327

the multi-hop GNN, DRew, reveals its effectiveness in the ecc task, attaining the lowest MAE (4.651).328

This success emphasizes the advantage of dynamically rewiring graph structures, thus effectively329

addressing topological bottlenecks critical for accurately capturing node eccentricities. Differently,330

GraphCON do not inherently outperform traditional methods, and show notably weaker performance331

relative to other models of the same architectural family (e.g., A-DGN and SWAN). Thus, mere332

message-passing dynamics without explicit structural constraints or weight regularization does not333

ensure superior performance in long-range tasks.334

Finally, traditional message-passing models like GCN demonstrate consistent limitations across all335

benchmarks, indicative of fundamental constraints in purely localized message-passing architectures336

when facing extensive long-range dependencies as required in our ECHO-Synth benchmark suite.337

This limitation is most evident in the diam task, where GCN records the highest MAE (3.832),338

underscoring its inadequate capacity for global information aggregation.339

Results on ECHO-Chem dataset. We finally detail the performance of all evaluated models on the340

atomic partial charge prediction task in Table 3. As anticipated, architectures capable of handling341

long-range dependencies demonstrate a clear advantage, given the nature of the task which requires342

precise modeling of subtle interatomic interactions spread across the molecular graph. Notably, GPS343

achieves the best performance across all metrics, with the lowest MAE (5.65 ↔ 10→3) and MSE344

(2.00↔ 10→4), confirming the utility of global attention mechanisms in capturing distant influences345

that modulate partial charges. This highlights how transformer-style architectures can successfully346

overcome the locality bottleneck of standard message passing, particularly in chemically meaningful347

spatial graphs, at the cost of increased computational complexity (as shown in Appendix F).348

Models like PH-DGN, A-DGN, and SWAN also yield competitive performance, consistently ap-349

pearing among the top performers. Their success suggests that imposing non-dissipative priors-350

such as antis-symmetric weght-space regualation and port-Hamiltonian dynamics-not only regu-351

larizes the learning dynamics but also guides the model toward chemically plausible solutions.352

Indeed, PH-DGN achieves the second-best performance, achieving an MAE of 7.92 ↔ 10→3.353

Figure 3: Visualization of prediction errors for the
ECHO-Chem task using two different GNN architectures:
GPS Transformer (a) and GCN layer (b). The coloring
represents the logarithm of the absolute prediction error,
log(|ytrue ↗ypred|). Lower values (in green) indicate bet-
ter prediction accuracy, while higher values (in orange)
correspond to larger errors.

354

The multi-hop GNN, DRew, also achieve355

strong performance, closely rivaling A-356

DGN and PH-DGN. Its capacity to adapt357

the graph structure during training likely358

enables better long-range signal flow, ad-359

dressing issues such as topological bot-360

tlenecks and poor gradient propagation361

that are prevalent in molecular graphs.362

In contrast, GraphCON, which relies on363

continuous-time dynamics without explicit364

structural adaptation or attention, fails to365

deliver comparable performance, achiev-366

ing one of the worst MAEs (15.20↔10→3).367

This reinforces that continuity alone is in-368

sufficient for tasks requiring fine-grained369

long-distance interactions.370

Traditional message-passing networks, par-371

ticularly GCN and GIN, again lag behind,372

with MAEs exceeding 12↔ 10→3. These results again confirm the hypothesis that localized aggre-373

gation—without mechanisms to integrate distant node information—is inadequate for atomic-level374

charge modeling. The ECHO-Chem benchmark thus clearly illustrates the necessity for architectures375
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Table 3: Test performance across models on the ECHO-Chem Metrics are reported as mean with
standard deviation as subscript. MSE is scaled by 10→4 and MAE by 10→3. Lower values are better.
Cells are color-coded by performance, with darker green indicating lower error.

Model Test Loss Test MSE (↑10→4) → Test MAE (↑10→3) →
A-DGN ↓3.547± 0.05 2.98± 0.04 8.47± 0.05

DRew ↓3.532± 0.03 3.08± 0.02 8.37± 0.06

GCNII ↓3.453± 0.19 3.67± 0.17 9.26± 0.14

GCN ↓3.136± 1.40 6.82± 2.01 12.31± 2.24

GIN ↓3.118± 0.20 7.76± 0.36 13.29± 0.12

GPS ↓3.769± 0.04 2.00± 0.03 5.65± 0.12

GraphCON ↓3.186± 0.02 6.64± 0.03 15.20± 0.05

PH-DGN ↓3.604± 0.02 2.63± 0.01 7.92± 0.07

SWAN ↓3.505± 0.05 2.93± 0.03 8.79± 0.06

GINE ↓3.481± 0.23 3.41± 0.31 8.15± 0.09

that either incorporate global attention or embed non-dissipative dynamics to effectively tackle the376

intricate and non-local dependencies inherent in molecular charge distribution.377

We provide a visual depiction of charge prediction accuracy on a non-trivial molecule from the378

test set in Figure 3. The figure contrasts the prediction errors made by two representative GNN379

architectures: the GPS Transformer (a) and the standard GCN layer (b). Each atom in the molecule is380

colored according to the logarithm of its absolute prediction error, log(|ytrue↗ypred|), with green tones381

indicating lower errors and orange tones marking larger discrepancies. As visible in panel (a), GPS382

yields significantly lower prediction errors across most atomic sites, especially in spatially peripheral383

regions, reflecting its capacity to capture long-range dependencies and global interactions. In384

contrast, the GCN model in panel (b) struggles with error accumulation in several areas, particularly385

at structurally distant or chemically sensitive atoms. This comparison visually underscores the386

advantage of global attention mechanisms for accurately modeling atomic properties in molecular387

graphs.388

Although partial charges errors are small in absolute magnitude across baselines, even subtle devia-389

tions – as stated in [22] – on the order of 10→4 e to 10→6 e, can lead to significant downstream effects390

in molecular modeling and reproducibility of results. Therefore, predictive models must target this391

level of granularity to produce chemically meaningful outputs.392

Additional Experiments and Analysis. Additional results and a detailed analysis of baseline393

performance are provided in Appendix B. We investigate the impact of model depth and graph394

diameter on test performance across all tasks. Training times are reported in Appendix F. These395

analyses highlight the ability of different architectures to scale with increasing layer count and to396

handle long-range dependencies, revealing important differences in robustness and generalization397

behavior.398

5 Conclusion399

In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation400

in GNNs. Our benchmark included two main tasks – ECHO-Synth and ECHO-Chem – that target401

long-range communication in both synthetic and real-world settings. The synthetic tasks are designed402

to predict algorithmic and long-range-by-design graph properties, while the real-world task focuses403

on long-range charge distribution in molecules. We provided a detailed analysis to demonstrate that404

the tasks in ECHO genuinely capture long-range dependencies, and we established strong baselines405

for each task to provide a comprehensive reference point for future research. We acknowledge some406

limitations in our current work in Appendix I. Our results highlight the limitations of current GNN407

architectures when faced with long-range propagation challenges, and we believe that ECHO will serve408

as a critical step toward building more robust, scalable, and generalizable GNNs capable of handling409

the full spectrum of graph-based learning tasks, posing a challenge to the community to push the410

boundaries of GNN design and evaluation.411

Impact Statement. This work aims to advance the field of machine learning on graphs, focusing on412

accelerating and advancing the design of more effective GNNs. There are many potential societal413

consequences of our work, none which we feel must be specifically highlighted here.414
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NeurIPS Paper Checklist674

1. Claims675

Question: Do the main claims made in the abstract and introduction accurately reflect the676

paper’s contributions and scope?677

Answer: [Yes]678

Justification: The contribution and the scope of the paper are included in the abstract and in679

Section 1.680

Guidelines:681

• The answer NA means that the abstract and introduction do not include the claims682

made in the paper.683

• The abstract and/or introduction should clearly state the claims made, including the684

contributions made in the paper and important assumptions and limitations. A No or685

NA answer to this question will not be perceived well by the reviewers.686

• The claims made should match theoretical and experimental results, and reflect how687

much the results can be expected to generalize to other settings.688

• It is fine to include aspirational goals as motivation as long as it is clear that these goals689

are not attained by the paper.690

2. Limitations691

Question: Does the paper discuss the limitations of the work performed by the authors?692

Answer: [Yes]693

Justification: A limitation section is included in the Appendix I.694

Guidelines:695

• The answer NA means that the paper has no limitation while the answer No means that696

the paper has limitations, but those are not discussed in the paper.697

• The authors are encouraged to create a separate "Limitations" section in their paper.698

• The paper should point out any strong assumptions and how robust the results are to699

violations of these assumptions (e.g., independence assumptions, noiseless settings,700

model well-specification, asymptotic approximations only holding locally). The authors701

should reflect on how these assumptions might be violated in practice and what the702

implications would be.703

• The authors should reflect on the scope of the claims made, e.g., if the approach was704

only tested on a few datasets or with a few runs. In general, empirical results often705

depend on implicit assumptions, which should be articulated.706

• The authors should reflect on the factors that influence the performance of the approach.707

For example, a facial recognition algorithm may perform poorly when image resolution708

is low or images are taken in low lighting. Or a speech-to-text system might not be709

used reliably to provide closed captions for online lectures because it fails to handle710

technical jargon.711

• The authors should discuss the computational efficiency of the proposed algorithms712

and how they scale with dataset size.713

• If applicable, the authors should discuss possible limitations of their approach to714

address problems of privacy and fairness.715

• While the authors might fear that complete honesty about limitations might be used by716

reviewers as grounds for rejection, a worse outcome might be that reviewers discover717

limitations that aren’t acknowledged in the paper. The authors should use their best718

judgment and recognize that individual actions in favor of transparency play an impor-719

tant role in developing norms that preserve the integrity of the community. Reviewers720

will be specifically instructed to not penalize honesty concerning limitations.721

3. Theory assumptions and proofs722

Question: For each theoretical result, does the paper provide the full set of assumptions and723

a complete (and correct) proof?724

Answer: [NA]725
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Justification: Our work is primarily empirical and focuses on the design, implementation,726

and evaluation of a novel architecture applied to real-world data. It does not involve the727

development of new theoretical results or require formal proofs.728

Guidelines:729

• The answer NA means that the paper does not include theoretical results.730

• All the theorems, formulas, and proofs in the paper should be numbered and cross-731

referenced.732

• All assumptions should be clearly stated or referenced in the statement of any theorems.733

• The proofs can either appear in the main paper or the supplemental material, but if734

they appear in the supplemental material, the authors are encouraged to provide a short735

proof sketch to provide intuition.736

• Inversely, any informal proof provided in the core of the paper should be complemented737

by formal proofs provided in appendix or supplemental material.738

• Theorems and Lemmas that the proof relies upon should be properly referenced.739

4. Experimental result reproducibility740

Question: Does the paper fully disclose all the information needed to reproduce the main ex-741

perimental results of the paper to the extent that it affects the main claims and/or conclusions742

of the paper (regardless of whether the code and data are provided or not)?743

Answer: [Yes]744

Justification: We introduce the details of the experiment, such as the information on hardware745

and software in Appendix H and Appendix G. We also release the code and the dataset.746

Guidelines:747

• The answer NA means that the paper does not include experiments.748

• If the paper includes experiments, a No answer to this question will not be perceived749

well by the reviewers: Making the paper reproducible is important, regardless of750

whether the code and data are provided or not.751

• If the contribution is a dataset and/or model, the authors should describe the steps taken752

to make their results reproducible or verifiable.753

• Depending on the contribution, reproducibility can be accomplished in various ways.754

For example, if the contribution is a novel architecture, describing the architecture fully755

might suffice, or if the contribution is a specific model and empirical evaluation, it may756

be necessary to either make it possible for others to replicate the model with the same757

dataset, or provide access to the model. In general. releasing code and data is often758

one good way to accomplish this, but reproducibility can also be provided via detailed759

instructions for how to replicate the results, access to a hosted model (e.g., in the case760

of a large language model), releasing of a model checkpoint, or other means that are761

appropriate to the research performed.762

• While NeurIPS does not require releasing code, the conference does require all submis-763

sions to provide some reasonable avenue for reproducibility, which may depend on the764

nature of the contribution. For example765

(a) If the contribution is primarily a new algorithm, the paper should make it clear how766

to reproduce that algorithm.767

(b) If the contribution is primarily a new model architecture, the paper should describe768

the architecture clearly and fully.769

(c) If the contribution is a new model (e.g., a large language model), then there should770

either be a way to access this model for reproducing the results or a way to reproduce771

the model (e.g., with an open-source dataset or instructions for how to construct772

the dataset).773

(d) We recognize that reproducibility may be tricky in some cases, in which case774

authors are welcome to describe the particular way they provide for reproducibility.775

In the case of closed-source models, it may be that access to the model is limited in776

some way (e.g., to registered users), but it should be possible for other researchers777

to have some path to reproducing or verifying the results.778

5. Open access to data and code779
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Question: Does the paper provide open access to the data and code, with sufficient instruc-780

tions to faithfully reproduce the main experimental results, as described in supplemental781

material?782

Answer: [Yes]783

Justification: Data and code are publicly released. Hyperparameter to reproduce the main784

experiments are discussed in Appendix D.785

Guidelines:786

• The answer NA means that paper does not include experiments requiring code.787

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/788

public/guides/CodeSubmissionPolicy) for more details.789

• While we encourage the release of code and data, we understand that this might not be790

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not791

including code, unless this is central to the contribution (e.g., for a new open-source792

benchmark).793

• The instructions should contain the exact command and environment needed to run to794

reproduce the results. See the NeurIPS code and data submission guidelines (https:795

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.796

• The authors should provide instructions on data access and preparation, including how797

to access the raw data, preprocessed data, intermediate data, and generated data, etc.798

• The authors should provide scripts to reproduce all experimental results for the new799

proposed method and baselines. If only a subset of experiments are reproducible, they800

should state which ones are omitted from the script and why.801

• At submission time, to preserve anonymity, the authors should release anonymized802

versions (if applicable).803

• Providing as much information as possible in supplemental material (appended to the804

paper) is recommended, but including URLs to data and code is permitted.805

6. Experimental setting/details806

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-807

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the808

results?809

Answer: [Yes]810

Justification: We discuss dataset splits in Section 3, hyperparameters in Appendix D and811

training strategies in Section 4.812

Guidelines:813

• The answer NA means that the paper does not include experiments.814

• The experimental setting should be presented in the core of the paper to a level of detail815

that is necessary to appreciate the results and make sense of them.816

• The full details can be provided either with the code, in appendix, or as supplemental817

material.818

7. Experiment statistical significance819

Question: Does the paper report error bars suitably and correctly defined or other appropriate820

information about the statistical significance of the experiments?821

Answer: [Yes]822

Justification: All our experiments are performed over multiple seed initializations, and823

results are provided with average between runs and the standard deviation to verify the824

significance of results.825

Guidelines:826

• The answer NA means that the paper does not include experiments.827

• The authors should answer "Yes" if the results are accompanied by error bars, confi-828

dence intervals, or statistical significance tests, at least for the experiments that support829

the main claims of the paper.830
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• The factors of variability that the error bars are capturing should be clearly stated (for831

example, train/test split, initialization, random drawing of some parameter, or overall832

run with given experimental conditions).833

• The method for calculating the error bars should be explained (closed form formula,834

call to a library function, bootstrap, etc.)835

• The assumptions made should be given (e.g., Normally distributed errors).836

• It should be clear whether the error bar is the standard deviation or the standard error837

of the mean.838

• It is OK to report 1-sigma error bars, but one should state it. The authors should839

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis840

of Normality of errors is not verified.841

• For asymmetric distributions, the authors should be careful not to show in tables or842

figures symmetric error bars that would yield results that are out of range (e.g. negative843

error rates).844

• If error bars are reported in tables or plots, The authors should explain in the text how845

they were calculated and reference the corresponding figures or tables in the text.846

8. Experiments compute resources847

Question: For each experiment, does the paper provide sufficient information on the com-848

puter resources (type of compute workers, memory, time of execution) needed to reproduce849

the experiments?850

Answer: [Yes]851

Justification: We provide details on the computing resources in Appendices F and H.852

Guidelines:853

• The answer NA means that the paper does not include experiments.854

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,855

or cloud provider, including relevant memory and storage.856

• The paper should provide the amount of compute required for each of the individual857

experimental runs as well as estimate the total compute.858

• The paper should disclose whether the full research project required more compute859

than the experiments reported in the paper (e.g., preliminary or failed experiments that860

didn’t make it into the paper).861

9. Code of ethics862

Question: Does the research conducted in the paper conform, in every respect, with the863

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?864

Answer: [Yes]865

Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.866

Guidelines:867

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.868

• If the authors answer No, they should explain the special circumstances that require a869

deviation from the Code of Ethics.870

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-871

eration due to laws or regulations in their jurisdiction).872

10. Broader impacts873

Question: Does the paper discuss both potential positive societal impacts and negative874

societal impacts of the work performed?875

Answer: [Yes]876

Justification: We discuss the potential societal impacts after the conclusions. More potential877

positive impacts that our benchmark will bring are discussed throughout Sections 1 and 2.878

Guidelines:879

• The answer NA means that there is no societal impact of the work performed.880
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• If the authors answer NA or No, they should explain why their work has no societal881

impact or why the paper does not address societal impact.882

• Examples of negative societal impacts include potential malicious or unintended uses883

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations884

(e.g., deployment of technologies that could make decisions that unfairly impact specific885

groups), privacy considerations, and security considerations.886

• The conference expects that many papers will be foundational research and not tied887

to particular applications, let alone deployments. However, if there is a direct path to888

any negative applications, the authors should point it out. For example, it is legitimate889

to point out that an improvement in the quality of generative models could be used to890

generate deepfakes for disinformation. On the other hand, it is not needed to point out891

that a generic algorithm for optimizing neural networks could enable people to train892

models that generate Deepfakes faster.893

• The authors should consider possible harms that could arise when the technology is894

being used as intended and functioning correctly, harms that could arise when the895

technology is being used as intended but gives incorrect results, and harms following896

from (intentional or unintentional) misuse of the technology.897

• If there are negative societal impacts, the authors could also discuss possible mitigation898

strategies (e.g., gated release of models, providing defenses in addition to attacks,899

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from900

feedback over time, improving the efficiency and accessibility of ML).901

11. Safeguards902

Question: Does the paper describe safeguards that have been put in place for responsible903

release of data or models that have a high risk for misuse (e.g., pretrained language models,904

image generators, or scraped datasets)?905

Answer: [NA]906

Justification: The paper poses no particular risk of misuse for the models and datasets907

employed.908

Guidelines:909

• The answer NA means that the paper poses no such risks.910

• Released models that have a high risk for misuse or dual-use should be released with911

necessary safeguards to allow for controlled use of the model, for example by requiring912

that users adhere to usage guidelines or restrictions to access the model or implementing913

safety filters.914

• Datasets that have been scraped from the Internet could pose safety risks. The authors915

should describe how they avoided releasing unsafe images.916

• We recognize that providing effective safeguards is challenging, and many papers do917

not require this, but we encourage authors to take this into account and make a best918

faith effort.919

12. Licenses for existing assets920

Question: Are the creators or original owners of assets (e.g., code, data, models), used in921

the paper, properly credited and are the license and terms of use explicitly mentioned and922

properly respected?923

Answer: [Yes]924

Justification: The datasets are original contribution of this work, for the models used we925

correctly cite and mention the work introducing them and relevant related studies. Licenses926

and terms of use are properly respected.927

Guidelines:928

• The answer NA means that the paper does not use existing assets.929

• The authors should cite the original paper that produced the code package or dataset.930

• The authors should state which version of the asset is used and, if possible, include a931

URL.932

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.933
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• For scraped data from a particular source (e.g., website), the copyright and terms of934

service of that source should be provided.935

• If assets are released, the license, copyright information, and terms of use in the936

package should be provided. For popular datasets, paperswithcode.com/datasets937

has curated licenses for some datasets. Their licensing guide can help determine the938

license of a dataset.939

• For existing datasets that are re-packaged, both the original license and the license of940

the derived asset (if it has changed) should be provided.941

• If this information is not available online, the authors are encouraged to reach out to942

the asset’s creators.943

13. New assets944

Question: Are new assets introduced in the paper well documented and is the documentation945

provided alongside the assets?946

Answer: [Yes]947

Justification: Our dataset are well described throughout our paper. Moreover, we openly948

release the code including additional information on how to run the code and use the assets.949

Guidelines:950

• The answer NA means that the paper does not release new assets.951

• Researchers should communicate the details of the dataset/code/model as part of their952

submissions via structured templates. This includes details about training, license,953

limitations, etc.954

• The paper should discuss whether and how consent was obtained from people whose955

asset is used.956

• At submission time, remember to anonymize your assets (if applicable). You can either957

create an anonymized URL or include an anonymized zip file.958

14. Crowdsourcing and research with human subjects959

Question: For crowdsourcing experiments and research with human subjects, does the paper960

include the full text of instructions given to participants and screenshots, if applicable, as961

well as details about compensation (if any)?962

Answer: [NA]963

Justification: This paper does not involve crowdsourcing or research with human subjects.964

Guidelines:965

• The answer NA means that the paper does not involve crowdsourcing nor research with966

human subjects.967

• Including this information in the supplemental material is fine, but if the main contribu-968

tion of the paper involves human subjects, then as much detail as possible should be969

included in the main paper.970

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,971

or other labor should be paid at least the minimum wage in the country of the data972

collector.973

15. Institutional review board (IRB) approvals or equivalent for research with human974

subjects975

Question: Does the paper describe potential risks incurred by study participants, whether976

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)977

approvals (or an equivalent approval/review based on the requirements of your country or978

institution) were obtained?979

Answer: [NA]980

Justification: This paper does not involve crowdsourcing or research with human subjects.981

Guidelines:982

• The answer NA means that the paper does not involve crowdsourcing nor research with983

human subjects.984
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• Depending on the country in which research is conducted, IRB approval (or equivalent)985

may be required for any human subjects research. If you obtained IRB approval, you986

should clearly state this in the paper.987

• We recognize that the procedures for this may vary significantly between institutions988

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the989

guidelines for their institution.990

• For initial submissions, do not include any information that would break anonymity (if991

applicable), such as the institution conducting the review.992

16. Declaration of LLM usage993

Question: Does the paper describe the usage of LLMs if it is an important, original, or994

non-standard component of the core methods in this research? Note that if the LLM is used995

only for writing, editing, or formatting purposes and does not impact the core methodology,996

scientific rigorousness, or originality of the research, declaration is not required.997

Answer: [NA]998

Justification: The core method development in our research does not involve LLMs as any999

important, original or non-standard components.1000

Guidelines:1001

• The answer NA means that the core method development in this research does not1002

involve LLMs as any important, original, or non-standard components.1003

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1004

for what should or should not be described.1005
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