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Abstract
Effective collaboration between human experts
and AI systems holds great promise in enhancing
complex decision-making, particularly in chal-
lenging domains like rare disease diagnosis. In
traditional Multi-Disciplinary Team (MDT) set-
tings, human experts from different specialties are
pre-assigned to review and discuss patient cases
collaboratively. However, such fixed team struc-
tures may suffer from cognitive anchoring, incom-
plete knowledge, or misaligned expertise, espe-
cially when facing atypical or rare clinical pre-
sentations. In this paper, we propose Sequential
Expert Engagement for Rare diseases (SEER)
that dynamically selects targeted human experts
to participate in collaborative decision-making.
Our approach leverages a rule-based AI system
with broad, structured medical knowledge to iden-
tify critical diagnostic paths and propose com-
plementary expert inputs. The AI system serves
two key roles: (1) recommending plausible di-
agnostic hypotheses and logical rules based on
structured knowledge; and (2) identifying which
experts, if consulted, are most likely to resolve
diagnostic uncertainties. This targeted expert se-
lection process helps avoid cognitive biases like
anchoring and expands the decision space by invit-
ing diverse, high-value perspectives. Moreover,
the system is self-evolving, continuously updates
its rules and its understanding of each expert’s
expertise based on newly collected data and feed-
back. Experiments on both synthetic and real-
world rare disease datasets demonstrate that our
framework improves diagnostic accuracy, reduces
expert workload, and enhances the overall robust-
ness of human-AI collaboration.
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1. Introduction
Diagnosing rare diseases presents a unique challenge: symp-
toms are often ambiguous and overlap with common condi-
tions, leading to long diagnostic delays (The Lancet, 2024;
Venus et al., 2025). Patients frequently consult multiple
specialists before reaching a correct diagnosis, a delay that
arises not from a lack of expertise, but from consulting the
wrong experts at the wrong time (Evans, 2018).

Traditional methods such as Multi-Disciplinary Team
(MDT) consultations, use fixed groups of clinicians (Qian
et al., 2023). However, this static group-based approach
is often inefficient (Lamb et al., 2012). Not all experts
in the MDT may be relevant for a given case, and some
may anchor their judgments on more common explanations
due to cognitive biases, potentially derailing the diagnosis.
Given the high ambiguity and rarity of these conditions, the
selection of the right expert to consult becomes central
to improving diagnostic accuracy and efficiency (Winters
et al., 2021; Baynam et al., 2024). If we can identify and
consult the most relevant specialist at each step, starting with
one and progressively resolving ambiguity through targeted
follow-up, we can significantly accelerate and improve the
diagnostic process (Kurvers et al., 2023).

Yet, the question of "Who should be consulted?" remains
under-explored in both research and clinical practice. Ex-
pert selection is usually handled manually or procedurally
rather than based on a data-driven understanding of each
specialist’s domain strengths (Finn et al., 2022). This is
especially problematic in rare disease settings where ex-
pertise is unevenly distributed and difficult to characterize
(Domaradzki & Walkowiak, 2019).

To address this, we propose SEER: Sequential Expert En-
gagement for Rare diseases, a logic-driven, probabilistic
framework that dynamically selects the most informative ex-
perts at each step of the diagnostic process. Unlike general-
purpose AI decision systems or rigid MDT assignments, our
system uses a self-evolving, rule-based reasoning model to
suggest the next most informative expert to consult. This
model does not aim to replace human specialists but rather
serves as a knowledge-driven coordinator, grounded in
probabilistic rules, to orchestrate expert involvement dynam-
ically.
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Figure 1. SEER Decision-Making Overview. For each new patient, SEER begins with an internal AI-generated prior over diagnoses. It
then enters a closed-loop internal deliberation process and iteratively selects human experts based on the expected information gain,
computed using confusion matrices, and refines its belief until uncertainty (entropy) falls below a threshold. No intermediate outputs are
released; only the final calibrated diagnosis distribution is provided to clinicians.

Our SEER offers three core advantages:

(i) Broad Knowledge Representation: While not as spe-
cialized as a domain expert in any one field, our rule-based
model captures a wide range of domain-specific logic, en-
abling it to recognize rare patterns and link them to appro-
priate specialties.

(ii) Expertise Awareness: Our model continuously learns
a probabilistic representation of each human expert’s
strengths, allowing it to match cases to the most relevant
clinicians.

(iii) Self-Evolving Logic: As more data and feedback ac-
cumulate, the system updates both its internal reasoning
rules and its understanding of expert capabilities, making it
adaptive to new diseases, changing team compositions, and
evolving diagnostic protocols.

The primary objective of SEER is not to replace physicians
in diagnosing rare diseases but to minimize diagnostic delay
and error by intelligently routing each patient through a
minimally sufficient consultation pathway. This addresses
the core challenge in rare disease diagnosis, namely, finding
the right expert at the right time, which is often overlooked
in current decision-support systems. Just as assigning the
wrong reviewer in academic peer review can lead to incon-
sistent or biased evaluations, assigning the wrong specialist
can delay or misdirect clinical diagnosis, especially when
symptoms overlap with more common diseases.

We also highlight that, when properly guided, the anchoring
effect, typically viewed as a cognitive bias, can serve a pro-
ductive role. If the AI provides a high-quality probabilistic
prior, it can orient human experts toward more accurate de-
cisions early in the diagnostic process, reducing ambiguity
rather than introducing it.

Experiments on synthetic and real-world datasets, includ-
ing a dataset related to the rare disease Gitelman syndrome,
demonstrate that SEER outperforms MDT-based and ran-
dom consultation strategies in both diagnostic speed and
accuracy.

2. SEER: Sequential Expert Engagement for
Rare diseases

SEER as a Confidence-Aware Coordinator SEER is not
a co-decider but a knowledge-driven, confidence-aware co-
ordinator that dynamically selects which expert to query and
when to improve diagnostic accuracy. The overall algorithm
is detailed in Algorithm 1.

For each patient case with features x, SEER first forms an
initial probabilistic belief over diagnosis labels k ∈ [K],
denoted as: pAI(k | x), which is based on historical data
and logical rules (see Section 4 for details).

Human Modeling via Confusion Matrices In paral-
lel, SEER maintains a personalized profile of each expert
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Algorithm 1 SEER: Sequential Expert Engagement for
Rare diseases

1: Inputs: Patient features x, human experts’ confusion
matrices {C(h)}Nh=1, threshold τ , max queries Hmax,
calibration η

2: Initialize: Compute initial AI diagnosis distribution
pAI(k | x) for k ∈ [K], set pcomb = pAI

3: if maxk∈[K] pcomb(k) ≥ τ then
4: Output: argmaxk pcomb(k)
5: Terminate.
6: end if
7: for t = 1 to Hmax do
8: Select human expert ht to maximize expected infor-

mation gain:

ht = argmax
h

Eyh
[H(pcomb)−H(pcomb | yh)]

9: Query the selected human expert ht to obtain their
opinion yht

10: Update pcomb using Bayes’ rule:

pcomb(k) ∝ pcomb(k) ·C(ht)
k,yht

11: if H(pcomb) ≤ τ then
12: Output: argmaxk pcomb(k)
13: Terminate.
14: end if
15: end for
16: Output: argmaxk pcomb(k) after Hmax iterations

h ∈ [N ], modeled via a confusion matrix C(h) ∈ RK×K ,
defined as:

C
(h)
ij = p(Human h says j | True label i)

which characterizes the conditional reliability of the expert
across diagnostic classes. Specifically,

• If human h is accurate across all domains, C(h) is diago-
nal dominance: C(h)

k,k ≈ 1,∀k ∈ [K].

• If the human specializes in a subset of labels Ks ⊂ [K],
then the confusion matrix is diagonally dominant only
within Ks : C

(h)
k,k ≈ 1,∀k ∈ Ks, but

∑
j ̸=k C

(h)
k,j ≫

0 for k /∈ Ks.

• If the human systematically confuses between labels k

and y, then C
(h)
k,y ≫ 0, for some k ̸= y.

Each confusion matrix C(h) lets SEER identify expert h’s
strengths (reliable label subsets) and weaknesses (consistent
misclassifications).

Confidence-Aware Expert Selection Set pcomb = pAI.
Before querying, SEER treats the expert response yh as
a random variable and selects the next expert by comput-
ing the expected conditional entropy of the predicted label
distribution:

Eyh
[H (pcomb | yh)]

= −
∑
j

p (yh = j)
∑
k

p (k | yh = j) log p (k | yh = j)

where p (yh = j) =
∑

k pcomb(k) · C
(h)
kj and

p (k | yh = j) =
pcomb(k)·C(h)

kj

p(yh=j) . SEER selects the ex-
pert ht with the lowest expected conditional entropy,
or equivalently, the one offering the highest expected
information gain,

ht = argmax
h

H (pcomb )− Eyh
[H (pcomb | yh)] .

Once an expert h is consulted, and a response yh, such as
j, is received, SEER updates its belief over the diagnoses
using Bayes’ rule:

p (k | yh = j,x) =
pcomb(k) ·C(h)

kj

p (yh = j | x)
.

Theoretically, SEER’s strategy resembles adaptive combina-
torial expert selection, where each query reduces uncertainty
in a submodular fashion. Despite only observing condition-
ally independent expert responses, such sequential routing
can attain near-optimal diagnostic performance, as character-
ized by known results on submodular information-gathering
(e.g., achieving a (1− 1/e)-approximation to the best fixed
expert combination) (Chen et al., 2015).

Query-Termination and Aggregation After each expert
interaction, SEER updates its belief over possible labels.
This iterative process continues until a stopping criterion
(e.g., entropy threshold as shown in Algorithm 1) is met.
Only then is a final decision made.

Importantly, the internal belief pcomb of SEER is never
revealed to experts during the interaction process. The
final aggregated diagnosis may be shown to the clinician
only after expert querying is complete. This design reflects
two considerations: 1) Revealing AI-generated beliefs or
predictions to experts during the process risks anchoring
or influencing their independent judgments, which corrupts
the assumption of conditional independence necessary for
accurate belief updating (Lee et al., 2015). 2) The question
of when and how to present AI recommendations to human
experts still remains an open research problem in the human-
AI interaction area (Shaw et al., 2019). In many clinical
contexts, deferring to the AI’s opinion until after unbiased
human assessments preserves the integrity of downstream
reasoning (Yin et al., 2025; Wang et al., 2024).
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3. Theoretical Analysis: Why Does SEER
Lead to More Accurate Diagnosis?

The goal of SEER is not to replace physicians or directly pro-
vide diagnoses, but to identify the right expert to consult
at the right time, routing each case through a minimal yet
sufficient sequence of expert consultations. This reframes
rare disease diagnosis as a problem of efficient expert se-
lection under uncertainty, where the AI’s broad but shallow
prior is incrementally refined through targeted consultations.
Our theoretical analysis formalizes this intuition by showing
how selective querying can systematically reinforce diag-
nostic accuracy.

We will first show how SEER adapts its querying behavior
to AI’s current posterior belief pcomb(y). As an illustration,
let’s first consider concrete examples to understand SEER’s
expert selection behavior:
Example 1 (Shallow but Broad Prior). In a 3-class
problem (K = 3), suppose AI’s prior is: pAI(A) = 0.4,
pAI(B) = 0.35, and pAI(C) = 0.25. Although weak, the
AI believes A is slightly more likely. Suppose one human
has C(1)

A,A = 0.85 and lower reliability for B and C. SEER
queries this human to confirm or refute A, leveraging the
weak signal in the AI’s prior.
Example 2 (Ambiguity Resolution). Now suppose
pAI(A) = 0.6, pAI(B) = 0.3, and pAI(C) = 0.1. The
main ambiguity lies between classes A and B. Suppose
we have two human experts: 1) Human 1 (A/B expert):
C

(1)
A,A = 0.9, C(1)

B,B = 0.8. 2) Human 2 (B/C expert):

C
(2)
B,B = 0.9, C(2)

C,C = 0.8. In this case, SEER will cor-
rectly select Human 1 to resolve the uncertainty between A
and B, accelerating convergence to the correct label.

Next, let’s formally characterize SEER’s expert selection
pattern:

Theorem 3.1 (Characterization of SEER’s Selection Behav-
ior). Let p(t)comb be the belief at iteration t. Let H be the
pool of human experts with confusion matrices {C(h)}h∈H.
Define the information gain from the consulting expert h as:

∆Hh = H(p
(t)
comb)− EYh∼C(h) [H(p

(t+1)
comb |Yh)],

where p
(t+1)
comb is updated by Bayes’ rule. Then:

1. Reinforcement: If ∃y∗ such that p(t)comb(y
∗) ≥ 1 − ϵ

(ϵ ≪ 1), and expert hreinforce satisfies C
(hreinforce)
y∗,y∗ ≥

1− δ (δ ≪ 1), then:

hreinforce = argmax
h∈H

∆Hh.

2. Disambiguation: If p
(t)
comb(y1) ≈ p

(t)
comb(y2) for top

candidates y1, y2, and expert hdisambiguate satisfies

C
(hdisambiguate)
y1,y1 ,C

(hdisambiguate)
y2,y2 ≥ 1− δ, then:

hdisambiguate = argmax
h∈H

∆Hh.

Detailed proof of the Theorem 3.1 can be found in the
Appendix B. From the proof, we see that even when the
Al provides a weak but informative prior over K classes at
time t,

p
(t)
comb (y) =

{
1
K + η if y = y∗,
1
K −

η
K−1 if y ̸= y∗,

where η > 0. This broad yet shallow prior, which slightly
favors the true label y∗, acts as a valuable informational
anchor that steers posterior inference toward y∗ and reduces
expected entropy after expert feedback with confusion ma-
trix C(h). Hence, the expected information gain ∆Hh

(
p(t)
)

surpasses that from a uniform prior. SEER leverages this
by adaptively selecting experts who reinforce confident AI
predictions via high diagonal accuracies or disambiguate
close competitors through maximal confusion matrix dis-
criminability. Thus, even with broad uncertainty, the Al’s
shallow but informative prior improves expert selection and
collaborative inference beyond random guessing.

Next, we show that a good AI prior can accelerate the con-
vergence to the true y∗ and SEER will have a linear conver-
gence rate.

Theorem 3.2 (Exponential Entropy Decay and Linear Con-
vergence). Consider a classification problem with K classes
and true label y∗. Assume the following:

1. The AI prior at round t = 0 satisfies a weak but infor-
mative bias, where pAI(y∗) ≥ 1

K + η for some η > 0,
and the remaining probability mass is uniform over other
classes, such that pAI(y) = 1−pAI(y∗)

K−1 for all y ̸= y∗.

2. There exists at least one human expert h whose confusion
matrix C(h) satisfies local accuracy: C(h)

y∗,y∗ ≥ 1−δ, for

small δ > 0, and partial correctness: C
(h)
y∗,y∗ > C

(h)
k,y∗ ,

∀k ̸= y∗.

3. At each round t, SEER selects the expert ht that maxi-
mizes expected entropy reduction: ht = argmaxh ∆Hh,
where ∆Hh := H

(
p
(t)
comb

)
− E[H(p

(t+1)
comb )].

Then:

1. There exists a constant γ > 0 such that the expected
posterior entropy decreases at least by γ each round:

E
[
H(p

(t+1)
comb )

]
≤ H(p

(t)
comb)− γ.
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2. Defining the log-odds ratio for the true label:

Lt := log
p
(t)
comb(y

∗)

1− p
(t)
comb(y

∗)
,

there exists a ∆min > 0 such that E[Lt+1 | Lt] ≥
Lt +∆min. Hence, E[Lt] ≥ L0 + t∆min.

3. Consequently, after T rounds,

E[H(p
(T )
comb)] ≤ H(p

(0)
comb)− Tγ,

guaranteeing linear convergence in entropy and exponen-
tial convergence of posterior confidence to 1. Moreover,
the number of rounds to reach confidence level τ satis-
fies:

T ≥
log τ

1−τ − L0

∆min
,

where L0 is the log-odds ratio for AI prior.

The sketch of the proof can be found in Appendix. B.

4. How will SEER Self-Evolve Given Patient
Feedback?

4.1. Rule Evolution On-the-Fly Given Patient Feedback

The effectiveness of SEER depends heavily on the quality of
its rule-driven predictor pAI. Initially, this predictor can be
constructed from expert knowledge, providing a clear and in-
terpretable foundation. Importantly, SEER can continuously
self-evolve by reinforcing and updating its rules on the fly,
using limited reward-style feedback r̃k ∈ {−1,+1}. This
feedback indicates only whether a prediction was correct
(e.g., patient recovers) or incorrect (e.g., patient does not
recover), without revealing the true label. We leverage these
outcome-based signals to iteratively refine both the rules
and their weights.

For each class k ∈ [K], SEER maintains:

1. A rule set Γk, consisting of logical conditions that
trigger a prediction for class k, for example:

Label k ←I(LabResult(x))∧
I(GeneticPredisposition(x))

where I(·) is the indicator function.

2. A weight vector wk ∈ Rd assigning importance to
each rule.

Given input x, a Boolean feature vector ϕk(x) ∈ {0, 1}d
indicates which rules are activated. The binary predictor
estimates the probability that label k is correct as pk(x) =
σ
(
w⊤

k ϕk(x)
)
, where σ(z) = 1/(1 + e−z) is the sigmoid

function.

Loss Function for Rule Weight Learning We use a logis-
tic loss defined over the binary feedback r̃k,n ∈ {−1,+1},
where +1 indicates a correct prediction and −1 an incorrect
one, for sample n:

ℓk(wk) = −
1

Nk

Nk∑
n=1

log σ
(
r̃k,n w

⊤
k ϕk(xn)

)
.

Minimizing ℓk encourages the model to assign higher
weights to rules that support correct predictions and lower
weights to those contributing to errors. To build and refine
the rule set Γk, SEER employs a column generation (Dash
et al., 2018) approach that alternates between:

• Weight Update (Master Problem): Given the current
rule set Γm

k at iteration m, optimize rule weights wm
k by

minimizing ℓk(wk) as above.

• Rule Expansion (Subproblem): Identify the most infor-
mative new rule γm+1

k to add, by selecting the candidate
rule γ not yet in Γm

k that maximizes the magnitude of the
gradient of the loss w.r.t. its weight:

γm+1
k = arg max

γ∈Γ\Γm
k

∣∣∣∣ ∂ℓk∂wγ

∣∣∣∣ ,
where ∂ℓk

∂wγ
= 1

Nk

∑Nk

n=1
−r̃k,n ϕγ(xn)

1+exp(r̃k,nwm⊤
k ϕk(xn))

.

The process stops when the largest gradient magnitude falls
below a predefined threshold λ, indicating no additional
rules significantly improve the model.

Constructing pAI(k | x) The multi-class probability
pAI(k | x) is computed by combining the binary predic-
tors with a softmax function:

pAI(k | x,w,Γ) =
exp

(
ηw⊤

k ϕk(x)
)∑K

i=1 exp
(
ηw⊤

i ϕi(x)
) ,

where η > 0 is a temperature parameter controlling confi-
dence calibration. To ensure the rule accuracy and reliability,
in practice, we can adopt the following strategies: 1) Rules
are initially sourced from expert knowledge or updated from
data via the CG algorithm. 2) Before integration, all rules
undergo human expert validation for correctness and clinical
relevance. Together, this framework balances interpretabil-
ity, adaptability, and accuracy, enabling SEER to evolve its
rule-based predictor reliably over time.

4.2. Bayesian Estimation of Confusion Matrix

SEER adopts a Bayesian framework to estimate an expert’s
confusion matrix C(h) using only partial reward signals
rs ∈ {+1,−1}. Let i denote the (unknown) true label, and
ys the expert’s prediction for the s-th instance. To handle
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the uncertainty in label supervision, we model the reward
likelihood as P (rs | i, ys) and place a Dirichlet prior over
each row of the confusion matrix C

(h)
i,: .

Under this model, the posterior distribution over the confu-
sion matrix becomes:

C
(h)
i,: | Data ∼ Dirichlet(αi1 + E[ni1], . . . , αiK + E[niK ]) ,

where αij are the Dirichlet prior parameters, and E[nij ] =∑
s P (i | rs, ys) · I(ys = j) denotes the expected number

of times the expert predicted label j when the true label is
inferred to be i.

The maximum a posteriori (MAP) estimate of the confusion
matrix is then:

Ĉ
(h)
ij =

αij + E[nij ]∑K
k=1

(
αik + E[nik]

) .
This Bayesian formulation seamlessly integrates partial feed-
back with prior beliefs, providing a robust and data-efficient
estimate of expert reliability. A full derivation of this esti-
mation procedure is provided in Appendix N.

5. Experiments
We evaluate SEER on three settings: synthetic, semi-
synthetic, and real-world datasets. The semi-synthetic setup
uses real rare disease cases with simulated experts; the real-
world setting involves image classification with true human
labels. SEER demonstrates strong performance in terms of
diagnostic accuracy, robustness to noise, identification of
cognitive regions, and online rule learning. For synthetic
and semi-synthetic data, we consider the following baselines
and evaluation metrics:

Baselines and Comparison We compare SEER’s ac-
curacy against ensemble methods, including sparsely
gated Mixture of Experts (MoE) (Shazeer et al., 2017),
GLAD (Whitehill et al., 2009), weighted/average voting,
and probabilistic fusion (P+L) (Kerrigan et al., 2021). Ap-
pendix C provides detailed descriptions of these methods.

Diagnostic Evaluation Metrics We evaluate our frame-
work using three metrics: 1) Accuracy: Fraction of correct
diagnoses. We report both overall and per-class accuracy
to assess performance across diagnostic categories. 2) Re-
ward: Simulated patient feedback. A binary reward (+1
or -1) is sampled with probability σ(v) = 1

1+e−v , where v
is the summed weight of satisfied ground-truth rules sup-
porting the current diagnosis. 3) Regret: The difference
between the cumulative reward of our model and that of an
oracle with full rule knowledge.

In simulations, all metrics are reported. In semi-synthetic
and real-world studies, we focus on accuracy due to the lack
of an oracle. Additionally, our SEER framework adapts over

time by updating its model based on previously received
patient feedback. Detailed experimental results from syn-
thetic and real-world studies are presented in Appendices D
and K, respectively.

5.1. Semi-Synthetic Experiments with Gitelman
Syndrome Patient Data

To improve realism, we use a private dataset of real Gitel-
man syndrome patient records (71 positive, 95 negative) and
simulate AI and human experts based on established clini-
cal guidelines (Blanchard et al., 2017; of Chinese Research
Hospital Association et al., 2022). Each patient record in-
cludes five key diagnostic features: Serum Potassium, Urine
Potassium, pH, Bicarbonate, and High Blood Pressure. The
task is framed as binary classification using leave-one-out
cross-validation. Six simulated doctors and one AI agent
make rule-based predictions, following the same protocol as
in the synthetic experiments (see Appendix J for details).

Results Figure 2 shows the performance of various meth-
ods on real-world patient data. Among them, SEER
achieves the highest accuracy of 0.885 ± 0.010, demon-
strating its robustness in handling the inherent noise and
complexity of real-world medical datasets. This is attributed
to SEER’s mechanism of mitigating AI uncertainty through
strategic expert selection. Conversely, P+L exhibits poor
performance with an accuracy of 0.270 ± 0.101, indicating
its inability to effectively manage noisy labels from individ-
ual doctors due to the lack of sequential expert engagement.

Independent Models Collaborative Models Ablation Study

AI P
rio

r

Doctor1

Doctor2

Doctor3

Doctor4

Doctor5

Doctor6

Majority
 Votin

g

Weighted Votin
g

MoE
GLAD

P+L
SEER

SEER(Excluding AI)

SEER(U
ncalib

rated AI)

P+L(Excluding AI)

P+L(U
ncalib

rated AI)
0.00

0.25

0.50

0.75

1.00

A
c

c
u

ra
c

y

Figure 2. Bar plot comparing the performance of different models
on the Gitelman syndrome dataset. Each bar represents the mean
accuracy, with error bars indicating the standard deviation.

6. Conclusion
We introduced the Sequential Expert Engagement for Rare
diseases (SEER), which dynamically integrates logic rule-
based AI priors with expert insights through information
gain, bridging human knowledge gaps in complex and rare
scenarios. SEER enhances adaptability, interpretability, and
robustness, consistently outperforming traditional methods
across diverse datasets. Our theoretical analysis establishes
conditions for optimal human-AI collaboration, while ex-
periments on synthetic and real-world data validate SEER’s
ability to improve accuracy, resilience to noise, and expert
selection efficiency.
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Impact Statement
Our work introduces a novel human-AI collaborative
decision-making framework that integrates logic rule-based
AI with adaptive expert selection to optimize decision qual-
ity in high-stakes domains, especially the diagnosis of rare
diseases. By leveraging the Sequential Expert Engagement
for Rare diseases (SEER), our approach dynamically com-
bines AI-generated insights with human expertise, ensuring
interpretability and robustness. Empirical results demon-
strate significant performance gains over the traditional en-
semble and human-only methods, while theoretical analysis
establishes conditions for optimal human-AI synergy. This
research advances AI-augmented decision-making by im-
proving efficiency, adaptability, and expert integration, en-
abling more effective and scalable applications in real-world
settings.
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A. Related Work
Ensembles and Opinion Pools Prior research has convincingly demonstrated the performance advantages of leveraging
multiple predictors over a single predictor. This principle is evident in both model combinations (Kittler et al., 1998;
Bagui, 2005; Sagi & Rokach, 2018) and human opinion aggregations (Hong & Page, 2004; Lamberson & Page, 2012).
Majority voting (Dietterich, 2000) and naive Bayes aggregation (Xu et al., 1992) are prevalent methods for aggregating
non-probabilistic classifiers. However, majority voting may fall short in accuracy enhancement with a limited number of
predictors, and naive Bayes aggregation, while effective at the class level, does not fully exploit instance-level uncertainties
presented by probabilistic labelers. In the realm of human opinion ensembling, methods range from additive linear and
log-linear opinion pools for subjective distributions (Genest & Zidek, 1986), to techniques for weighting linear combinations
of continuous human predictions (Davis-Stober et al., 2015), and voting strategies for consolidating label predictions
from multiple human predictors (Lee & Lee, 2017). Additionally, Whitehill et al. (2009) introduced the GLAD model,
which jointly estimates annotator expertise and task difficulty, although its practical application is limited by identifiability
challenges. Our work bridges this gap by developing a unified framework for the adaptive fusion of probabilistic machine
outputs with categorical human decisions. SEER employs information-theoretic criteria to dynamically optimize the
collaboration policy and estimate the expertise of human annotators, thereby enhancing overall predictive performance.

Human-AI Complementarity Human-AI Complementarity aims to enhance the accuracy of predictions made by human
experts utilizing decision support systems beyond the capabilities of the experts alone or the AI classifiers independently
(De et al., 2019; De Toni et al., 2024a). Despite this goal, empirical studies have frequently found that human-AI teams do
not surpass the highest performance of either the human or the AI alone, even with AI explanations (Bansal et al., 2021; Liu
et al., 2021). Several works model this challenge as a mixture of experts involving both humans and AI. This approach was
initially introduced by (Madras et al., 2017) and later adapted by (Wilder et al., 2020) and (Pradier et al., 2021) with the
introduction of a mixture of expert surrogates. However, these methods have often failed empirically due to difficulties in
optimizing the loss function. Subsequent approaches have sought to improve these models, notably by enhancing calibration
(Raman & Yee, 2021). Furthermore, (Buçinca et al., 2024) introduced offline reinforcement learning to develop decision
support policies that optimize human-centric objectives, achieving improvements in joint human-AI accuracy. Nevertheless,
these methods were not designed for contexts requiring collaboration between multiple humans and AI, thus overlooking the
diversity in human groups. To address this gap, (Verma et al., 2023) introduced a model with ensemble prediction combining
AI and human predictions, but optimization of collaboration costs is lacking. (Mozannar et al., 2023) formulated a novel
surrogate loss function capable of deferring to one of the multiple users without combining AI and human predictions.
Furthermore, (Steyvers et al., 2022) employed a Bayesian framework that combines human and machine predictions for
better accuracy, yet it neglects interpretability and interaction design. Although (De Toni et al., 2024b) proposed a greedy
method that achieves near-optimal prediction sets for a single human-AI team, they do not address the classifier’s role or the
interpretability of decisions, making their approach less applicable to real-world scenarios. In contrast, our work supports
collaboration among multiple human experts and an AI agent, explicitly models cost-aware expert invitations and ensures
interpretability in both the AI’s guidance and the final collective decision.

B. Proof of Theorems
B.1. Proof of Theorem. 3.1

Proof. Case 1: High-Confidence Regime

1. Entropy Before Consultation:

H(p
(t)
comb) ≤ − (1− ϵ) log(1− ϵ)︸ ︷︷ ︸

≈0

− ϵ log ϵ︸ ︷︷ ︸
≈0

≈ 0.

This holds because the entropy H(p) = −
∑

p log p, and for near-certainty distributions, the dominant term (1 −
ϵ) log(1− ϵ) ≈ 0 as ϵ≪ 1. Additionally, the minor term ϵ log ϵ ≈ 0 as ϵ→ 0
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2. Expected Posterior Entropy:

E[H(p
(t+1)
comb )] ≤ (1− δ) · 0︸ ︷︷ ︸

Correct report

+ δ ·Hmax︸ ︷︷ ︸
Incorrect report

≈ δ logK ≪ logK.

The above inequalities hold because if Yh = y∗, p(t+1)
comb (y∗) ∝ (1− ϵ) · (1− δ) ≈ 1. The posterior becomes even more

concentrated on y∗, leading to entropy ≈ 0. In another case, suppose Yh = k ̸= y∗, then p
(t+1)
comb (y∗) ∝ (1− ϵ) · δ ≈ 0.

The posterior spread uncertainty across all K classes leads to maximum entropy Hmax = logK. The expectation of all
possible human responses simplifies to the correct report term and the incorrect report term.

3. Information Gain:
∆Hhreinforce

≈ 0− δ logK.

Notice the negative sign, and non-experts with higher C(h)
y∗,k (k ̸= y∗) would produce larger δ, reducing information

gain.

Case 2: Low-Confidence Regime

1. Entropy Before Consultation:
H(p

(t)
comb) ≈ log 2 = 1 (bits).

2. Posterior Entropy Reduction: For expert hdisambiguate:

H(p
(t+1)
comb |Yh) ≈

{
0 if Yh = y1

0 if Yh = y2.

3. Information Gain:
∆Hhdisambiguate

= 1− 0 = 1.

Non-experts would leave residual entropy Hmid > 0, yielding ∆Hh < 1.

Generalization to K > 2: For multiclass problems, the algorithm:

1. Identifies top candidates y1, y2 through p
(t)
comb

2. Selects experts maximizing min(C
(h)
y1,y1 ,C

(h)
y2,y2)

Our algorithm maximizes mutual information I(y∗;Yh|p(t)comb) by focusing on the dominant uncertain classes analogous to
optimal Bayesian experimental design.

Case 3: Shallow but Informative Prior

We analyze the behavior of the expert selection criterion under a prior that weakly favors a particular class y∗ ∈ [K], which
we interpret as the true label. The prior over y is defined as:

p(t)(y) =

{
1
K + η if y = y∗,
1
K −

η
K−1 otherwise,

where η > 0 and η ≪ 1.

This prior is valid since it sums to 1: (
1

K
+ η

)
+ (K − 1)

(
1

K
− η

K − 1

)
= 1.
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The goal is to select the expert h ∈ H that maximizes expected information gain:

∆Hh := H(p(t))− EYh∼ph
[H(p(t+1) | Yh)],

where ph(k) = Pr(Yh = k) =
∑

y p
(t)(y)C

(h)
y,k is the predicted distribution over the expert’s response, and the posterior is

updated by Bayes’ rule:

p(t+1)(y | Yh = k) =
p(t)(y)C

(h)
y,k∑

y′ p(t)(y′)C
(h)
y′,k

.

1. Entropy of Prior. Let ϵy := p(t)(y) − 1
K . Then ϵy∗ = η, and ϵy ̸=y∗ = − η

K−1 . Using a second-order Taylor
approximation of entropy around the uniform distribution:

H(p(t)) ≈ logK − 1

2

∑
y

ϵ2y
1/K

= logK − K

2

∑
y

ϵ2y.

Compute the perturbation energy:

∑
y

ϵ2y = η2 + (K − 1)

(
η

K − 1

)2

= η2
(
1 +

1

K − 1

)
= η2 · K

K − 1
.

Therefore:

H(p(t)) = logK − K2

2(K − 1)
η2 + o(η2).

2. Expert Response Distribution. Assume expert h satisfies C(h)
y∗,y∗ ≥ 1− δ for small δ. Then:

ph(y
∗) =

∑
y

p(t)(y)C
(h)
y,y∗ ≥

(
1

K
+ η

)
(1− δ) +

∑
y ̸=y∗

(
1

K
− η

K − 1

)
C

(h)
y,y∗ .

If C(h)
y,y∗ ≪ 1 for y ̸= y∗, then ph(y

∗) is significantly larger than 1/K.

3. Posterior Sharpness. When Yh = y∗, the posterior becomes:

p(t+1)(y | Yh = y∗) =
p(t)(y)C

(h)
y,y∗

ph(y∗)
.

Since p(t)(y∗) is slightly larger than uniform and C
(h)
y∗,y∗ ≥ 1− δ, the posterior concentrates on y∗. Thus, the entropy

of this posterior is strictly smaller than the prior, with the drop scaling with η and δ.

4. Comparative Information Gain. Suppose another expert h′ has C(h′)
y∗,y∗ ≈ 1

K (i.e., near-uniform). Then:

• ph′(y∗) ≈ 1
K , so the posterior is almost unchanged.

• Entropy reduction is minimal for h′, i.e., ∆Hh′ ≪ ∆Hh.

Maximizing expected information gain will select the expert h∗ such that:

h∗ = argmax
h

∆Hh ⇒ C
(h∗)
y∗,y∗ ≥ 1− δ,

for some small δ > 0, whenever the prior slightly favors y∗ (i.e., η > 0). Thus, SEER naturally selects experts most
confident and accurate on the true label y∗, even under weak belief.
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B.2. Proof of Theorem. 3.2

Sketch of Proof. Step 1: Informative AI Prior Anchors Posterior.

The initial combined posterior p(0)comb = pAI satisfies

p
(0)
comb(Y

∗) ≥ 1

K
+ η >

1

K
,

which implies the entropy
H(p

(0)
comb) < logK,

providing a non-uniform "anchor" towards the true label Y ∗.

Step 2: Expected Entropy Reduction per Round.

Each expert h has confusion matrix C(h) with diagonal dominance on Y ∗:

C
(h)
Y ∗,Y ∗ > C

(h)
k,Y ∗ ∀k ̸= Y ∗.

This implies the KL divergence between the expert’s distribution over responses and uniform guessing is positive:

DKL

(
C

(h)
Y ∗,·∥U

)
> 0.

Selecting the expert ht that maximizes expected entropy reduction ∆Hh ensures:

γ := min
h

∆Hh > 0,

so that
E[H(p

(t+1)
comb )] ≤ H(p

(t)
comb)− γ,

guaranteeing at least a constant expected drop in entropy each round.

Step 3: Linear Improvement of Log-Odds.

Define log-odds:

Lt = log
p
(t)
comb(Y

∗)

1− p
(t)
comb(Y

∗)
.

Because the experts are partially correct and chosen to maximize information gain, the expected increment in log-odds
satisfies

E[Lt+1 | Lt] ≥ Lt +∆min,

for some ∆min > 0 that depends on the minimal KL divergence of expert confusion matrices from uniform guessing.

By induction:
E[Lt] ≥ L0 + t∆min,

which implies p(t)comb(Y
∗)→ 1 exponentially fast in expectation.

Step 4: Combining Results and Complexity Bound.

Since entropy is a concave function decreasing to zero as the posterior mass on Y ∗ approaches 1, the linear growth of
log-odds implies exponential entropy decay:

E[H(p
(T )
comb)] ≤ H(p

(0)
comb)− Tγ.

Moreover, to achieve posterior confidence p
(T )
comb(Y

∗) ≥ τ , solve
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log
τ

1− τ
≤ E[LT ] ≤ L0 + T∆min =⇒ T ≥

log τ
1−τ − L0

∆min
.

This gives an explicit consultation complexity bound.

C. Comparisons with Ensemble and Majority Voting
Distinction from Ensemble Our algorithm’s sequential human selection and querying scheme differs fundamentally from
pure probability calibration, which adjusts probabilities to align with ground-truth frequencies (e.g., scaling AI confidence
scores to match empirical accuracy). Specifically, our algorithm leverages the current belief state pcomb to dynamically
select the next human expert ht, guided by information gain and confusion matrix. Information gain selects ht to minimize
the entropy of pcomb, and confusion matrix prioritizes experts whose historical performance C(ht) indicates that they can
resolve ambiguities in pcomb.

Comparison with Majority Voting Our algorithm can outperform majority voting under various conditions: when the
AI’s prior is strong, it reduces the need for human consultations needed to reach a target confidence level; when high-quality
experts are rare, the algorithm strategically prioritizes the best experts, avoiding dilution of their input; when human errors
are correlated, the algorithm mitigates biases by choosing experts with uncorrelated confusion matrices.

Table 1. Comparison of different models in the synthetic experiments (mean ± std over 10 runs). Blue shading indicates the best
independent model; Red shading indicates the best collaborative model.

Methods Accuracy ↑ Rewards ↑ Regret ↓
Overall Class-0 Class-1 Class-2

Independent Models

AI Prior 0.510 ± 0.028 0.465 ± 0.061 0.509 ± 0.054 0.558 ± 0.067 65.900 ± 3.833 17.000 ± 5.441
Doctor1 0.491 ± 0.062 0.544 ± 0.070 0.558 ± 0.080 0.370 ± 0.065 65.600 ± 5.024 17.300 ± 6.165
Doctor2 0.499 ± 0.038 0.538 ± 0.072 0.364 ± 0.065 0.594 ± 0.097 64.400 ± 3.412 18.500 ± 6.830
Doctor3 0.559 ± 0.049 0.576 ± 0.070 0.570 ± 0.065 0.530 ± 0.088 66.400 ± 2.691 16.500 ± 4.201
Doctor4 0.524 ± 0.029 0.571 ± 0.055 0.527 ± 0.074 0.473 ± 0.080 64.800 ± 3.789 18.100 ± 6.107
Doctor5 0.522 ± 0.053 0.621 ± 0.073 0.409 ± 0.101 0.533 ± 0.079 68.900 ± 6.580 14.000 ± 10.050
Doctor6 0.525 ± 0.037 0.497 ± 0.068 0.485 ± 0.030 0.594 ± 0.049 67.000 ± 4.837 15.900 ± 8.479
Doctor7 0.458 ± 0.035 0.388 ± 0.076 0.455 ± 0.078 0.533 ± 0.086 63.200 ± 4.686 19.700 ± 5.849
Doctor8 0.419 ± 0.048 0.347 ± 0.080 0.500 ± 0.071 0.412 ± 0.077 63.200 ± 4.069 19.700 ± 6.404
Doctor9 0.365 ± 0.050 0.367 ± 0.059 0.403 ± 0.085 0.324 ± 0.062 62.800 ± 4.729 20.100 ± 7.203

Collaborative Models

Majority Voting 0.678 ± 0.038 0.671 ± 0.066 0.673 ± 0.085 0.691 ± 0.047 70.200 ± 3.709 12.700 ± 7.376
Weighted Voting 0.677 ± 0.041 0.682 ± 0.061 0.688 ± 0.072 0.661 ± 0.056 72.000 ± 3.688 10.900 ± 4.888
GLAD 0.262 ± 0.037 0.271 ± 0.074 0.273 ± 0.092 0.242 ± 0.094 58.200 ± 5.793 24.700 ± 8.210
MoE 0.669 ± 0.054 0.685 ± 0.086 0.630 ± 0.091 0.691 ± 0.048 72.600 ± 2.107 10.300 ± 4.981
P+L 0.707 ± 0.051 0.665 ± 0.103 0.712 ± 0.111 0.745 ± 0.049 75.200 ± 2.857 7.700 ± 5.622
SEER 0.784 ± 0.035 0.800 ± 0.090 0.791 ± 0.091 0.758 ± 0.042 76.800 ± 2.960 6.100 ± 1.700

Ablation Study

SEER(Excluding AI) 0.559 ± 0.054 0.574 ± 0.059 0.536 ± 0.088 0.567 ± 0.124 69.200 ± 4.285 13.700 ± 6.198
SEER(Uncalibrated AI) 0.767 ± 0.043 0.785 ± 0.086 0.758 ± 0.107 0.730 ± 0.087 73.700 ± 2.722 9.200 ± 5.192
P+L(Excluding AI) 0.707 ± 0.051 0.665 ± 0.103 0.712 ± 0.111 0.745 ± 0.049 70.700 ± 5.178 12.200 ± 5.706
P+L(Uncalibrated AI) 0.707 ± 0.051 0.665 ± 0.103 0.712 ± 0.111 0.745 ± 0.049 74.100 ± 4.277 8.800 ± 6.660
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D. Results of Synthetic Experiments
D.1. Synthetic Experiment: Simulating Rare Disease Diagnosis, Cognitive Gaps, and Rule-Based Agents

We conducted synthetic experiments to simulate rare disease diagnosis scenarios, generating datasets with predefined rules
(see Table 2). Nine rule-based simulated doctors and an AI agent with a general cognitive domain were created. The AI
agent, knowledgeable about common and rare diseases, offers a broad perspective but lacks the precision of specialists
like Doctors 1-2 (experts in common and rare diseases), Doctors 4-5 (rare disease specialists), or Doctors 6-7 (mixed
experts). Doctors 8-9 act as noisy experts, while Doctor 3, a comprehensive decision-maker, outperforms the AI agent. We
produced a training set of 20,000 samples with {xt, y

L
l=1, kt, rt} and an evaluation set of 100 samples with only patient

features xt. Each method was trained on the training set and tested on the evaluation set. Unlike SEER, other methods
directly incorporate all decision-makers: weighted and majority voting rely on voting outcomes for final decisions, while
the remaining methods select the label with the highest probability. Further simulation details are provided in Appendix E.

2 Experts’ Common Region
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Figure 3. Dynamics of the cognitive region of human-AI team following sequential expert invitation.
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Figure 4. Comparison of probability distributions and entropy after each invitation of experts.

Results The experiments’ results are shown in Table 1, SEER consistently outperforms all baselines across three diagnostic
accuracy metrics. Our ablation study tests the role of AI priors in initializing SEER’s belief. “Excluding AI” refers to
removing the AI prior (i.e., randomly pick human experts), and “Uncalibrated AI” uses raw AI outputs without post-hoc
calibration. We show that calibrating the AI’s prior—e.g., using validation data (Guo et al., 2017) and aggregated expert
feedback—can significantly improve decision quality.

To illustrate human-AI complementarity, we construct a challenging patient case that satisfies all rules for a rare disease (k0)
and one rule each for two common diseases (k1, k2) (details in Appendix F). Figure 3 shows how SEER sequentially recruits
the most informative doctors to recover the correct cognitive region, reducing uncertainty (Figure 4). This highlights how
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human experts can reinforce or disambiguate AI’s general prior through complementary expertise. Appendix G confirms
SEER’s rule-learning behavior. Even when AI is weak (Appendix H), SEER maintains robustness by leveraging sequential
information gain. In an idealized setting with no weak decision-makers (Appendix I), SEER still outperforms all baselines.

E. Setting of Synthetic Experiments
The framework integrates two principal entities: an AI agent and human agents. We assess their performance through a
series of simulations. Below, we detail the architecture of our simulation framework.

Patient Simulator The sample generation process is based on the predefined set of ground truth rules, as shown in Table.
2. Initially, the generator selects a set of labels based on the rule weights, simulating population-level decision-making
processes. This selection is formalized by the equation:

k ∼ Mult
(
softmax

(
sigmoid−1

(
w⊤

1 ϕ1(x), . . . ,w
⊤
k ϕk(x)

)))
,

where w⊤
1 ϕ1(x) represents the feature functions associated with the rule set, and the labels are selected if the corresponding

features satisfy the rule conditions. Following label selection, we generate a random binary sequence for the patient. For a
valid patient sample, at least one of the rules corresponding to the selected labels must be satisfied, while none of the rules
associated with other labels should hold. In our simulation, label k0 represents a rare disease, which typically requires more
complex diagnostic processes, such as genetic testing, and thus is governed by longer rules. In contrast, labels k1 and k2
correspond to common diseases with simpler diagnostic criteria.

We divided the entire dataset into two disjoint subsets: (i) a training dataset Dt with 20000 samples and (ii) an evaluation
dataset De with 100 samples. The training dataset Dt = {xt, {yl}Ll=1, yt, rt, y

∗} includes comprehensive data such as
consultation history and patient feedback. The evaluation dataset De is exclusively reserved for evaluation purposes.

Table 2. The ground truth rule set.
Label Rules Weight

k0
1: x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5
2: x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5

k1
3: x3 ∧ x4 ∧ x5 1.4
4: x6 ∧ x7 ∧ x9 1.6

k2
5: x1 ∧ x3 ∧ x4 1.7
6: x4 ∧ x7 ∧ x9 1.3

Human Doctor Simulator In real-world healthcare environments, doctors from various specialties exhibit distinct
domains of expertise and may even hold inaccurate beliefs. To simulate this, we model each human doctor as a rule-based
probabilistic decision-maker equipped with a unique set of rules that reflect their specific expertise and biases. These rule
sets can demonstrate preferences for specific treatments or deviate significantly from the established ground-truth rule set.
Unlike real-world scenarios where doctors typically provide deterministic treatment choices, our simulated doctors select
the treatment corresponding to the probability distribution from the softmax function.

Our simulation framework includes a diverse pool of nine doctors. For each patient scenario, the AI agent first offers a
treatment suggestion. If the entropy of the collective treatment distribution does not meet a predefined threshold (set at 0.3 in
all our experiments), indicating a lack of consensus or insufficient confidence among the initial doctors, the SEER algorithm
is employed. The SEER algorithm then invites additional doctors from the pool to contribute their recommendations, aiming
to refine the decision-making process and enhance the reliability of the treatment choice. Details of all ten rule-based
decision-makers can be found in Table 3.

AI Agent Learning Our AI agent, initially configured with a subset of ground truth rules, operates as a rule-based
probabilistic decision-maker and serves as a general expert. This configuration mimics real-world scenarios where prior
knowledge informs decision-making frameworks. Throughout the simulation, the AI agent dynamically updates its rule set
and associated weights based on incoming data to refine its decision-making process.
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Table 3. The rules assigned to each rule-based decision-maker.
Model Rule Set Weight Model Rule Set Weight

AI Agent

a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5

Human Doctor 1

a1 ← x3 ∧ x4 ∧ x5 1.4
a1 ← x3 ∧ x4 ∧ x5 1.5 a1 ← x6 ∧ x7 ∧ x9 1.6
a2 ← x1 ∧ x3 ∧ x4 1.5 a2 ← x1 ∧ x3 ∧ x4 1.7

a0 ← x3 ∧ x4 1.7

Human Doctor 2

a2 ← x1 ∧ x3 ∧ x4 1.7

Human Doctor 3

a1 ← x3 ∧ x4 ∧ x5 1.4
a2 ← x4 ∧ x7 ∧ x9 1.3 a1 ← x6 ∧ x7 ∧ x9 1.6
a1 ← x3 ∧ x4 ∧ x5 1.4 a2 ← x1 ∧ x3 ∧ x4 1.7
a0 ← x3 ∧ x4 1.4 a2 ← x4 ∧ x7 ∧ x9 1.3

a0 ← x3 ∧ x4 1.7

Human Doctor 4

a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5

Human Doctor 5

a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5
a0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5 a0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5
a1 ← x3 ∧ x4 1.4 a2 ← x3 ∧ x4 1.5
a2 ← x1 ∧ x3 ∧ x4 1.7 a1 ← x3 ∧ x4 ∧ x5 1.7

Human Doctor 6
a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5

Human Doctor 7
a0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5

a2 ← x1 ∧ x3 ∧ x4 1.7 a1 ← x6 ∧ x7 ∧ x9 1.6
a1 ← x3 ∧ x4 ∧ x5 1.5 a2 ← x3 ∧ x4 1.3

Human Doctor 8
a0 ← x0 ∧ ¬x2 1.5

Human Doctor 9
a0 ← x3 ∧ x4 1.5

a1 ← x3 ∧ x4 1.5 a1 ← x3 ∧ x4 1.5
a2 ← x1 ∧ x3 1.5 a2 ← x4 ∧ x7 ∧ x9 1.5

To facilitate the learning of these rules, our system relies on a reward feedback mechanism. Specifically, we simulate
an oracle environment using the ground truth rule set. For each patient data instance, the human-AI collaboration team
proposes a diagnosis, which is then evaluated by the oracle. The oracle assesses this diagnosis by computing the conditional
probability of the treatment given the patient’s data. Subsequently, a reward is sampled using a Bernoulli distribution based
on this probability. This reward signal serves as crucial feedback, enabling the AI agent to optimize its rule set for improved
decision accuracy over time.

The metrics employed to evaluate the performance of rule learning are the weights’ mean absolute error (MAE) and rule
accuracy. The calculation of weights’ MAE follows a stringent method: for rules accurately identified in the ground-truth
rule set, we directly compute the absolute error. For those not accurately identified, we assign the absolute error to be equal
to the true weight. Regarding rule accuracy, if the rules in the ground-truth rule set are not accurately identified, we account
for this in our evaluation.

F. Experimental Results: Visualization of decision making process
To demonstrate the decision-making process of our framework, we constructed a sample with the feature vector [x0 =
1, x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 1, x6 = 0, x7 = 1, x8 = 0, x9 = 0], which lies outside the expertise of any single
model within the framework. This sample satisfies the conditions for rules 1, 2, 3, and 5, which are associated with all three
possible labels, thereby illustrating the necessity for a collaborative decision-making approach.

As illustrated in Figure 3, inviting more informative human experts significantly improves the recovery of the cognitive
region of the human-AI team. This process demonstrates the collaborative strength of our framework in leveraging diverse
expert inputs to enhance decision-making. Additionally, the entropy of the final distribution after calibration, depicted in
Figure 4, is minimized, enabling a more accurate recovery of the ground truth conditional distribution.

G. Experimental Results: Rule Learning
We validate the rule-learning capability of our AI agent by simulating real-world scenarios with a cohort of 20,000 pre-
generated patients. Initially, the AI agent provides its assessments and then invites experts based on the criterion of
maximizing information gain. An oracle subsequently delivers feedback in the form of rewards, enabling us to update the AI
agent’s parameters every 5,000 patients. To assess the decision-making ability of our AI agent, we utilize accuracy and
reward metrics, as illustrated in Figure 5. The mean absolute error (MAE) and standard deviation of the learned rule weights
across ten replicates are reported in Table 4, alongside the accuracy of the learned rules in these replicates. The results
demonstrate that our rule-learning method is highly effective in accurately identifying the ground-truth cognitive region
with sufficient data. This validation shows that our AI agent can adapt and optimize its rule set as new data is incorporated,
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further supporting its application in complex, real-world decision-making environments.
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Figure 5. Learning curves for AI-agent on synthetic experiments. The x-axis represents the number of samples in the training dataset,
while the y-axis shows the accuracy and the number of positive rewards in a total of 1000 evaluation samples. The shaded region represents
the standard deviation.

We report the rule learning accuracy of rule content and the MAE of rule weight in Table. 4. Besides, we also report the
agent’s development by detailing the evolution of the rule set across varying training sample sizes in one of the repeated
experiments, as shown in Table. 5.

Table 4. The rule learning accuracy of the AI agent across different sample sizes is illustrated here. Details on how to calculate rule
accuracy and weight mean absolute error (MAE) can be found in Appendix. E.

Sample Size Rule Accuracy Weight MAE

5000 0.55 ± 0.08 0.774 ± 0.118
10000 0.55 ± 0.08 0.757 ± 0.117
15000 0.80 ± 0.07 0.382 ± 0.113
20000 0.98 ± 0.05 0.134 ± 0.065

H. Experimental Results: Specific Failure Modes
To address concerns about the limited scope of our experiments and to evaluate the robustness of our approach under less
ideal conditions, we conducted an additional simulation designed to simulate a potential failure mode. In this scenario, the
AI agent has access to only two out of the six rules from the ground truth rule set, with each rule assigned a random weight.
This setup emulates a situation where the AI agent’s knowledge is incomplete, reflecting real-world cases where the agent
may operate with partial or noisy information.

The results for this simulation are summarized in Table 6. Under this challenging scenario, SEER’s performance does not
maintain the superior levels observed in previous experiments. However, it still outperforms alternative methods in accuracy,
demonstrating its robustness and adaptability even in adverse settings. While some degradation in accuracy, rewards, and
regret is observed compared to the original experiments, SEER consistently shows competitive results, outperforming many
baseline approaches.

I. Experimental Results: Without Noisy Experts
We conducted an additional experiment by excluding noisy experts from prior simulations to evaluate the performance of
various methods when only reliable expertise is available. The remaining experts exhibit relatively high overall accuracy,
providing consistent and dependable input. This setup assesses the robustness and efficacy of each method in a noise-free
environment.

Table 8 presents the evaluation results. Our SEER framework consistently outperformed other approaches, demonstrating its
strength in integrating detailed distributions from experts with diverse expertise levels, rather than merely aggregating labels.
Although all methods exhibited improved accuracy and rewards, as well as reduced regret, SEER’s superior performance
underscores its effectiveness in leveraging high-quality expert contributions.
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Table 5. Evolution of rule sets and weights possessed by the AI agent after processing every 5,000 samples. This table reports all learned
rules during each update.

Samples Rule Sets Weight

5000

k0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.315
k0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 0.866
k1 ← x3 ∧ x4 ∧ x5 1.663
k2 ← x1 ∧ x3 ∧ x4 1.322

10000

k0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.246
k0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.340
k1 ← x3 ∧ x4 ∧ x5 1.673
k2 ← x1 ∧ x3 ∧ x4 1.010

15000

k0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.256
k0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.336
k1 ← x3 ∧ x4 ∧ x5 1.542
k1 ← x6 ∧ x7 ∧ x9 1.339
k2 ← x1 ∧ x3 ∧ x4 1.188

20000

k0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.439
k0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.435
k1 ← x3 ∧ x4 ∧ x5 1.445
k1 ← x6 ∧ x7 ∧ x9 1.538
k2 ← x1 ∧ x3 ∧ x4 1.661
k2 ← x4 ∧ x7 ∧ x9 1.369

J. Details of Semi-Synthetic Experiments
J.1. Participants and Decision-Making Framework

• Doctors: Six human doctors participated, utilizing the following approaches:

– Doctor 1–3: Operated within unique cognitive regions, leveraging subsets or modified versions of the overall rule
set.

– Doctor 4: Employed the comprehensive overall rule set.

– Doctor 5: Utilized an alternate subset of rules.

– Doctor 6: Followed a random decision-making strategy.

• AI Agent: Utilized three rules from the overall rule set.

J.2. Rule Sets

The comprehensive rule set used for diagnosing Gitelman syndrome is presented in Table 9. Each rule is assigned a weight,
reflecting its relative importance.

K. Experimental Results: Real Human Annotation Data with CIFAR-10H
Dataset CIFAR-10H1 contains soft labels capturing human perceptual uncertainty, with multiple annotations per image.
We intentionally introduce noise to human labels (the controlled label corruption protocol systematically reduces accuracy
to 0.816 ± 0.027 (mean ± std) by uniformly misassigning partially correct labels to erroneous categories through random
re-assignment) to test our framework’s ability to improve classification through human-AI collaboration.

Baseline AI Models To fairly compare the performance of our proposed framework, we consider four different models for
image classification tasks: (i) DCNN (Krizhevsky et al., 2012), (ii) PCANet (Chan et al., 2015), and (iii) DC (Diffusion
Classifier) (Li et al., 2023), and (iv) DLME (Zang et al., 2022). Furthermore, we also compared the human annotation
accuracy after introducing noise. Our framework is consistent across all AI models.

1https://github.com/jcpeterson/cifar-10h
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Table 6. Performance evaluation with one AI agent has incomplete knowledge (as shown in Table 7). Results are presented as mean
± standard deviation across 10 repeated runs. Blue shading indicates the best independent model; Red shading indicates the best
collaborative model. Accuracy ↑ Rewards ↑ Regret ↓

Methods Overall Class-0 Class-1 Class-2

Independent Models

AI Prior 0.491 ± 0.058 0.426 ± 0.071 0.512 ± 0.105 0.536 ± 0.072 0.666 ± 0.046 0.142 ± 0.065
Doctor1 0.481 ± 0.042 0.482 ± 0.056 0.558 ± 0.115 0.403 ± 0.073 0.672 ± 0.037 0.136 ± 0.056
Doctor2 0.454 ± 0.028 0.497 ± 0.059 0.355 ± 0.082 0.509 ± 0.065 0.642 ± 0.031 0.166 ± 0.066
Doctor3 0.534 ± 0.053 0.506 ± 0.091 0.606 ± 0.098 0.491 ± 0.102 0.668 ± 0.050 0.140 ± 0.070
Doctor4 0.525 ± 0.034 0.594 ± 0.055 0.521 ± 0.083 0.458 ± 0.092 0.652 ± 0.037 0.156 ± 0.061
Doctor5 0.522 ± 0.047 0.585 ± 0.075 0.430 ± 0.084 0.548 ± 0.076 0.695 ± 0.034 0.113 ± 0.048
Doctor6 0.542 ± 0.047 0.503 ± 0.095 0.533 ± 0.073 0.591 ± 0.087 0.664 ± 0.044 0.144 ± 0.069
Doctor7 0.479 ± 0.037 0.406 ± 0.075 0.488 ± 0.048 0.545 ± 0.061 0.658 ± 0.042 0.150 ± 0.068
Doctor8 0.396 ± 0.053 0.326 ± 0.076 0.473 ± 0.049 0.391 ± 0.106 0.602 ± 0.036 0.206 ± 0.065
Doctor9 0.344 ± 0.042 0.368 ± 0.087 0.370 ± 0.052 0.294 ± 0.054 0.628 ± 0.037 0.180 ± 0.052

Collaborative Models

Majority Voting 0.710 ± 0.035 0.753 ± 0.077 0.682 ± 0.094 0.694 ± 0.058 0.722 ± 0.044 0.086 ± 0.085
Weighted Voting 0.696 ± 0.035 0.724 ± 0.078 0.673 ± 0.067 0.691 ± 0.078 0.746 ± 0.055 0.062 ± 0.059
GLAD 0.281 ± 0.043 0.288 ± 0.093 0.309 ± 0.047 0.245 ± 0.044 0.603 ± 0.037 0.205 ± 0.059
MoE 0.662 ± 0.046 0.709 ± 0.062 0.609 ± 0.093 0.667 ± 0.052 0.703 ± 0.047 0.105 ± 0.080
P+L 0.546 ± 0.056 0.303 ± 0.095 0.897 ± 0.134 0.445 ± 0.218 0.678 ± 0.041 0.130 ± 0.058
SEER 0.733 ± 0.056 0.565 ± 0.132 0.858 ± 0.041 0.782 ± 0.067 0.714 ± 0.035 0.094 ± 0.063

Ablation Study

SEER(Excluding AI) 0.529 ± 0.037 0.353 ± 0.102 0.779 ± 0.115 0.461 ± 0.101 0.670 ± 0.050 0.138 ± 0.071
SEER(Uncalibrated AI) 0.703 ± 0.076 0.571 ± 0.144 0.818 ± 0.080 0.724 ± 0.125 0.696 ± 0.066 0.112 ± 0.100
P+L(Excluding AI) 0.546 ± 0.056 0.303 ± 0.095 0.897 ± 0.134 0.445 ± 0.218 0.684 ± 0.040 0.124 ± 0.063
P+L(Uncalibrated AI) 0.546 ± 0.056 0.303 ± 0.095 0.897 ± 0.134 0.445 ± 0.218 0.663 ± 0.044 0.145 ± 0.069

Table 7. The rule set for our weak AI agent.
Label Rules Weight
k0 1: x0 ∧ x1 ∧ ¬x2 1.5
k1 2: x3 ∧ x4 ∧ x5 1.5
k2 3: x1 ∧ x3 ∧ x4 1.5

Results Figure 6 reveals two distinct patterns: While DCNN/PCANet underperform noisy human annotations (72.3-81.6%),
DC/DLME surpass them (85.5-89.2%). Our framework consistently outperforms standalone AI models through strategic
human collaboration. Traditional voting excels with reliable human input, but SEER better handles noise, particularly with a
robust AI agent(DC/DLME), achieving 89.1-92.5% accuracy. Calibrated AI agents yield 3.8-4.3% confidence improvements
over uncalibrated versions. Encouragingly, our framework also reduces expert annotation demands, requiring only 5 human
experts per figure compared to the 10-expert requirement of baseline methods, while maintaining superior accuracy. Overall,
these results validate our framework’s practical effectiveness with real-world data.

L. Limitation and Broader Impacts
A notable limitation of our proposed model lies in the rule-learning module of the branch-and-price-based column generation
algorithm. While it effectively identifies rules that capture partial aspects of the ground truth, it occasionally fails to fully
match clinical realities. Although stringent, these exact matches hold significant importance in clinical contexts where
precision is paramount for diagnosis and treatment. In such scenarios, tailored strategies require more accurate rule-learning
capabilities, highlighting the need for improvement in the robustness of our approach.

In real-world applications, the interaction between doctors and AI often occurs within a multi-agent system, where experts
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Table 8. Comparison of different models in synthetic experiments without noisy experts. Results are presented as mean ± standard
deviation across 10 repeated runs. Blue shading indicates the best independent model; Red shading indicates the best collaborative
model. Accuracy ↑ Rewards ↑ Regret ↓

Methods Overall Class-0 Class-1 Class-2

Independent Models

AI agent 0.524 ± 0.029 0.468 ± 0.084 0.542 ± 0.077 0.564 ± 0.067 0.652 ± 0.041 0.154 ± 0.065
Doctor1 0.515 ± 0.031 0.562 ± 0.066 0.585 ± 0.066 0.397 ± 0.076 0.668 ± 0.055 0.138 ± 0.055
Doctor2 0.470 ± 0.033 0.476 ± 0.078 0.412 ± 0.085 0.521 ± 0.056 0.656 ± 0.028 0.150 ± 0.031
Doctor3 0.529 ± 0.044 0.556 ± 0.080 0.533 ± 0.078 0.497 ± 0.065 0.676 ± 0.042 0.130 ± 0.050
Doctor4 0.480 ± 0.040 0.559 ± 0.084 0.485 ± 0.054 0.394 ± 0.099 0.617 ± 0.037 0.189 ± 0.048
Doctor5 0.498 ± 0.050 0.565 ± 0.083 0.373 ± 0.058 0.555 ± 0.079 0.646 ± 0.025 0.160 ± 0.032
Doctor6 0.534 ± 0.039 0.512 ± 0.078 0.512 ± 0.052 0.579 ± 0.080 0.669 ± 0.057 0.137 ± 0.086
Doctor7 0.479 ± 0.028 0.391 ± 0.053 0.479 ± 0.063 0.570 ± 0.056 0.642 ± 0.028 0.164 ± 0.052

Collaborative Models

Majority Voting 0.726 ± 0.038 0.724 ± 0.071 0.712 ± 0.071 0.742 ± 0.061 0.721 ± 0.044 0.085 ± 0.066
Weighted Voting 0.713 ± 0.036 0.726 ± 0.079 0.709 ± 0.080 0.703 ± 0.060 0.740 ± 0.045 0.066 ± 0.051
GLAD 0.271 ± 0.052 0.315 ± 0.079 0.294 ± 0.051 0.203 ± 0.120 0.556 ± 0.054 0.250 ± 0.074
MoE 0.686 ± 0.041 0.768 ± 0.084 0.621 ± 0.084 0.667 ± 0.084 0.709 ± 0.049 0.097 ± 0.049
P+L 0.718 ± 0.035 0.641 ± 0.089 0.752 ± 0.100 0.764 ± 0.052 0.722 ± 0.040 0.084 ± 0.057
SEER 0.808 ± 0.061 0.818 ± 0.104 0.839 ± 0.109 0.767 ± 0.069 0.741 ± 0.044 0.065 ± 0.050

Ablation Study

SEER(Excluding AI) 0.574 ± 0.053 0.503 ± 0.070 0.597 ± 0.116 0.624 ± 0.062 0.673 ± 0.041 0.133 ± 0.051
SEER(Uncalibrated AI) 0.797 ± 0.041 0.788 ± 0.090 0.812 ± 0.096 0.791 ± 0.055 0.736 ± 0.033 0.070 ± 0.041
P+L(Excluding AI) 0.718 ± 0.035 0.641 ± 0.089 0.752 ± 0.100 0.764 ± 0.052 0.707 ± 0.045 0.099 ± 0.058
P+L(Uncalibrated AI) 0.718 ± 0.035 0.641 ± 0.089 0.752 ± 0.100 0.764 ± 0.052 0.719 ± 0.055 0.087 ± 0.073

may take into account the perspectives of their peers and the AI’s recommendations before reaching a final decision. This
introduces a more interconnected and complex decision-making environment than our current framework, which treats each
expert independently. Furthermore, while our framework supports human intervention to modify or remove high-risk rules,
this manual process can be time-consuming and requires substantial expertise. Future work could focus on developing more
user-friendly interfaces and automated tools to assist human experts in this task, potentially increasing both efficiency and
adoption.

A promising direction for future research involves the introduction of hypernetworks to enable differentiable rule learning,
which could improve the accuracy of rule discovery. However, purely data-driven approaches without expert knowledge
may introduce noise and fail to capture patient-specific features. Therefore, combining knowledge-based and data-driven
frameworks could enhance the robustness and accuracy of rule learning in clinical settings. Moreover, incorporating a
human-in-the-loop algorithm would allow for the flexible integration of expert opinions in rule learning, further improving
security and stability. While our column-generation algorithm produces relatively stable rules, these enhancements could
better align the model with real-world complexities.

M. Computing Infrastructure
All synthetic data experiments are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R) Gold 6248R CPU @
3.00GHz, 227 Gigabyte memory.

N. Bayesian Estimation of Confusion Matrix with Partial Feedback
In many real-world scenarios, the true label of an instance is not directly observable. Instead, we receive partial feedback in
the form of reward signals. For instance, in medical decision-making, we may only observe whether a patient was accurately
diagnosed (e.g., +1) or misdiagnosed (e.g., -1), rather than knowing the exact ground-truth diagnosis. This introduces
additional uncertainty in estimating the confusion matrix C(h), which represents the probability that human expert h assigns
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Table 9. Comprehensive Rule Set for Diagnosing Gitelman Syndrome. Each rule is assigned a weight representing its relative importance.

# Rule Description Weight

Gitelman Syndrome Rules

1 pH > 7.45∧serum potassium < 3.0∧urine potassium > 20∧bicarbonate > 24∧high blood pressure =
0

2.5

2 pH > 7.45∧serum potassium < 3.5∧urine potassium > 25∧bicarbonate > 24∧high blood pressure =
0

2.5

Non-Gitelman Syndrome Rules

3 pH < 7.35 ∧ serum potassium < 3.5 1.5

4 high blood pressure = 0 ∧ pH < 7.35 1.3

5 high blood pressure = 1 ∧ pH > 7.45 1.3

6 high blood pressure = 0 ∧ urine potassium < 20 ∧ pH > 7.45 ∧ bicarbonate < 22 1.5
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Figure 6. Classification accuracy on CIFAR-10H across base models (10 trials, 200 samples each). Red annotations mark the best methods
by mean accuracy.

label j when the true label is i.

To incorporate this feedback into a Bayesian estimation framework, we assume that each row of the confusion matrix follows
a Dirichlet prior:

C
(h)
i,: ∼ Dirichlet(αi1, αi2, . . . , αiK)

where αij > 0 are concentration parameters encoding prior knowledge about the expert’s labeling tendencies.

N.1. Incorporating Reward Signals

Since the true label is unknown, we infer it based on the observed reward signals. Let rs ∈ {+1,−1} denote the reward
received for prediction ys on instance s. We define P (i | rs, ys), the probability that the true label was i given the observed
response ys and the reward rs. Using Bayes’ rule, this probability is proportional to:

P (i | rs, ys) ∝ P (rs | i, ys)P (i),

where:

• P (rs | i, ys) is the likelihood of receiving reward rs given that the true label was i and expert h predicted ys. This
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can be modeled using a reward function f(i, ys), which encodes how likely a correct or incorrect prediction leads to a
given reward.

• P (i) is a prior belief about the distribution of true labels.

Given S labeled instances, we update our Dirichlet posterior by marginalizing over possible true labels:

C
(h)
i,: | Data ∼ Dirichlet

(
αi1 +

∑
s

P (i | rs, ys)I(ys = 1), . . . , αiK +
∑
s

P (i | rs, ys)I(ys = K)

)
.

This means that the expected count of expert predictions ys contributing to each row of the confusion matrix is weighted by
the inferred probability P (i | rs, ys), rather than being directly observed.

N.2. MAP Estimation

The Maximum A Posteriori (MAP) estimate for C(h)
ij is then given by:

Ĉ
(h)
ij =

αij + E[nij ]∑K
k=1(αik + E[nik])

,

where

E[nij ] =
∑
s

P (i | rs, ys)I(ys = j)

is the expected count of times label j was assigned when the inferred true label was i.

This formulation enables the estimation of human expert reliability even when we only receive partial reward signals
rather than explicit ground-truth labels. By integrating Bayesian inference and probabilistic updates, we construct a robust
confusion matrix that reflects both prior knowledge and empirical feedback, helping us model uncertainty in real-world
decision-making environments where only outcome-based supervision is available.
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