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Abstract

Off-policy methods are the basis of a large number
of effective Policy Optimization (PO) algorithms.
In this setting, Importance Sampling (IS) is typi-
cally employed for off-policy evaluation, with the
goal of estimating the performance of a target pol-
icy, given samples collected with a different behav-
ioral policy. However, in Monte Carlo simulation,
IS represents a variance minimization approach.
In this field, a suitable behavioral distribution is
employed for sampling, allowing diminishing the
variance of the estimator below the one achievable
when sampling from the target distribution. In this
paper, we analyze IS in these two guises in the con-
text of PO. We provide a novel view of off-policy
PO, showing a connection between the policy im-
provement and variance minimization objectives.
Then, we illustrate how minimizing the off-policy
variance can, in some circumstances, lead to a pol-
icy improvement, with the advantage, compared
with direct off-policy learning, of implicitly enforc-
ing a trust region. Finally, we present numerical
simulations on continuous RL benchmarks, with
a particular focus on the robustness to small batch
sizes.

1 INTRODUCTION

Policy Optimization methods [PO, Deisenroth et al., 2013]
have been widely exploited in Reinforcement Learning [RL,
Sutton and Barto, 2018] with successful results in ad-
dressing, to name a few, continuous-control [e.g., Peters
and Schaal, 2008, Lillicrap et al., 2016], robot manipula-
tion [e.g., Gu et al., 2017, Chatzilygeroudis et al., 2020],
and locomotion [e.g., Kohl and Stone, 2004, Duan et al.,
2016]. Most of these algorithms employ the notion of trust
region [Conn et al., 2000], introduced ante litteram in the

RL literature by the safe RL approaches [Kakade and Lang-
ford, 2002, Pirotta et al., 2013], giving rise to a surge of
effective algorithms, having TRPO [Schulman et al., 2015]
as the progenitor. The core of any RL algorithm, being
value-based or policy-based, lies in the ability to employ the
samples collected with the current (or behavioral) policy
to evaluate the performance of a candidate (or target) pol-
icy [Sutton and Barto, 2018]. The skeleton rationale behind
the usage of a trust region is to control the set of candidate
policies whose performance can be accurately evaluated.
Intuition suggests that if the candidate policy is “sufficiently
close” to the current one, this off-policy evaluation prob-
lem [Precup et al., 2000] will provide a good estimate for
the performance of the candidate policy. Formally, this idea
has been studied in the field of Importance Sampling [IS,
Owen, 2013] and the phenomenon is particularly apparent
looking at the IS estimator variance, which grows exponen-
tially with the Rényi divergence [Rényi, 1961] between the
behavioral and the target policy [Metelli et al., 2018, 2020,
Liotet et al., 2022]. In this off-policy learning setting, IS is
employed as a what-if analysis tool [Owen, 2013] and its
role is passive, as samples have been already collected with
the current behavioral policy. In this sense, the trust region
is an a-posteriori remedy for the limitations of off-policy
evaluation, for controlling the uncertainty injected by the IS
procedure.

However, IS originated in the Monte Carlo simulation com-
munity [Hesterberg, 1988, Hammersley, 2013] as an active
tool for variance minimization. While in off-policy learning,
the behavioral policy is fixed and we look for the best target
policy, whose performance we aim to estimate, here the
roles are reversed. Indeed, in off-policy minimum-variance
evaluation, the target policy is fixed and we search for the
behavioral policy (from which to collect samples) that yields
an IS estimate with the minimum possible variance [Ham-
mersley, 2013, Kahn and Marshall, 1953]. It might seem
surprising, at first, that sampling from a policy, other than
the target one, can lead to an estimator with less variance
(even zero in some cases) w.r.t. the on-policy estimate. In
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this role, IS has been previously employed in RL, mainly to
address rare events [Frank et al., 2008, Ciosek and White-
son, 2017] which naturally lead to high-variance estimates,
when tackled on-policy. The idea of explicitly using IS as
a variance reduction technique, with the goal of finding an
optimal behavioral policy, was proposed by [Hanna et al.,
2017] for evaluation and subsequently combined with pol-
icy gradient learning [Hanna and Stone, 2018, Hanna et al.,
2019].

Contributions The goal of this paper is to investigate the
relation between policy improvement and off-policy mini-
mum variance policy evaluation. Intuitively, given a target
policy, when the reward function is positive, one way to
reduce the variance of the IS estimator is to assign larger
probability to the trajectories that have a large impact on the
mean, i.e., those with high returns. Thus, in some circum-
stances, reducing the variance of the IS estimator moves
the policy towards a policy improvement direction. After
having introduced the background (Section 2), we present
the problem of finding the minimum-variance behavioral
distribution (Section 3). Then, we study the properties of
such a distribution in relation with policy improvement
in two settings: unconstrained (Section 4) and constrained
(Section 5). First, we assume that there are no restrictions
for choosing the behavioral distribution. We show that the
minimum-variance behavioral distribution, besides leading
to the zero-variance estimator [Kahn and Marshall, 1953], is
guaranteed to yield a policy improvement, requiring the non-
negativity of the reward only. Furthermore, we prove that
this approach allows controlling the divergence between two
consecutive distributions, thus enforcing an implicit trust
region. Although this provides a valuable starting point,
the minimum-variance distribution might be unrealizable
given the environment transition model, i.e., there might be
no policy inducing it. For this reason, we move to the sce-
nario in which the distributions are constrained in a suitable
space. In this setting, the zero-variance estimator could not
be achievable. Furthermore, the presence of a constrained
space introduces a bias in terms of policy improvement, still
preserving the trust region enforcement. Finally, we provide
numerical simulations on both action-based and parameter-
based paradigms of policy optimization Metelli et al. [2018]
to test the effects of minimum-variance policy evaluation
in comparison with policy optimization. The simulation are
conducted on continuous-control benchmarks, in compari-
son with POIS [Metelli et al., 2018] and TRPO [Schulman
et al., 2015], with a particular focus on the robustness of
to small batch sizes (Section 6). The proof of the results
presented in the main paper are reported in Appendix 1.

2 PRELIMINARIES

In this section, we provide the necessary background that
will be employed in the paper.

Mathematical Notation Let X be a set, and let FX be
a σ-algebra over X . We denote with PpX q the space
of probability measures over pX ,FX q. Let P P PpX q,
whenever needed, we assume that P admits a density func-
tion p. For a subset Y Ď R, we denote with BpX ,Yq
the space of measurable functions f : X Ñ Y . Let
P,Q P PpX q be two probability measures such that
P ! Q, i.e., P is absolutely continuous w.r.t. Q, for ev-
ery α P r0,8s, we define the α-Rényi divergence as [Rényi,
1961]: DαpP }Qq “

1
α´1 log

ş

X ppxq
αqpxq1´αdx. In the

limit of α Ñ 1, the Rényi divergence reduces to the KL-
divergence DKLpP }Qq, while for α Ñ 8, it corresponds
to ess supx„Q tppxq{qpxqu. Let α P p0,`8q, a set of prob-
ability measures Q is α-convex [van Erven and Harremoës,
2014] if for every P,Q P Q and λ P r0, 1s it holds that the
probability measure Qλ :“ Z´1

λ pλPα ` p1´ λqQαq
1{α

P

Q, where Zλ is a normalization constant.

Importance Sampling Let P,Q P PpX q with P !

Q and let f P BpX ,Rq. Importance Sampling [IS,
Owen, 2013] allows estimating the expectation of f un-
der a target distribution P , i.e., Ex„P rfpxqs having sam-
ples txiuiPrns collected with a behavioral distribution Q:
pµP {Q “ 1

n

ř

iPrns
ppxiq
qpxiq

fpxiq. The IS estimator is unbi-
ased [Owen, 2013], i.e., Exi„QrpµP {Qs “ Ex„P rfpxqs, but
it might suffer from large variance, due to the heavy-tailed
behavior [Metelli et al., 2018, 2021b]. The properties of
pµP {Q and its transformations have been extensively studied
in the literature [e.g., Ionides, 2008, Thomas et al., 2015,
Papini et al., 2019, Metelli et al., 2020, Kuzborskij et al.,
2021, Metelli et al., 2021a].

Policy Optimization A Markov Decision Process [MDP,
Puterman, 1994] is a 6-tuple M “ pS,A, P,R, γ,D0q,
where S is the state space, A is the action space, P :
S ˆ A Ñ PpSq is the transition model, R : S ˆ A Ñ

r0, Rmaxs is the reward function, γ P r0, 1s is the dis-
count factor, and D0 P PpSq is the initial state distri-
bution. The agent’s behavior is modeled by a paramet-
ric policy πθ : S Ñ PpAq belonging to a parametric
policy space ΠΘ “ tπθ : θ P Θ Ď Rdu. The interac-
tion between an agent and the MDP generates a trajectory
τ “ ps0, a0, s1, a1, . . . , sH´1, aH´1, sHq where H P N
is the trajectory length and s0 „ D0, at „ πθp¨|stq,
st`1 „ P p¨|st, atq for all t P t0, . . . ,H ´ 1u. Given
a trajectory τ , the return is the discounted sum of the
rewards Rpτq “

řH´1
t“0 γtRpst, atq. For a policy πθ P

ΠΘ, we denote with pp¨|θq the induced trajectory distri-
bution: ppτ |θq “ D0ps0q

śH´1
t“0 πθpat|stqP pst`1|st, atq.

In the action-based (AB) setting, an agent aims at find-
ing a parametrization fulfilling: θ˚ P arg maxθPΘ tJpθqu,
where:

Jpθq “ Eτ„pp¨|θq rRpτqs

is the expected return. πθ must be stochastic to ensure ex-
ploration. Instead, in the parameter-based (PB) setting, we



consider a hyperpolicy νρ P PpΘq, belonging to a para-
metric hyperpolicy space NP “ tνρ : ρ P P Ď Rlu, from
which we sample the parameters θ of the policy. In this
case, the policy πθ can be deterministic since exploration
is managed at the hyperpolicy level and the agent goal be-
comes to learn a hyperpolicy parametrization maximizing
the expected return: ρ˚ P arg maxρPPtJpρqu, where:

Jpρq “ Eθ„νρrJpθqs.

In the paper, we keep the presentation as general as possible,
introducing the results for arbitrary distributions. Then, we
will particularize for the parametric PO setting.

3 MINIMUM–VARIANCE BEHAVIORAL
DISTRIBUTION

In this section, we revise the problem of finding a behavioral
distribution Q P PpX q that induces an IS estimate pµP {Q
with minimum variance, knowing the (fixed) target distri-
bution P P PpX q and function f P BpX , r0,8qq.1 Fur-
thermore, we do not enforce any restriction on the possible
forms of the behavioral distribution Q P PpX q. The prob-
lem and the corresponding well-known minimum-variance
behavioral distribution Q˚ are stated in the following for
all x P X [Kahn, 1950]:

min
QPPpX q

Var
x„Q

„

ppxq

qpxq
fpxq



ùñq˚pxq“
ppxqfpxq

Ex„P rfpxqs
. (1)

We observe that the IS estimator pµP {Q˚ is non-stochastic,
equal to the quantity we aim to estimate, i.e., pµP {Q˚ “
Ex„P rfpxqs. This suggests that the construction of Q˚ is
infeasible as it requires knowledge of Ex„P rfpxqs. Since
Q˚ generates a non-stochastic estimator, it not only leads
to zero-variance but, clearly, simultaneously minimizes the
absolute central moments of any order. A second, and most
remarkable property, is that Q˚ is a performance improve-
ment w.r.t. P , i.e., the expectation of f under Q˚ is larger
than the expectation of f under the target P [Owen, 2013]:

Ex„Q˚rfpxqs´Ex„P rfpxqs“
Varx„P rfpxqs

Ex„P rfpxqs
ě0. (2)

It is worth noting that the magnitude of the improvement is
directly related to the reduction in variance Varx„P rfpxqs.
Equation (2) suggests an appealing connection between
the problem of finding the minimum-variance behavioral
distribution and the problem of finding a target distribution
that maximizes the expectation Ex„P rfpxqs, i.e., policy
optimization.

1We restrict our attention to non-negative functions. From
the RL perspective, this choice is w.l.o.g. since we can always
define an equivalent non-negative reward function, by means of a
translation of the original one.

Before proceeding, let us map this general setting to PO. In
the action-based (AB) setting, x is the trajectory τ , P and
Q are trajectory distributions ppτ |θq induced by policies
πθ. Instead, in the parameter-based (PB) setting, x is the
pair pθ, τq, P and Q are joint distributions νρpθqppτ |θq
induced by hyperpolicies νρ. In both cases, function f is
the trajectory return Rpτq.

In the following two sections, we will delve into the proper-
ties of the minimum-variance distribution under two as-
sumptions: (i) there are no restrictions in the choice of
the behavioral distribution Q P PpX q (Section 4); (ii)
the behavioral distribution must be chosen within a sub-
set Q P Q Ď PpX q (Section 5).

4 UNCONSTRAINED PROBABILITY
DISTRIBUTION SPACE

In Section 3, we have seen that Q˚ is a performance im-
provement w.r.t. P . We now formalize this construction by
defining the operator If : PpX q ÑPpX q:

pIf rP sq pxq “
ppxqfpxq

Ex„P rfpxqs
, @x P X . (3)

Thus, If takes as input a target distribution P P PpX q,
a function f P BpX , r0,8qq, and outputs the minimum-
variance behavioral distribution for the IS estimation of
Ex„P rfpxqs, i.e.,Q˚ “ If rP s. Intuitively, looking at Equa-
tion (3), by iterating the application of If , we will obtain
distributions tending to assign larger probability mass to
points x P X with high values of fpxq. The following result,
due to Ghosh et al. [2020], generalizes Equation (2), show-
ing that not only If rP s is a performance improvement w.r.t.
P , even when considering a composition between a mono-
tonic increasing function h and f , i.e., using the operator
Ih˝f .

Proposition 4.1 (Proposition 9 of Ghosh et al. [2020]). Let
P P PpX q, f P BpX , r0,8qq, and h : r0,8q Ñ r0,8q
monotonic increasing. Then, Ih˝f rP s is a performance im-
provement w.r.t. P :

E
x„Ih˝f rP s

rfpxqs ´ E
x„P

rfpxqs

“
Covx„P rhpfpxqq, fpxqs

Ex„P rhpfpxqqs
ě 0.

Note that, since h is a monotonic increasing function, we
have that Covx„P rhpfpxqq, fpxqs ě 0 [Cuadras, 2002].

4.1 CONVERGENCE PROPERTIES

We now analyze the effect of repeatedly applying opera-
tor If . More formally, let us consider an initial distribu-
tion P P PpX q, and suppose to iterate the application of



the operator If , generating the sequence of distributions
pQkqkPN , where Q0 “ P and for every k P Ně0 we have
Qk “ If rQk´1s “ pIf qk rP s. The following result shows
that, under certain conditions, the operator If admits fixed
points and the sequence pQkqkPN converges to a distribution
Q8 that assigns probability only to the global maxima of f ,
restricted to the support of P , i.e., supppP q.

Theorem 4.2. Let P P PpX q and f P BpX , r0,8qq.
Then, the following statements hold:

(i) P is a fixed point of If , i.e., If rP s “ P a.s., if and
only if Varx„P rfpxqs “ 0;

(ii) let X ˚ “ arg maxxPsupppP qtfpxqu be the set of max-
ima of f restricted to the support of P . If X ˚ is
non-empty and measurable then, the repeated ap-
plication of If converges to a distribution Q8 “

limkÑ8 pIf qk rP s with support X ˚. In particular
Ex„Q8rfpxqs “ maxxPsupppP qtfpxqu.

As a corollary to point (i), any deterministic P is a fixed
point of If . Furthermore, from point (ii), we deduce that if
we select P that assigns non-zero probability to all points
in X , i.e., supppP q “ X , the iterated application of If
converges to the distribution Q8 such that Ex„Q8rfpxqs “
maxxPX tfpxqu, i.e., we are performing a global optimiza-
tion of f . It is worth noting that the reasoning above can
be generalized by performing an application of a strictly-
increasing function h : r0,8q Ñ r0,8q leading to the
operator Ih˝f preserving the same properties.

4.2 IMPLICIT TRUST REGION

We now prove that we are able to naturally control the
divergence between two consecutive distributions Qk and
Qk`1 “ If rQks with k P N, with the effect of enforcing
an implicit trust region. The following result shows how it
is possible to obtain a bound on the α-Rényi divergence
between two consecutive distributions.

Theorem 4.3. Let P P PpX q and f P BpX , r0,8qq.
Then, for every α P r0,8s, it holds that:

Dα pIf rP s}P q “
1

α´ 1
log

Ex„P rfpxqαs
Ex„P rfpxqsα

.

In particular, for α “ 1 it holds that:

DKLpIf rP s}P q “
Covx„P rfpxq, log fpxqs

Ex„P rfpxqs
.

For α “ 2, we obtain D2pIf rP s}P q “ log Ex„P rfpxq2s
Ex„P rfpxqs2 ď

Varx„P rfpxqs
Ex„P rfpxqs2 . Thus, the divergence is large when the vari-

ance of fpxq is. The result is particularly remarkable as
we are able to control the Rényi divergences of any order

α P r0,8s. This is a relevant achievement since the trust re-
gions commonly used, like KL-divergence [Schulman et al.,
2015], are unable to control higher-order divergences that
can still be infinite.

Example 4.1. We consider (a slight variation of) the one-
dimensional Ackley function [Ackley, 2012]: fpxq “ ´5`
20 expp´0.1414|x|q` expp0.5pcosp2πxq` 1qq` e, shown
in Figure 1 (left) and the class of increasing functions
ph ˝ fqpxq “ fpxqβ where β ě 0. We consider an ini-
tial uniform distribution P “ Uni pr´5, 5sq. In Figure 1,
we plot the expectation of distribution Qk “ pIh˝f qkrP s
(center) and the KL-divergence between two consecutive dis-
tributions (right), as a function of the number of applications
k, for the different β values. We observe that convergence to
the global optimum (x˚ “ 0 and fpx˚q “ 15) is faster for
higher powers that also lead to larger trust regions. We can
now appreciate the role of the increasing function h that
works as a regularizer with the effect of controlling the size
of the trust region.

5 CONSTRAINED PROBABILITY
DISTRIBUTION SPACE

The approach we have presented in Section 4 can be ap-
plied when there are no restrictions on the class of distribu-
tions that can be played, i.e., we can select Q in the whole
space PpX q. However, in the action-based PO, we can
intervene on the policy πθ factors only of the distribution
ppτ |θq “ D0ps0q

śH´1
t“0 πθpat|stqP pst`1|st, atq, leading

to a constrained setting. Similarly, in the parameter-based
PO, we can act on the hyperpolicy νρ while keeping the
trajectory distribution ppτ |θq fixed.

More in general, when considering a class of distributions
Q Ď PpX q, even if P P Q, the distribution If rP s might
not belong to Q. Furthermore, while If rP s minimizes all
absolute central α-moments of the IS estimator, as it leads
to a non-stochastic estimator (Section 3), there may exist
different distributions in Q minimizing the different absolute
central α-moments:

min
QPQ

Ex„Q
„ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
fpxq ´ Ex„P rfpxqs

ˇ

ˇ

ˇ

ˇ

α

. (4)

Apart from α “ 2, where the problem in Equation (4)
reduces to Equation (1), for general value of α P r0,8s,
the optimization is not straightforward (e.g., Equation (4)
is not differentiable for α P p0, 2q). The following result
shows that performing a moment projection through the α-
Rényi divergence is a reasonable surrogate for minimizing
the absolute central α-moments of Equation (4).

Proposition 5.1. Let P P PpX q and f P BpX , r0,8qq.
Then, for any α P r2,8q, it holds that:
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Figure 1: The Ackley function (left), the expectation of the distribution Qk “ pIh˝f qkrP s (center), and the KL-divergence
(right) between two consecutive distributions Qk´1 and Qk, with h “ p¨qβ .

Ex„Q
„
ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
fpxq ´ Ex„P rfpxqs

ˇ

ˇ

ˇ

ˇ

α

loooooooooooooooooooooomoooooooooooooooooooooon

absolute central α-moment

ď Ex„Q
„ˆ

ppxq

qpxq
fpxq

˙α

looooooooooooomooooooooooooon

(non-central) α-moment

“ epα´1qDαpIf rP s}QqEx„P rfpxqsα.

Thus, having considered the subset of distributions Q Ď

PpX q, whenever If rP s R Q, we replace it with the cor-
responding moment projection performed through the α-
Rényi divergence:

Q: P arg min
QPQ

tDαpIf rP s}Qqu . (5)

5.1 PERFORMANCE IMPROVEMENT

In Proposition 4.1, we have seen that If rP s is a perfor-
mance improvement w.r.t. P , evaluated under function f
(and also under the composition between f and any strictly-
increasing function h). Unfortunately, when we move to
a constrained set of distributions Q Ď PpX q, the perfor-
mance improvement cannot be in general guaranteed for
function f . However, as we shall see, the performance im-
provement still holds for a monotonic transformation of f ,
depending on the choice of α.

Theorem 5.2. Let P P PpX q and f P BpX , r0,8qq. Let
Q Ď PpX q, Q P Q, and α P r0,8s, then, it holds that:

E
x„Q

rfpxqqαs ´ E
x„P

rfpxqαs ě
Ex„P rfpxqsα

α´ 1

ˆ

´

epα´1qDαpIf rP s}P q ´ epα´1qDαpIf rP s}Qq
¯

In particular, for α “ 1, it holds that [Ghosh et al., 2020,
Proposition 6]:

E
x„Q

rfpxqs ´ E
x„P

rfpxqs ě E
x„P

rfpxqs

ˆ pDKLpIf rP s}P q ´DKLpIf rP s}Qqq .

While the inequality holds in general, the performance
improvement is obtained provided that Dα pIf rP s}Qq ď
Dα pIf rP s}P q, which is always guaranteed when P P Q
and Q “ Q:, being Q: defined in Equation (5) as the min-
imizer of the second divergence term. The theorem shows
that by minimizing the α-moment of the function f , we
are able to guarantee a performance improvement on the
function fp¨qα. In particular, if we select α “ 1, we obtain
a guarantee on the performance improvement of function f .
From the RL perspective, therefore, moving in the direction
of minimizing the α-moment provides an improvement for
the expected α-power of the return Eτ„pp¨|θqrRpτqαs.

5.2 CONVERGENCE PROPERTIES

By using Equation (5) as an iterate Qk`1 P

arg minQPQ tDαpIf rQks}Qqu to generate a sequence of
distributions pQkqkPN , we are not guaranteed to converge
to any fixed-point distribution Q8, differently form the
unconstrained setting (Theorem 4.2). This is because the
minimization might yield multiple solutions. Nevertheless,
we are able to provide guarantees on the final divergence
value and on the performance of the distributions Qk.

Theorem 5.3. Let P P PpX q and f P BpX , r0,8qq. Let
Q Ď PpX q and suppose that f is bounded from above,
then, the iterate Qk`1 P arg minQPQ tDαpIf rQks}Qqu
(where possible ties are broken arbitrarily) satisfies:

(i) the sequence of divergences DαpIf rQks}Qkq is con-
vergent;

(ii) the sequence of expectations Ex„Qk rfpxqαs is non-
decreasing in k P N and converges to a stationary
point of Ex„Q rfpxqαs w.r.t. Q P Q.

The convergence of the sequences DαpIf rQks}Qkq and
Ex„Qk rfpxqαs is derived by the performance improve-
ment of Theorem 5.2. Importantly, Theorem 5.3 shows
the convergence to a stationary point of Ex„Q rfpxqαs.



If Q is a parametric space QΞ “ tQξ P PpX q :
ξ P Ξ Ď Rdu,2 then we are guaranteed to stop when
Ex„Qξ

r∇ξ log qξpxqfpxq
αs “ 0, like for a general pol-

icy gradient method maximizing fpxqα [Papini et al., 2018].
Compared to the result for the unconstrained distribution
space (Theorem 4.2), we loose the convergence to a fixed
point. This property can be recovered under the assumption
that the iterate in Equation (5) admits a unique solution for
every P . In such a case, we will converge to a distribution
Q8 “ arg minQPQ tDαpIf rQs}Qqu.

5.3 IMPLICIT TRUST REGION

In Theorem 4.3, we have proved that the α-Rényi divergence
between If rP s and P is bounded. In this section, we study
whether similar properties hold when we consider a limited
set of distributions Q Ď PpX q. The following result shows
that, under a particular form of convexity [van Erven and
Harremoës, 2014] of Q, we are able to control the trust
region as well.

Theorem 5.4. Let α P r0, 1q and f P BpX , r0,8qq.
Let Q Ď PpX q be a p1 ´ αq-convex set [van Erven
and Harremoës, 2014, Definition 4], P P Q, Q: P

arg minQPQ tDαpIf rP s}Qqu, then it holds that:

Dα

`

Q:
›

›P
˘

ď Dα pIf rP s}P q ´Dα

`

If rP s
›

›Q:
˘

.

Therefore, we are always guaranteed that the trust region
induced by Q: is tighter compared to the one induced by
Q˚ “ If rP s computed in Theorem 4.3, i.e.,Dα

`

Q:
›

›P
˘

ď

Dα pIf rP s}P q.

A summary of the properties of the unconstrained and con-
strained settings is reported in Table 1.

6 NUMERICAL SIMULATIONS

In this section, we numerically validate the theoretical find-
ings presented in the previous sections. To this end we make
use of a sample-based policy learning algorithm Minimum-
Variance Policy Evaluation for Policy Improvement (MBP-
ExPI). generality, we consider a parametric distribution
space QΞ “ tQξ P PpX q : ξ P Ξ Ď Rdu, a common
setting met in PO.

6.1 ALGORITHM

The goal of MBPExPI consists in illustrating what are the
effects of employing the minimization of the α-moment of
the IS estimator to learn proficient policies. As we have

2In the action-based PO ξ “ θ are the policy parameters
and Ξ “ Θ, while in the parameter-based PO ξ “ ρ are the
hyperpolicy parameters and Ξ “ P .

Algorithm 1: MBPExPI.
input :α divergence order, h function, f function, QΞ

distribution space, ξ1 initial parameter, n batch
size

output :final parameter ξI`1 P Ξ

for i “ 1, . . . , I do ; // Optimization

ξi,1 “ ξi

for j “ 1, . . . , J do ; // Evaluation

Collect Di,j “ tpxl, fpxlqqulPrns with Qξi,j

Using pDi,kqkPrjs, perform M steps of gradient
descent on the objective of Theorem 6.1

end
ξi`1 “ ξi,J`1

end

seen in the previous section, this approach is guaranteed to
yield performance improvement for α “ 1 only (in the con-
strained case). However, as we shall see, from an empirical
perspective other choices of α would deliver surprisingly
remarkable performances too.3

The structure of MBPExPI consists of two nested loops.
The outer loop (Optimization) acts on the target distri-
bution qξi . At the end of each outer iteration i P rIs, the
target distribution qξi`1

is updated with the last behavioral
distribution produced by the inner loop qξi,J`1

. Instead, the
inner loop (Evaluation) takes the target distribution pro-
vided by the outer loop qξi and provides a new behavioral
distribution. At each inner iteration j P rJs, it collects sam-
ples Di,j with the current behavioral distribution qξi,j and
employs them, together with all the samples collected so
far pDi,kqkPrjs, to compute the next behavioral distribution
qξi,j`1

, with the goal of finding the behavioral distribution
minimizing the absolute central α-moment of the IS esti-
mator (Equation 4). As we shall see, the optimization is
performed using samples and by resorting to a penalized
objective.

Sample-based Optimization The problem of finding the
next behavioral distribution parameter ξi,j`1 using the sam-
ples collected so far pDi,kqkPrjs is an off-policy learning
problem. Let us define Φi,j “

1
j

ř

kPrjs qξi,k as the mixture
of the j behavioral distributions experienced so far in the in-
ner loop. Instead of directly estimating Dα pIf rQξis}Qξqq,
we refer to the (non-central) α-moment, which is connected
to the original objective through Proposition 5.1. Since we

3While we limit our presentation to actor-only algorithms, our
framework can be applied to actor-critic methods by setting, for
instance, f “ Qw (i.e., the critic) and qξ “ πθ (i.e., the actor).
Clearly, the convergence properties of such an approach would
depend on the critic accuracy.



Setting Iterate Performance
improvement Convergence In policy

search?

Unconstrained Qk`1 “ If rQks
Yes, on h ˝ f (h any

monotonic increasing) Global optimum of f Not realistic

Constrained Qk`1 P arg minQPQDαpIf rQks}Qq Yes, on fp¨qα Stationary point of
Ex„Qrfpxqαs

Realistic

Table 1: Summary of the properties of the constrained and unconstrained settings.

have samples coming from different behavioral distribu-
tions, we can use a multiple IS estimator [Veach and Guibas,
1995]:4

pdα pIf rQξis}Qξ; Φi,jq “
1

nj

ÿ

kPrjs

ÿ

lPrns

qξpxk,lq

Φi,jpxk,lq
loooomoooon

(aq

ˆ
qξipxk,lq

α

qξpxk,lqα
fpxk,lq

α

loooooooooomoooooooooon

(b)

.

(6)

The (a) factor accounts that we are using samples collected
with the mixture Φi,j to estimate an expectation under qξ,
whereas the (b) factor is the actual variable we want to com-
pute the expectation of, i.e., the α-moment. It is simple to
prove that the expectation of pdα is indeed the α-moment [Pa-
pini et al., 2019]. To minimize Equation (6), we employ
a variance correction to mitigate the effect of finite sam-
ples [Metelli et al., 2018], theoretically grounded in the
following result.

Theorem 6.1. Let QΞ Ď PpX q be a set of parametric dis-
tributions and let ξ, ξi P Ξ. If }f}8 ď m, then, if samples
are independent, for every δ P r0, 1s, with probability at
least 1´ δ it holds that:

Ex„ξ

„ˆ

qξipxq

qξpxq
fpxq

˙α

ď pdα pIf rQξis}Qξ; Φi,jq

`mα

d

2 log 1
δ

nj

ż

X

qξipxq
2α

Φi,jpxqqξpxq2pα´1q
dx.

Some remarks are in order. First, the integral within the
square root is an upper bound to the variance of the
α-moment estimator pdα pIf rQξis}Qξ; Φi,jq. In particular,
when ξ “ ξi, we obtain the exponentiated Rényi divergence,
as illustrated in [Metelli et al., 2020]. When all involved
distributions are Guassians, it is possible to provide a closed-
form tight bound on this quantity (Appendix 2). Second,
unlike the results available in the literature about concentra-
tion of IS estimator, without corrections or transformations,
we are able to provide an exponential concentration inequal-
ity (dependence on δ of the form logp1{δq ), instead of a

4Clearly, when α “ 1, the expression does not depend on
the behavioral distribution. Thus, for the sake of the algorithm, it
makes sense to consider α ą 1 only.

polynomial concentration (dependence of the form 1{δ).
This is due to the fact that we are dealing with random vari-
ables that are bounded to zero from below and they allow
applying stronger unilateral Bernstein’s concentration in-
equalities [Boucheron et al., 2009]. The reader might object
that to optimize the proposed objective function, designed to
enforce an implicit trust region, we are actually introducing
an additional correction term. This is necessary for theoreti-
cal purposes, but, as we shall see in the Section 6.2, the need
for a penalization or constraint is significantly less relevant
than in existing approaches, like TRPO [Schulman et al.,
2015], or POIS [Metelli et al., 2018]. The expression of the
gradient of the right hand side of Theorem 6.1 is reported in
Appendix 3.

Sample Collection In the action-based setting (AB-
MBPExPI), we sample n trajectories tτlulPrns indepen-
dently with the policy πθi,j and we build the dataset Di,j “
tpτl,RpτlqqulPrns. Instead, in the parameter-based setting
(PB-MBPExPI), we sample independently n policy parame-
ters tθlulPrns and for each of them we run policy πθl once
to generate trajectory τl. The corresponding dataset is given
by Di,j “ tppθl, τlq,RpτlqqulPrns. For the AB case, the cor-
rection in Theorem 6.1 is estimated from samples, as done
for the Rényi divergence in [Metelli et al., 2018], since it
involves integrals between trajectory distributions, while the
closed form exists for Gaussian distributions (Appendix 2).

6.2 RESULTS

In this section, we provide the simulation results on con-
tinuous control tasks. We first compare the learning per-
formance of MBPExPI with POIS [Metelli et al., 2018]
and TRPO [Schulman et al., 2015] on four benchmarks.
Then, deepen two relevant aspects of MBPExPI: its ro-
bustness to small batch sizes and the effect of applying
a monotonic increasing transformation h on function f . All
experiments are conducted with Gaussian policies, linear
in the state, with fixed variance. The experimental details
are reported in Appendix 4. The code to reproduce the pre-
sented results is provided at: https://github.com/
albertometelli/uai2023.

Comparison with POIS and TRPO In Figure 2, we show
the average return as a function of the number of collected
episodes, with a batch size n “ 100, using α “ 2, and one

https://github.com/albertometelli/uai2023
https://github.com/albertometelli/uai2023
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Figure 2: Average return as a function of the number of episodes for different environments and algorithms with batch size
n “ 100, α “ 2, and J “ 1 (20 runs ˘ 95% bootstrapped c.i.).
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Figure 4: Average return as a function of the num-
ber of episodes in the Inverted Double Pendulum
for different choices of h “ p¨qβ (5 runs ˘ 95%
bootstrapped c.i.).

inner iteration (J “ 1). In the Cartpole environment, we
observe that the performance of AB-MBPExPI is slightly
above that of AB-POIS and PB-MBPExPI; while the fastest
learning curve is shown by PB-POIS. Instead, TRPO con-
verges to a suboptimal policy that fails keeping the pole
in the vertical position. In the Inverted Double Pendulum
experiment, the gap between AB-MBPExPI and AB-POIS
and TRPO is more evident. The PB versions outperform
the AB ones with MBPExPI slightly faster than POIS. In
the Mountain Car domain, while AB-POIS, TRPO, and
PB-MBPExPI display a similar convergence speed, AB-
MBPExPI and PB-POIS reach the optimal performance
faster. Finally, in the Mujoco Swimmer domain [Todorov
et al., 2012], AB-MBPExPI and TRPO clearly outperform
AB-POIS, although the fastest learning curves are displayed
by the PB versions of POIS and MBPExPI.

Robustness to Small Batch Sizes Based on the previous
results, we further investigate the properties of MBPExPI
in terms of variance control. In the Cartpole domain, we
test the robustness to the reduction of the batch size. In

Figure 3, we show the average return as a function of the
number of collected episodes for batch sizes n P t11, 50u
and different number of inner iterations J . Also considering
the n “ 100 case (Figure 2), we notice, as expected, that
the variance of each setting increases overall as n decreases.
Nevertheless, MBPExPI proves to be robust, always suc-
ceeding in reaching the optimal performance. Differently,
POIS suffers the reduced batch size, while TRPO always
converging to the same suboptimal policy. The desirable
behavior of MBPExPI is indeed an effect of the kind of
objective function we employ that explicitly accounts for
the variance of the estimator, trying to minimize it, and, as
we have shown in the previous sections, it allows enforcing
an implicit trust region. Finally, a small number of inner
iterations J is beneficial for the stability.

Effect of the Function h We now investigate the effects
of using a transformation function h “ p¨qβ . Thus, instead
of optimizing the expected return, we will optimize the β-
power of the expected return. In Figure 4, we show the
learning curves of the Inverted Double Pendulum for dif-



ferent values of β. We notice that for β close to 1 (0.5, 1,
2) the curves are not very dissimilar, while for too extreme
powers (0.1 and 4) the learning performance degrades. This
example shows an interesting phenomenon, i.e., even if we
optimize a power of return, within certain limits, we are still
able to converge to a (near-)optimal policy.

7 DISCUSSION AND CONCLUSIONS

In this paper, we have studied the relation between policy
improvement and off-policy minimum-variance policy eval-
uation. Specifically, we imported the role of IS as a variance
reduction active tool, typical of the Monte Carlo simulation,
to the off-policy learning setting. We have illustrated that
by minimizing the absolute central α-moment of the IS esti-
mator yields a performance improvement guaranteed on a
power of the original objective function, i.e., the expected
return in RL. Although the performance improvement is
ensured for the case of α “ 1 only, we have empirically
illustrated that even considering α ą 1, especially α “ 2
(i.e., minimizing the variance), delivers remarkable learning
curves. This phenomenon is justified by the fact that mini-
mizing the variance of IS estimator, as proved theoretically,
naturally induces a trust region, mitigating the need for an
explicit penalization or constraint. Thus, the bias due to the
fact that we are not providing a performance improvement
for the expected return (but just for the expected α-power
of the return) is compensated by the reduced variance and
enforced trust region. Furthermore, this method has proved
to be remarkably robust to the reduction of the batch size.
We believe that this work contributes to shed light on an
appealing facet of off-policy learning with possible new re-
search opportunities. Future works include an extension of
the convergence analysis to the sample-based setting and an
experimentation of with more complex policy architectures.
Specifically, an interesting direction is to investigate the
application to actor-critic architectures.
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