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ABSTRACT

Deep model-based Reinforcement Learning (RL) has shown super-human perfor-
mance in many challenging domains. Low sample efficiency and limited explo-
ration remain as leading obstacles in the field, however. In this paper, we demon-
strate deep exploration in model-based RL by incorporating epistemic uncertainty
into planning trees, circumventing the standard approach of propagating uncer-
tainty through value learning. We evaluate this approach with the state of the
art model-based RL algorithm MuZero, and extend its training process to stabi-
lize learning from explicitly-exploratory trajectories. In our experiments planning
with uncertainty is able to demonstrate deep exploration with standard uncertainty
estimation mechanisms, and with it provide significant gains in sample efficiency
in hard-exploration problems.

1 INTRODUCTION

In February 2022, state of the art performance in video compression on YouTube videos has been
achieved with the algorithm MuZero (Mandhane et al., 2022; Schrittwieser et al., 2020), setting a
new milestone in successful deployments of reinforcement learning (RL). MuZero is a deep model-
based RL algorithm that learns an abstracted model of the environment through interactions, and
uses it for planning. While able to achieve state of the art performance in extremely challenging do-
mains, MuZero is limited by on-policy exploration that relies on random action selection. Effective,
informed exploration is crucial in many problem settings (O’Donoghue et al., 2018), and can induce
up to exponential gain in sample efficiency (Osband et al., 2016).

Standard approaches for exploration rely on estimates of epistemic uncertainty (uncertainty that is
caused by a lack of information, Hüllermeier & Waegeman, 2021) to drive exploration into under-
unexplored areas of the state-action space (Bellemare et al., 2016; Sekar et al., 2020) or the learner’s
parameter space (Russo et al., 2018). These approaches often incorporate the uncertainty into value-
learning as a non-stationary reward bonus (Oudeyer & Kaplan, 2009) or to directly approximate
the total uncertainty in a value-like prediction propagated over future actions (O’Donoghue et al.,
2018) to achieve exploration that is deep. We refer to deep exploration as exploration that is 1)
directed over multiple consecutive time steps, as well as 2) farsighted with respect to information
about future rewards, following the definition by (Osband et al., 2016). Having access to deep
exploration enables the agent to aim for (through farsightedness) and reach (through directness over
multiple time steps) areas that are both attractive to explore as well as far (in number of transitions)
from its initial or current state.

While propagating the uncertainty from future actions through the value function enables propaga-
tion over a far horizon, it also introduces several problems. First, the values become non-stationary
with the uncertainty bonus, introducing potential instability into the value learning. Second, the
horizon of the propagation is limited in the number of training steps: uncertainty in states that are
far from the initial state will only propagate to the initial state after sufficiently many training steps,
and not immediately. Third, the propagation speed is directly correlated with number of training
steps, and as a result uncertainty from encountered high-uncertainty areas of the state space that are
not trained often will not (or barely) propagate. To overcome these problems, this paper proposes
to propagate uncertainty through the planning-tree of model-based RL instead of a neural-network
value function. This facilitates the decoupling of the propagation from the learning process by
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propagating the uncertainty during online inference, and addresses the challenges originating from
propagating the uncertainty through value learning.

To demonstrate that propagating uncertainty in the online planning-trees of model-based methods
like MuZero can provide deep exploration, this paper’s contribution is divided into three parts. First,
we propose a framework for propagating epistemic uncertainty about the planning process itself
through a planning tree, for example, in Monte Carlo Tree Search (MCTS, see Browne et al., 2012,
for an overview) with learned models. Second, we propose to harness planning with uncertainty to
achieve deep exploration in the standard RL setting (in difference to prior approaches, Sekar et al.,
2020, that required a pre-training phase to explore), by modifying the objective of an online planning
phase with epistemic uncertainty, which we dub online planning to explore, or OP2E. Third, to
stabilize learning from off-policy exploratory decisions in MuZero, we extend MuZero’s training
process by splitting training into exploration episodes and exploitation episodes, and generating the
value and policy targets differently depending on the type of episode. We conduct experiments
against hard-exploration tasks to evaluate the capacity of OP2E to achieve deep exploration. In
addition, we conduct an ablation study to evaluate the individual effects of the different extensions
we propose to training from explicitly exploratory trajectories. In our experiments OP2E was able to
significantly outperform vanilla MuZero in hard-exploration tasks, demonstrating deep exploration
resulting in significant gains in sample efficiency. Our ablation study points out the potential value
of discerning between positive and negative exploration trajectories and generating policy targets
accordingly, as well as the resilience of n-step value targets to the presence of strongly off-policy
trajectories.

This paper is organized as follows: Section 2 provides relevant background for model-based RL,
MuZero and epistemic uncertainty estimation in deep learning. Section 3 describes our contri-
butions, starting with the framework for uncertainty propagation, followed by our approach for
modifying planning with uncertainty to achieve deep exploration (OP2E) and finally the extensions
proposed to stabilize learning from exploratory decisions. Section 4 evaluates OP2E against two
hard-exploration tasks in comparison with vanilla MuZero and presents and ablation study of the
different extensions to learning from exploratory decisions. Section 5 discusses related work, and
Section 6 concludes the paper and discusses future work.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

In reinforcement learning (RL), an agent learns a behavior policy π(a|s) through interactions with
an environment, by observing states (or observations), executing actions and receiving rewards. The
environment is represented with a Markov Decision Process (MDP, Bellman, 1957), or a partially-
observable MDP (POMDP, Åström, 1965). An MDP M is a tuple: M = ⟨S,A, ρ, P,R⟩, where S
is a set of states, A a set of actions, ρ a probability distribution over the state space specifying the
probability of starting at each state s ∈ S, R : S × A → R a bounded reward function, and P :
S×A×S → [0, 1] is a transition function, where P (s′|s, a) specifies the probability of transitioning
from state s to state s′ after executing action a. In a POMDP M′ = ⟨S,A, ρ, P,R,Ω, O⟩, the agent
observes observations o ∈ Ω. O : S×A×Ω → [0, 1] specifies the probability O(o|s, a) of observing
a possible observation o.

In model based reinforcement learning (MBRL) the agent learns a model of the environment through
interactions, and uses it to optimize its policy, often through planning. In deep MBRL (DMBRL)
the agent utilizes deep neural networks (DNNs) as function approximators. Many RL approaches
rely on learning a state-action Q-value function Qπ(s, a) = R(s, a) + γE[V π(s′)|s′ ∼ P (·|s, a)]
or the corresponding state value function V π(s) = E[Qπ(s, a)|a ∼ π(·|s)], which represents the
expected return from starting in state s (and possibly action a) and then following policy π.

2.2 MONTE CARLO TREE SEARCH

MCTS is a planning algorithm that constructs a planning tree with the current state st at its root,
to estimate the objective: argmaxa Q

π(st, a). The algorithm repeatedly performs the following
four steps: trajectory selection, expansion, simulation and backup. Starting from the root node
n0 ≡ st, the algorithm selects a trajectory in the existing tree based on the averaged returns q(nk, a)
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experienced in past trajectories selecting the action a in the same node nk, and one of many search
heuristics, such as an Upper Confidence Bound for Trees (UCT, Kocsis & Szepesvári, 2006):

ak = argmax
a∈A

q(nk, a) + 2Cp

√
2 log(

∑
a′N(nk,a′))

N(nk,a)
(1)

where N(nk, a) denotes how many times action a has been executed in node nk. The trajectory
selection proceeds iteratively until it arrives at a leaf node, that has yet to be expanded in the tree.
MCTS expands the node and estimates its initial value with a rollout from a random policy. However,
Alpha Go/Zero (Silver et al., 2016; 2017; 2018) uses a value function v(nk) that is approximated
by a neural network to estimate the leaf’s value and chooses potential actions a to expand first with
another approximation of the MCTS policy π(a|nk). Last, MCTS propagates the return (discounted
reward for visited nodes plus leaf’s value) back along the planning trajectory, updating the averaged
returns q(nk, ak), all the way up to the root of the tree. By choosing different trajectory selection
heuristics, MCTS can be used to optimize for different objectives. At the root of the tree, the value
V π(st) of current state st is estimated based on the averaged returns experienced through every
action a, and averaged over the actions:

V π(st) ≈
∑

a∈A
q(n0,a)N(n0,a)∑

a′∈A N(n0,a′) =: vπt (2)

2.3 MUZERO

MuZero is a MBRL algorithm that learns an abstracted model of the environment from interactions,
and uses it for planning with MCTS. The model learned by MuZero consists of 5 functions that are
approximated with neural networks: the representation function ŝ0 = g(ot), the transition function
ŝk+1 = f(ŝk, ak), the expected-reward function r̂k = r(ŝk, ak), the value function v̂k = v(ŝk)
and policy function p(ŝk) = π(a|ŝk). In practice, the representation and dynamics are only used as
node-representations ŝk = nk in the MCTS planning tree, and only need to represent the states of
the environment as far as they are useful for the MCTS. The variation of MCTS used by MuZero
approximates the value of a leaf-node in the expansion step with a direct predictions from the value
function v instead of Monte-Carlo simulations. MCTS is used in MuZero for two purposes: first,
for inference of the best action to execute in the environment, and second to generate targets for the
policy and value functions. MuZero is trained with on-policy value and policy targets. The policy
targets are the relative visitations numbers to each child of the root node, and the value targets are
n-step TD targets:

vtargett =

n−1∑
i=0

γirπt+i + γnvπt+n,

Where π is the policy that was executed in the environment which was induced by the MCTS at every
time step. With the Reanalyse variation of MuZero (Schrittwieser et al., 2021), the policy and value
targets are constantly updated in the replay buffer based on new planning trees that are computed
by Reanalyse, turning MuZero Reanalyse into a (mostly) off-policy algorithm. The updated value
targets are still n-step targets that use the sum of rewards

∑n−1
i=0 γirπt+i observed in the environment

following policy π. This prevents MuZero Reanalyse from being a completely off-policy algorithm
and makes it challenging to learn from explicitly-exploratory trajectories that do not follow the
current exploitation policy.

2.4 EPISTEMIC UNCERTAINTY ESTIMATION IN DEEP LEARNING

Defining, quantifying and estimating predictive epistemic uncertainty is an active field of machine
learning research that encompasses many approaches and many methods (Hüllermeier & Waege-
man, 2021; Jain et al., 2021). In this work we assume epistemic uncertainty can be represented with
probability theory, and estimated as the variance in a probability distribution of predictions that are
consistent with the observations Var(X|ot) = VX [X|ot], which is a standard approach for epistemic
uncertainty quantification. This allows us to investigate the propagation of uncertainty in predictions
of a node nk in a planning tree with respect to observations and a trajectory of actions through the
lens of variance propagation VXk

[Xk|ot, a0:k] which is well studied.

To directly estimate the epistemic variance in the local predictions of value and reward used by
MuZero in planning we use two methods: deep ensembles with prior functions (Osband et al.,
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2018) and state-visitation counting. Ensembles are scalable to arbitrarily large state spaces as well
as computationally inexpensive for small ensemble sizes. The epistemic uncertainty estimation
ensembles provide however is not necessarily reliable. As an additional method that is able to
provide reliable estimates of epistemic uncertainty we use state visitation counting. This method
estimates epistemic uncertainty directly based on the number of times each state or state-action pair
has been visited. While a toy method, visitations counting enables us to evaluate the approach in
the presence of both reliable and unreliable uncertainty estimators. Additional details regarding
applying these methods to the functions used by MuZero can be found in appendix B.

3 CONTRIBUTIONS

Our approach modifies MCTS to plan for an exploratory objective rather than an exploitatory ob-
jective, i.e., to predict the best action that can be taken in the environment for gathering relevant
information rather than for highest expected return. To apply this approach with MuZero as a use-
case, we take three steps. First, we propose approximations for uncertainty propagated through a
planning tree, forward and back (Section 3.1). Second, we propose to modify the UCT operator with
the propagated uncertainty to optimize action selection for exploration with a so-called optimistic
objective (Section 3.2). Third, we propose to extend the training process of MuZero by introducing
a distinction between exploration and exploitation episodes and by modifying the target generation
from exploratory trajectories. The target generation is extended to discern between exploration tra-
jectories that resulted in returns that are higher than the agent’s value approximations for the same
initial state, and trajectories that did not. For exploration trajectories that resulted in improved re-
turns, the exploratory decisions become the targets from the learning trajectory. Otherwise, the
agent’s exploitatory approximations provide the target (Section 3.3).

3.1 PROPAGATING UNCERTAINTY IN A PLANNING TREE

Selecting a path n0:T through a decision tree is equivalent to choosing a sequence of T ac-
tions a0:T−1 that end up in a leaf node nT . In standard MCTS a deterministic model predicts
the encountered rewards rk in nodes nk, 0 ≤ k < T , and the estimated value vT at the leaf nT .
These are used to update the n-step discounted return νk of each node nk on the selected path:

νk :=
T−1∑
i=k

γi−kri + γT vT = rk + γνk+1 , 0 ≤ k < T , νT = vT (3)

If the model that produced states, rewards and values cannot be fully trusted, rk and vT can be
formulated as random variables in a Markov chain that is connected by random state-variables
sk, 0 ≤ k ≤ T . These correspond to the nodes on the path, the corresponding states, or their
representations, but not necessarily to the output ŝk of any MuZero transition model (Section 2.3).

In exploration, paths that lead to under-explored states, or states where the model is not reliable yet,
should be incentivized. In line with optimistic exploration literature, we incentivize choosing actions
in the environment associated with paths in the planning tree that have uncertain returns ν0 in order
to both improve the model as well as find high-reward interactions. For this we need to estimate the
variance Vν [ν0|ot, a0:T−1] of the return along a selected path a0:T−1, starting with observation ot.
To improve readability, we will omit in the following the condition on actions and observation, for
example, Vν(ν0) ≡ Vν [ν0|ot, a0:T−1].

We will begin by deriving the mean and variance of the distribution of state-variables in the Markov
chain for a given sequence of actions a0:T−1. Let us assume we are given a differentiable transition
function f(sk, ak) := Esk+1

[sk+1|sk, ak] ∈ R|S|, which predicts the average next state, and a
differentiable uncertainty function Σ(sk, ak) := Vsk+1[sk+1|sk, ak] ∈ R|S|×|S| that yields the
covariance matrix of the distribution. We will use an epistemic uncertainty measure to compute
the latter, but in principle these functions could represent any distribution, containing any kind of
uncertainty, epistemic or otherwise. We assume that the mean s̄0 of the first state-variable s0 is
given as an encoding function s̄0 = Es0 [s0|ot] = g(ot), like in MuZero. The mean s̄k+1 of a later
state-variable sk+1 can be approximated with a 1st order Taylor expansion around the previous mean
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s̄k := Esk [sk]:
s̄k+1 := Esk+1

[sk+1] = Esk [Esk+1
[sk+1|sk, ak]] = Esk [f(sk, ak)] (4)

≈ Esk [f(s̄k, ak) + (sk − s̄k)
⊤∇sf(s, ak)|s=s̄k ] = f(s̄k, ak) .

To approximate the covariance Σ̄k+1 := Vsk+1
[sk+1], we need the law of total variance where for

two random variables x and y holds Vy[y] = Ex[Vy[y|x]] +Vx[Ey[y|x]] (see appendix A for a proof
in our notation), and again a 1st order Taylor approximation around the previous mean state s̄k:

Σ̄k+1 := Vsk+1
[sk+1] = Esk [Vsk+1

[sk+1|sk]]︸ ︷︷ ︸ + Vsk [Esk+1
[sk+1|sk]]︸ ︷︷ ︸ (5)

≈ Σ(s̄k, ak) + Jf (s̄k, ak) Σ̄k Jf (s̄k, ak)
⊤ .

Note that here f(sk, ak)−Esk [f(sk, ak)] ≈ (sk− s̄k)
⊤∇sf(s, ak)|s=s̄k =: (sk− s̄k)

⊤Jf (s̄k, ak)
⊤,

where Jf (s̄k, ak) denotes the Jacobian matrix of function f at state s̄k and action ak. Using these
state statistics, we can derive the means and variances of causally connected variables like rewards
and values. We assume that the conditional reward distribution has mean r(sk, ak) := Erk [rk|sk, ak]
and variance σ2

r(sk, ak) := Vrk [rk|sk, ak], and that the conditional value distribution has mean
v(sT ) := EvT [vT |sT ] and variance σ2

v(sT ) := VvT [vT |sT ]. Analogous to above we can derive:

r̄k := Erk [rk] ≈ r(s̄k, ak) , Vrk [rk] ≈ σ2
r(s̄k, ak) + Jr(s̄k, ak) Σ̄k Jr(s̄k, ak)

⊤ , (6)

v̄T := EvT [vT ] ≈ v(s̄T ) , VvT [vT ] ≈ σ2
v(s̄T ) + Jv(s̄k) Σ̄k Jv(s̄k)

⊤ . (7)
If we assume that rk and the n-step return νk+1 from Equation 3 are independent, we can compute
Eνk

[νk] = Erkνk+1
[rk + γνk+1] = Erk [rk] + γ Eνk+1

[νk+1] , EνT
[νT ] = EvT [vT ] , (8)

Vνk
[νk] = Vrkνk+1

[rk + γνk+1] = Vrk [rk] + γ2 Vνk+1
[νk+1] , VνT

[νT ] = VvT [vT ] . (9)
We can therefore compute the variance Vν [ν0|ot, a0:T−1] using one forward pass through the se-
lected path computing all s̄k and Σ̄k, starting with the observation encoding s̄0 = g(ot), and one
backwards pass computing Eνk

[νk] and Vνk
[νk].

As stated, the above derivation applies to any type of uncertainty that is encapsulated in the distribu-
tion that is propagated. For the purpose of driving exploration using uncertainty from sources that
are epistemic, we employ epistemic uncertainty estimators such as deep ensembles to estimate the
(co-)variances Σ(sk, ak), σ

2
r(sk, ak), σ

2
v(sT ). To avoid modifying MuZero’s planning further and

allow for this approach to remain modular from the specific algorithm it is incorporated into, we
interpret MuZero’s representation g, dynamics f , value v and reward r functions as outputting the
conditional means s̄0 := ŝ0, s̄k := ŝk, v̄T := v̂T , r̄k := r̂k, respectively.

3.2 PLANNING FOR EXPLORATION

The UCT operator of MCTS takes into account uncertainty sourced in the planning tree in the
form of a node visitation count (equation 1), to drive exploration inside the planning tree. To drive
exploration in the environment, we add the environmental epistemic uncertainty into the UCT in a
similar manner, as the averaged standard deviation:

ak−1 := argmax
a

q(nk−1, a) + 2Cp

√
2 log(

∑
a′N(nk−1,a′))

N(nk−1,a)
+ Cσ

√
σ2
ν

N(nk−1,a)
. (10)

Cσ ≥ 0 is a constant that can be tuned per task to encourage more or less exploration. The term
σ2
ν =

∑N(nk−1,a)
i=1 Vνi

k
[νik] sums the variances computed individually at every backup step i through

node nk. At each backup step i, with actions aik, state means s̄ i
k and covariances Σ̄i

k, the variance
Vνi

k
[νik] is approximated based on equations 9 and 6:

Vνi
k
[νik] ≈ σ2

r(s̄
i
k, a

i
k) + Jr(s̄

i
k, a

i
k)Σ̄

i
kJr(s̄

i
k, a

i
k)

⊤ + γ2Vνi
k+1

[νik+1] . (11)

Vνi
k+1

[νik+1] is computed iteratively backwards during the backup, starting from the last node to be
expanded k = T , where equation 7 is used:

Vνi
T
[νiT ] ≈ σ2

v(s̄
i
T ) + Jv(s̄

i
T ) Σ̄

i
T Jv(s̄

i
T )

⊤ . (12)

Approaches to incorporating OP2E into other search heuristics such as PUCT (which is used by
MuZero) can be found in appendix B.1. Action selection in the environment can be done in the
same manner as for exploitation (for example, sampling actions with respect to the visitation counts
of each action at the root of the tree, in the original MuZero), but based on the exploratory tree.
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3.3 LEARNING FROM EXPLORATORY DECISIONS

If the policy executed in the environment is exploratory, in particular with exploration that is consis-
tent over multiple time-steps, the targets generated by an algorithms with on-policy learning prop-
erties such as MuZero (see section 2.3) will reflect an exploratory policy and not the exploitation
policy the agent is expected to learn. To alleviate this, we propose three main modifications to
the training process which build off of each other: 1) separating training into alternating explo-
ration/exploitation episodes, 2) double planning and 3) max targets. The extensions we propose
enable generating value targets that are off-policy both online as well as during Reanalyses. In
addition, we maintain some targets that are on-policy but yield better observed returns. These ex-
tensions are natural to combine with Reanalyse for further stabilizing of learning from exploratory
trajectories.

Alternating episodes First, we propose to alternate between two types of training episodes:
exploratory episodes that follow an exploration policy throughout the episode, and exploitatory
episodes that follow a reward-maximizing exploitation policy throughout the episode. This en-
ables us to provide the agent with quality exploitation targets to evaluate and train the value and
policy functions reliably, while also providing a large amount of exploratory samples, that explore
the environment much more effectively and are more likely to encounter high-reward interactions
earlier in the agent’s training. In our experiments we used a ratio of one exploration episode per one
exploitation episode, but other ratios as well as dynamically changing ratios are also natural to use.
We leave an investigation into optimal exploration / exploitation ratios to future work.

Double planning Second, we propose to compute two separate planning trees at each time step
in exploration episodes: an exploration tree following the heuristic in Equation 10 and an exploita-
tion tree following the regular UCT heuristic in Equation 1. When generating value targets from
exploration trajectories, the value bootstrap vπt+n used in the target is the value approximated by the
tree planning with exploitation policy π = πρ instead of tree planning with an exploration policy
π = πσ:

vtargett =

n−1∑
i=0

γirπσ
t+i + γnvπρ

t+n . (13)

This enables generating off-policy value-bootstraps vπρ

t+n online (similar to Reanlyse’s process off-
line), but it’s important to note that the rewards

∑n−1
i=t γirπσ

t+i in the n-step value target are still the
rewards observed in the environment following the exploration policy πσ . While this doubles the
computation cost of planning (or halves the computation budget for each planning tree) , the results
presented by Danihelka et al. (2021) showed that with a modified version of MuZero the contribution
of a large planning budget reduces significantly, and with it, the expected consequence of halving it.

Max targets Third, when generating value targets from exploration episodes, we propose to eval-
uate whether the exploratory interactions resulted in an improved return compared to the approxi-
mation of the MCTS (a positive exploration trajectory, left) or not (a negative exploration trajectory,
right):

n−1∑
i=t

γirπσ
t+i + γnvπρ

t+n > vπρ

t ,

n−1∑
i=t

γirπσ
t+i + γnvπρ

t+n ≤ vπρ

t . (14)

In positive exploration trajectories, the n-step exploratory value target vn step
t =

∑n−1
i=t γirπσ

t+i +

γnvπρ

t+n can be used. In negative exploration trajectories, a zero-step exploitatory target can be used
instead v0 step = vπρ

t . This is equivalent to generating the value targets with a max operator:

vtargett = max(vn step
t , v0 step

t ) . (15)

Similarly, policy targets for exploratory episodes can be generated based on a max operator in a
similar manner, where the policy used as the target is the policy that has achieved the largest value:

πtarget = argmax
π

(vn step
t , v0 step

t ) . (16)
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Figure 1: vanilla MuZero vs. OP2E with ensemble-variance uncertainty vs. OP2E with state-
visitation-counting uncertainty against both environments. The performance of 10 independent
seeds is averaged, and standard error of the mean (SEM) is presented in the shaded area. Both
variants of OP2E are able to solve both tasks effectively while vanilla MuZero is not able to solve
either of the tasks at all, on average, under the training-steps budget.

While this enables us to generate off-policy targets from negative exploration trajectories, the pres-
ence of 0-step value targets may cause other effects that are detrimental to learning. We explore
some of the effects of this series of modifications in an ablation study in the experiments section.
In addition, we note that the max targets approach only applies to environments with deterministic
reward schemes.

4 EXPERIMENTS

To evaluate OP2E we compare the modified exploratory MuZero to vanilla MuZero against two
hard-exploration tasks: Slide, a toy task similar to the Chain environment (Osband et al., 2016) to
evaluate the extent to which deep exploration is achieved, as well as Mountain Car (Moore, 1990)
which is a standard hard-exploration task used to evaluate advanced exploration approaches. In
Slide, the environment consists of a chain of 60 states, with the only positive reward at the rightmost
end of the chain and 0 rewards otherwise. We use a non-Markovian reward of R(s59, aright) =
τmax − τelapsed, the difference between the maximum time steps allowed by the environment and
the number of elapsed time steps by the agent. The timeout is set to length of the environment times
3. The agent has access to three actions: left, right, stay. Left results in sliding back 10 positions, or
otherwise to the starting position. Right results in proceeding to the right by 1 position. Stay results
in sliding back 5 positions. This results in an environment that is very adversarial to exploration
that relies on random action selection. In both tasks two variants of OP2E are evaluated: one with
deep ensembles with prior functions (OP2E ensemble) for a scalable, realistic uncertainty estimation
mechanism, and one with discretized state visitation counting (OP2E state visits) as an example of
a reliable but unrealistic epistemic uncertainty estimation. As a proof of concept, and to avoid mod-
ifying MuZero more than absolutely necessary, we replace the state-uncertainty covariance function
Σ(s, a) with 0, i.e. ignored uncertainty of the forward model. With the exception of the exploration
coefficient Cσ (see appendix B.5) no dedicated tuning of hyperparamers was conducted for any of
the variations or tasks used in the experiments. The results against both tasks are presented in Figure
1. OP2E is able to effectively solve both tasks, while vanilla MuZero is unable to solve the tasks at
all under the training-steps budget provided.

4.1 ABLATIONS

An ablation study of the different modifications proposed for learning from exploratory trajectories
in the Mountaincar environment are presented in Figure 2. The state-visitation counting uncertainty
estimator (exploratory state visits) was used in all ablation experiments. In all ablations, the max
targets agent is an agent with all modifications to training and target generation introduced in Section
3.3 applied: max value targets (eq. 15), max policy targets (eq. 16), alternating between exploration
and exploitation episodes and double planning. In every ablation study only one modification is

7



Under review as a conference paper at ICLR 2023

Figure 2: Target ablations against Mountain Car. The performance of 5 independent seeds is av-
eraged, and standard error of the mean (SEM) is presented in the shaded area. A modified reward
scheme is used for Mountain Car, see appendix B.4 for details.

investigated and all other modifications are left active. For example, in the value targets ablation
study (top left of Figure 2) the value targets are varied, and in the policy targets ablation study (top
right of Figure 2) the policy targets are varied, but all other design decisions remain the same as
in Figure 1. Value targets ablations compare between four variants of value targets: max targets,
n-step targets, 0-step targets in exploration episodes, and 0-step targets in all (both exploratory and
exploitatory) episodes. Policy target ablations compare between three variants of policy targets: max
targets, only-exploratory policy targets (policy targets in exploratory episodes are generated by the
exploratory planning trees) and only-exploitatory policy targets (policy targets are generated from
exploitatory planning trees in all episodes). Alternating episodes ablations compare between four
variants: max value targets with alternating episodes, max value targets without alternating episodes
(all episodes are exploration episodes), n-step value targets with alternating episodes, n-step value
targets without alternating episodes (all episodes are exploration episodes). Finally, double planning
ablations compares between an agent that uses double planning and an agent that does not (all
episodes are exploratory, all value bootstraps and policy targets are exploratory).

In all experiments in the ablation study the max targets variant which uses all modifications proposed
in section 3.3 dominates or matches the performance of all other variants in terms of final policy as
well as learning stability.

While relying on 0-step value targets to turn MuZero into a completely off-policy algorithm is
clearly not a conducive approach, Using max value targets demonstrates an ability to overcome
this effect (Figure 2, top left). Generating policy targets based on exploitatory trees even in explo-
ration episodes shows significant slowdown of learning (Figure 2, top right). This implies that using
Reanalyse to update policy targets from exploratory trajectories with exploitatory policy targets,
without utilizing the max operator to discern between positive and negative exploration trajectories,
can slow down learning significantly. We expect such a slowdown to occur as a result of diverting the
agent away from high return exploratory trajectories that differ significantly from the agent’s current
exploitation policy. Alternating between exploration and exploitation episodes showed significant
slowing of learning to reach the goal state, while showing slightly better final policy and learning
stability (Figure 2, bottom left). We expect the delay in learning to be a result of alternating episodes
with a ratio of 1 to 1, and better ratios to be able to provide the same benefit with less drawback.
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5 RELATED WORK

Plan2Explore (P2E, Sekar et al., 2020) is a previous approach that harnesses planning with learned
models and uncertainty for advanced exploration, although in a different setting to the one tackled in
this paper. P2E proposes pre-training of an exploration policy for a task, without access to a reward
signal. The policy is trained to choose actions that maximize the epistemic uncertainty associated
with the transition model. This policy is regularly updated with newly collected samples, until the
entire state space is sufficiently explored and the learned model therefore precise enough everywhere
to plan well. P2E only considers state prediction uncertainty and propagates the uncertainty through
planning as intrinsic reward as opposed to variance. In addition, P2E requires an extended pre-
training phase and does not scale to large state-spaces, because the learned exploration policy is
trained to explore the entire state space without trading off for more promising areas with respect to
expected return. In contrast, our approach propagates the uncertainty explicitly, enables a trade-off
in real time between exploration and exploitation and is applicable to the standard online exploration
setting in RL.

Epistemic uncertainty has developed into a standard for driving exploration in RL with methods such
as Bootstrapped-DQN (Osband et al., 2016), the uncertainty Bellman-equation (UBE, O’Donoghue
et al., 2018) and intrinsic reward (IR, Oudeyer & Kaplan, 2009). UBE approximates an analytically-
motivated upper bound on the epistemic uncertainty associated with Q-values, in the form of a
variance. The variance is used to drive exploration using Thompson sampling. UBE has not been
developed explicitly for model-based approaches, and thus does not consider transition-based un-
certainty, nor does it take advantage of the ability of online planning to propagate information from
future decisions into current decisions immediately. In IR the epistemic uncertainty propagates di-
rectly through the learned Q-value function, by learning a modified function:

Qπ
IR(st, at) = E

[
r(st, at) + u(st, at) + γV π(st+1)|st+1 ∼ P (·|st, at)

]
Where u(st, a) is an uncertainty-bonus that is used to encourage the agent to explore less-visited
transitions. Coupled with the limitations, a strength of propagating the uncertainty through value
learning compared to through planning is that the horizon of uncertainty propagation is not lim-
ited to the horizon of the planning (which is logarithmic in the planning budget of a planning tree
in the worst case, and linear in the best case). Instead, the horizon is limited by the number of
learning steps, which constrains the propagation differently. For example, deep Q-networks (DQN,
Mnih et al., 2015) make one gradient update-step per environmental step, whereas planning always
propagates immediately until the planning horizon. Moreover, these methods can be combined with
our approach by using UBE to replace uncertainty-in-leaf value prediction in MuZero. Propagat-
ing newly discovered uncertainty until the planning horizon happens immediately with our method,
whereas longer delays are propagated through the value function.

6 CONCLUSIONS

By propagating epistemic uncertainty in real time through a planning tree together with planning for
an exploratory objective, OP2E demonstrates deep exploration while circumventing issues arising
from propagating uncertainty through value learning. In addition, the extensions we propose to
learning from consistently-exploratory decisions show capacity to reach better final policies in ad-
dition to a more stable learning process, effects which we expect to grow stronger in the presence
of environments with more complex reward schemes and a more varied range of near-optimal poli-
cies. The framework developed for approximating the epistemic uncertainty as it propagates in a
planning tree can provide a backbone for additional approaches that take advantage of uncertainty
estimation, such as planning for reliable execution (by discouraging uncertain decisions) or reliable
planning (by avoiding planning into trajectories where additional planning increases uncertainty).
The propagation framework itself is essentially modular from both MuZero and MCTS, making it
an available choice for any approach that plans with a learned model and planning trees. Our ap-
proach strengthens the notion that incorporating epistemic uncertainty into different online inference
mechanisms can provide effective exploration by harnessing the strengths of the mechanism to make
better exploratory decisions.
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Karl Johan Åström. Optimal control of markov processes with incomplete state information i. Jour-
nal of Mathematical Analysis and Applications, 10:174–205, 1965.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, 6(5):
679–684, 1957.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with gumbel. In International Conference on Learning Representations, 2021.

Joery de Vries, Ken Voskuil, and Frank Bryce. Muzero. GitHub
repository, 2021. https://github.com/kaesve/muzero/tree/
ee990aa4927a6ec34eef6928da50446b40f3685f.

Werner Duvaud. muzero-general. GitHub repository, 2021. https:
//github.com/werner-duvaud/muzero-general/tree/
23a1f6910e97d78475ccd29576cdd107c5afefd2.
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