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Abstract

Large Language Models (LLMs) are vulnerable001
to prompt injection attacks, where adversaries002
manipulate model behavior through malicious003
inputs. To mitigate these threats, prompt guard004
models have been introduced as lightweight005
defenses that filter inputs before reaching the006
LLM. However, their adversarial robustness re-007
mains largely unexplored. In this paper, we008
investigate the susceptibility of prompt guard009
models to adversarial attacks and introduce010
methods to enhance their resilience. We pro-011
pose a novel adaptive attack, APGA, which012
jointly optimizes for bypassing prompt guard013
detection while inducing the LLM to generate014
targeted responses. Our attack achieves a 100%015
success rate across multiple guard models, ex-016
posing critical vulnerabilities. To counteract017
this threat, we introduce FEAT, a computa-018
tionally efficient adversarial training method019
that leverages embedding-space perturbations020
to improve robustness without incurring high021
computational costs. Our empirical evaluation022
demonstrates that FEAT reduces the adversar-023
ial attack success rate from 100% to just 5%024
while preserving detection accuracy on clean025
inputs. Our findings highlight the urgent need026
for improved adversarial defenses in prompt027
guard models and establish a foundation for028
more secure LLM applications.029

1 Introduction030

Large Language Models (LLMs) (Brown et al.,031

2020) have demonstrated remarkable capabilities032

across diverse domains, yet their reliance on natural033

language inputs exposes them to critical security034

vulnerabilities. Among these, prompt injection at-035

tacks (Perez and Ribeiro, 2022a; Greshake et al.,036

2023a; Liu et al., 2024b) pose a significant threat,037

where adversaries exploit the model’s instruction-038

following nature by embedding malicious or ma-039

nipulative directives. For example, attackers may040

instruct the LLM to “ignore previous instructions041

Ignore previous instruction
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Ignore previous instruction 
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Refuse

Pass

x
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Figure 1: In this paper, we find that while existing
prompt guard models can detect prompt injection at-
tacks, they fail to detect prompt injection attacks when
combined with adversarial attacks. To evaluate and mit-
igate this issue, we first propose an advanced attack
that simultaneously bypasses the prompt guard model
and injects prompts into the LLM. Then we introduce
a defense method to enhance the robustness of prompt
guard models against this type of attack.

and do other tasks” (Branch et al., 2022; Harang, 042

2023; Perez and Ribeiro, 2022a; Willison, 2022), a 043

technique designed to override system safeguards, 044

hijack the model’s objectives, or extract sensitive 045

data. Such attacks can lead to harmful outcomes, 046

including unauthorized actions, privacy breaches, 047

or the circumvention of ethical guardrails. 048

To address these vulnerabilities, prompt guard 049

models (Meta, 2024; ProtectAI.com, 2024; 050

Deepset, 2024; fmops, 2024; LakeraAI, 2024; Li 051

and Liu, 2024) have emerged as lightweight, com- 052

putationally efficient safeguards. Designed to 053

analyze the semantic content of user inputs be- 054

fore they reach the LLM, these models, which 055

are often based on smaller architectures like De- 056

BERTa (He et al., 2023a), can detect malicious 057

intent while avoiding the high inference costs asso- 058

ciated with LLMs. Unlike LLM-based guardrails 059

that rely on the victim model’s outputs (Inan et al., 060

2023), prompt guard models operate independently, 061

screening inputs through semantic analysis rather 062

than post-hoc response evaluation. This indepen- 063

dence not only reduces computational overhead 064

but also enhances adaptability across environments 065

where speed and resource efficiency are critical. 066

By intercepting harmful prompts at the input stage, 067

they mitigate risks without compromising the scal- 068
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ability or performance of downstream LLM appli-069

cations.070

While prompt guard models have proven effec-071

tive in filtering out explicit or straightforward at-072

tack prompts, such as jailbreak and prompt injec-073

tion attacks, their adversarial robustness remains074

largely unexplored. Adversarial robustness refers075

to a model’s ability to withstand adversarial attacks,076

which utlize carefully crafted modifications to in-077

put data that cause artificial intelligence models to078

produce incorrect predictions (Szegedy et al., 2014;079

Goodfellow et al., 2015; Madry et al., 2019; Wal-080

lace et al., 2021; Shin et al., 2020; Morris et al.,081

2020). In the context of prompt guard models,082

as shown in Figure 1, we find that adversarial at-083

tacks still remain highly effective. Specifically, by084

adding adversarial tokens to the input text (Zou085

et al., 2023), an attacker can not only carry out086

a prompt injection attack on the underlying foun-087

dation LLM, leading it to generate a targeted re-088

sponse, but also simultaneously bypass the prompt089

guard model. As shown in Table 1, our experiment090

demonstrate that this manipulation deceives the091

prompt guard model into misclassifying the input092

as benign and failing to detect any attack attempts,093

i.e., the attack success rate is 100%.094

In this paper, we investigate the adversarial ro-095

bustness of prompt guard models and propose meth-096

ods to enhance their resilience against such attacks.097

We address these issues through two key innova-098

tions. First, to fully evaluate the adversarial ro-099

bustness of existing prompt guard models, we pro-100

pose an adaptive attack, named Adversarial Prompt101

Guard Attack (APGA), that jointly targets both the102

prompt guard model and the underlying LLM. By103

incorporating the prompt guard’s detection objec-104

tive into an adaptive loss function, APGA can auto-105

matically craft malicious prompts capable of both106

misleading the LLM into producing targeted unau-107

thorized outputs and bypassing detection. This108

adaptive attack thus serves as a rigorous stress109

test for evaluating real-world robustness under110

prompt injection scenarios. Second, we introduce111

a novel adversarial training method, named Fast112

Embedding Adversarial Training (FEAT), which113

is aimed at bolstering the resilience of prompt114

guard models. Unlike existing adversarial train-115

ing methods in computer vision (Goodfellow et al.,116

2015; Madry et al., 2019; Shafahi et al., 2019b;117

Wong et al., 2020; Bai et al., 2021) and natural118

language processing (Miyato et al., 2021), which119

directly craft the adversarial examples on the in-120

put space during the training process, our method 121

generates adversarial examples in the embedding 122

space, drastically reducing the computational over- 123

head compared to token-level adversarial example 124

generation. These embedding-based adversarial 125

samples then serve as hard negatives during train- 126

ing, enabling the guard model to learn more fine- 127

grained decision boundaries and better withstand 128

manipulation attempts. 129

Our adaptive attack, APGA, exposes vulnerabil- 130

ities in existing prompt guard systems by achiev- 131

ing a 100% attack success rate (ASR) across 132

four models, demonstrating that even carefully 133

crafted prompts can bypass detection. Concur- 134

rently, our embedding-space adversarial training 135

method, FEAT, bolsters the guard model’s robust- 136

ness, reducing the adversarial ASR from 100% to 137

just 5% while reliably detecting and rejecting sub- 138

tle adversarial prompts. Empirical results confirm 139

that this method maintains accuracy on clean inputs 140

while significantly reducing the model’s vulnerabil- 141

ity to the hybrid attack factor, i.e., prompt injection 142

attacks combined with adversarial attacks. 143

In summary, our main contributions are: 144

• We propose an attack that simultaneously op- 145

timizes for bypassing the guard model’s de- 146

tection and inducing a target LLM to produce 147

harmful or unauthorized content, providing 148

a rigorous evaluation framework for prompt 149

guard robustness. 150

• We develop a computationally efficient ad- 151

versarial training algorithm that leverages 152

embedding-level perturbations. This reduces 153

resource overhead while substantially increas- 154

ing the guard model’s resistance to the hybrid 155

attack factor where prompt injection attacks 156

are combined with adversarial attacks. 157

• We conduct extensive experiments demon- 158

strating that our approach enhances the guard 159

model’s ability to detect advanced prompt in- 160

jection attempts while maintaining strong re- 161

silience against adversarial attacks, improving 162

the overall security of LLM systems. 163

2 Background and related work 164

2.1 Prompt Guard Model 165

Prompt guard models, often referred to as pre- 166

model guardrails, are designed to detect and mit- 167

igate malicious prompt attacks by classifying 168
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whether input prompts contain adversarial or harm-169

ful content (Dong et al., 2024). Guardrails takes170

as input a set of objects and determines whether171

to stop the input from being processed by LLMs172

if input contain regulated contents. Recently, sev-173

eral notable prompt guard models have been pro-174

posed. For example, Meta Prompt Guard (Meta-175

Llama, 2024), DeepSet (deepset, 2024), Hyperion176

(Epivolis, 2024), and ProtectAI (ProtectAI, 2024)177

leverages the DeBERTa-v3 (He et al., 2023b) ar-178

chitecture as their backbone model and composed179

different dataset to train their models.180

While these models have advanced the detection181

of explicit attacks, such as jailbreak attempts, chal-182

lenges remain in addressing more sophisticated183

attacks. For example, prompt injection attacks,184

which involve inputs that combine legitimate user185

commands with external manipulative elements,186

making them difficult for guardrail models to dis-187

tinguish, and GCG attack (Zou et al., 2023), which188

automatically generate malicious input using gradi-189

ent from back propagation. When encounter those190

sophisticated attack, these model often fail to ex-191

hibit enough robustness. Developing guard models192

that balance robustness with adaptability is a key193

focus of ongoing research in this area.194

2.2 Adversarial Attack and Robustness195

LLMs have demonstrated remarkable capabilities196

across various natural language processing tasks.197

However, their vulnerability to adversarial attacks198

presents significant challenges. Notable examples199

of such attacks include the Greedy Coordinate200

Gradient (GCG) attack (Zou et al., 2023), which201

optimizes discrete token sequences to maximize202

the likelihood of generating objectionable content;203

AutoDAN (Liu et al., 2024a), which employs ge-204

netic algorithms for automated jailbreaking; and205

hand-crafted jailbreak attacks (Shen et al., 2024).206

Another well-studied category of adversarial at-207

tacks is prompt injection attacks (Liu et al., 2024c;208

Greshake et al., 2023b; Pedro et al., 2023; Perez209

and Ribeiro, 2022b), which aim to mislead LLMs210

into executing alternate tasks that deviate from211

their original instructions. These alternate tasks,212

though not inherently malicious, can easily bypass213

guardrail models due to their benign appearance.214

To enhance the robustness of LLMs against such215

adversarial manipulations, adversarial training has216

emerged as a potent defense mechanism. This217

approach involves augmenting the training pro-218

cess with adversarial examples—inputs specifically219

crafted to challenge the model’s resilience. By ex- 220

posing the model to these challenging scenarios 221

during training, it learns to maintain performance 222

even when faced with adversarial inputs. 223

In traditional computer vision, adversarial exam- 224

ples are typically crafted by adding small perturba- 225

tions to training examples that are imperceptible to 226

the human eye (Goodfellow et al., 2015; Shafahi 227

et al., 2019a). In contrast, adversarial attacks in 228

natural language processing (NLP) often require 229

additional neural networks as subcomponents (Yoo 230

and Qi, 2021). For instance, Jin et al. (2020) uti- 231

lize the Universal Sentence Encoder, while Garg 232

and Ramakrishnan (2020) employ BERT’s masked 233

language model for crafting adversarial examples. 234

Despite these advancements, challenges remain 235

in developing defense strategies that effectively bal- 236

ance robustness and computational efficiency. The 237

dynamic nature of adversarial attacks necessitates 238

continuous refinement of training methodologies 239

to safeguard LLMs against evolving threats. 240

In this paper, we introduce the adaptive GCG 241

attack, which targets both guardrail models and 242

LLMs to efficiently evaluate guardrail performance 243

in prompt injection scenarios. Additionally, we 244

propose an adversarial training method that sig- 245

nificantly enhances the adversarial robustness of 246

various guardrail models. 247

3 Method 248

In this section, we introduce: (1) APGA, our ap- 249

proach to evaluating the adversarial robustness of 250

prompt guard models and (2) FEAT, a computa- 251

tionally efficient algorithm for adversarial training 252

to enhance the robustness of prompt guard models. 253

3.1 Preliminaries 254

Prompt Injection Attacks. A prompt injection 255

attack occurs when an attacker embeds a target in- 256

struction xa of length l at any position within a user- 257

provided instruction prompt x1:n. The objective 258

is to mislead the LLMs LM into deviating from 259

user intended behavior and generating an attacker- 260

specified output. Formally, let x∗ denote the at- 261

tacker’s intended output, and let x1:n+l represent 262

the modified prompt containing both the original 263

user instruction and the injected attack instruction. 264

The prompt injection attack can be formulated as: 265

LM(x1:n+l) = x∗ 266

Prompt guard models. In this paper, we focus 267

on evaluating and enhancing the adversarial robust- 268
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ness of prompt guard models. Prompt guard mod-269

els analyze inputs before they are fed into LLMs to270

determine whether they contain undesirable inten-271

tions, such as jailbreak or prompt injection attacks.272

If a prompt guard model detects such intentions, it273

can reject the input.274

Adversarial attacks against prompt guard mod-275

els. Adversarial attacks against prompt guard mod-276

els involve crafting specially designed text inputs277

with two primary goals. The first goal is to induce278

the target LLM to generate a specific output. The279

second goal is to evade detection by prompt guard280

models, meaning the crafted text should cause the281

models to predict a benign label.282

Formally, let fθ denote the target model, such283

as Llama3 (Grattafiori et al., 2024), parameterized284

by θ. Given a sequence of tokens x1:n as input,285

the target model predicts the next token xn+1. The286

attacker, with access to the model parameters, can287

compute the gradient with respect to the gener-288

ated output. The attacker’s goal is to force the289

target model to generate a sequence of target to-290

kens x⋆n+1:n+H . If the target model outputs such291

a sequence, it indicates that the model has been292

compromised by the prompt injection attack. The293

attacker’s objective can be expressed as:294

L(x1:n) = − log p(x⋆n+1:n+H | x1:n).295

Given a sequence of tokens x1:n as input, a296

guardrail model determines whether the input to-297

kens are malicious:298

PG(x1:n) =

{
1, if P (y = malicious | x1:n) ≥ τ,

0, otherwise.
299

Let xm1:n denote a input sequence that is classify300

as malicious, and let ybenign denote a benign label.301

The attacker’s goal is to bypass the guardrail model302

so that it falsely identifies the malicious input token303

sequence as benign. This can be formalized as:304

LPG = − log
(
pybenign(fθ(x

m
1:n))

)
.305

We combine the guardrail model with the target306

model. Consequently, the attacker must bypass the307

guardrail model while simultaneously forcing the308

target model to generate the target response. The309

resulting problem can be expressed as:310

L(xm1:n) = − log p(x⋆n+1:n+H | xm1:n)+LPG(x
m
1:n).311

The defender, on the other hand, aims to train the312

guardrail model such that the attacker cannot by-313

pass it while also preventing the target model from314

generating the target sequence. Specifically, given 315

an input-label pair (xmalicious, ybenign), the objective 316

is to ensure that the guardrail model does not clas- 317

sify xmalicious as ybenign, and that the target model 318

fθ does not output x⋆n+1:n+H simultaneously. 319

3.2 Adversarial Prompt Guard Attack 320

(APGA) 321

Original GCG attack formalize the objective as 322

min
xI∈{1,...,V }|I|

L(xn:n+l) 323

where xn:n+l is the adversarial suffix appended 324

to the malicious prompt so that it can circumvent 325

the alignment of the target model and the target 326

model will be forced to output targeted affirmative 327

response. To optimize the suffix in discrete space, 328

we need to calculate the gradient with respect to 329

one-hot representation 330

∇exi
L(xn:n+l) ∈ R|Vt| 331

where exi denotes the one-hot vector representing 332

the current value of the ith token. For each token xi, 333

there will be top-k values with the largest negative 334

gradient as replacement candidate for each itera- 335

tion and some of them will be randomly choose to 336

replace the current token to form the adversarial 337

suffix with smallest loss. 338

To test the efficiency of our method, we modify 339

the original GCG (Zou et al., 2023) attack by in- 340

tegrated the guardrail loss into the original GCG 341

loss function. Specifically, let Vt denote the target 342

model’s vocabulary, the target of GCG attack is to 343

find the replaceable Top-k token for each of the ith 344

token according to the gradient 345

∇exi
L(xn:n+l) ∈ R|Vt| 346

To combine the guardrail loss into the original 347

loss, we choose to take the intersection of vocab 348

of guardrail model Vg and that of target model Vt 349

which let us calculate the gradient 350

∇exi
L(xn:n+l) ∈ R|Vt∩Vg | 351

Let x′ = Concat(x1:n, xn:n+l), we modify the loss 352

to become 353

L(x′) = − log p(x⋆n+1:n+H | x′) + LPG(x
′) 354

When facing this adaptive attack, off-the-shelf 355

guardrail model will easily be compromised. To 356

improve the adversarial robustness of the guardrail 357

model, we adversarially training the guardrail 358

model which utilized examples crafted by GCG 359

as adversarially examples. 360
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3.3 Fast Embedding Adversarial Training361

(FEAT)362

Algorithm 1 Adversarial Suffix Crafting

Require: Input embedding ex ∈ Rn×d, model fθ,
target label ytarget, suffix length s, maximum
iterations T

Ensure: Modified embedding e′

Initialize suffix es
2: Initialize suffix perturbation δ ∈ Rs×d

L = fθ(ex
′ = Concat(ex, es + δ)), ytarget)

4: for t = 1 to T do
Compute gradient∇δL

6: Update δ using the gradient
Project δ back into feasible region

8: if stopping condition is met then
break

10: end if
end for

12: Reconstruct adversarial embedding: ex
′ =

Concat(ex, es + δ)
Return e′

However, crafting even one adversarial example363

using GCG require non-trivial computational re-364

source. In adversarial training, it usually requires365

to craft a portion of regular training dataset as ad-366

versarial examples, which make it infeasible to367

craft the adversarial examples in token space dur-368

ing training.369

We observe that crafting the adversarial example370

in embedding space, while it can’t be map back to371

token space, can achieve similar performance com-372

pare to craft adversarial example in token space and373

with much less computational resources. Crafting374

the adversarial examples in embedding space took375

less iterations to achieve the same loss as crafting376

in token space as shown in Figure 2 and require377

95% less time to finish one step iteration.378

To perform GCG attack in embedding space, we379

instead initialize the adversarial suffix in the form380

of embedding es381

es ∈ R|L|×d,382

where L is the pre-defined suffix length and make383

this as our optimizable adversarial suffix. In this384

way, we can optimize the suffix over embedding385

space instead of discrete space. Because of that,386

we can craft the adversarial example similar in387

computer vision, which apply a small perturbation388

Figure 2: Comparison of time required to craft one
adversarial example at the token level versus the em-
bedding level. The results highlight the efficiency of
crafting adversarial examples in the embedding space.

δ ∈ R|L|×d to the suffix embedding es 389

e′s = es + δ 390

The perturbation δ is optimized using a gradient- 391

based approach to minimize the adversarial loss. 392

We first randomly generate an adversarial suffix 393

es with pre-defined length. With a constraint of 394

200 steps, we iteratively applying perturbation on 395

it based on the gradient of back propagation given 396

by the cross entropy loss of current prediction and 397

the malicious target. As a result, the embedding 398

composed of the concatenation of the original em- 399

bedding ex and the crafted suffix es 400

e′x = Concat(ex, es + δ) 401

Our objective here is to craft the adversarial exam- 402

ple to mislead the guardrail model to identify the 403

malicious input as benign. 404

Adversarial targeted attack: For targeted at- 405

tacks, the adversarial loss is defined as: 406

Ladv = − log
(
pybenign(fθ(e

′
x))

)
, 407

where py(fθ(·)) represents the predicted proba- 408

bility of the label y. The perturbation δ∗ is com- 409

puted iteratively: 410

δ∗ = argmin
δ
Ladv(fθ(e

′
x), ybenign). 411

Optimization Process: The optimization is per- 412

formed using backpropagation. The gradient of the 413

loss with respect to δ is computed as: 414

δ ← δ + η∇δLadv, 415

where η is the learning rate. After each update, 416

the perturbation is projected back into the feasi- 417

ble region defined by the ℓp norm. As shown in 418

algorithm 1 419
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3.4 Adversarial Training420

Inspired by the training flow in (Yoo and Qi, 2021),421

our method differs from traditional adversarial422

training approaches in computer vision (Goodfel-423

low et al., 2015), which generate adversarial exam-424

ples between every mini-batch, because of the GPU425

memory constrain. We instead generate the adver-426

sarial examples at the beginning of each training427

epoch. Instead of generate one adversarial example428

for each of the datapoint in the dataset, we generate429

a specified ratio, α, of clean malicious data (data430

containing malicious characteristics) as adversarial431

examples before each training epoch. When adver-432

sarial example crafting fails, we simply skip that433

example. The default value of α is set to 20%.434

To craft adversarial examples in the embedding435

space, we first transform the entire dataset into its436

embedding representation. Due to the mismatch437

in embedding dimensions between the guardrail438

model and the target model, we are unable to per-439

form adaptive attacks in the embedding space—i.e.,440

adversarial optimization cannot be conducted on441

both models simultaneously.442

Thus, we focus solely on crafting adversar-443

ial examples using malicious data, assuming that444

small perturbations to malicious inputs do not alter445

their malicious nature. Consequently, we treat the446

guardrail model as the sole target during adversarial447

example crafting.448

To preserve the benign utility of the guardrail449

model while enhancing its adversarial robustness,450

adversarial training combines clean and adversar-451

ial examples to improve model performance. We452

select focal loss as the loss function because we453

observe that during adversarial training, the model454

tends to be less stable when classifying benign ex-455

amples. Focal loss addresses this issue by dynami-456

cally adjusting the model’s focus toward examples457

with labels that are harder to classify, thereby miti-458

gating instability and improving overall robustness.459

The overall loss function is:460

Ltotal = L(fθ(x), y) + α · Ladv(fθ(x
′
emb), ybenign),461

where L(fθ(x), y) is the clean loss (e.g.,462

cross-entropy) for unperturbed inputs,463

Ladv(fθ(x
′
emb), ybenign) is the adversarial loss464

for perturbed inputs, and α ∈ [0, 1] is a hyperpa-465

rameter balancing the contributions of clean and466

adversarial examples. Model parameters θ are up-467

dated to minimize Ltotal using stochastic gradient468

descent. The training process is demonstrated in469

Algorithm 2 Adversarial Training with Malicious
Crafting

Require: Training datasetD, Model fθ, Tokenizer
T , Hyperparameters α, Epochs E

Ensure: Trained model fθ
1: Initialize model parameters θ
2: Split D into clean (Dc) and malicious (Dm)

subsets
3: procedure ADVERSARIALTRAINING

4: for epoch = 1 to E do
5: Craft adversarial subset: Dadv ←

CRAFTMALICIOUS(Dm, fθ, α)
6: Combine dataset: D′ ← Dc ∪ Dadv ▷

Ratio α determines Dadv size
7: for each mini-batch (xi, yi) in D′ do
8: Compute loss: Li ←
L(fθ(xi), yi)

9: Accumulate gradients and up-
date: θ ← θ − η∇θLi

10: end for
11: end for
12: end procedure

Algorithm 2. 470

4 Experiment 471

In this section, we outline the datasets, models, 472

evaluation metrics, and baselines used in our study. 473

4.1 Settings 474

Models and Datasets. We use TaskTracker (Ab- 475

delnabi et al., 2024) as our training dataset. To 476

test the robustness and availability of our method, 477

besides TaskTracker evaluation dataset, we also 478

use BIPIA (Yi et al., 2024) and PINT (AI, 2024) 479

benchmark to test our method. We select a diverse 480

set of prompt-guard models to serve as guardrails 481

for our target model, Llama3-8B. The models in- 482

clude ProtectAI Prompt Guard (ProtectAI, 2024), 483

Meta Prompt Guard (Meta-Llama, 2024), Epivo- 484

lis Prompt Guard (Epivolis, 2024), and DeepSet 485

Prompt Guard (deepset, 2024). 486

Evaluation Metrics. We use Attack Success Rate 487

(ASR) to test our methods. ASR quantifies the 488

number of success APGA over the entire num- 489

ber of attack dataset. Calculated as ASR = 490
Number of Successful Attack
Total Number of Attack Cases . We also test the Availabil- 491

ity of our method which evaluates the model’s per- 492

formance on benign inputs. This metric is crucial 493

in ensuring that while the model is robust against 494
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Model In-domain (APGA) OOD (APGA)

FEAT Finetune Token-level original FEAT

Epivolis 5 60 100 100 5
protectai_v2 35 50 90 100 45
deepset 10 50 20 100 25
meta-llama 25 80 95 100 45

Table 1: ASR from two datasets (In-domain vs. out-of-distribution (OOD)) using APGA. The first four columns
show results on TaskTracker data under different conditions. The last column shows the performance of FEAT
against OOD (BIPIA) dataset.

Dataset Mode
Training Method

Original Fine-tuned FEAT

Benign Malicious Benign Malicious Benign Malicious

Microsoft
protectai_v2 99.99 4.93 81.10 83.08 84.54 84.06
deepset 0 100 97.30 78.75 74.84 88.97
meta-llama 0.90 99.83 56.97 94.80 93.13 88.37
Epivolis 0.41 77.74 49.92 92.32 78.84 89.61

Pint
protectai_v2 90.9986 86.5939 84.1433
deepset 57.7255 72.3648 68.5684
meta-llama 69.1619 76.539 65.635
Epivolis 62.6572 50.0 56.06

Table 2: Combined performance metrics under three training conditions. For the TaskTracker validation dataset,
both benign and malicious accuracies are reported side by side. For the Pint Score dataset, the three training method
scores are shown.

adversarial attacks, it does not compromise on its495

primary functionality when handling benign data.496

Experimental Setting. In our experimental497

setup, we designate Llama3 as the target model.498

Each guardrail model is integrated with Llama3 to499

enhance its robustness. We keep the target model500

consistent across experiments, modifying only the501

guardrail models. Training parameters include a502

learning rate of 1e-5, a per-device batch size of 8,503

and a gradient accumulation step of 4. The max-504

imum text length is capped at 1,024 tokens, with505

training conducted at 5 epochs. For FEAT, 20%506

of the malicious data points are augmented with507

adversarial examples. To test the robustness of508

our method against APGA, we curated 20 exam-509

ples of APGA from the TaskTracker validation set510

which ensuring no overlap with the training data,511

and another 20 examples from BIPIA to test the512

generalization to out of distribution ability of our513

method. These data are all under the setting of514

prompt injection.515

4.2 Evaluation of Attack Success Rate (ASR)516

Table 1 presents the ASR (Attack Success Rate)517

results for various prompt-guard models when sub-518

jected to APGA. To demonstrate the superior ro-519

bustness of our method, we conduct experiments520

Attack Type Model Attack Success Rate (%)

Fine-tuned FEAT

Email
Deepset 66.24 0.92
Meta-LLaMA 34.46 67.59
Epivolis 6.64 1.35
ProtectAI 8.05 0.09

Table
Deepset 77.48 10.72
Meta-LLaMA 37.56 1.89
Epivolis 78.9 4.44
ProtectAI 76.88 22.02

Code
Deepset 50.48 4.50
Meta-LLaMA 39.55 48.98
Epivolis 18.96 3.11
ProtectAI 84.18 5.13

Total
Deepset 67.92 6.72
Meta-LLaMA 37.29 30.09
Epivolis 45.8533 3.33
ProtectAI 61.50 12.31

Table 3: Attack Success Rates (%) for Different Models
of two methods and Attack Types from BIPIA.

under four different settings: fine-tuned (stan- 521

dard training without adversarial examples), token- 522

level adversarial training (restricted to the same 523

resources as FEAT), original model (without any 524

fine-tuning), and our proposed method FEAT. 525

Our findings indicate a significant reduction in 526

ASR when adversarial training is applied. For in- 527
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stance, Epivolis/Hyperion experiences a dramatic528

ASR drop from 60% in the fine-tuned setting to just529

5% with FEAT. Compared to token-level adversar-530

ial training, our method also achieves a substantial531

reduction in ASR, highlighting not only its robust-532

ness but also its cost efficiency. Similarly, other533

models such as ProtectAI and DeepSet exhibit no-534

table improvements, with ASR reductions of 15%535

and 40%, respectively. These results support our536

hypothesis that FEAT significantly enhances the537

resilience of prompt-guard models against APGA,538

effectively reducing their vulnerability to prompt539

injection attacks.540

To further evaluate the robustness of our method541

across different settings, we leverage BIPIA, a542

comprehensive prompt injection benchmark that543

includes a diverse range of prompt injection attacks.544

As shown in Table 3, FEAT consistently leads to545

a significant drop compared to fine-tuned in ASR546

across various attack scenarios. This reinforces547

the effectiveness of our method in mitigating not548

only APGA but also conventional prompt injec-549

tion threats, demonstrating its broad applicability550

in enhancing model security.551

4.3 Evaluation of Accuracy on Benign and552

Malicious Data553

Table 2 presents accuracy metrics for both be-554

nign and malicious inputs on the Microsoft out-of-555

domain validation dataset and the Pint benchmark.556

We evaluate each model’s accuracy under three con-557

ditions: original, fine-tuned, and FEAT. Our goal558

is to assess how well each model maintains high559

accuracy on benign inputs while resisting prompt560

injection attacks.561

To ensure that our method does not significantly562

compromise utility, we compare its performance563

against the fine-tuned-only approach on both the564

Microsoft validation dataset and the Pint bench-565

mark. As shown in Table 2, our method demon-566

strates noticeable performance improvements over567

the original models while maintaining utility com-568

parable to fine-tuned-only models. When FEAT is569

applied, benign accuracy does not degrade signifi-570

cantly compared to fine-tuned alone. This is further571

supported by the Pint benchmark evaluation, where572

the differences in Pint scores between adversarially573

trained and original models remain within 6%, with574

some models even showing improved performance575

after adversarial training.576

The original models exhibit a strong bias to-577

ward one label. For example, meta prompt guard578

achieves 99.83% malicious accuracy but only 579

0.41% benign accuracy, while ProtectAI reaches 580

99.99% benign accuracy but only 4.93% malicious 581

accuracy in the original setting. This imbalance 582

can persist even after fine-tuned, leading to per- 583

formance degradation. However, FEAT mitigates 584

this bias, achieving a more balanced accuracy be- 585

tween benign and malicious inputs. For instance, 586

in Table 2, the fine-tuned version of Epivolis attains 587

92.32% malicious accuracy but only 49.92% be- 588

nign accuracy, which is close to random guessing. 589

In contrast, the FEAT version of Epivolis achieves a 590

more balanced performance across both categories, 591

demonstrating greater resistance to the biases of 592

the original models. 593

In summary, our experiments confirm that FEAT 594

effectively reduces the ASR of APGA across multi- 595

ple prompt-guard models, strengthening resilience 596

against prompt injection while only minimally af- 597

fecting benign accuracy. This underscores the po- 598

tential of adversarial training as a robust defense 599

for securing LLMs against gradient-based prompt 600

injection attacks. Notably, models like Epivolis and 601

ProtectAI using FEAT exhibit strong performance 602

in balancing benign and malicious accuracy, further 603

reinforcing the effectiveness of FEAT in improving 604

model robustness. 605

4.4 Ablation Studies 606

To investigate the performance variation under dif- 607

ferent hyperparameter setting during training. We 608

explore the different setting of various of suffix 609

length and the ratio of adversarial examples α. The 610

detailed results deferred to Appendix. 5. 611

5 Conclusions and Limitations 612

In this paper, to fully evaluate the existing prompt 613

guard models. We introduce an adaptive attack 614

APGA. We point out the lack of robustness of the 615

existing prompt guard model against sophisticated 616

prompt injection attack which combines with ad- 617

versarial attacks. To solve this problem, we intro- 618

duce FEAT and demonstrate the robustness against 619

APGA as well as regular prompt injection attacks. 620

While our method demonstrates robustness 621

against both sophisticated and regular prompt injec- 622

tion attacks across different settings, we did not ex- 623

tend the evaluation to additional foundation LLMs 624

due to resource constraints. 625
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Ethics Statement626

We are committed to advancing the security and627

integrity of LLMs responsibly. In this research,628

we introduce APGA, an attack method designed to629

stress test the models robustness. Additionally, we630

introduce FEAT, a novel training method aimed at631

enhancing LLM security efficiently. All data used632

are synthetically generated or sourced from pub-633

licly available datasets, ensuring that no personal634

or sensitive information is involved. This approach635

safeguards privacy and complies with ethical stan-636

dards regarding data use.637

While our work focuses on enhancing defensive638

mechanisms against prompt injection attacks, we639

acknowledge the potential for dual use in security640

research. We encourage the ethical and responsible641

use of APGA to improve LLM security and not642

for malicious purposes. Our commitment to trans-643

parency is reflected in making both the dataset and644

model fully open-source, fostering collaboration,645

and allowing others to verify, replicate, and build646

upon our work for the betterment of the field. To647

foster future research in this area, we will open-648

source our code under the MIT license.649
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Figure 3: Comparison of Success Rates across models
for different suffix lengths and α values.

To examine the effects of different hyperparame- 1009

ter combinations, we explore suffix lengths of 100, 1010

300, and 500, along with α values of 0.2, 0.5, and 1011

0.7. We select Deepset and Meta-LLaMA as the 1012

targets for our ablation study, as they demonstrate 1013

more stable performance across different settings. 1014

As shown in Figure 3, we observe some fluctua- 1015

tions across different configurations. While suffix 1016

length does not exhibit a clear positive impact on 1017

model robustness overall, we find that higher α val- 1018

ues generally lead to increased robustness. When 1019

α = 0.2, model performance tends to be random. 1020

However, as α increases, performance stabilizes, 1021

and models become more resilient. This suggests 1022

that larger α values contribute to greater robustness, 1023
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showing the importance of this hyperparameter in1024

optimizing model resistance to attacks.1025
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