FEAT: Evaluating and Enhancing the Adversarial Robustness of Prompt
Guard Models

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are vulnerable
to prompt injection attacks, where adversaries
manipulate model behavior through malicious
inputs. To mitigate these threats, prompt guard
models have been introduced as lightweight
defenses that filter inputs before reaching the
LLM. However, their adversarial robustness re-
mains largely unexplored. In this paper, we
investigate the susceptibility of prompt guard
models to adversarial attacks and introduce
methods to enhance their resilience. We pro-
pose a novel adaptive attack, APGA, which
jointly optimizes for bypassing prompt guard
detection while inducing the LLM to generate
targeted responses. Our attack achieves a 100%
success rate across multiple guard models, ex-
posing critical vulnerabilities. To counteract
this threat, we introduce FEAT, a computa-
tionally efficient adversarial training method
that leverages embedding-space perturbations
to improve robustness without incurring high
computational costs. Our empirical evaluation
demonstrates that FEAT reduces the adversar-
ial attack success rate from 100% to just 5%
while preserving detection accuracy on clean
inputs. Our findings highlight the urgent need
for improved adversarial defenses in prompt
guard models and establish a foundation for
more secure LLM applications.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020) have demonstrated remarkable capabilities
across diverse domains, yet their reliance on natural
language inputs exposes them to critical security
vulnerabilities. Among these, prompt injection at-
tacks (Perez and Ribeiro, 2022a; Greshake et al.,
2023a; Liu et al., 2024b) pose a significant threat,
where adversaries exploit the model’s instruction-
following nature by embedding malicious or ma-
nipulative directives. For example, attackers may
instruct the LLM to “ignore previous instructions

Refuse
Ignore previous instruction

| e 8

—"g‘lﬁﬂkayﬂ.

Prompt Guard LLMs
Models

Defended

Ignore previous instruction

<Adv Suffix> ... Attacked

Attacker

Figure 1: In this paper, we find that while existing
prompt guard models can detect prompt injection at-
tacks, they fail to detect prompt injection attacks when
combined with adversarial attacks. To evaluate and mit-
igate this issue, we first propose an advanced attack
that simultaneously bypasses the prompt guard model
and injects prompts into the LLM. Then we introduce
a defense method to enhance the robustness of prompt
guard models against this type of attack.

and do other tasks” (Branch et al., 2022; Harang,
2023; Perez and Ribeiro, 2022a; Willison, 2022), a
technique designed to override system safeguards,
hijack the model’s objectives, or extract sensitive
data. Such attacks can lead to harmful outcomes,
including unauthorized actions, privacy breaches,
or the circumvention of ethical guardrails.

To address these vulnerabilities, prompt guard
models (Meta, 2024; ProtectAl.com, 2024;
Deepset, 2024; fmops, 2024; LakeraAl, 2024; Li
and Liu, 2024) have emerged as lightweight, com-
putationally efficient safeguards. Designed to
analyze the semantic content of user inputs be-
fore they reach the LLM, these models, which
are often based on smaller architectures like De-
BERTa (He et al., 2023a), can detect malicious
intent while avoiding the high inference costs asso-
ciated with LLMs. Unlike LLM-based guardrails
that rely on the victim model’s outputs (Inan et al.,
2023), prompt guard models operate independently,
screening inputs through semantic analysis rather
than post-hoc response evaluation. This indepen-
dence not only reduces computational overhead
but also enhances adaptability across environments
where speed and resource efficiency are critical.
By intercepting harmful prompts at the input stage,
they mitigate risks without compromising the scal-



ability or performance of downstream LLM appli-
cations.

While prompt guard models have proven effec-
tive in filtering out explicit or straightforward at-
tack prompts, such as jailbreak and prompt injec-
tion attacks, their adversarial robustness remains
largely unexplored. Adversarial robustness refers
to a model’s ability to withstand adversarial attacks,
which utlize carefully crafted modifications to in-
put data that cause artificial intelligence models to
produce incorrect predictions (Szegedy et al., 2014;
Goodfellow et al., 2015; Madry et al., 2019; Wal-
lace et al., 2021; Shin et al., 2020; Morris et al.,
2020). In the context of prompt guard models,
as shown in Figure 1, we find that adversarial at-
tacks still remain highly effective. Specifically, by
adding adversarial tokens to the input text (Zou
et al., 2023), an attacker can not only carry out
a prompt injection attack on the underlying foun-
dation LLM, leading it to generate a targeted re-
sponse, but also simultaneously bypass the prompt
guard model. As shown in Table 1, our experiment
demonstrate that this manipulation deceives the
prompt guard model into misclassifying the input
as benign and failing to detect any attack attempts,
i.e., the attack success rate is 100%.

In this paper, we investigate the adversarial ro-
bustness of prompt guard models and propose meth-
ods to enhance their resilience against such attacks.
We address these issues through two key innova-
tions. First, to fully evaluate the adversarial ro-
bustness of existing prompt guard models, we pro-
pose an adaptive attack, named Adversarial Prompt
Guard Attack (APGA), that jointly targets both the
prompt guard model and the underlying LLM. By
incorporating the prompt guard’s detection objec-
tive into an adaptive loss function, APGA can auto-
matically craft malicious prompts capable of both
misleading the LLM into producing targeted unau-
thorized outputs and bypassing detection. This
adaptive attack thus serves as a rigorous stress
test for evaluating real-world robustness under
prompt injection scenarios. Second, we introduce
a novel adversarial training method, named Fast
Embedding Adversarial Training (FEAT), which
is aimed at bolstering the resilience of prompt
guard models. Unlike existing adversarial train-
ing methods in computer vision (Goodfellow et al.,
2015; Madry et al., 2019; Shafahi et al., 2019b;
Wong et al., 2020; Bai et al., 2021) and natural
language processing (Miyato et al., 2021), which
directly craft the adversarial examples on the in-

put space during the training process, our method
generates adversarial examples in the embedding
space, drastically reducing the computational over-
head compared to token-level adversarial example
generation. These embedding-based adversarial
samples then serve as hard negatives during train-
ing, enabling the guard model to learn more fine-
grained decision boundaries and better withstand
manipulation attempts.

Our adaptive attack, APGA, exposes vulnerabil-
ities in existing prompt guard systems by achiev-
ing a 100% attack success rate (ASR) across
four models, demonstrating that even carefully
crafted prompts can bypass detection. Concur-
rently, our embedding-space adversarial training
method, FEAT, bolsters the guard model’s robust-
ness, reducing the adversarial ASR from 100% to
just 5% while reliably detecting and rejecting sub-
tle adversarial prompts. Empirical results confirm
that this method maintains accuracy on clean inputs
while significantly reducing the model’s vulnerabil-
ity to the hybrid attack factor, i.e., prompt injection
attacks combined with adversarial attacks.

In summary, our main contributions are:

* We propose an attack that simultaneously op-
timizes for bypassing the guard model’s de-
tection and inducing a target LLM to produce
harmful or unauthorized content, providing
a rigorous evaluation framework for prompt
guard robustness.

We develop a computationally efficient ad-
versarial training algorithm that leverages
embedding-level perturbations. This reduces
resource overhead while substantially increas-
ing the guard model’s resistance to the hybrid
attack factor where prompt injection attacks
are combined with adversarial attacks.

* We conduct extensive experiments demon-
strating that our approach enhances the guard
model’s ability to detect advanced prompt in-
jection attempts while maintaining strong re-
silience against adversarial attacks, improving
the overall security of LLM systems.

2 Background and related work

2.1 Prompt Guard Model

Prompt guard models, often referred to as pre-
model guardrails, are designed to detect and mit-
igate malicious prompt attacks by classifying



whether input prompts contain adversarial or harm-
ful content (Dong et al., 2024). Guardrails takes
as input a set of objects and determines whether
to stop the input from being processed by LLMs
if input contain regulated contents. Recently, sev-
eral notable prompt guard models have been pro-
posed. For example, Meta Prompt Guard (Meta-
Llama, 2024), DeepSet (deepset, 2024), Hyperion
(Epivolis, 2024), and ProtectAl (ProtectAl, 2024)
leverages the DeBERTa-v3 (He et al., 2023b) ar-
chitecture as their backbone model and composed
different dataset to train their models.

While these models have advanced the detection
of explicit attacks, such as jailbreak attempts, chal-
lenges remain in addressing more sophisticated
attacks. For example, prompt injection attacks,
which involve inputs that combine legitimate user
commands with external manipulative elements,
making them difficult for guardrail models to dis-
tinguish, and GCG attack (Zou et al., 2023), which
automatically generate malicious input using gradi-
ent from back propagation. When encounter those
sophisticated attack, these model often fail to ex-
hibit enough robustness. Developing guard models
that balance robustness with adaptability is a key
focus of ongoing research in this area.

2.2 Adversarial Attack and Robustness

LLMs have demonstrated remarkable capabilities
across various natural language processing tasks.
However, their vulnerability to adversarial attacks
presents significant challenges. Notable examples
of such attacks include the Greedy Coordinate
Gradient (GCG) attack (Zou et al., 2023), which
optimizes discrete token sequences to maximize
the likelihood of generating objectionable content;
AutoDAN (Liu et al., 2024a), which employs ge-
netic algorithms for automated jailbreaking; and
hand-crafted jailbreak attacks (Shen et al., 2024).
Another well-studied category of adversarial at-
tacks is prompt injection attacks (Liu et al., 2024c;
Greshake et al., 2023b; Pedro et al., 2023; Perez
and Ribeiro, 2022b), which aim to mislead LLMs
into executing alternate tasks that deviate from
their original instructions. These alternate tasks,
though not inherently malicious, can easily bypass
guardrail models due to their benign appearance.
To enhance the robustness of LLMs against such
adversarial manipulations, adversarial training has
emerged as a potent defense mechanism. This
approach involves augmenting the training pro-
cess with adversarial examples—inputs specifically

crafted to challenge the model’s resilience. By ex-
posing the model to these challenging scenarios
during training, it learns to maintain performance
even when faced with adversarial inputs.

In traditional computer vision, adversarial exam-
ples are typically crafted by adding small perturba-
tions to training examples that are imperceptible to
the human eye (Goodfellow et al., 2015; Shafahi
et al., 2019a). In contrast, adversarial attacks in
natural language processing (NLP) often require
additional neural networks as subcomponents (Yoo
and Qi, 2021). For instance, Jin et al. (2020) uti-
lize the Universal Sentence Encoder, while Garg
and Ramakrishnan (2020) employ BERT’s masked
language model for crafting adversarial examples.

Despite these advancements, challenges remain
in developing defense strategies that effectively bal-
ance robustness and computational efficiency. The
dynamic nature of adversarial attacks necessitates
continuous refinement of training methodologies
to safeguard LLMs against evolving threats.

In this paper, we introduce the adaptive GCG
attack, which targets both guardrail models and
LLMs to efficiently evaluate guardrail performance
in prompt injection scenarios. Additionally, we
propose an adversarial training method that sig-
nificantly enhances the adversarial robustness of
various guardrail models.

3 Method

In this section, we introduce: (1) APGA, our ap-
proach to evaluating the adversarial robustness of
prompt guard models and (2) FEAT, a computa-
tionally efficient algorithm for adversarial training
to enhance the robustness of prompt guard models.

3.1 Preliminaries

Prompt Injection Attacks. A prompt injection
attack occurs when an attacker embeds a target in-
struction x4, of length [ at any position within a user-
provided instruction prompt x1.,. The objective
is to mislead the LLMs £M into deviating from
user intended behavior and generating an attacker-
specified output. Formally, let z* denote the at-
tacker’s intended output, and let x;.,,; represent
the modified prompt containing both the original
user instruction and the injected attack instruction.
The prompt injection attack can be formulated as:
LM(x1.041) = x*

Prompt guard models. In this paper, we focus
on evaluating and enhancing the adversarial robust-



ness of prompt guard models. Prompt guard mod-
els analyze inputs before they are fed into LLMs to
determine whether they contain undesirable inten-
tions, such as jailbreak or prompt injection attacks.
If a prompt guard model detects such intentions, it
can reject the input.

Adyversarial attacks against prompt guard mod-
els. Adversarial attacks against prompt guard mod-
els involve crafting specially designed text inputs
with two primary goals. The first goal is to induce
the target LLM to generate a specific output. The
second goal is to evade detection by prompt guard
models, meaning the crafted text should cause the
models to predict a benign label.

Formally, let fy denote the target model, such
as Llama3 (Grattafiori et al., 2024), parameterized
by 6. Given a sequence of tokens x1., as input,
the target model predicts the next token x,,+1. The
attacker, with access to the model parameters, can
compute the gradient with respect to the gener-
ated output. The attacker’s goal is to force the
target model to generate a sequence of target to-
kens z7 ... . ;. If the target model outputs such
a sequence, it indicates that the model has been
compromised by the prompt injection attack. The
attacker’s objective can be expressed as:

L(r1:) = — Ing(x:L-i-l:n-&-H ’ T1m)-

Given a sequence of tokens xj., as input, a
guardrail model determines whether the input to-
kens are malicious:

0, otherwise.

PG(M:n) = {

Let 27, denote a input sequence that is classify
as malicious, and let ypenign denote a benign label.
The attacker’s goal is to bypass the guardrail model
so that it falsely identifies the malicious input token
sequence as benign. This can be formalized as:

L"PG = - log (pybenign(fe(x??n)))‘

We combine the guardrail model with the target
model. Consequently, the attacker must bypass the
guardrail model while simultaneously forcing the
target model to generate the target response. The
resulting problem can be expressed as:

ﬁ(xTn> = - logp(x:1+1:n+H | 1'7171n)+£PG(x71nn)

The defender, on the other hand, aims to train the
guardrail model such that the attacker cannot by-
pass it while also preventing the target model from

1, if P(y = malicious | z1.,) > T,

generating the target sequence. Specifically, given
an input-label pair (Zmalicious> Ybenign ) the objective
is to ensure that the guardrail model does not clas-
sify Tmalicious @S Ybenign, and that the target model
fo does not output x}, , ;... ;; simultaneously.

3.2 Adversarial Prompt Guard Attack
(APGA)

Original GCG attack formalize the objective as

min

xre{l,..,V}ZI

where x,,.,1; is the adversarial suffix appended

to the malicious prompt so that it can circumvent

the alignment of the target model and the target

model will be forced to output targeted affirmative

response. To optimize the suffix in discrete space,

we need to calculate the gradient with respect to
one-hot representation

Vexi E(xn:n+l) € R‘th

L(xn:n—l—l)

where e;; denotes the one-hot vector representing
the current value of the ith token. For each token x;,
there will be top-k values with the largest negative
gradient as replacement candidate for each itera-
tion and some of them will be randomly choose to
replace the current token to form the adversarial
suffix with smallest loss.

To test the efficiency of our method, we modify
the original GCG (Zou et al., 2023) attack by in-
tegrated the guardrail loss into the original GCG
loss function. Specifically, let V; denote the target
model’s vocabulary, the target of GCG attack is to
find the replaceable Top-k token for each of the ith
token according to the gradient

vewi E(xn:nJrl) € RW}'

To combine the guardrail loss into the original
loss, we choose to take the intersection of vocab
of guardrail model V and that of target model V;
which let us calculate the gradient

Ve, L(@nmi1) € RV

Let 2/ = Concat(x1.,, Tp.ptq), we modify the loss
to become

L(2') = —logp(z} 4104 | 2) + Lra(2)
When facing this adaptive attack, off-the-shelf
guardrail model will easily be compromised. To
improve the adversarial robustness of the guardrail
model, we adversarially training the guardrail
model which utilized examples crafted by GCG
as adversarially examples.



3.3 Fast Embedding Adversarial Training
(FEAT)

Algorithm 1 Adversarial Suffix Crafting

Require: Input embedding e, € R™*¢, model fy,
target label yrger, suffix length s, maximum
iterations T’

Ensure: Modified embedding €’

Initialize suffix eg
2: Initialize suffix perturbation § € R*¢
L = fyo(ex’ = Concat(ex, es + 0)), Yiarget)
4: fort =1to T do
Compute gradient V5L
6: Update ¢ using the gradient
Project 6 back into feasible region

8: if stopping condition is met then
break
10: end if
end for

12: Reconstruct adversarial embedding: e, =
Concat(ex, es + 6)
Return €’

However, crafting even one adversarial example
using GCG require non-trivial computational re-
source. In adversarial training, it usually requires
to craft a portion of regular training dataset as ad-
versarial examples, which make it infeasible to
craft the adversarial examples in token space dur-
ing training.

We observe that crafting the adversarial example
in embedding space, while it can’t be map back to
token space, can achieve similar performance com-
pare to craft adversarial example in token space and
with much less computational resources. Crafting
the adversarial examples in embedding space took
less iterations to achieve the same loss as crafting
in token space as shown in Figure 2 and require
95% less time to finish one step iteration.

To perform GCG attack in embedding space, we
instead initialize the adversarial suffix in the form
of embedding e

L|xd
es € RIV ,

where L is the pre-defined suffix length and make
this as our optimizable adversarial suffix. In this
way, we can optimize the suffix over embedding
space instead of discrete space. Because of that,
we can craft the adversarial example similar in
computer vision, which apply a small perturbation
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Figure 2: Comparison of time required to craft one
adversarial example at the token level versus the em-
bedding level. The results highlight the efficiency of
crafting adversarial examples in the embedding space.

€ RIH*d to the suffix embedding e
e =es+ 8

The perturbation § is optimized using a gradient-
based approach to minimize the adversarial loss.
We first randomly generate an adversarial suffix
es with pre-defined length. With a constraint of
200 steps, we iteratively applying perturbation on
it based on the gradient of back propagation given
by the cross entropy loss of current prediction and
the malicious target. As a result, the embedding
composed of the concatenation of the original em-
bedding e, and the crafted suffix e,

el = Concat(e,, es + 8)

Our objective here is to craft the adversarial exam-
ple to mislead the guardrail model to identify the
malicious input as benign.

Adversarial targeted attack: For targeted at-
tacks, the adversarial loss is defined as:

ﬁadv = - 10g (pybenign(fe(egﬁ)))’

where py (fo(-)) represents the predicted proba-
bility of the label y. The perturbation §* is com-
puted iteratively:

0" = arg m&in Eadv(f@(egp)y ybenign)‘

Optimization Process: The optimization is per-
formed using backpropagation. The gradient of the
loss with respect to § is computed as:

0 < 0 +nVsLaav,

where 7 is the learning rate. After each update,
the perturbation is projected back into the feasi-
ble region defined by the £, norm. As shown in
algorithm 1



3.4 Adversarial Training

Inspired by the training flow in (Yoo and Qi, 2021),
our method differs from traditional adversarial
training approaches in computer vision (Goodfel-
low et al., 2015), which generate adversarial exam-
ples between every mini-batch, because of the GPU
memory constrain. We instead generate the adver-
sarial examples at the beginning of each training
epoch. Instead of generate one adversarial example
for each of the datapoint in the dataset, we generate
a specified ratio, o, of clean malicious data (data
containing malicious characteristics) as adversarial
examples before each training epoch. When adver-
sarial example crafting fails, we simply skip that
example. The default value of « is set to 20%.

To craft adversarial examples in the embedding
space, we first transform the entire dataset into its
embedding representation. Due to the mismatch
in embedding dimensions between the guardrail
model and the target model, we are unable to per-
form adaptive attacks in the embedding space—i.e.,
adversarial optimization cannot be conducted on
both models simultaneously.

Thus, we focus solely on crafting adversar-
ial examples using malicious data, assuming that
small perturbations to malicious inputs do not alter
their malicious nature. Consequently, we treat the
guardrail model as the sole target during adversarial
example crafting.

To preserve the benign utility of the guardrail
model while enhancing its adversarial robustness,
adversarial training combines clean and adversar-
ial examples to improve model performance. We
select focal loss as the loss function because we
observe that during adversarial training, the model
tends to be less stable when classifying benign ex-
amples. Focal loss addresses this issue by dynami-
cally adjusting the model’s focus toward examples
with labels that are harder to classify, thereby miti-
gating instability and improving overall robustness.
The overall loss function is:

£t0tal = ﬁ(f9<37)7 y) +a- Eadv(f@(xémb)v ybenign)a

where L(fp(x),y) is the clean loss (e.g.,
Cross-entropy) for  unperturbed  inputs,
Laav(fo(XLp)s Yoenign) is the adversarial loss
for perturbed inputs, and « € [0, 1] is a hyperpa-
rameter balancing the contributions of clean and
adversarial examples. Model parameters 6 are up-
dated to minimize L using stochastic gradient
descent. The training process is demonstrated in

Algorithm 2 Adversarial Training with Malicious
Crafting

Require: Training dataset D, Model fy, Tokenizer
T, Hyperparameters «, Epochs E
Ensure: Trained model fy
1: Initialize model parameters 6
2: Split D into clean (D.) and malicious (D,,)
subsets
3: procedure ADVERSARIALTRAINING
for epoch =1 to £/ do

5: Craft adversarial subset: D.q,
CRAFTMALICIOUS(D,,, fo, @)
6: Combine dataset: D’ < D, U D,q, >

Ratio «v determines D,qy Size
: for each mini-batch (x;,y;) in D’ do
8: Compute

loss: L; +—
L(fo(w:),v)
9: Accumulate gradients and up-
date: 0 < 60 — nVyL;
10 end for
11: end for

12: end procedure

Algorithm 2.

4 Experiment

In this section, we outline the datasets, models,
evaluation metrics, and baselines used in our study.

4.1 Settings

Models and Datasets. We use TaskTracker (Ab-
delnabi et al., 2024) as our training dataset. To
test the robustness and availability of our method,
besides TaskTracker evaluation dataset, we also
use BIPIA (Yi et al., 2024) and PINT (AI, 2024)
benchmark to test our method. We select a diverse
set of prompt-guard models to serve as guardrails
for our target model, Llama3-8B. The models in-
clude ProtectAl Prompt Guard (ProtectAl, 2024),
Meta Prompt Guard (Meta-Llama, 2024), Epivo-
lis Prompt Guard (Epivolis, 2024), and DeepSet
Prompt Guard (deepset, 2024).

Evaluation Metrics. We use Attack Success Rate
(ASR) to test our methods. ASR quantifies the
number of success APGA over the entire num-
ber of attack dataset. Calculated as ASR =
g)‘:;‘tﬁsr‘r’igfgﬁgggﬁgg; We also test the Availabil-
ity of our method which evaluates the model’s per-
formance on benign inputs. This metric is crucial

in ensuring that while the model is robust against




Model In-domain (APGA) | OOD (APGA)
FEAT Finetune Token-level original ‘ FEAT
Epivolis 5 60 100 100 5
protectai_v2 35 50 90 100 45
deepset 10 50 20 100 25
meta-llama 25 80 95 100 45

Table 1: ASR from two datasets (In-domain vs. out-of-distribution (OOD)) using APGA. The first four columns
show results on TaskTracker data under different conditions. The last column shows the performance of FEAT

against OOD (BIPIA) dataset.

Training Method

Dataset = Mode Original Fine-tuned FEAT
Benign Malicious Benign Malicious Benign Malicious
protectai_v2  99.99 4.93 81.10 83.08 84.54 84.06
Microsoft  deepset 0 100 97.30 78.75 74.84 88.97
meta-llama 0.90 99.83 56.97 94.80 93.13 88.37
Epivolis 0.41 77.74 49.92 92.32 78.84 89.61

protectai_v2 90.9986 86.5939 84.1433

Pint deepset 57.7255 72.3648 68.5684

meta-llama 69.1619 76.539 65.635

Epivolis 62.6572 50.0 56.06

Table 2: Combined performance metrics under three training conditions. For the TaskTracker validation dataset,
both benign and malicious accuracies are reported side by side. For the Pint Score dataset, the three training method

scores are shown.

adversarial attacks, it does not compromise on its
primary functionality when handling benign data.

Experimental Setting. In our experimental
setup, we designate Llama3 as the target model.
Each guardrail model is integrated with Llama3 to
enhance its robustness. We keep the target model
consistent across experiments, modifying only the
guardrail models. Training parameters include a
learning rate of 1e-5, a per-device batch size of 8,
and a gradient accumulation step of 4. The max-
imum text length is capped at 1,024 tokens, with
training conducted at 5 epochs. For FEAT, 20%
of the malicious data points are augmented with
adversarial examples. To test the robustness of
our method against APGA, we curated 20 exam-
ples of APGA from the TaskTracker validation set
which ensuring no overlap with the training data,
and another 20 examples from BIPIA to test the
generalization to out of distribution ability of our
method. These data are all under the setting of
prompt injection.

4.2 Evaluation of Attack Success Rate (ASR)

Table 1 presents the ASR (Attack Success Rate)
results for various prompt-guard models when sub-
jected to APGA. To demonstrate the superior ro-
bustness of our method, we conduct experiments

Attack Type Model Attack Success Rate (%)
Fine-tuned FEAT
Deepset 66.24 0.92
Email Meta-LLaMA 34.46 67.59
Epivolis 6.64 1.35
ProtectAl 8.05 0.09
Deepset 77.48 10.72
Table Meta-LLaMA 37.56 1.89
Epivolis 78.9 4.44
ProtectAl 76.88 22.02
Deepset 50.48 4.50
Code Meta-LLaMA 39.55 48.98
Epivolis 18.96 3.11
ProtectAl 84.18 5.13
Deepset 67.92 6.72
Total Meta-LLaMA 37.29 30.09
Epivolis 45.8533 3.33
ProtectAl 61.50 12.31

Table 3: Attack Success Rates (%) for Different Models
of two methods and Attack Types from BIPIA.

under four different settings: fine-tuned (stan-
dard training without adversarial examples), token-
level adversarial training (restricted to the same
resources as FEAT), original model (without any
fine-tuning), and our proposed method FEAT.

Our findings indicate a significant reduction in
ASR when adversarial training is applied. For in-



stance, Epivolis/Hyperion experiences a dramatic
ASR drop from 60% in the fine-tuned setting to just
5% with FEAT. Compared to token-level adversar-
ial training, our method also achieves a substantial
reduction in ASR, highlighting not only its robust-
ness but also its cost efficiency. Similarly, other
models such as ProtectAl and DeepSet exhibit no-
table improvements, with ASR reductions of 15%
and 40%, respectively. These results support our
hypothesis that FEAT significantly enhances the
resilience of prompt-guard models against APGA,
effectively reducing their vulnerability to prompt
injection attacks.

To further evaluate the robustness of our method
across different settings, we leverage BIPIA, a
comprehensive prompt injection benchmark that
includes a diverse range of prompt injection attacks.
As shown in Table 3, FEAT consistently leads to
a significant drop compared to fine-tuned in ASR
across various attack scenarios. This reinforces
the effectiveness of our method in mitigating not
only APGA but also conventional prompt injec-
tion threats, demonstrating its broad applicability
in enhancing model security.

4.3 Evaluation of Accuracy on Benign and
Malicious Data

Table 2 presents accuracy metrics for both be-
nign and malicious inputs on the Microsoft out-of-
domain validation dataset and the Pint benchmark.
We evaluate each model’s accuracy under three con-
ditions: original, fine-tuned, and FEAT. Our goal
is to assess how well each model maintains high
accuracy on benign inputs while resisting prompt
injection attacks.

To ensure that our method does not significantly
compromise utility, we compare its performance
against the fine-tuned-only approach on both the
Microsoft validation dataset and the Pint bench-
mark. As shown in Table 2, our method demon-
strates noticeable performance improvements over
the original models while maintaining utility com-
parable to fine-tuned-only models. When FEAT is
applied, benign accuracy does not degrade signifi-
cantly compared to fine-tuned alone. This is further
supported by the Pint benchmark evaluation, where
the differences in Pint scores between adversarially
trained and original models remain within 6%, with
some models even showing improved performance
after adversarial training.

The original models exhibit a strong bias to-
ward one label. For example, meta prompt guard

achieves 99.83% malicious accuracy but only
0.41% benign accuracy, while ProtectAl reaches
99.99% benign accuracy but only 4.93% malicious
accuracy in the original setting. This imbalance
can persist even after fine-tuned, leading to per-
formance degradation. However, FEAT mitigates
this bias, achieving a more balanced accuracy be-
tween benign and malicious inputs. For instance,
in Table 2, the fine-tuned version of Epivolis attains
92.32% malicious accuracy but only 49.92% be-
nign accuracy, which is close to random guessing.
In contrast, the FEAT version of Epivolis achieves a
more balanced performance across both categories,
demonstrating greater resistance to the biases of
the original models.

In summary, our experiments confirm that FEAT
effectively reduces the ASR of APGA across multi-
ple prompt-guard models, strengthening resilience
against prompt injection while only minimally af-
fecting benign accuracy. This underscores the po-
tential of adversarial training as a robust defense
for securing LLMs against gradient-based prompt
injection attacks. Notably, models like Epivolis and
ProtectAl using FEAT exhibit strong performance
in balancing benign and malicious accuracy, further
reinforcing the effectiveness of FEAT in improving
model robustness.

4.4 Ablation Studies

To investigate the performance variation under dif-
ferent hyperparameter setting during training. We
explore the different setting of various of suffix
length and the ratio of adversarial examples . The
detailed results deferred to Appendix. 5.

5 Conclusions and Limitations

In this paper, to fully evaluate the existing prompt
guard models. We introduce an adaptive attack
APGA. We point out the lack of robustness of the
existing prompt guard model against sophisticated
prompt injection attack which combines with ad-
versarial attacks. To solve this problem, we intro-
duce FEAT and demonstrate the robustness against
APGA as well as regular prompt injection attacks.

While our method demonstrates robustness
against both sophisticated and regular prompt injec-
tion attacks across different settings, we did not ex-
tend the evaluation to additional foundation LLMs
due to resource constraints.
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integrity of LLMs responsibly. In this research,
we introduce APGA, an attack method designed to
stress test the models robustness. Additionally, we
introduce FEAT, a novel training method aimed at
enhancing LLM security efficiently. All data used
are synthetically generated or sourced from pub-
licly available datasets, ensuring that no personal
or sensitive information is involved. This approach
safeguards privacy and complies with ethical stan-
dards regarding data use.

While our work focuses on enhancing defensive
mechanisms against prompt injection attacks, we
acknowledge the potential for dual use in security
research. We encourage the ethical and responsible
use of APGA to improve LLM security and not
for malicious purposes. Our commitment to trans-
parency is reflected in making both the dataset and
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Appendix

A Ablation Study on Suffix Length and
Alpha
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Figure 3: Comparison of Success Rates across models
for different suffix lengths and « values.

To examine the effects of different hyperparame-
ter combinations, we explore suffix lengths of 100,
300, and 500, along with « values of 0.2, 0.5, and
0.7. We select Deepset and Meta-LLaMA as the
targets for our ablation study, as they demonstrate
more stable performance across different settings.

As shown in Figure 3, we observe some fluctua-
tions across different configurations. While suffix
length does not exhibit a clear positive impact on
model robustness overall, we find that higher « val-
ues generally lead to increased robustness. When
a = 0.2, model performance tends to be random.
However, as « increases, performance stabilizes,
and models become more resilient. This suggests
that larger o values contribute to greater robustness,
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showing the importance of this hyperparameter in
optimizing model resistance to attacks.
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