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ABSTRACT

Predicting RNA secondary structure is essential for understanding RNA function
and developing RNA-based therapeutics. Despite recent advances in deep learn-
ing for structural biology, its application to RNA secondary structure prediction
remains contentious. A primary concern is the control of homology between train-
ing and test data. Moreover, deep learning approaches often incorporate com-
plex multi-model systems, ensemble strategies, or require external data. Here, we
present the RNAformer, a scalable axial-attention-based deep learning model de-
signed to predict secondary structure directly from a single RNA sequence without
additional requirements. We demonstrate the benefits of this lean architecture by
learning an accurate biophysical RNA folding model using synthetic data. Trained
on experimental data, our model overcomes previously reported caveats in deep
learning approaches with a novel homology-aware data pipeline. The RNAformer
achieves state-of-the-art performance on RNA secondary structure prediction, out-
performing both traditional non-learning-based methods and existing deep learn-
ing approaches, while carefully considering sequence and structure similarities.

1 INTRODUCTION

Ribonucleic acid (RNA) is a polymer of four nucleotides that plays a critical role in gene expres-
sion, protein synthesis, and epigenetic regulation (Morris & Mattick, 2014). The functionality of
RNA molecules is intrinsically linked to their structure, which is determined by a hierarchical fold-
ing process, dictated by the formation of local geometries of the so-called secondary structure of
RNA (Tinoco Jr & Bustamante, 1999). In addition to its impact on the final 3D shape, RNA sec-
ondary structures provide insights into RNA functions and can guide the design of RNA-based
therapeutics and nanomachines (Kai et al., 2021).

While deep learning methods have achieved experimental accuracy in 3D protein structure predic-
tion (Jumper et al., 2021; Lin et al., 2023; Abramson et al., 2024), RNA structure prediction remains
challenging (Kretsch et al., 2023; Das et al., 2023). Specifically, capturing topologies and key sec-
ondary structure features appears difficult even for the current best model, AlphaFold 3 (Bernard
et al., 2024). The accurate prediction of an RNA’s secondary structure directly from its sequence of
nucleotides is still an important unsolved problem in computational biology (Bonnet et al., 2020).

Traditional computational methods for RNA secondary structure prediction minimize free energy
using thermodynamic nearest-neighbor energy parameters, typically derived from wet-lab experi-
ments (Delisi & Crothers, 1971; Tinoco et al., 1971). The currently most widely used algorithms,
mfold (Zuker, 1989), RNAfold (Hofacker et al., 1994), and RNAstructure (Mathews et al., 1998) use
dynamic programming to efficiently calculate these energy minimizations. More recently, learning-
based approaches were developed to replace or improve estimates of the thermodynamic parame-
ters (Do et al., 2006; Andronescu et al., 2007; 2010; Zakov et al., 2011).

Inspired by the success of deep neural networks in the field of protein contact map prediction (Han-
son et al., 2018), SPOT-RNA was proposed, and deep learning entered the field of RNA secondary
structure prediction (Singh et al., 2019). This class of approaches can represent an RNA structure
as an adjacency matrix, surmounting the limitations of a restricted set of predictable base intera-
tions of previous approaches and thus being able to predict non-canonical base pairs (Olson et al.,
2019), pseudoknots (Staple & Butcher, 2005), and even base multiplets (Bhattacharya et al., 2019).
The initial success led to additional deep learning-based models in the field (Chen et al., 2020; Sato
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True Structure RNAformer SPOT-RNA2 RNAfold

Figure 1: Example secondary structure predictions with different algorithms for a yeast tRNAphe,
the first RNA 3D structure determined by X-ray crystallography in the 1970s. (Deng et al., 2023)

et al., 2021; Franke et al., 2022; Fu et al., 2022; Chen et al., 2022; Chen & Chan, 2023), including
the homology-based modeling approach, SPOT-RNA2 (Singh et al., 2021b). This, however, has the
disadvantage that it requires multiple sequence alignments (MSAs) of a sufficient size to achieve
good predictions, which are not often available for RNAs (Singh et al., 2021b; Szikszai et al., 2022;
Schneider et al., 2023; Bernard et al., 2024) resulting in poor generalization for orphan RNAs (Singh
et al., 2021b; Bernard et al., 2024).

Despite the remarkable results reported by these approaches, deep learning methods are still not con-
sidered state-of-the-art for RNA structure prediction due to various problems (Flamm et al., 2021;
Schneider et al., 2023; Das et al., 2023). One of these is their complexity; most methods require ad-
ditional information such as MSAs (Singh et al., 2021b; Abramson et al., 2024) or thermodynamic
parameters (Sato et al., 2021), build ensembles (Singh et al., 2019), depend on a fully trained founda-
tion model (Chen et al., 2022), or use sophisticated pre- (Singh et al., 2021b) or post-processing (Fu
et al., 2022) methods. Furthermore, many deep learning approaches are based on convolutional
neural networks (CNN) Singh et al. (2019; 2021b); Sato et al. (2021); Fu et al. (2022), in which
the receptive field of the input depends on the model depth Luo et al. (2016). This means a larger
sequence requires a deeper network. While not a problem for data with a fixed-sized input such
as pre-processed images, this may be problematic for RNA sequences which have varying lengths.
Additionally, some models cannot be retrained due to undisclosed training pipelines (Singh et al.,
2019; Flamm et al., 2021), making it difficult to reproduce reported results or build future models
on top of these.

A major problem with previous deep learning-based approaches is that they did not sufficiently ad-
dress homologies between the training and test data. This led to strong performance on homologous
RNAs but poor generalization (Szikszai et al., 2022; Justyna et al., 2023; Qiu, 2023), which raised
concerns in the community that the reported results were overly optimistic (Flamm et al., 2021).
Typically, training and test data were split solely based on sequence similarity (Singh et al., 2019;
Chen et al., 2020; Fu et al., 2022; Chen et al., 2022; Chen & Chan, 2023). However, it has been
extensively reported that this method is not sufficient to remove all similarities, as functional RNAs
are more conserved in structure than in sequence. For instance, it is well known that tRNAs fold
into a conserved clover-leaf structure, while the sequence similarity is low (Szikszai et al., 2024).

In this work, we present the RNAformer, an axial-attention-based model for RNA secondary struc-
ture prediction from single sequence inputs. The attention mechanism itself is independent of the
input size and the axial (row- and column-wise) attention architecture allows the RNAformer to pro-
cess a 2D matrix in the latent space to directly model the adjacency matrix. Our model does not
use additional features such as MSAs. While the single components of the architecture are not new,
their usage for RNA secondary structure prediction is novel and outperforms existing approaches. In
addition, an important contribution is our novel data curation pipeline. RNAs can be classified into
so-called RNA families, based on their structure and sequence similarity. Thus, we use sequence-
and structure-based alignments of RNAs to split our training and test data in a family-based manner;
an essential step to reliably assess the performance of RNA secondary structure prediction methods
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on unseen data. This allows for a clean split of training and test data, overcoming limitations in
previous deep learning approaches for RNA secondary structure prediction.

RNAformer 
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Figure 2: An overview of the neural architecture
of the RNAformer. It has a lean design consist-
ing of an embedding, axial-attention and convolu-
tional network blocks, and a linear output layer.

We trained and evaluated the RNAformer in
two settings. First, we study the scalabil-
ity and learning capabilities of our model by
learning a biophysical model of RNA fold-
ing. We address the problem of similarity and
homology learning by training on a synthetic
dataset and testing on unseen families. Our
analysis reveals that the RNAformer can accu-
rately capture the sequence and structure fea-
tures while scaling linearly in the number of
predicted base pairs, in contrast to the prob-
lematic quadratic scaling behavior in the num-
ber of predicted base pairs previously reported
for deep learning approaches (Flamm et al.,
2021). Second, we pre-train our model with
a families-based train-test-split and use a fine-
tuning strategy to evaluate on experimentally
derived RNA secondary structures from the
Protein Data Bank (PDB) (Berman et al., 2000).
Here, the RNAformer shows superior perfor-
mance on unseen PDB samples. In particular,
our model seems to capture long-range tertiary
interactions and base multiplets very well as ex-
emplified in the prediction of PDB ID 1EHZ
shown in Figure 1. These experiments demon-
strate that the RNAformer outperforms other
approaches, including those that use more so-
phisticated models, are trained on homologous
data, or employ additional information such as
MSAs. We make our non-homologous data
splits, training pipeline, and pre-trained models
publicly available1.

In summary, our contributions are as follows:
• We present a lean, scalable, and interpretable deep learning architecture for RNA secondary

structure prediction directly modeling the 2D pair matrix in latent space in Section 2.
• We introduce a novel data curation pipeline to overcome homology-related caveats raised by

the RNA community in Section 3
• We provide an extensive experimental evaluation of both the model and data pipeline, and show

state-of-the-art performance on RNA secondary structure prediction in Section 4

2 THE RNAFORMER

The architecture of the RNAformer is inspired by the protein folding algorithm AlphaFold (Jumper
et al., 2021), which models a pair matrix in the latent space and processes it with the use of axial
attention (Ho et al., 2019). In contrast to AlphaFold and similar to Lin et al. (2023), we dispense the
use of a multi-sequence alignment due to its well-known limitations in RNA (Singh et al., 2021b;
Schneider et al., 2023). In contrast to other deep learning based RNA secondary structure prediction
models Singh et al. (2019; 2021a); Chen et al. (2022); Sato et al. (2021); Chen et al. (2020); Franke
et al. (2022); Jung et al. (2022), we directly model the 2D pair matrix in latent space. This has the
benefit, that the latent representation is already capable of representing pseudoknots and multiples
and the final prediction of pairings between all nucleotides, the adjacency matrix, is just a linear
operation. In contrast to purely CNN-based approaches Fu et al. (2022); Tan et al. (2024), our
receptive field is not sequence length dependent.

1An anonymized repository is available at anonymous.4open.science/r/RNAformer ICLR25.
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2.1 DETAILS OF THE NEURAL ARCHITECTURE

The RNAformer (see Figure 2) inputs a nucleotide sequence X ∈ {A, C, G, U, N}l of length l
and embeds it twice, one row- and one column-wise embedding, to generate a 2D representation
in the model’s latent space. The embeddings can be represented as Erow = Embedrow(X) and
Ecol = Embedcol(X), where Erow ∈ Rl×d and Ecol ∈ Rl×d are the row-wise and column-wise
embeddings respectively, with d being the latent dimension. The broadcasting and combination of
these two matrices to form a 2D latent space can be represented as:

L(0) = Erow ⊕ ET
col, (1)

where L(0) ∈ Rl×l×d is the 2D representation in the d-dimensional latent space, and ⊕ denotes
the broadcasting and addition operation; i.e., L(0)[i, j] = Erow[i] + ET

col[j]. We use rotary position
embedding instead of positional encoding Su et al. (2024). The resulting latent representation will
be further processed by a stack of M RNAformer blocks

L(i) = RNAformerBlock(L(i−1)), for i = 1, 2, . . . ,M. (2)

Each block consists of a row-wise and column-wise axial attention network ’AxialAttentionNet’,
followed by a transition network ’TransitionConvNet’. We apply residual connections, pre-layer
norm, and dropout to all three layers. A single RNAformer block can then be represented as:

L(i)′ = L(i) + AxialAttentionNetrow(L
(i))

L(i)′′ = L(i)′ + AxialAttentionNetcol(L
(i)′)

L(i+1) = L(i)′′ + TransitionConvNet(L(i)′′).

(3)

An optimal attention for a 2D latent representation would create a 3D attention tensor, due to
memory limitations, this is not feasible and we split the attention into two consecutive row- and
column-wise AxialAttentionNet. Each AxialAttentionNet consists of a linear layer to create the
query, key, and value and a linear layer to project its output. The axial attention mechanism (Ho
et al., 2019) applies attention mechanisms over each axis independently, enabling memory-efficient
multi-dimensional attention. More specifically, the axial attention mechanism can be mathemati-
cally represented with indices for rows i and columns j for each 2-dimensional input to the attention
mechanism (Vaswani et al., 2017): query Q ∈ Rl×l×d, key K ∈ Rl×l×d, and value V ∈ Rl×l×d for
a sequence length of l and a latent dimension of d. We compute for each column j = 1, · · · , l

AxialAttentionrow(Q,K, V, j) = softmax

(
Q:,j,:K

T
:,j,:√

d

)
V:,j,:

and for each row i = 1, · · · , l the respective AxialAttentioncol(Q,K, V, i). Our model achieves a
complete receptive field by applying attention consecutively along each axis, in contrast to purely
convolutional networks (CNN) that expand this field over multiple layers. Therefore, in a CNN
the number of layers required to achieve a full receptive field depends on the input length. This
could be harmful for data with highly varied input lengths such as RNA sequences. Our approach
may therefore be better suited for secondary structure prediction since each layer accesses the entire
sequence and can iteratively refine the structure prediction.

The transition layer in the vanilla transformer is a point-wise feed-forward network. However,
we found a convolutional network performs better in our architecture. The convolution helps to
model local structures like stem-loops while the axial attention layers capture long-range informa-
tion across the entire input structure. The TransitionConvNet consists of two convolutional layers
with a SiLU activation function (Elfwing et al., 2018) in the middle.

To generate a prediction, we apply a single linear layer after the RNAformer stack and output the
binary pairing probability matrix P ∈ Rl×l of the secondary structure directly:

P = sigmoid(Linear(L(M)))

This provides several advantages over the more commonly employed dot-bracket notation output
(Hofacker et al., 1994; Franke et al., 2022), which in contrast, makes it impractical to predict multi-
plets, difficult to predict pseudoknots, and requires post-processing to create a pair matrix.
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To artificially increase the model depth, we apply recycling in the latent space, similar to Jumper
et al. (2021), allowing the model to reprocess and correct its own predictions internally: We apply the
RNAformer blocks multiple times by normalizing and adding the block output back to the embedded
input and then infer the RNAformer blocks again. During training, gradients are only computed for
the last recycling iteration.

2.2 SPARSE ADJACENCY LOSS

The adjacency matrices representing RNA secondary structures tend to be heavily dominated by
zero entries as an RNA sequence of length l forms at most l/2 base pairs that result in l2 − l/2
non-zero entries, without considering multiplets. We employ a masking technique during training
to address the imbalance within such matrix representations. First, we mask everything except of all
non-zero entries (all pairings) and a region around these non-zero entries. Next, we randomly select
40% of the remaining zero entries (80% during the fine-tuning stage) to exclude from the mask too,
effectively utilizing approximately 40% (80%) of the adjacency matrix entries for training. We treat
the prediction of each entry of the masked adjacency matrix as a separate classification problem,
for which binary cross-entropy between prediction P and the true value is calculated. The mean of
the entry-wise losses is then minimized while the masked regions are ignored. Further details on
masking are provided in Appendix A.

3 RNA HOMOLOGY AWARE DATA PIPELINE

A clean split between training and test data is crucial for the success of deep learning training and
obtaining a reliable model. The responsible data pipeline consists of data collection, pre-processing,
filtering, and splitting. For RNA, this data splitting has to account for both sequence and structure
similarity to determine homology and evolutionary conservation (Rivas, 2021), as issues of homol-
ogy contamination between training and test data are well-known (Rivas et al., 2012). In recent
years, several deep learning models have been proposed for RNA secondary structure prediction,
each providing state-of-the-art performance on various datasets (Singh et al., 2019; Chen et al.,
2020; Fu et al., 2022; Chen et al., 2022; Chen & Chan, 2023; Jung et al., 2022; Tan et al., 2024).
However, their results are often misleading due to flawed data processing pipelines that consider
only sequence similarity, raising criticism and doubts within the community about the general capa-
bilities of deep learning methods to learn the underlying RNA folding process (Flamm et al., 2021;
Szikszai et al., 2022; Qiu, 2023). In this section, we outline our approach to preparing homology-
aware RNA data splits. We first describe how we generate a synthetic dataset based on the notion
of RNA families (Section 3.1), before we detail our strategy for splitting publicly available datasets
into non-homologous subsets, considering both sequence and structure similarity (Section 3.2).

3.1 FAMILY-BASED SYNTHETIC DATA GENERATION

To test our architecture, we construct a independent, synthetic dataset based on selected RNA fam-
ilies from the Rfam database version 14.9. Specifically, we sample sequences from the covariance
models of every RNA family and fold each of these sequences with RNAfold (Lorenz et al., 2011)
to obtain the secondary structure. We assign the sequences of 30 families to the test set, 25 to the
validation set, and the remaining 3796 families to the training set ensuring no overlap of families
between the datasets. The resulting datasets contain 410408, 2727, and 3344 samples for training,
validation, and testing, respectively. A more detailed description of the sampling process is provided
in Appendix B.1.

3.2 HOMOLOGY AWARE RNA DATA SPLITS

In the following, we explain our approach to curating an accurate, homology-aware RNA train/test
split for experimental data that is independent of of the synthetic data used before.

Data Collection We collect a large training data pool from the following public sources: the bpRNA-
1m meta-database (Danaee et al., 2018), the ArchiveII (Sloma & Mathews, 2016) and RNAS-
trAlign (Tan et al., 2017) datasets provided by (Chen et al., 2020), all data from RNA-Strand (An-
dronescu et al., 2008), as well as all RNA-containing data from the Protein Data Bank (PDB) (wwp,

5
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2019), downloaded on September 23, 2023. After removing redundant sequences, our initial data
pool consists of 107, 098 samples. We use the commonly used test sets TS1, TS2, TS3, and
TS-Hard, and the sets VL0, VL1, and another 50 randomly selected PDB samples for validation.
All four test sets as well as VL0 and VL1 are originally provided by (Singh et al., 2019) and (Singh
et al., 2021b). For our evaluations, we gather TS1, TS2, and TS3 into a single test set, TS-PDB,
containing 125 samples, and keep the TS-Hard set separate for further analysis.

Data Pre-processing Secondary structures for PDB samples were derived from the 3D structure
information using DSSR (Lu et al., 2015). For NMR-solved structures, such as those in TS2, model-
1 structures were considered as the reference structure. For annotation of pseudoknots, we use
bpRNA (Danaee et al., 2018), while ignoring base multiplets.

Data Filtering Our filtering pipeline consists of three steps: 1) We use CD-HIT-EST (Fu et al.,
2012) to remove sequence similarity between training, validation, and test samples at the strictest
threshold of 80%. 2) We perform a subsequent BLAST-N search (Altschul et al., 1997) to remove
hits from the training and validation data for every test sequence at a very high e-value of 10. 3)
We build covariance models, similar to those used for the RNA family database (Rfam) (Kalvari
et al., 2020), for every test sample considering sequence and structure similarity using LocaRNA-
P (Will et al., 2012) and Infernal (Nawrocki & Eddy, 2013), and remove every training and validation
sample with a hit against any of the covariance models at an e-value of 0.1. In line with the recent
literature, we apply a general length cutoff at 500 nucleotides to reduce computational costs during
training (Singh et al., 2019; 2021b; Fu et al., 2022). For a more detailed description of this step,
please see Appendix B.2.

Data Splitting For training the RNAformer, we curate three datasets: (1) Following the strictest data
processing pipeline used in previous work (Singh et al., 2021b), we curate a pre-training dataset of
66, 242 samples that is non-homologous with respect to TS-Hard, while considering sequence
similarity (80% similarity cutoff and BLAST-N search; see Appendix B.2) only for TS-PDB. This
procedure ensures that the RNAformer is comparable to all other methods after pre-training. (2)
To compare against AlphaFold 3, we create a non-filtered fine-tuning set, FT-Homolog, consist-
ing of 4244 samples drawn from all PDB entries in the initial pool, using the same cutoff date for
data selection as AlphaFold 3 (September 30, 2021) without considering homologies but exclud-
ing sequences with an exact match in TS-PDB or TS-Hard. (3) Lastly, we create a fine-tuning
set, FT-Non-Homolog, of 3432 PDB samples without sequence and structure similarity between
them and the test samples in TS-PDB and TS-Hard ensured by using our three-step-pipeline. We
provide an overview of the datasets in Appendix Table B.2.

4 EXPERIMENTS

We perform two types of experiments: first, on synthetic data to test the architecture’s capabilities
(Section 4.1), and then on experimental data to show the impact of data homologies and performance
on PDB samples ( Section 4.2).

All experiments are implemented in PyTorch (Paszke et al., 2019). We train the smallest RNAformer
on a single NVIDIA A10 GPU and the others on 4-8 A100 GPUs. We use AdamW (Loshchilov
& Hutter, 2019) with weight decay 0.1 as the optimizer for pre-training and AdamCPR (Franke
et al., 2023) with an L2-norm constraint of 0.8 of the initial parameter L2 norm for fine-tuning.
In both cases, we apply a cosine learning rate schedule and a learning rate warm-up. Due to the
two-dimensional latent space, we have a higher memory footprint. We adress this by limiting the
sequence length to 500, using FlashAttention for a memory-efficient implementation (Dao et al.,
2022), and using gradient accumulation. We provide additional hyperparameters in Appendix Ta-
ble C. We treat RNA secondary structure prediction as a binary classification task over the base pairs
and use the masking technique described in Section 2.2 to address the class imbalance.

4.1 LEARNING A BIOPHYSICAL MODEL

It was disputed in the RNA community whether deep learning approaches are generally capable of
learning a biophysical model of RNA folding, or if the strong performance results from similar-
ity between training and test samples only (Flamm et al., 2021; Szikszai et al., 2022; Qiu, 2023).
We address this by learning a biophysical model implemented in the thermodynamic model of

6
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Table 1: We train models in three different sizes, with (⟲) and without recycling, on a dataset
created with RNAfold predictions of the Rfam sequences. We evaluate on a family-based test set
split and report the mean F1 score (see Appendix D) for the predicted base pairs across three runs
with different random seeds. A structure is considered solved if the prediction matches the ground
truth exactly. The scores increase with model size, demonstrating the scalability of the RNAformer
architecture. High scores indicate that our model is capable of learning a biophysical model, similar
to RNAfold.

Model Rfam TS

F1 score Solved

RNAformer 32M ⟲ 0.967 83.5%
RNAformer 32M 0.948 68.1%
RNAformer 8M 0.919 49.7%
RNAformer 2M 0.846 22.9%

RNAfold (Hofacker et al., 1994) as recently suggested (Flamm et al., 2021). A straightforward
approach for our experiment is to use synthetic data, where we can generate large amounts of train-
ing samples while having full control over sequence length and family affinity as described in detail
in Section 3.1. This simplified setup allows us to analyze different aspects of our model without
restrictions on the number of available training samples and to assess the general ability of the
RNAformer to learn reasonable features of RNA structures across families.

RNAformer’s Performance Scales with Model Size An important property of modern deep learn-
ing algorithms is that their performance scales with data and model size (Kaplan et al., 2020). To
test the scalability of the RNAformer, we train multiple RNAformer model sizes with 2M , 8M , and
32M parameters. We train each model three times with random seeds and report the mean results
over the runs. As shown in Table 1, we increasingly approach RNAfold’s “ground truth” results as
we increase the model size. Our largest model achieves a high mean F1 score of 0.948 (±0.026;
see Table 1 on the test set). This could be further improved by using latent space recycling (Jumper
et al., 2021) to an F1 Score of 0.967± 0.017 and 84% correct structure predictions.

RNAformer Learns Sequence and Structure Features To further analyze the structure predictions
learned by the RNAformer, we compare its output to the ground truth data with respect to different
structural features like stems or multi-loops and analyze the ratios of base pairs. The RNAformer
captures all the structural features nearly perfectly with all base pair frequencies matched exactly, see
Appendix Table E.1. In accordance with the underlying data generated with RNAfold, which only
contains canonical base pairs, the RNAformer does not predict any non-canonical base pairs across
three independent runs. Furthermore, our model strongly reduces false predictions of pseudoknots
and multiplets. Previous work reported 48.8% pseudoknot and 75.6% multiplet predictions for the
samples in a similar experiment without pseudoknots and multiplets in the datasets (Flamm et al.,
2021). Here, only 1.9% of the predictions of the RNAformer contained pseudoknots and 5.3%
included multiplet predictions.

It was recently shown that some deep learning methods scale quadratically in the number of pre-
dicted base pairs with increasing sequence length, a considerable flaw since a structure of length l
must form less than l/2 base pairs (ignoring multiplets) (Flamm et al., 2021). We, therefore, an-
alyze the number of predicted base pairs of the RNAformer as a function of the sequence length
when training on the synthetic data provided by RNAfold predictions. The results are summarized
in Figure 3. Although the RNAformer slightly overestimates the number of base pairs, our analy-
sis reveals robust support for linear scaling behavior and no heteroscedasticity of the residuals, we
report details in Appendix F.

4.2 LEARNING HOMOLOGY AWARE RNA SECONDARY STRUCTURE PREDICTION

RNA secondary structures derived from 3D structures from PDB are considered the gold standard
of secondary structure data. Most of the derived structures contain pseudoknots and base multiplets,
which are typically excluded from most RNA secondary structure datasets and not considered by
traditional methods. Since high-quality RNA data is scarce, recent deep learning methods typically

7
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Figure 3: Analysis of the number of predicted base pairs of the RNAformer over different sequence
lengths. a) Linear regression fit of the RNAformer predictions (blue) and the ground truth RNAfold
(yellow). The number of predicted base pairs scales linearly with the sequence length for both the
RNAformer predictions and RNAfold. b) Analysis of the residuals (errors). The residuals show no
heteroscedasticity, albeit there are a few outliers for the RNAformer without statistical significance,
indicating equal variance of the predictions over the sequence lengths. c) The distributions of the
residuals. The error distributions of the linear regression models for RNAfold and RNAformer
predictions appear visually similar and close to a normal distribution.

Table 2: The mean F1-score of the base pair predictions from three fine-tuning runs with different
random seeds of the RNAformer compared to AlphaFold 3 on TS-PDB and TS-Hard.

Model (trained without homology awareness) TS-PDB TS-Hard

RNAformer 0.855 0.845
Alphafold 3 (Abramson et al., 2024) 0.817 0.688

use a fine-tuning strategy by first pre-training a model on large amounts of secondary structure data
that was predominantly derived from comparative sequence analysis (Choudhary et al., 2017) and
then fine-tuning the model on the high-quality experimental data (Singh et al., 2019; 2021b; Fu
et al., 2022). We apply the fine-tuning strategy for the RNAformer by first pre-training a model on
a large corpus of data collected from several publicly available databases (see Section 3) and then
fine-tuning our model on high-quality experimental data collected from the PDB as described in
Section 3. For evaluation, we use the two test sets TS-PDB and TS-Hard. Both test sets contain
all types of base interactions, including non-canonical base pairs, pseudoknots, and base multiplets.

4.2.1 PREDICTION QUALITY WITHOUT HOMOLOGY AWARENESS

We first use the pre-trained model to finetune an RNAformer on the non-filtered dataset
FT-Homolog. This experiment provides an upper bound for the performance by allowing ho-
mology between training and test data. We compare RNAformer with the current best RNA 3D
structure prediction model, AlphaFold 3 (Abramson et al., 2024). This setup is a fair comparison
because AlphaFold 3 did not consider data homologies either. Since Alphafold 3 predicts the entire
3D structure, we use DSSR (Lu et al., 2015) to extract the secondary structures from their tertiary
predictions. The results comparing the RNAformer and AlphaFold 3 on RNA secondary structure
prediction are shown in Table 2. Surprisingly, the RNAformer outperforms Alphafold 3 on both test
sets, achieving high F1 scores of 0.855 and 0.845 on TS-PDB and TS-Hard, respectively, com-
pared to 0.817 and 0.688 by AlphaFold 3. While the prediction of RNA 3D structures as done with
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Table 3: The mean F1-score on the base pair prediction of three runs on FT-Non-Homolog
with different randomly chosen seeds of the RNAformer in comparison to other methods on the
TS-PDB and TS-Hard benchmarks. We use the following abbreviations for additional require-
ments: ES – Ensemble, TP – Thermodynamic Parameters, MSA – Multi-sequence Alignment, PRE
– Pre-processing, PO – Postprocessing, EM – Embeddings. Only ss80 refers to methods with data
pipelines that only consider sequence similarity at a cutoff of 80% during data splitting. We observe
that the RNAformer outperforms existing methods, despite having a stricter data pipeline and with-
out additional data requirements such as MSAs. Please find additional metrics in Appendix G

Model Only Additional TS-PDB TS-Hard
ss80 Requirements F1-Score F1-Score

RNAformer finetuned – 0.764 0.679
RNAformer pretrain – 0.723 0.601

SPOT-RNA2 (Singh et al., 2021b) PRE, MSA 0.754 0.666
UFold (Fu et al., 2022) ✗ PO 0.738 0.587
SPOT-RNA (Singh et al., 2019) ✗ ES 0.734 0.663
RNA-FM (Chen et al., 2022) ✗ EM 0.729 0.665
MXFold2 (Sato et al., 2021) TP 0.691 0.667
ContraFold (Do et al., 2006) – 0.669 0.625
SPOT-RNA2 w/o MSA PRE 0.668 0.637
RNAFold (Lorenz et al., 2011) n/a TP 0.659 0.636
LinearFold-V (Huang et al., 2019) n/a – 0.657 0.633
IPknot (Sato et al., 2011) n/a PO 0.652 0.611
RNAstructure (Reuter & Mathews, 2010) n/a TP 0.642 0.606
LinearFold-C (Huang et al., 2019) n/a – 0.632 0.610
PKiss (Janssen & Giegerich, 2015) n/a TP 0.615 0.613

AlphaFold 3 is arguably more challenging and typically would not allow a direct comparison, our re-
sults highlight that the RNAformer is capable of successfully learning the features of experimentally
derived RNA secondary structures with high accuracy.

4.2.2 STATE-OF-THE-ART HOMOLOGY AWARE RNA SECONDARY STRUCTURE PREDICTION

We finetune the base model on the FT-Non-Homolog dataset to get a homology-aware RNA
secondary structure prediction model. Table 3 provides an overview of results in comparison to other
approaches. We report the mean performance across three training runs with different random seeds
for the RNAformer. Despite other methods using less strict homology criteria in the data pipeline
or additional requirements, they are outperformed by the RNAformer on the two test sets after fine-
tuning with F1 Scores of 0.764 on TS-PDB and 0.679 on TS-Hard. We found the fine-tuning
strategy crucial to achieving state-of-the-art results on experimental data. While solely pre-training
achieved on-par performance with RNA-FM on the test set TS-PDB, fine-tuning further increased
performance by roughly 6%. This improvement is even stronger for TS-Hard, where we observe
an increase in the F1 Score of roughly 12%. We provide a visual comparison of the RNAformer to
SPORT-RNA2 and RNAfold in Figure 1 and in Appendix Figure H.1. We find that the RNAformer
captures the topology of the structure nearly exactly. We further analyze the predictions on TS-PDB
as a function of the sequence length, we compare the RNAformer with the most commonly used
methods. Appendix Figure I.1 shows the results of a linear regression fit for each of the models. The
performance of the RNAformer only slightly decreases with the length of the input sequence, while
we observe a stronger decrease RNAfold and RNAstructure.

Our evaluations on the test set TS-Hard, suggest that the performance of the RNAformer still
correlates with the homology between training and test samples, since we apply the strictest data
processing pipeline in the pre-training stage to TS-Hard. This is in line with the benefits from
homologous data in the experiments in Section 4.2.1. However, our analysis of experimentally de-
rived structures supports our finding that the RNAformer generalizes better to unseen RNA families.
A key contributor to this achievement is our problem domain-specific architecture, which allows
the RNAformer to successively refine its own prediction across layers, as indicated by the atten-
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Layer 1 Layer 3 Layer 5 Pred. Adjacency Matrix True Adjacency Matrix
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Figure 4: We analyze the attention matrices of different layers of the RNAformer, followed by
its final predicted adjacency matrix, and the true structure for PDB ID 1EHZ (XRD, 1.93 Å). We
observe a gradual refinement of the adjacency matrix in the latent space beginning with the row and
column embedding in the first layer and gradually contributing to the final prediction. Each point in
the final predicted matrix represents the probability that a base pair exists.

tion heatmaps shown in Figure 4. We provide additional plots of different samples in Appendix
Figure J.1.

5 DISCUSSION & CONCLUSION

Our experiments show that the RNAformer architecture can learn a biophysical model as indicated
by very high F1 Scores of 0.967 when remodeling the predictions of RNAfold as well as nearly per-
fect reconstruction of the sequence and structure features (see Table 1 and Table E.1, respectively).
Furthermore, our approach overcomes the quadratic scaling behavior in the number of predicted
base pairs with increasing sequence length that was reported previously for deep learning-based ap-
proaches, scaling linearly in the number of predicted base pairs. Since we learn our model across
families, we preclude that the strong performance results from learning data homologies, but rather,
that it indicates RNAformer has learned the underlying biophysical model of the RNAfold modeling
of the folding process.

Our study for the predictions on experimentally derived structures with all types of base interac-
tions revealed that fine-tuning appears to be crucial to achieving strong performance. Compared to
our pre-training model, the performance improved substantially after fine-tuning, resulting in state-
of-the-art performance while using much stricter criteria to avoid homology between training and
test data compared to previous work (Table 3). Notably, we observe that the RNAformer even out-
performs the current state-of-the-art homology modeling method SPOT-RNA2 without the use of
MSAs. The RNAformer is thus capable of predicting the structures of RNA for completely unseen
families. The importance of the data processing is further supported by our strong performance on
homologous data, outperforming AlphaFold 3.

On the downside, the additional performance of the RNAformer comes with a large memory re-
quirement due to the two-dimensional representation in the latent space. However, an inference step
is still very fast since it requires only one forward pass and advancements in tensor and graphic
processing units increase the accessibility to larger deep learning models despite increasing com-
putational demands. While the matrix representation of secondary structures enables deep learning
methods to predict all types of base pairs, the sparsity of base pairs in the matrix bears the risk
of incorrect classifications. The potential space of incorrect predictions scales quadratically with
sequence length, while the number of base pairs only scales linearly. This achievement could be
attributed to our loss masking technique which reduces the class imbalance. Nevertheless, in our
experiments on synthetic data, the RNAformer strongly reduces the number of incorrectly predicted
pseudoknots from roughly 50% reported in previous work to roughly 2% (Flamm et al., 2021).
For multiplets, this reduction is even stronger where RNAformer predicts roughly 5% of multiplets
compared to 75% reported previously (Flamm et al., 2021).

Overall, our comprehensive analysis clearly demonstrates that our lean deep neural network archi-
tecture achieves state-of-the-art performance on RNA secondary structure prediction without the
need for additional features. The RNAformer overcomes the flaws reported for previous deep learn-
ing based approaches, making it a strong alternative to commonly used, non-deep learning based
methods in the field.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made our source code, model checkpoints,
and datasets publicly available in the anonymous repository https://anonymous.4open.
science/r/RNAformer_ICLR25. The repository contains detailed instructions for setting up
the environment, including specific Python package versions (see requirements.txt). Model
checkpoints for all experiments (base model, synthetic data trained model, and finetuned models)
are provided in the models directory, with instructions for unpacking. Our datasets are stored in
the datasets directory, also with decompression instructions. We provide scripts for evaluat-
ing trained models (evaluate RNAformer.py) and for reproducing our training procedures
(pretrain RNAformer.py and finetune RNAformer.py). The README.md includes
specific command-line arguments for each experiment, ensuring exact replication of our results.
Hardware requirements (GPU specifications) for both evaluation and training are clearly stated. By
following the provided instructions, researchers should be able to reproduce our environment, eval-
uate our models, and replicate our experiments with minimal ambiguity.
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APPENDIX

A MASKING
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Figure A.1: Mask construction process for a sequence of 23 nucleotides (nts) with padding of 2 due
to a batch with a maximum length of 25 nts. (a) Original adjacency matrix with 4 base pairs (BPs).
Black entries represent BPs, white-unpaired regions, and red entries indicate padding. (b) Mask
after the first step (white area will be ignored during training): selecting regions with vicinity of 3
from the BPs. (c) Mask after second step: expanding mask to 60% of entries with random unpaired
bases.

B DATA

This section details the process of dataset creation used for learning the RNA biophysical model
as well as the homology-aware secondary structure prediction. In the latter case, we consider both
sequence and structure similarity between the training and test sets to avoid data leakage due to
structural homology, which is recognized as a significant factor in the model’s performance. (Flamm
et al., 2021; Szikszai et al., 2022; Qiu, 2023)

B.1 SYNTHETIC DATASET

The synthetic dataset is created based on the Rfam database version 14.9 (Kalvari et al., 2020).
First, we select Rfam families with covariance model (CM) characterized by the maximum number
of matching position in the alignment (CLEN) of ≤ 500 and generate a large set of sequences from
CM of each selected family using Infernal. We then combine sampled sequences into the initial
dataset in a way that guarantees two-thirds being generated from CMs with CLEN ≤ 200 and one-
third from CMs with CLEN > 200, with the latter used to increase family diversity. To obtain
the corresponding secondary structures, the sequences are folded using RNAfold. Prior to that, we
apply a length cutoff at 200 nucleotides because RNAfold’s prediction accuracy drops on longer
sequences and this reduces computational costs. The resulting dataset contains 410408, 2727, and
3344 samples from 3796, 25, and 30 families for the training, validation, and test sets, respectively.
Further details can be found in Table B.1.

B.2 EXPERIMENTAL DATASET

A common way of ensuring a fair comparison between RNAformer and its competitors would be to
retrain and evaluate them on the same datasets. However, this would be computationally infeasible
and in some cases impossible due to the undisclosed training pipelines (Singh et al., 2019; 2021b;
Abramson et al., 2024). Hence, we propose an alternative strategy, in which we group methods
based on the level of homology between their training and test sets defined by the sequence and
structure similarity.

Recent publications report three different ways of assessing similarity between sets and following
that, our data processing pipeline consists of three steps: 1) We use CD-HIT-EST (Fu et al., 2012) to
remove sequence similarity between training, validation, and test samples, 2) a subsequent BLAST-
N search (Altschul et al., 1997) removes hits from the training and validation sets for any sequence
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in the test set, and 3) we implement a pipeline that considers sequence and structure similarity to
ensure non-homologous data splits.

Sequence Similarity We remove sequence similarity between the training, validation, and test
sets by applying CD-HIT-EST with a similarity cutoff at 80% between all sets. This pipeline is
commonly used in previous works (Singh et al., 2019; Sato et al., 2021; Fu et al., 2022; Chen et al.,
2022; Franke et al., 2022)

BLAST-N Search In addition to removing similar sequences via CD-HIT-EST, we apply a
BLAST-N-search (Altschul et al., 1997) at a high e-value of 10 to further remove training and val-
idation samples that are recognized by BLAST-N as hits for any of the test samples. This pipeline
was applied by SPOT-RNA and SPOT-RNA2 to further reduce sequence similarity (Singh et al.,
2019; 2021b).

Covariance Models We use BLAST-N (Altschul et al., 1997) to search for homologs for each
sample of the test sets TS-PDB and TS-Hard using NCBI’s nt database as a reference. We then
create sequence- and structure-aware alignments using LocARNA-P (Will et al., 2012). For each
of the resulting alignments, we build a covariance model using Infernal (Nawrocki & Eddy, 2013)
and remove training and validation samples with a hit to the covariance model at an e-value of
0.1. A similar data pipeline was used for SPOT-RNA2 (Singh et al., 2021b), however, in that work
the consensus structures for alignments were predicted using SPOT-RNA instead of an appropriate
sequence- and structure-based alignment tool like LocARNA-P.

Table B.1: Overview of datasets used in the biophysical model experiment. This dataset is gener-
ated by inferring RNAfold.

Dataset # Samples Length # Families
Minimum Maximum Mean Median

Train 410408 22 200 95.2 85.0 3796
Valid 2727 34 160 80.2 78.0 25
Test 3344 37 182 79.4 74.0 30

Table B.2: Overview of datasets derived from experimental structures and comparative sequence
analysis.

Minimum Maximum Mean Median

Pre-training 66242 13 500 129.0 99.0
FT-Homolog 4244 4 200 57.9 47.0
FT Non-Homolog 3432 11 200 61.7 48.0
Valid (Pre-Training) 1302 33 497 131.0 105.0
Valid (FT-Homolog) 105 33 189 68.0 58.0
Valid (FT Non-Homolog) 35 33 159 76.4 64.0

TS-PDB 125 33 189 68.0 61.0
TS-Hard 28 34 189 65.6 50.5
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C HYPERPAREMTERS

Table C.1: RNAformer Hyperparameters for Pretraining

Hyperparameter Homology-Aware Base Model Biophysical Model

Model Architecture
Model Dimension 256 256
Number of RNAformer Blocks 6 6
Number of Attention Heads 4 4
ConvNet Dimonsion 1024 1024
ConvNet Kernel Size 3 3
Embedding Dropout 0.4 0.1
Residual Dropout 0.4 0.1
Layer Normalization Epsilon 1.0e-05 1.0e-05
Initializer Range 0.02 0.02
Maximum Sequence Length 500 200
Minimum Sequence Length 10 10

Optimizer (AdamW)
Learning Rate 0.001 0.001
Weight Decay 0.1 0.1
Beta 1 0.9 0.9
Beta 2 0.98 0.98

Learning Rate Scheduler
Schedule Cosine Cosine
Decay Factor 0.01 0.01
Warmup Steps 1000 2000
Total Training Steps 20000 100000

Training Configuration
Batch Token Size 400 600
Latent Recycling 1 6
Gradient Accumulation Steps 8 0
Number of Devices 4 4
Gradient Clipping Value 1.0 1.0
Number of Nodes 2 2
Precision BF16 Mixed BF16 Mixed

Table C.2: RNAformer Hyperparameters for Finetuning

Hyperparameter Homology-Aware Finetuning AF3-like Finetuning

Batch Size 128 128
Effective Batch Size 4 4
Maximum Sequence Length 200 200
Maximum Training Steps 1200 4000
Warmup Steps 800 2000
Learning Rate 1.0e-06 1.0e-04
Learning Rate Scheduler Constant Constant
Gradient Clipping Value 0.1 0.1
Number of Devices 4 4
Precision BF16 Mixed BF16 Mixed
Cycling 8 8
CPR Initialization Dependent Dependent
CPR Parameter 0.8 0.8
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D METRICS

We employ commonly used measures for RNA secondary structure prediction: F1 score, MCC, and
F1-shift which are calculated based on a confusion matrix that describes the number of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) of a given prediction.

F1 score The F1 score describes the harmonic mean of precision (PR = TP/(TP + FP )) and
recall (RC = TP/(TP + FN) written as F1 = 2 · TP/(2 · TP + FP + FN).

Matthews Correlation Coefficient While the F1 score emphasizes positives, the MCC is a more
balanced measure defined as:

MCC =
(TP · TN)− (FP · FN)√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(4)

F1-shift The F1-shift accounts for structural dynamics in RNAs (Mathews, 2019) and is computed
similarly to the F1 score with the difference that for a given pair (i, j) all pairs (i, j + 1), (i+ 1, j),
(i, j − 1), and (i− 1, j) are also considered correct.

E QUALITATIVE ANALYSIS OF BIOPHYSICAL MODEL EXPERIMENT

Table E.1: Analysis of structural elements and base pair predictions of the RNAformer and the
RNAfold algorithm. We use the following abbreviations: S – Stem, HL – Hairpin Loop, EL –
External Loop, IL – Internal Loop, BL – Bulge Loop. The prediction frequencies of the elements
are nearly identical.

Relative frequency of bases in structural context

Model S HL ML EL IL BL
RNAformer 0.602 0.132 0.016 0.089 0.109 0.030

RNAfold Lorenz et al. (2011) 0.607 0.131 0.015 0.090 0.105 0.031

Relative frequency of base pair types

Model AU UA GC CG GU UG
RNAformer 0.170 0.177 0.265 0.267 0.062 0.058

RNAfold Lorenz et al. (2011) 0.170 0.177 0.265 0.267 0.062 0.058
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F RNAFORMER’S NUMBER OF PREDICTED BASE PAIRS SCALES LINEARLY
WITH SEQUENCE LENGTH

Using Ordinary Least Squares (OLS) regression, we observe that both the number of predicted
base pairs of the RNAformer and RNAfold, scale linearly with sequence length (Figure 3 a)) with
coefficients of 0.3251 and 0.3408 for RNAfold and the RNAformer, respectively. These results
indicate a consistent increase in base pairs with longer sequences, albeit the RNAformer seems to
slightly overestimate the number of base pairs as indicated by the slightly higher coefficient. The
linear trend is further substantiated by high R2-values of 0.819 and 0.818 for the RNAformer and
RNAfold, respectively, demonstrating a strong goodness of fit of the linear models, which explain a
substantial portion of the variance in the data. Importantly, the residual analysis of the RNAformer
predictions (Figure 3 b)) revealed no heteroscedasticity as indicated by a non-significant p-value of
0.152 using Levene’s test.

Despite robust support for linearity, the residual distributions (Figure 3 c)) visually suggest nor-
mality; however, this hypothesis is statistically rejected as indicated by very low Shapiro-Wilk test
p-values for the RNAformer as well as RNAfold (near zero). Typically, this deviation from normal-
ity could compromise the reliability of regression standard errors, influencing confidence intervals
and hypothesis tests (Kutner et al., 2005). To address this, we employed a robust regression model
using the Huber T norm with a MAD scale estimate, which reduces the influence of outliers and
leverages points that could distort OLS regression estimations. This approach confirmed signifi-
cant linear terms (coefficients of 0.3392 for RNAformer and 0.3284 for RNAfold), closely aligning
with OLS regression results and bolstering our confidence in the linear model despite potential data
anomalies.

Furthermore, we implemented a Generalized Linear Model (GLM) with a Poisson distribution, apt
for modeling the count nature of base pairs which inherently accommodates their discrete and non-
negative distribution. The Poisson GLM, with its log link function, facilitated a transformation align-
ing with the expected count data behavior, reinforcing a consistent linear relationship when back-
transformed to the original scale (coefficients of 0.0109 for RNAformer and 0.0106 for RNAfold).
The excellent model fit, indicated by pseudo R2 values exceeding 0.93, validates the linear trend
across sequence lengths.

In conclusion, the comprehensive analysis employing OLS regression, robust regression, and Pois-
son GLM robustly confirms the linear scalability of the RNAformer’s predicted number of base
pairs with sequence length, providing a compelling alternative to previous models that were flawed
by quadratic scaling.
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G PERFORMANCE COMPARISON ON ADDITIONAL METRICS

To provide further insights into our evaluation, we list below the results of the different approaches
in our comparison with more metrics from Section D.

Table G.1: The mean performance of three fine-tuning runs with different random seeds of the
RNAformer in comparison to other methods on the TS-PDB benchmark.

Model TS-PDB

F1-Score F1-Shift MCC Precision Recall

RNAformer finetuned 0.764 0.793 0.767 0.834 0.720
RNAformer pretrained 0.723 0.750 0.733 0.846 0.655

SPOT-RNA2 (Singh et al., 2021b) 0.754 0.790 0.759 0.850 0.692
UFold (Fu et al., 2022) 0.738 0.770 0.741 0.816 0.686
SPOT-RNA (Singh et al., 2019) 0.734 0.758 0.742 0.851 0.665
RNA-FM (Chen et al., 2022) 0.729 0.752 0.741 0.878 0.643
MXFold2 (Sato et al., 2021) 0.691 0.718 0.704 0.856 0.593
ContraFold (Do et al., 2006) 0.669 0.697 0.678 0.803 0.588
SPOT-RNA2 w/o MSA 0.668 0.700 0.671 0.745 0.620
RNAFold (Lorenz et al., 2011) 0.659 0.682 0.667 0.792 0.576
LinearFold-V (Huang et al., 2019) 0.657 0.682 0.665 0.790 0.574
IPknot (Sato et al., 2011) 0.652 0.667 0.666 0.820 0.558
RNAstructure (Reuter & Mathews, 2010) 0.642 0.668 0.650 0.774 0.559
LinearFold-C (Huang et al., 2019) 0.632 0.650 0.648 0.809 0.537
PKiss (Janssen & Giegerich, 2015) 0.615 0.639 0.621 0.727 0.545

Table G.2: The mean performance of three fine-tuning runs with different random seeds of the
RNAformer in comparison to other methods on the TS-Hard benchmark.

Model TS-Hard

F1-Score F1-Shift MCC Precision Recall

RNAformer finetuned 0.679 0.703 0.684 0.762 0.631
RNAformer pretrain 0.601 0.629 0.616 0.747 0.537

MXFold2 (Sato et al., 2021) 0.667 0.695 0.676 0.800 0.588
SPOT-RNA2 (Singh et al., 2021b) 0.666 0.700 0.673 0.757 0.620
RNA-FM (Chen et al., 2022) 0.665 0.691 0.683 0.845 0.575
SPOT-RNA (Singh et al., 2019) 0.663 0.686 0.674 0.796 0.593
SPOT-RNA2 w/o MSA 0.637 0.667 0.639 0.692 0.613
RNAFold (Lorenz et al., 2011) 0.636 0.659 0.641 0.752 0.561
LinearFold-V (Huang et al., 2019) 0.633 0.659 0.638 0.749 0.558
ContraFold (Do et al., 2006) 0.625 0.659 0.636 0.756 0.557
PKiss (Janssen & Giegerich, 2015) 0.613 0.640 0.620 0.715 0.558
IPknot (Sato et al., 2011) 0.611 0.617 0.624 0.767 0.528
LinearFold-C (Huang et al., 2019) 0.610 0.630 0.628 0.796 0.514
RNAstructure (Reuter & Mathews, 2010) 0.606 0.633 0.611 0.722 0.533
UFold (Fu et al., 2022) 0.587 0.623 0.591 0.657 0.553
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H ADDITIONAL SAMPLES OF RNA SECONDARY STRUCTURE PREDICTIONS

figures/1_13_17_24_108_gt_rnaformer_spot2_rnafold_radidate_line_roman.pdf

Figure H.1: Example secondary structure predictions for RNA samples with PDB IDs (top to bot-
tom): 2LHP (NMR, 100%, E-Value: 2.264e-15), 2N6S (NMR, 100%, E-Value: 8.362e-15), 6PMO
(XRD, 2.657 Å), 2NQP (XRD, 3.5 Å), and 4WJ3 (XRD, 3.705 Å). We find that the RNAformer
captures the topology of the structure nearly exactly.
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I PERFORMANCE ANALYSIS OVER SEQUENCE LENGTH
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Figure I.1: Analysis of the base pair predictions of the RNAformer fine-tuned on PDB data (mean
over three random seeds) in comparison to those of the competitors. The plot shows the F1 Scores
of the single sequences in the TS-PDB test set over the sequence lengths. The line shows a linear
regression fit and indicates that the performance of the RNAformer scales well with the sequence
length.
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J ADDITIONAL ATTENTION MATRIX FIGURES
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Figure J.1: Attention matrices of RNAformer predictions for RNA samples with PDB IDs: (a) 2LHP
(NMR, 100%, E-Value: 2.264e-15), (b) 2N6S (NMR, 100%, E-Value: 8.362e-15), (c) 6PMO (XRD,
2.657 Å), (d) 2NQP (XRD, 3.5 Å), and (e) 4WJ3 (XRD, 3.705 Å). The first 3 matrices show the
attention matrix of an attention head through RNAformer layers 1, 3, and 5. The final predicted
adjacency matrix is then shown, followed by the adjacency matrix of the true structure.
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