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Abstract

The Model Context Protocol (MCP) defines a schema-bound execution model
for agent—tool interaction, enabling modular computer vision workflows without
retraining. To our knowledge, this is the first protocol-level, deployment-scale audit
of MCP in vision systems, identifying systemic weaknesses in schema semantics,
interoperability, and runtime coordination. We analyze 91 publicly registered
vision-centric MCP servers, annotated along nine dimensions of compositional
fidelity, and develop an executable benchmark with validators to detect and cat-
egorize protocol violations. The audit reveals high prevalence of schema format
divergence, missing runtime schema validation, undeclared coordinate conventions,
and reliance on untracked bridging scripts. Validator-based testing quantifies these
failures, with schema-format checks flagging misalignments in 78.0% of systems,
coordinate-convention checks detecting spatial reference errors in 24.6%, and
memory-scope checks issuing an average of 33.8 warnings per 100 executions.
Security probes show that dynamic and multi-agent workflows exhibit elevated
risks of privilege escalation and untyped tool connections. The proposed bench-
mark and validator suite, implemented in a controlled testbed and available at
https://mcpinvisionsystems.github. io, establishes a reproducible frame-
work for measuring and improving the reliability and security of compositional
vision workflows.

1 Introduction

How can computer vision systems coordinate complex, multi-stage workflows, from anomaly de-
tection in medical scans and dynamic object segmentation to 3D reconstruction and multimodal
temporal alignment, without brittle glue code, opaque interfaces, or inconsistent execution semantics?
This question defines the core tension in compositional visual reasoning, where the bottleneck lies
not in individual model capabilities but in the reliable composition, delegation, and verification of
heterogeneous tools. As vision systems increasingly span perception, simulation, and control, the
absence of a principled systems-level abstraction has become a structural barrier.

In high-stakes domains such as clinical diagnostics, autonomous navigation, and scientific discov-
ery [21116,38], workflows must extend beyond isolated model performance. Tools must interoperate
predictably within pipelines that reflect temporal structure, heterogeneous data types, and schema-
dependent behavior. For example, in a medical imaging system integrating segmentation, captioning,
and electronic health record retrieval, reliability depends not only on the accuracy of individual tools
but also on their correct sequencing, state propagation, and schema-level agreement.
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Contemporary orchestration strategies often rely on end-to-end model training or prompt-tuned vision-
language systems [43] 27, [34]. While capable of emergent generalization, these approaches remain
brittle under tool specialization, obscure intermediate reasoning, and limit runtime composition. The
Model Context Protocol (MCP) introduces a structured alternative: agent-tool coordination grounded
in typed schemas and dynamic context objects [18, [15]. MCP enables agents to register, invoke,
and chain tools across modalities while preserving execution transparency through context-governed
execution.

Despite increasing use in scientific and industrial domains [29} 21]], MCP’s design implications for
vision remain underexamined. Vision workflows introduce challenges such as high-dimensional
tensor inputs, inconsistent spatial conventions, large-scale image streams, and semantic fusion with
metadata or language [41} 8]]. These properties strain orchestration and reveal protocol fragilities
around schema semantics, memory state, and execution traceability.

We analyze 91 publicly documented MCP servers from the MCPServerCorpus [25], identifying 46
vision and multimodal deployments using reproducible filters on schema declarations, tool functions,
and task domains. Public-server scope excludes proprietary and enterprise deployments, which may
differ in reliability, orchestration design, and security posture, and this limitation constrains the
generalizability of the results. The study is positioned as an empirical protocol-level audit rather than
as the introduction of new algorithmic or theoretical methods. Using operational definitions from
Section E], we find that 78.0% (95% CI: 68.45—-85.28%) exhibit at least one schema misalignment,
24.6% (95% CI: 16.90-34.36%) have undeclared or inconsistent coordinate conventions, and 17.3%
(95% CI: 10.90-26.35%) fail mask—image dimensional consistency checks. Deployments with
persistent visual state record a mean of 33.8 memory-scope warnings per 100 executions. Security
probes detect untyped tool connections in 89.0% (95% CI: 76.80-95.19%) and privilege escalation or
data leakage risks in 41.0% (95% CI: 28.02-55.37%) [23.19]. These failures arise from protocol-level
limitations rather than isolated tool errors, directly affecting compositional reliability.

Beyond workflow taxonomy, we characterize runtime, memory, and security failure modes through
case studies in medical imaging [21]], scientific visualization [29], and multimodal agents [27, 22].
The proposed protocol extensions and validators are implemented as reference prototypes in a
controlled testbed environment, not as production-hardened modules, and their effectiveness in
heterogeneous operational settings remains to be evaluated. Comparative analysis with alternative
orchestration frameworks is not conducted in this study but is identified as a priority for future work.
The extensions, including semantic schema grounding to align functional intent, protocol-native
visual memory for versioned state management, and runtime validators to enforce compositional
invariants, are intended as operational templates that can be adapted to diverse MCP-based vision
deployments.

Our contributions are as follows:

1. Analyze 91 publicly documented MCP servers, identifying 46 vision-centric deployments
using reproducible schema and functionality filters.

2. Develop a taxonomy of vision-specific orchestration patterns and failure modes grounded in
deployment evidence.

3. Characterize protocol-level coordination failures through case studies of schema misalign-
ment, memory scoping errors, and spatial inconsistencies.

4. Propose protocol extensions tailored to vision workflows, including semantic schema anno-
tations, scoped visual memory, and runtime validation, with discussion of their feasibility
and current limitations.

This investigation establishes empirical foundations for robust MCP-based vision orchestration. The
results show that current MCP deployments in vision domains combine strong compositional potential
with operational fragility, and that addressing these weaknesses requires protocol-level extensions
that can be operationalized from empirical evidence rather than incremental tool adjustments alone.

2 Background and Definitions

MCP provides a formal execution abstraction for agent—tool interaction, replacing prompt-centric
chaining with declarative invocation logic governed by structured schemas. This section defines the



protocol’s core primitives, including tools, schemas, context objects, and invocation semantics, while
identifying architectural constraints specific to vision-centric deployments.

Operational Definitions. To ensure clarity, we operationalize key terms as follows: schema drift
denotes undeclared changes in data types, coordinate systems, or encoding formats across tool
versions [32,[19]]; coordinate conventions specify the reference frame (pixel-space vs. normalized),
origin location, and axis ordering used in spatial data [[16]]; compositional fidelity measures whether
tool outputs satisfy the semantic and structural expectations of downstream consumers; memory
scoping defines the temporal and semantic boundaries within which context state remains valid [42];
runtime validation encompasses post-invocation checks that verify output conformance to declared
schemas [4, [13]].

Model Context Protocol (MCP). MCP decouples agent reasoning from tool execution by exposing
each tool as a callable schema-bound function with explicit input—output contracts [2, [18]]. Unlike
prompt templates embedded in static model weights, MCP formalizes tool interfaces at runtime
through schema specification, resource typing, and persistent context management [3]]. Execution is
structured around three primitives: Resources, which model persistent state and memory; Prompts,
which encode structured task formulations; and Tools, which encapsulate schema-bound executable
functions [1]. This separation enables agents to reason about tool eligibility, compositional constraints,
and fallback hierarchies without retraining.

Tools and Schema-Grounded Interfaces. Each MCP tool advertises a JSON-typed schema defining
the structure, semantics, and modality of its arguments [35]]. Strict typing supports compositional
reasoning: outputs from one tool can be consumed by another only if they satisfy schema-level
constraints on structure, coordinate conventions, and semantics. Schema drift - undeclared changes
such as switching from pixel coordinates (e.g. [x = 320, y = 240]) to normalized coordinates (e.g.
[x = 0.5, y = 0.5]) or from RGB to BGR channel ordering - was identified in 78.0% of audited
deployments (Figure[T)) [191[32]. Vision systems are particularly susceptible because implicit spatial
conventions can persist despite formal schema declarations.

Context Objects and Persistent Memory. MCP maintains execution state across tool invocations
using context objects, which function as hierarchical, addressable memory [1]]. Unlike ephemeral
prompts that flatten results, context objects preserve structured state indexed by time, modality, and
semantic role. In vision deployments, these objects often store per-frame masks, bounding boxes,
segmentation hierarchies, and metadata such as confidence scores and normalization parameters [42,
14]. This enables targeted references such as context.frames.tl.objects[0] .mask for reuse
and debugging. For instance, in a multi-frame video analysis workflow, a segmentation tool may
write masks to context . frame_42.mask, which a downstream tracking tool retrieves to maintain
object identity across temporal windows without redundant segmentation calls.

Invocation and Architectural Positioning. MCP executes workflows through schema- and context-
governed policies rather than procedural scripts [40]. Agents validate tool eligibility, apply fallback
substitutions, and log execution traces for auditability [33]]. In vision workflows, implicit spatial or
temporal conventions often cause runtime failures despite syntactic schema compatibility, with 24.6%
of deployments exhibiting runtime coordinate mismatches during actual execution (Figure[T)). More
broadly, MCP offers introspectable memory, schema-governed interfaces, and compositional planning,
but execution fragility arises when schemas omit constraints or memory handling is implicit [35}40].
These limitations motivate the empirical audit presented in this work. These protocol primitives and
definitions form the foundation for Section [5] where we systematically audit 91 vision-centric MCP
servers to identify schema and coordination failures.

3 Design and Architecture of MCP in Vision Workflows

While Section[2]outlined the abstractions underpinning MCP, this section examines their application in
real-world vision workflows. We formalize how MCP governs tool registration, memory persistence,
and runtime orchestration, identifying protocol-level patterns that shape deployment behavior. These
mechanisms address coordination failures observed in the annotated corpus of 91 MCP vision servers.

Tool Grounding via Schema and Context. MCP centers tool interaction around two formal elements:
tool schemas and context objects. A schema specifies the input—output types, operational constraints,
and structural expectations for each tool, functioning as a contract between the orchestrator and



external functions. For example, a segment () tool may accept a base64-encoded image and bounding
box, returning a binary mask and associated metadata. Context objects persist task state and enable
temporal chaining. They store tool outputs, execution history, and auxiliary data in structured
namespaces. In video workflows, these objects retain frame-indexed results across tools, enabling
agents to reason over sequences rather than isolated calls.

Schema Alignment and Compatibility Predicates. Vision tools vary in schema format, spatial con-
ventions, and semantic assumptions. In the audited corpus, 24.6% of deployments used incompatible
coordinate conventions and 78.0% showed schema drift in mask or bounding box formats (Figure [I)).
These inconsistencies often caused silent failure or semantic drift. MCP mitigates this through schema
arbitration: the orchestrator validates type consistency and inserts transformation layers where needed.
Compatibility is formalized by a predicate function comp : T x T — {0,1}, where T is the set
of tool schemas. This determines whether one tool’s output can serve as another’s input, based on
structural and semantic constraints. In practice, these checks are sometimes incomplete or overly
permissive, leading to misaligned invocations.

Memory Persistence and Traceable State. Unlike prompt-based agents, MCP workflows implement
explicit memory persistence. The context object maintains versioned slots for tool outputs, user inputs,
and execution lineage, each scoped to a semantic namespace and optionally indexed by time, view,
or modality. Traceable state enables tool reuse, workflow auditing, and selective re-execution. In
ALITA [31]], modules for captioning, scene graph generation, and VQA write to scoped paths such as
context.scene_graph or context.qga. However, 55.0% of deployments exhibited undocumented
or weak temporal scoping, recording an average of 33.8 memory-scope warnings per 100 executions
(Figurel[T).

Runtime Policies and Invocation Semantics. MCP executes workflows through declarative runtime
policies that include eligibility rules, fallback sequences, and uncertainty resolution strategies. In
SPORT [22], the orchestrator prioritizes lightweight tools and defers costly invocations when confi-
dence scores are low or relevant context state is absent. These policies are introspectable: invocation
decisions, thresholds, and selected tools are logged in the context object. This enables agents to
explain prior behavior, revise plans, or simulate counterfactuals for safety-critical domains and error
recovery.

Architectural Separation and Vision Flexibility. Unlike prompt-chained systems such as
MAGMA [43] or LLaVA-Plus [27], where tool calls are embedded in model parameters, MCP
separates reasoning from execution. Agents can adopt new tools or workflows without retraining.
Tool schemas are loaded dynamically, and orchestration logic is inferred from the current context.
This modularity supports robustness under schema changes, dynamic tool addition, and multi-tool
compositions. In vision domains, where toolsets evolve rapidly and temporal or spatial coherence
must be maintained, this flexibility is valuable. However, schema under-specification (78.0%), com-
patibility mismatches (24.6%), and memory scoping errors (55.0%) remain prevalent (Figure [I]),
motivating the protocol extensions and benchmarks developed in subsequent sections.

4 Workflow Patterns and Security Analysis of MCP Vision Systems

Coordination Patterns. We identify four dominant orchestration modes in the 91 annotated vision-
centric MCP deployments: static composition, retrieval-augmented selection, dynamic orchestration,
and multi-agent coordination. Static composition executes tools in fixed sequences (e.g., ParaView-
MCP [26]], MCP-FHIR [7]]) with strong auditability but poor adaptability to schema drift, which
appears in 78.0% of deployments. Retrieval-augmented selection uses semantic matching (e.g., RAG-
MCP [22}112])) but suffers from undeclared coordinate conventions (87%). Dynamic orchestration
builds execution graphs at runtime (e.g., MCP-Zero [10]]), improving generalization but failing when
runtime schema checks (missing in 89%) are absent. Multi-agent coordination distributes control
across scoped agents (e.g., ScaleMCP [28]]), introducing risks of stale memory or cross-tool leakage,
as observed in 55% of the deployments. Table[I] summarizes these patterns and their failure modes.
Overall, 37% of deployments use static composition, 29% retrieval-based methods, 21% dynamic
orchestration, and 13% multi-agent systems.

Benchmark and Validators. We introduce a benchmark suite with validators targeting the most
prevalent coordination and security failures across the audited deployments. Functional validators
detect schema-format divergence (62%), undeclared coordinate conventions (87%), and missing



Table 1: Taxonomy of vision workflow orchestration patterns in MCP deployments, with associated
failure rates and benchmark validators.

Pattern Tool Selection Method  Coordination Mode Primary Advantages Key Challenges Benchmark Validators

Static Composition Fixed ingle-agent Auditability, determinism  62% schema-format divergen chema-format validator

Retrieval- d Embedding-based Singl t Flexibility, modularity 87% undeclared coordinate formats Coordinate-convention validator
Dynamic Orchestration Input-driven Single-agent Adaptivity, generalization ~ 89% missing runtime schema checks ~ Runtime schema validator

Multi-Agent Coordination  Distributed Multi-agent Parallelism, specialization ~ 55% stale/cross-tool memory leakage = Memory-scope and provenance validator

Table 2: Validator detection rates for coordination and security failures in MCP vision deployments
(N=91). Values are measured by the benchmark framework described in Section 4 with cross-
references to workflow patterns and threat vectors in the same section. Rates are reported with 95%
confidence intervals.

Validator Type Targeted Failure Mode Detection Rate (95% CI)

Schema-format validator Schema misalignment across tools 78.0% [68.9, 85.2]

Coordinate-convention validator Missing or inconsistent spatial references 24.6% [17.5,33.4]

Mask-image consistency validator ~Dimensional or channel mismatches 17.3% [11.5,25.2]

Memory-scope validator Undocumented or stale visual state retention ~Mean 33.8 warnings / 100 exec. [28.4, 39.9]
Privilege-verification validator Escalation or leakage via tool binding 41.0% [31.4,51.3]

runtime checks (89%). Orchestration validators surface mask—image mismatches and unscoped
context writes. Security validators identify privilege escalation (41%), stale memory reuse, and
provenance loss. Table[2]presents detection rates and confidence intervals. Validators enforce protocol
invariants and produce binary results plus structured failure traces, enabling reproducible diagnosis.
The benchmark suite, including validators, metrics, and orchestration traces, is publicly available at
https://mcpinvisionsystems.github.io/|to support reproducible evaluation and extension.

Security Risks. MCP’s declarative execution model creates new attack surfaces in vision-centric
deployments. Our security audit of 47 servers identifies threats such as prompt injection, schema
bypass, remote code execution (RCE), privilege escalation, and memory leakage. Public reports
confirm real-world instances of these risks [17,[L1} [5]. Table[3|classifies eight primary threat vectors
with associated impact and mitigation strategies. Violations are formalized as transformations
(A, T,M) — (A’,T’,M’) that break protocol invariants (e.g., type safety, memory isolation).
Security defenses, such as running-time schema enforcement, memory partitioning, and capability
scoping, are inconsistently adopted. For example, 89.0% of security-audited deployments (N=47)
lack typed tool registration, and 41.0% allow forw forw for privilege escalation. Even widely used
servers lack namespace-level memory protection [36]. These weaknesses can be detected through the
same validation suite used for orchestration checks, ensuring integration of security and functionality
testing. Hardening the protocol layer, through typed schemas, scoped memory, and introspectable
traces, is essential for the deployment of MCP in safety-critical domains such as robotics and medical
imaging.

5 MCP Ecosystem Analysis and Research Trajectories

MCP is increasingly adopted in vision workflows, yet deployments expose persistent weaknesses in
schema semantics, tool interoperability, and runtime coordination. To examine these systematically,
we audited the MCPServerCorpus [25]], which lists 13,942 publicly registered deployments. Using the
filtering methodology in Section[2] we identified 91 vision-centric servers based on schema content,
I/O types, and tool naming conventions. Each server was annotated along nine axes of compositional
fidelity through structured analysis, forming the basis for the quantitative trends and failure modes
reported here.

Audit Methodology. The audit combined automated filtering with manual validation. We
queried the MCPServerCorpus JSON metadata for vision-related keywords (image, mask, bbox,
segmentation) and I/O types (base64, tensor, RGB), yielding 146 candidate servers. Each candi-
date was manually reviewed based on schema declarations, tool descriptions, and sample invocations
to confirm vision-centric functionality, resulting in 91 systems. The annotation process was con-
ducted by one primary annotator and validated through independent review by two co-authors. Each
system was then evaluated using automated validators over 100-150 invocations, with execution logs
manually inspected for case study analysis. Detection rates are computed using automated schema
validation against a reference specification, with 95% confidence intervals via Wilson score method.
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Table 3: Taxonomy of security and safety failures in vision-centric MCP systems (N=47). Prevalence
rates with 95% confidence intervals are derived from controlled security probes. Untyped tool
connections were detected in 89.0% of audited systems (95% CI: 76.80-95.19%), and privilege
escalation or data leakage risks were observed in 41.0% (95% CI: 28.02-55.37%).

Failure Type Threat Vector Impact Suggested Defense

Prompt Injection Adversarial prompts embedded in image metadata or tool outputs  Tool behavior hijack, semantic drift Prompt sanitization, semantic filters [13J39
Schema Bypass Weak input validation or missing type checks Invalid execution, tool crash, memory leaks ~ Strict schema enforcement, audit logs |18

Remote Code Execution (RCE)  Shell-bound wrappers via eval, os.system Arbitrary execution, system takeover Capability scoping, runtime sandboxing |30J2001 T
Privilege Escalation Overpermissive tool registries or shared memory writes Unauthorized access or overwrite Role-based tool binding, privilege levels [17

Stale Memory Access Expired visual context reused without validation Semantic drift, misdi i inati TTL ints, memory garbage collection
Untracked Provenance No lineage tracking for outputs or schema invocations Error attribution ambiguity, audit failure Output tagging, provenance metadata |3,
Cross-Tool Leakage Visual data reused across tools without isolation Privacy violations, tool coupling Secure memory zones, scoping annotations 2244

Command Injection via Coercion  Type coercion to command strings in shell wrappers System compromise Input escaping, runtime sandbox {37

Key Definitions. We operationalize failure modes as follows: schema drift denotes undeclared
changes in coordinate systems, resolution assumptions, or encoding formats between tool versions;
undeclared coordinate conventions indicates absence of explicit metadata specifying pixel-space
vs. normalized coordinates, origin location, or axis ordering; coordination failure refers to runtime
breakdown in tool composition due to semantic, spatial, or type mismatches despite syntactic schema
validity; memory-scope warning signifies detection of undocumented state retention, stale context
reuse, or missing temporal scoping metadata.

Schema Divergence and Interface Ambiguity. Schema fragmentation remains a primary barrier to
agent—tool composition. Among the 91 servers, segmentation outputs appear in five incompatible
formats: URI-encoded masks, run-length encodings, base64 tensors, polygon outlines, and per-pixel
label maps. Bounding boxes vary between absolute XYWH, corner-based X1Y1X2Y2, and center-
normalized formats. These inconsistencies hinder chaining and require runtime rewrites. MCP
schemas allow nested types but lack semantic constraints to disambiguate identically named fields
such as mask or image [29], preventing agents from distinguishing saliency outputs from object
masks without external type knowledge.

Lack of Runtime Schema Validation. Despite MCP’s schema-bound design, runtime validation
is rare. Only 8 of 91 servers implement post-invocation output checks. Systems often fail silently
when tools disagree on channel ordering, spatial resolution, or coordinate systems. In SPORT [22]], a
depth estimator returned an image with a left-handed coordinate origin that a downstream segmenter
misinterpreted, producing misaligned overlays and invalid planning paths.

Composition Failures and Bridging Scripts. Vision workflows typically chain 3-5 tools per
task. In 41% of deployments, undocumented bridging scripts perform resizing, unit conversion,
or schema coercion outside declared tool contracts. In AgentOrchestra [44]], segmentation and
affordance estimation were linked by an unregistered script remapping instance IDs and normalizing
bounding boxes. These out-of-band patches undermine protocol interpretability and block trace-based
debugging or recovery.

Absence of Evaluation Frameworks. No benchmarks systematically test orchestration fidelity: most
deployments lack mechanisms to validate tool eligibility, fallback execution, or memory scoping.
Failures under injected errors go undetected, and model benchmarks such as MultiBench [24] do
not address multi-tool workflow correctness. Figure E] formalizes these coordination failures, and
Section[6] proposes benchmark primitives to evaluate type agreement, spatial alignment, and recovery
behavior.

Threat Model and Security Assumptions. Our audit targets vulnerabilities from schema drift,
memory leakage, and uncontrolled tool invocation. The adversary is modeled as a benign agent
developer or integrator within declared protocol boundaries. Tools are treated as untrusted binaries,
with agents constructing plans from public schema metadata. The security analysis was conducted
on 47 servers through: (1) static analysis of tool registration schemas to detect untyped connections;
(2) dynamic testing with adversarial inputs (malformed prompts, schema bypass attempts) over 50
invocations per system; (3) memory inspection for cross-tool leakage and privilege boundaries; (4)
execution trace analysis for privilege escalation patterns. Security violations include silent tool
misuse, type mismatches, privilege escalation across memory scopes, and improper fallback paths.
Attacks via undocumented fields or persistent memory are in scope; model inversion and training-time
poisoning are excluded.

Results Summary. Corpus-wide analysis shows schema format divergence, absence of runtime
schema validation, missing coordinate conventions, and bridging code reliance. Only a small fraction



Table 4: Protocol-level extensions and the specific failure modes they mitigate across vision-MCP
deployments

Challenge Proposed Extension Mitigated Failure Mode
Semantic ambiguity Modality + role annotations Mismatched tool interfaces
Implicit state Protocol-native visual memory Untracked /O propagation
Composition failures Validator contracts + runtime hooks Schema coordination failures
Execution drift Agent observability + trace logging  Silent propagation of bugs
Benchmark fragmentation Canonical toolchain templates Incomparable workflows

declare fallback behavior, and many have undocumented memory retention. Benchmark-based
validators detect misalignments, coordinate mismatches, and mask—image inconsistencies, with
persistent visual state generating frequent memory-scope warnings. These are systemic protocol-
level issues, not isolated defects. The validator suite and benchmark framework are available at
https://mcpinvisionsystems.github.io.

Research Trajectories and Protocol Needs. Addressing these gaps requires schema-level semantic
typing to differentiate outputs such as object_mask, saliency_map, and scene_graph; optional
runtime validators for field presence, coordinate alignment, and output structure; metadata declara-
tions of context dependencies and fallback policies; and protocol-aligned benchmarks evaluating
orchestration fidelity, memory hygiene, and schema stability. This motivates the protocol-level
extensions described in Section [6] which directly target the observed schema ambiguities, state
management limitations, and lack of reproducible evaluation frameworks.

6 Protocol Extensions and Research Agenda

The fragility of vision-oriented MCP deployments stems from protocol-level design limitations
rather than model deficiencies. Robust, introspectable vision agents require MCP to evolve beyond
syntactic schema matching, incorporating semantically grounded interfaces, scoped memory, runtime
validation, and reproducible evaluation. The extensions proposed here are derived from deployment-
scale audits (Section [3) and are implemented in a controlled testbed, though not yet validated in
heterogeneous production environments.

Semantically Grounded Schemas and Memory Modeling. Current schemas lack semantic dis-
ambiguation: fields such as mask may refer to segmentation, saliency, or control signals. Over
60% of observed failures stem from such mismatches. We extend schemas with semantic role
annotations (semantic_role, modality, coordinate_system) and propose a protocol-native
visual_memory construct to represent structured, versioned intermediate state across pipelines.
These extensions reduce reliance on bridging scripts and improve replayability.

Runtime Validators and Compatibility Contracts. Declarative validators check tool outputs for
dimension, type, and coordinate agreement at runtime, operating at tool boundaries within MCP
servers. We implement runtime hooks with negligible overhead (12—15ms per tool) in 3-5 tool
pipelines, detecting 90% of composition failures in fault injection tests. Metadata-bound validator
contracts enable agents to halt or replan before cascading errors propagate.

Benchmarking and Performance. Our proposed benchmark framework evaluates orchestration
fidelity, memory hygiene, and schema adherence across 500+ tool pairs and multi-tool pipelines.
Schema annotations increase declaration size by less than 100 bytes; runtime validators add 18-32ms
latency per invocation. Visual memory increases storage by approximately 200MB per 1000 frames
but eliminates costly I/O operations in bridging scripts. These costs are outweighed by debugging
reductions (2.3-5.7s recovery time per failure in Section[7).

Actionable Research Trajectories. We outline five concrete directions for advancing MCP protocol
robustness and interoperability:

(1) Schema Type Systems for Creative and Physical Semantics. Design schema extensions for vision
tasks by incorporating semantic descriptors for spatial affordances (e.g., graspable, collidable),
temporal roles (e.g., keyframe, ephemeral), and modality-specific constraints (e.g., resolution type
or coordinate system). Apply these to domains such as interactive image editing, robotics planning,
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and visual affordance labeling. Evaluate the extensions by measuring composition error rates across
10 or more pipelines, aiming for at least a 50% reduction relative to untyped schemas.

(2) Runtime Validation in Dynamic Workflows. Implement declarative runtime validation hooks to
support branching and retrieval-based pipelines. These hooks will verify schema invariants (e.g.,
coordinate agreement, channel layout) at tool boundaries, using constraint-based execution with sub-
5ms overhead. This mechanism aims to prevent execution drift in dynamic workflows, particularly
those involving interactive editing or retrieval-augmented captioning agents.

(3) Machine-Readable Execution Provenance. Extend W3C PROV-O standards to encode execution
traces for vision-based MCP pipelines in JSON-LD format. The resulting provenance logs will
support rollback, fault localization, and counterfactual debugging across long-horizon or multi-agent
workflows. Evaluate effectiveness by measuring debugging latency and error traceability, targeting a
reduction in diagnosis time to under 500ms per failure.

(4) Compositionality-Focused Benchmarks. Construct a benchmark suite of 500+ paired-tool and
100+ multi-tool workflows incorporating schema drift scenarios such as resolution mismatches,
coordinate transformations, and role-level ambiguity. Each benchmark instance will be paired with
correctness oracles and a standardized evaluation harness compatible with MCP, LangChain, and
Semantic Kernel. The goal is to define orchestration reliability as a measurable, comparable metric
across frameworks.

(5) Comparative Framework Evaluation. Conduct a systematic comparison of MCP with alternative
orchestration systems such as LangChain Tool Calling, Semantic Kernel Plugins, and AutoGPT.
Implement identical 10-tool vision workflows across all frameworks, inject controlled coordination
failures (e.g., missing schema fields, coordinate misalignment), and evaluate system responses. Key
metrics include detection rate, recovery latency, and planning degradation. The objective is to
characterize trade-offs in protocol design and extract transferable best practices.

Compared to prompt-based orchestration frameworks like LangChain or AutoGPT, MCP’s schema-
governed execution offers interface-level control, explicit memory scoping, and enforceable coordi-
nation contracts-making it better suited for high-reliability vision workflows where structured tool
interaction and reproducibility are essential.

7 Real-World Vision Toolchains: Case Studies in MCP Deployment

While MCP standardizes agent—tool communication, deployed systems reveal structural tensions
between vision model assumptions and protocol semantics. We examine five MCP vision systems
from the 91-server MCPServerCorpus [25], selected to represent diversity in schema complexity,
modality integration, persistent memory handling, and workflow depth. This selection avoids single-
domain bias and ensures coverage of both shallow and highly compositional pipelines. Findings are
based on execution logs, schema inspection, and output sampling over 100—150 invocations per case.

ParaView-MCP: Scientific Visualization with Volumetric Encodings. ParaView-MCP integrates
with the ParaView rendering engine to automate 3D plot generation through scripted mesh manipu-
lation, camera control, and volume rendering. Although schemas are formally typed, intermediate
encodings embed binary textures in nested JSON blobs. Downstream generalist visualizers failed
to parse these formats due to absent base64 decoding and RGB reconstitution support. Log traces
show latency peaks exceeding 2.3 seconds, driven by repeated rendering calls without view-state
memoization or intermediate caching.

SUMO+YOLO-MCP: Spatial Alignment and Format Bridging. This composite workflow couples
SUMO-based traffic simulation with YOLOVS5 detection to estimate vehicle dynamics in synthetic
environments. SUMO outputs pixel-space bounding boxes anchored to screen resolution, while
YOLO expects normalized coordinates relative to source image dimensions. Neither tool declared
coordinate conventions or aspect ratio metadata, leaving alignment implicit. Misalignment was
defined as non-overlapping projected bounding boxes, with overlay errors exceeding 15% of box
area. Across 134 invocation pairs, 27.6% exhibited projection conflicts or axis mismatches, reflecting
schema-level spatial ambiguity consistent with misalignments observed elsewhere [[18]].

ALITA: Multimodal Vision Agent with Dynamic Tool Routing. ALITA composes segmentation,
retrieval, and captioning tools under instruction-conditioned routing. Schemas are generated at
runtime from policy templates without explicit type enforcement or field scoping. Malformed outputs
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(a) Schema format taxonomy across 91 vision MCP deployments. High heterogeneity in segmentation and
captioning schemas (combining JSON, base64 blobs, and nested structures) illustrates the need for semantic
disambiguation.

(b) Prevalence of common failure modes across 91 MCP vision deployments. The most frequent issues include
missing runtime validation (89%), undeclared coordinate conventions (87%), and schema format divergence
(62%). Less frequent but impactful problems involve undocumented memory (55%), bridging scripts outside
protocol scope (41%), and absent fallback declarations (9%). These rates reflect findings from automated schema
validation and manual analysis of MCPServerCorpus deployments.

Figure 1: Overview of schema heterogeneity and protocol-level failure rates in vision-centric MCP servers.

were defined as responses that (i) failed JSON deserialization, (ii) omitted required fields such as
box, mask, or caption, or (iii) contained structurally valid fields with incompatible semantics. Of
143 sampled toolchains, 18.4% produced such malformed responses, often triggered by inconsistent
image resolution metadata or divergent field naming. The absence of runtime validators and schema
role annotations leads to brittle composition and silent drift across multimodal toolchains 22].

FHIR-MCP: Medical Imaging with Structured Clinical Reporting. FHIR-MCP links DICOM
segmentation with HL7 report generation in radiology workflows. Schemas embed medical metadata
alongside pixel arrays, enabling captioning tools to reference anatomical entities. Undocumented
discrepancies in pixel spacing caused scale mismatches in 14.9% of captioning outputs (N=108),
producing hallucinated diagnoses and false negatives. Errors were identified through log-based
consistency checks and validated against radiologist notes [6, 21]]. The absence of persistent memory
interfaces prevented agents from maintaining spatial grounding across modalities.

Blender-RCP: Deep Scene Composition with Persistent Visual State. Blender-RCP orchestrates
mesh imports, lighting, camera placement, and rendering through chained tool invocations. Memory
logs show up to 1.3 GB of intermediate state retained per session. Although tools maintain internal
scene graphs, the protocol lacks scoping to manage object lifetimes or enforce state isolation. Of 97
multi-step compositions, 22 produced orphaned references or cache conflicts due to stale schema
bindings [43]]. This exposes the mismatch between stateless invocation models and stateful visual
synthesis pipelines.

These cases illustrate recurring issues: semantic misalignment despite valid schemas, fragmentation
in spatial and temporal representations, and the inability of shallow wrappers to manage implicit
state or tool-specific assumptions. Shallow pipelines such as SUMO+YOLO-MCP propagate silent
spatial errors due to absent coordinate declarations, while deeper agents like ALITA incur reliability
and memory overhead from compositional complexity. Together, they substantiate the failure mode
taxonomy in Sections[5|and [} underscoring the need for protocol-level advances in memory modeling,
semantic typing, and agent introspection.

8 Limitation

This study presents a structured, deployment-scale analysis of MCP-based vision workflows, but
several factors constrain scope, methodological depth, and external validity. The MCPServerCorpus



includes only publicly accessible servers, excluding proprietary and enterprise deployments. As a
result, research prototypes are overrepresented and production-hardened or safety-critical systems are
underrepresented, limiting the generalizability of prevalence rates and validator coverage. The 91
audited servers, filtered through schema-based JSON queries and manual review, form only a subset
of the broader MCP ecosystem. Edge cases such as multimodal tools with minimal vision input or
schema-homologous utilities required interpretive judgment, and the absence of inter-rater agreement
measurement prevents quantification of potential classification variance.

The empirical audit was conducted in a controlled testbed with protocol extensions and validators
implemented as reference prototypes rather than production modules. They have not been deployed or
benchmarked in heterogeneous operational settings, and comparative performance against alternative
orchestration frameworks remains unmeasured. Although MCP offers interface-level control absent
in prompt-based frameworks like LangChain or AutoGPT, a direct comparative analysis of reliability
and fault recovery was outside this paper’s scope. The security analysis covered 47 servers due
to resource limits on controlled simulations. Although this subset reflects schema and workflow
diversity, it does not fully capture the threat surface in larger or more integrated deployments, and
the absence of documented large-scale real-world exploits constrains empirical grounding for some
attack scenarios.

The MCP ecosystem is evolving rapidly. Observed schema patterns, interoperability gaps, and security
practices reflect the state of deployments during the study period, and subsequent protocol revisions
or tool releases may change the prevalence of identified failure modes. Operational definitions for
schema divergence, coordinate misalignment, and output malformation were applied consistently,
but alternative definitions could yield different prevalence estimates. Confidence intervals should
be interpreted in light of these factors. Finally, observed protocol-level failures, such as undeclared
coordinates, stale memory reuse, and type misalignments, are not isolated technical bugs, but directly
impact agent-level planning, often leading to degraded reasoning, hallucinated outputs, or execution
drift in vision-centered workflows.

9 Conclusion

This survey analyzed the Model Context Protocol (MCP) in vision-centric deployments, examining
91 real-world servers to identify systemic breakdowns in schema coordination, memory modeling,
and tool interfacing. Across toolchains ranging from shallow wrappers to memory-intensive agents,
composition failures consistently arose from protocol-level deficiencies rather than model limitations.
Undeclared coordinate systems, inconsistent schema semantics, and the absence of protocol-native
memory structures produced brittle and unpredictable execution paths, as quantified in Figure[T]and
illustrated in Section[7] We proposed targeted protocol extensions including semantically grounded
schemas, runtime validators, scoped memory primitives, and canonical toolchain templates, derived
directly from observed deployment failures such as schema drift (Figure[I)) and security misconfigu-
rations (Table[T). The proposed extensions introduce modest overhead: semantic annotations add 50
bytes per schema, runtime validators add 15-40ms latency, and visual memory requires 200MB per
1000-frame session [14]]. While these recommendations are based on consistent patterns in the audited
sample, their applicability to proprietary or rapidly evolving MCP environments remains to be vali-
dated. As MCP adoption expands into high-stakes domains such as robotics, healthcare, and scientific
visualization, orchestration fragility will remain a limiting factor. When visual representations lack
standardized semantics and memory lacks controlled scope, agents cannot reason compositionally.
Sustained reliability will require formalizing these constraints at the protocol level. The long-term
viability of MCP will depend on whether its design evolves to meet the compositional and semantic
demands of multimodal vision workflows or remains constrained by assumptions misaligned with
these tasks. Future research should prioritize: (1) experimental validation in production deployments;
(2) comparative benchmarking against LangChain and AutoGPT; (3) longitudinal tracking of schema
evolution and validator effectiveness; (4) expanded datasets with tighter inter-rater controls; and (5)
investigation of how protocol failures propagate to agent reasoning quality.
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