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Abstract

Poor quality sleep can be characterized by the occurrence of events ranging from1

body movement to breathing impairment. Widely available earbuds equipped2

with sensors (also known as earables) can be combined with a sleep event de-3

tection algorithm to offer a convenient alternative to laborious clinical tests for4

individuals suffering from sleep disorders. Although various solutions utilizing5

such devices have been proposed to detect sleep events, they ignore the fact that6

individuals often share sleeping spaces with roommates or couples. To address7

this issue, we introduce DreamCatcher, the first publicly available dataset for8

wearer-aware sleep event algorithm development on earables. DreamCatcher9

encompasses eight distinct sleep events, including synchronous dual-channel au-10

dio and motion data collected from 12 pairs (24 participants) totaling 210 hours11

(420 hour.person) with fine-grained label. We tested multiple benchmark mod-12

els on three tasks related to sleep event detection, demonstrating the usability13

and unique challenge of DreamCatcher. We hope that the proposed Dream-14

Catcher can inspire other researchers to further explore efficient wearer-aware15

human vocal activity sensing on earables. DreamCatcher is publicly available at16

https://github.com/thuhci/DreamCatcher.17

1 Introduction18

More than one-seventh of the global population suffers from at least one kind of sleep disorder, yet19

many are undiagnosed [6, 36, 41]. Sleep disorders can lead to various health issues, such as cardiovas-20

cular disease and depression [14, 20, 39]. The gold-standard diagnostic method, polysomnography21

(PSG), requires patients to spend the night in a specialized sleep clinic. Conducting such sleep22

studies can be cost-prohibitive and resource-intensive. Additionally, patients may suffer from the23

“first-night effect” where they exhibit anomalous sleep behavior when spending the night in a new24
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environment [29]. These challenges call for a minimally intrusive at-home sleep monitoring solution25

that can alert wearers to potential sleep disorders.26

Many sleep disorders are associated with at least one detectable sleep event. For instance, obstructive27

sleep apnea (OSA) is characterized by the sudden cessation of snoring [4, 30], bruxism manifests28

as frequent teeth grinding or clenching [19], and restless sleep is often accompanied by excessive29

nighttime movement [41]. Because it is difficult for people to recall these events while sleeping,30

continuous monitoring is crucial to facilitate diagnosis.31

Recent research has shown that lightweight earables [8] can provide convenient real-time monitoring32

of human activity [11, 34, 45, 52, 46]. For sleep monitoring in particular, earables have unique33

advantages over other wearables like smartwatches and smartphones [3, 9, 24, 25, 48]. The ears34

are located on the head and close to the trunk of the body, allowing microphones to capture rich35

acoustic information generated during sleep. The in-ear feedback microphone included in active36

noise-cancelling earbuds can even detect subtle sounds produced within the body. For this work, we37

utilize a modified commercial earbud containing two microphones (feedback and feedfoward) and an38

inertial measurement unit (IMU).39

Advancements in hardware technology and machine learning algorithms have spurred increased40

research into sleep monitoring using commodity wearables. Current acoustic-based sleep event41

detection algorithms mainly focus on audio feature engineering [2, 13] or lightweight deep learning42

models [11]. These solutions are often developed using data collected in controlled environments and43

contrived scenarios with minimal confounds (e.g., ambient noise). However, people often share sleep44

spaces with other individuals like roommates or spouses who may move and create sounds, leading45

to observable events not associated with the wearer [9, 13]. Moreover, these studies have not made46

their code or datasets publicly available.47

We address these shortcomings by presenting and releasing DreamCatcher — a large-scale, multi-48

modal, multi-sleeper sleep event dataset of earable data with fine-grained labels. We recruited 12 pairs49

(24 participants) of people who slept in the same room, and one person from each pair had a potential50

sleep disorder. We collected earable data from these pairs over the course of 420 hours and manually51

annotated 8 sleep events: teeth grinding, swallowing, somniloquy, breathing, coughing, snoring, and52

body movement. To demonstrate the utility of DreamCatcher, we present case studies of how it53

can be used to train baseline models that address three valuable tasks: wearer event identification,54

wearer-aware sleep sound event classification, and wearer-aware sleep sound event detection.55

The main contributions of this work are as follows:56

• We collected and released the first and largest sleep dataset based on multi-modal earable data57

collected in real scenarios with the disruption of sleep partners. Data is synchronized and58

annotated with fine-grained event labels.59

• We benchmarked DreamCatcher on three sleep monitoring tasks: wearer event identification,60

wearer-aware sleep sound event classification, and wearer-aware sleep sound event detection.61

• We provide open-source resources including the dataset, code for setting up benchmarks, and62

tutorial for constructing the earable hardware we used.63

2 Related Work64

2.1 Contactless Sleep Monitoring and Wearer-Awareness65

The gold standard for sleep monitoring is polysomnography (PSG), which entails wiring a series of66

sensors onto an individual in a sleep clinic for continuous monitoring and observation. PSG sessions67

are expensive, labour-intensive, and time-consuming [28], so researchers have shown substantial68

interest in developing more convenient sleep monitoring solutions suitable for home use.69

Contactless sleep monitoring typically falls under one of two methods. The first method involves70

acoustic sensing of audible sounds using smartphones [24], smartwatches [9, 12], and earbuds [2, 11,71
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13, 33]. While these systems can work with commodity devices, they are prone to interference in72

multi-user settings. The second method relies on wireless sensing to detect body motion, respiration,73

and even heartbeats through minor chest movements at specific frequencies. Commonly used signals74

include WiFi [50], mmWave [49], and sonar [27]. Wireless sensing makes it possible to manage75

multi-user scenarios since reflections from multiple users arrive at different times [49, 27]. However,76

dedicated devices for such approaches are non-trivial to deploy, and wireless sensing is less effective77

for detecting sleep events such as snoring, swallowing, or somniloquy.78

In summary, acoustic and wireless solutions to contactless sleep monitoring show promise in address-79

ing the multi-user challenge, yet cater to different aspects of sleep monitoring. Moreover, as indicated80

in [15], there is an inherent trade-off between accuracy and comfort.81

2.2 Sleep Monitoring with Earables82

Compared to other commodity wearables for sleep monitoring, earables are worn in closer proximity83

to respiratory-vocal system and the external carotid artery, offering an ideal position for measuring84

behaviors and physiological parameters related to sleep [35]. These opportunities have been leveraged85

using specialized biomedical sensors for sleep monitoring around the ear, such as in-ear EEG [23, 26,86

40] and PPG [44] sensors, but these sensors are not widely available on commercial earables due to87

their high cost and integration complexity.88

Some recent works have explored sleep monitoring by leveraging earables without modification,89

relying on motion sensors and in-ear microphones used for active noise cancellation. Leveraging90

the audio signals from earables, Ren et al. [33] developed a system that could track breathing rate91

and detect four sleep events. Christofferson et al. [11] utilized microphones in commercial earbuds92

for sleep sound classification. Their proposed SleepTSM model achieved promising performance93

in detecting seven different sleep events with a small footprint suitable for deployment on earables.94

Han et al. [13] proposed EarSleep, a similar sleep stage classification system dependent on acoustic95

sensing of body sounds.96

Although the microphones on commercial earables have been used to great effect in sleep monitoring,97

such systems are often evaluated in controlled scenarios with a single participant at a time. In98

multi-sleeper scenarios, sounds may originate from people who are not wearing the earable, leading99

to mischaracterizations of the wearer’s sleep experiences. Drawing inspiration from the EarSAVAS100

dataset [51], our work on DreamCatcher facilitates the development and evaluation of wearer-101

aware ubiquitous acoustic sleep event monitoring systems by providing a public sleep dataset that102

encompasses not only the wearer’s sound events but also interference from non-wearers and non-103

restrictive environmental conditions.104

2.3 Sleep Datasets105

Table 1 compares datasets across sensing modalities that have been leveraged for sleep monitoring106

research. It reveals multiple data-related challenges faced by previous works:107

Method Device Modalities Scale Scenario Open-source
Acoustic Non-Acoustic Data Amount Participants Real Open

SleepEDF [17] PSG 197 nights –
MASS [31] PSG 200 nights 200
SleepHunter [12] smartphone 90 nights 45
SleepGuard [9] smartwatch 210 nights 15
FusedTSNet [2] – 1 hour –
SleepTSM [11] earable 6 hours 20
EarSleep [13] earable 48 nights 18
Ren et al. [33] earable/smartphone – 6
DreamCatcher (ours) earable (2-channel) 420 hours / 62 nights 24

Real: whether events were real or simulated; Open: whether multiple individuals were in the same room

Table 1: Sleep Study Dataset Comparison.
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1. Although there has been substantial work utilizing ubiquitous sensors such as microphones in108

commodity wearables, the only publicly available datasets are for gold-standard PSG.109

2. Previous wearable solutions reliant on audio phenomena have overlooked the interference of110

non-wearer in multiple sleeper scenarios.111

3. Proprietary datasets using commodity wearables are typically limited in scale, both in terms112

of the number of participants and the quantity of data per person. This issue is particularly113

prevalent in research related to earables [34].114

Our dataset aims to fill the gaps. To the best of our knowledge, DreamCatcher is the first open-source115

sleep event dataset targeted at ubiquitous sensors on commercial devices. Previous work has only116

considered single-sleeper scenarios. By integrating data from non-wearers, DreamCatcher facilitates117

the development and evaluation of wearer-aware sleep event monitoring. Our dataset consists of118

synchronous dual-channel audio and motion data collected from 12 pairs (24 participants) totaling119

210 hours (420 hour.person) with fine-grained labels of eight distinct sleep events. As the largest120

open-source sleep dataset to date, we envision DreamCatcher will advance wearer-aware sleep event121

monitoring on commercial earables.122

3 DreamCatcher Dataset123

3.1 Dataset Collection124

Hardware. Using a commodity earable is important because custom devices can often be optimized125

for data quality in ways that do not translate to existing platforms. Because commodity earables126

do not provide API access to their data streams, we had to modify an earbud for data acquisition.127

As shown in Figure 1a, we integrated an MPU6050 IMU sensor into the hardware of Bose QC 20128

earbuds, preserving the native feedback and feedforward microphone configuration. All sensors129

were controlled by a compact external development board, wherein the audio signal was sampled130

at 24 kHz and the IMU signal was sampled at approximately 94 Hz. To enhance user comfort, the131

development board was integrated into an enclosure and wrapped like a necklace. This device can132

function continuously for roughly 7 hours. Appendix A.1 contains more implementation details.133

(a) Hardware. (b) Multi-sleeper Data Collection.

Figure 1: Experiment Setup.

For gold-standard sleep monitoring data, we used a portable PSG system by Philips called the134

Alice PDx 4. This device includes a canula and thermal sensor for measuring airflow in the nose, a135

chest strap for measuring chest expansion during breathing, a fingertip SpO2 sensor for measuring136

peripheral oxygen saturation, and limb movement sensors. This device was only worn by the person137

in each participant pair who reported a sleep disorder.138

4https://www.usa.philips.com/healthcare/product/HC1043844/
alice-pdx-portable-sleep-diagnostic-system
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Participants. To collect data while accounting for the influence of a sleep partner, we recruited139

participants in dyads, imposing no constraints on their relationship as long as they shared a bedroom.140

A total of 12 pairs (24 participants) participated in the study, including 9 males and 15 females aged141

between 19 and 51 (average = 24.7, standard deviation = 8.3). Among the 12 participants who were142

equipped with the PDx device, 6 individuals were observed to exhibit varying degrees of sleep apnea.143

Experiment Protocol. As shown in the first step of Figure 1b, each pair of participants slept in the144

same bedroom for at least 6 hours. They were instructed to start their sleep session around the same145

time to maximize the amount of temporal overlap in their data. They were also asked to set an alarm146

clock that could be heard by both earphones; this sound was used for post-hoc manual data alignment.147

After the participants woke up and turned off the data collection hardware, they were required to fill148

out a PSQI [7] questionnaire to self-report their sleep quality.149

3.2 Annotation and Statistics150

Data Alignment. As shown in the second step of Figure 1b, we performed post-hoc alignment151

for (1) the audio and IMU data in each earable and (2) each pair’s audio data. The first round of152

alignment involving the data modalities within each earbud would hypothetically be trivial because153

the sensors should be intrinsically synchronized as they are connected to the same ESP32 board and154

controlled by the same microcontroller. However, we observed an inherent clock drift between the155

audio and IMU sampling protocols. Over a span of 7 hours, the IMU recording extended 3 seconds156

longer than the audio, accounting for a deviation of about 0.01%. To correct this, we re-scale the157

IMU data to match the audio recording duration, as the drift is evenly distributed over the entire158

recording period.159

Because each participant’s data was recorded independently by separate earbuds, the second round of160

alignment involved aligning data across participant pairs. To accomplish this, we utilized an alarm161

clock as a compensatory reference, manually adjusting the audio recordings to align with the alarm162

clock’s spectrogram.163

Annotation. Because data was collected from participants’ homes, using video was not an accept-164

able form of annotation due to privacy concerns. Instead, we set up a hierarchical inspection process165

in which a team of annotators reviewed the earbud data to identify and label events. The annotators166

were asked to identify the eight sleep events listed in Table 2. They used Audacity5 to inspect each167

participant’s binaural audio channel and IMU data as well as the sleep partner’s binaural audio data168

simultaneously. The IMU data helped annotators determine the category of wearer-emitted events,169

while the sleep partner’s audio helped them determine whether the event was emitted by the wearer.170

The annotation process, described more thoroughly in Appendix A.4, entailed selecting an interval for171

each event they noticed and then assigning a category to it. Each label was checked by at least three172

annotators; whenever they did not reach a consensus, voting was used to assign labels. Examples of173

each event are provided in Figure 2.174

Dataset Statistics. Table 2 summarizes the prevalence and duration of each event type, while175

Figure 3a illustrates the distribution of durations of each event type. DreamCatcher is a highly176

imbalanced dataset, reflecting the natural scarcity of certain sleep disturbances such as bruxism,177

swallowing, somniloquy, and coughing.178

Figure 3b shows the smoothed average frequency of different events over the course of a typical179

night of sleep. Note that participants slept for different amounts of time, so there may be some180

misalignment in the timing of events across individuals. However, the plot reflects some known181

observations about sleeping. For example, movement and swallowing were less prevalent after the182

first hour of sleep, while snoring and somniloquy became more prevalent.183

5https://www.audacityteam.org/
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Figure 2: Examples of Each Sleep Event.

Label Description Total Duration (hrs) Avg Duration (secs) S.D. (secs)
Noise Acoustic events emitted by non-wearers, as well as

background noises
32.78 2.27 2.49

Bruxism Grinding or clenching teeth 5.15 2.00 4.01
Swallow Reflexively or intentionally saliva swallowing 1.28 1.75 1.89

Somniloquy Talking aloud, murmuring, or shouting while
asleep

0.37 1.49 2.39

Breathe One inhalation + one exhalation 83.56 2.21 2.41
Cough Coughing, throat clearing, or sniffling 0.04 1.60 1.24
Snore One inhalation + one exhalation with prominent

vibrations or whistling
31.98 3.10 3.97

Movement Shifts in position or gestures made 10.51 6.83 7.17

Table 2: Label Definitions and Summary Statistics.

Participant Data Splits. To evaluate how a sleep monitoring system would generalize to unseen184

users without any calibration data, we recommend splitting data according to participant IDs. Each185

participant in our dataset exhibited different distributions of sleep events; this information is detailed186

in Appendix A.4 A.2. The split configurations that optimize the balance in label prevalence are187

depicted in Figure 4.188

3.3 Ethics and Accessibility189

The protocol used to generate the DreamCatcher dataset received approval from the local Institutional190

Review Board (IRB) where the data was collected. Participants were explicitly informed about191

the data recording process and that the dataset would be made publicly available. To safeguard192

participants’ privacy, DreamCatcher has been fully anonymized. An important consideration in193

this regard is the fact that participants recorded data at home for an entire night, so any private194

(a) Label duration distribution for each category. (b) Averaged label density overnight.

Figure 3: Label Distributions.
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(a) Train split (b) Validation split (c) Test split

Figure 4: Cross-user Splits.

conversations may have been recorded by the earables’ microphones. To address this concern, all195

non-somniloquy dialogue was manually removed from the dataset before it was released.196

4 Benchmarks197

4.1 Wearer Event Identification198

Task Description. In multi-sleeper scenarios, sleep event monitoring using acoustic methods199

suffers from the interference of external sounds not produced by the earable wearer. Therefore, we200

define wearer identification as a binary classification task focused on determining whether audio201

events come from the wearer or other sources. To the best of our knowledge, no previous work has202

explored this topic in the context of sleep event monitoring.203

Dataset Preparation. For this task, we assume that candidate events have been separated from204

silence using a simple threshold-based approach and focus only on data that our annotators labeled.205

After segmenting synchronous dual-channel audio and motion data according to the fine-grained206

labels, we extracted the features listed in Table 3a from each event. The primary challenge for this207

task is the design of features that are computationally efficient for wearable devices with limited208

processing capabilities, capable of distinguishing events caused by the sleep partner.209

Due to the low intensity of background noise typically seen in real-world sleep scenarios, we relied210

on acoustic features to distinguish between wearer and non-wearer events. We calculated traditional211

acoustic features like zero-crossing rate (ZCR) and root mean square (RMS) on both the feedforward212

and feedback channels. We also calculated three inter-channel audio features — RMS-ED, Mel-FD,213

and TDOA — that model the different propagation characteristics of sounds. Based on the observation214

that bone-conducted sound from the wearer should have higher energy at the feedback microphone215

than at the feedforward microphone, RMS-ED measures the root mean square of the energy difference216

between the two audio channels. Given the different propagation paths of wearer and non-wearer217

sounds reaching the ear, Mel-FD measures the energy difference between the Fast Fourier Transforms218

(FFTs) calculated from both audio channels according to the Mel scale. Finally, time difference of219

arrival (TDOA) between the two channels reflects the propagation path difference between wearer220

and non-wearer sounds.221

Since the wearer’s sleep events are often accompanied by body movements that are captured by the222

earables’ motion sensors, we also extracted motion-related features. We first calculated the overall223

magnitude of the accelerometer and gyroscope data separately, after which we computed IMU-STD224

as the mean and standard deviation of those magnitudes over time.225

Benchmark Methods. Given the low dimensionality of the input data, we benchmarked five226

traditional machine learning models: two low-complexity models (logistic regression and linear227

SVM) and three high-complexity models (random forest, decision tree, and AdaBoost).228
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Model Training and Evaluation Metrics. To evaluate the performance of the models, we trained229

and evaluated each one using leave-one-user-out cross-validation. Since this is a binary classification230

task, we report performance according to accuracy, F1 score, precision, recall, and AUC.231

Results. Table 3a shows that most of our features could be computed using fewer than 1 M FLOPs232

across our entire dataset. The results in Table 3b demonstrate that the high-complexity models233

achieved similarly higher accuracy compared to the low-complexity ones. According to the feature234

importance scores presented in Appendix B.1, we found that models with higher complexity are more235

effective in leveraging the inter-channel audio features. Furthermore, we observed that motion features236

were important for all models, particularly those that were less complex. These results highlight the237

utility of inter-channel audio and motion features for wearer awareness of sleep monitoring.238

Modality FLOPs (M)
ZCR per-channel (audio) 0.4
RMS per-channel (audio) 0.4

RMS-ED inter-channel (audio) 0.6
Mel-FD inter-channel (audio) 6.1
TDOA inter-channel (audio) 2.7

IMU-STD per-sensor (accel & gyro) 0.5

(a) Comparison of Extracted Features.

Method Acc. AUC Recall Prec. F1
Random Forest 0.997 0.999 0.998 0.998 0.998
Decision Tree 0.993 0.990 0.996 0.996 0.996

AdaBoost 0.922 0.965 0.960 0.947 0.951
Logistic Regression 0.797 0.597 0.994 0.800 0.886

SVM (linear) 0.602 0.539 0.645 0.816 0.721

(b) Comparison of ML Algorithms.

Table 3: Benchmarks for Wearer Event Identification.

4.2 Wearer-Aware Sleep Sound Event Classification239

Task Description. Sleep sound event classification serves as the foundation of sleep disorder240

diagnosis. Han et al. [13] also revealed that the categorization of sleep sound events also facilitates241

sleep stage inference. Although algorithms already exist for this task, the interference caused by242

non-wearers is often overlooked, limiting their applicability in multi-sleeper scenarios. Inspired243

by EarSAVAS [51], we define wearer-aware sleep sound event classification as an (n + 1)-class244

multi-classification task, where n represents the number of target events and the remaining class245

encompasses both ambient and non-wearer sounds.246

Dataset Preparation. As with wearer event identification, we assume that event onset and offset247

are already known for this task. To standardize the input data size, we cropped the synchronous audio248

and motion data into 5-second clips that were sufficiently long to cover the duration of the longest249

event in our dataset.250

Benchmark Methods. We examined five state-of-the-art models for this task:251

1. SleepTSM [11] is a lightweight sleep sound classification model that was not evaluated with252

multiple sleepers in the same room.253

2. EarVAS [51] and its variants were evaluated on the EarSAVAS dataset to demonstrate subject-254

aware vocal activity classification utilizing dual-channel audio and motion data.255

3. Wav2Vec2.0 [5], BEATs [10], and CLAP [47] are generic audio event classification methods.256

Besides EarVAS, the other models are only designed to support single-channel audio input. Since257

DreamCatcher includes audio from both the feedforward and feedback microphones, we evaluated258

these models on each of those channels separately. All model pre-processing steps and hyperparame-259

ters were configured identically to those in the original works we replicated. Appendix C.1 shows the260

details of the partition of our dataset and the training details of every benchmark model.261

Model Training and Evaluation Metrics. Each model was evaluated using leave-one-user-out262

cross-validation. Since this is a multi-class task, we used accuracy, macro-averaged AUC, macro-263

averaged F1 score, and MCC as evaluation metrics. We also report model complexity according to264

FLOPs and the number of parameters.265
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Method input channel Evaluation Metrics (%) FLOPs (G) Params. (M)
Acc. Macro-AUC Macro-F1 MCC

SleepTSM [11] feedback 73.01 63.51 35.61 49.98 0.927 0.37
SleepTSM feedforward 72.89 64.00 36.97 50.76 0.927 0.37
EarVAS [51] all 78.07 74.49 36.76 49.22 0.354 12.90
EarVAS dual-channel-audio 76.64 77.36 38.77 51.12 0.040 4.40
EarVAS feedback 75.75 75.75 34.68 46.84 0.040 4.40
EarVAS feedforward 76.99 75.06 34.76 43.02 0.040 4.40
EarVAS imu-only 45.03 60.56 13.75 12.24 0.313 8.50
BEATs [10] feedback 90.73 80.38 57.47 66.60 22.46 90.51
BEATs feedforward 89.64 78.93 55.51 59.04 22.46 90.51
Wav2Vec2.0 [5] feedback 75.45 91.60 48.36 56.72 26.84 94.39
Wav2Vec2.0 feedforward 73.29 88.84 42.52 54.11 26.84 94.39
CLAP (zero-shot) [47] feedback 37.04 65.57 16.77 18.21 53.03 190.80
CLAP (zero-shot) feedforward 37.35 65.64 17.31 18.98 53.03 190.80

Table 4: Benchmarks for Wearer-Aware Sleep Sound Event Classification.

Results. As shown in Table 4, most of the models achieved accuracies above 70%; the exceptions266

were CLAP and a configuration of EarVAS that only used IMU data. However, the macro-F1 scores267

were typically far lower. This is largely due to the significant class imbalance of our dataset, as268

some events are far more common than others. Another hurdle encountered by these models was the269

challenge of jointly optimizing wearer event identification and sleep sound classification. We used a270

single model to perform both tasks simultaneously, but a dual-stage pipeline may be more appropriate271

in future work. Appendix C.2 provides a more thorough analysis of the results, showing the efficacy272

of the feedback microphone in detecting low-intensity events like swallowing and highlighting the273

promise of sensor fusion for future explorations.274

4.3 Wearer-Aware Sleep Sound Event Detection275

Task Description. Knowing when a sleep event starts and stops is crucial for sleep monitoring,276

as the temporal distribution and order of events provide critical insights into sleep progression [13].277

Inspired by sound event detection (SED) systems and the DCASE Challenge [18], we define wearer-278

aware sleep sound event detection as a task that involves determining not only the category of an279

event but also its onset and offset.280

Dataset Preparation. Following the data format standards from the DCASE Challenges [18], we281

used 10-second clips for this experiment so that the models would have enough context for precise282

event detection.283

Benchmark Methods. State-of-the-art sound event detection methods predominantly employ deep284

learning, with most of them being built upon convolutional recurrent neural networks (CRNNs).285

According to Mesaros et al. [22], such methods have been both trained from scratch and have utilized286

transfer learning to shortcut learning. We benchmarked SEDNet [1] and ATST-SED [38] to represent287

these two categories, respectively. We selected SEDNet because of its pioneering role in using288

CRNNs with multi-channel microphone data for sound event detection. On the other hand, we289

selected ATST-SED because it outperformed all competitors on the DESED dataset [42].290

Model Training and Evaluation Metrics. Each model was evaluated using leave-one-user-out291

cross-validation. We used conventional collar-based metrics [21] including event-based macro-292

averaged F1 score and error rate to quantify model performance.293

Results. According to the results shown in Table 5, we found that ATST-SED achieved significantly294

better performance at the cost of a much larger footprint. We also observed that both models were295

more accurate when they were trained using feedforward microphone audio. In fact, SEDNet trained296

on multiple audio channels achieved the lowest macro-F1 score out of all the configurations we tested.297

Appendix D.3 provides a more thorough analysis of the results.298
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Method input channel Evaluation Metrics FLOPs (G) Params. (M)
Macro-F1 (%) Error Rate

SEDNet [1] dual-channel audio 14.02 0.97 0.31 0.37
SEDNet feedback 18.85 0.91 0.30 0.37
SEDNet feedforward 17.98 0.98 0.30 0.37
ATST-SED [38] feedback 24.73 0.85 44.16 172.9
ATST-SED feedforward 24.10 0.85 44.16 172.9

Table 5: Benchmarks for Wearer-Aware Sleep Sound Event Detection.

5 Limitations and Future Work299

First of all, the natural frequency distribution of sleep events leads to a highly imbalanced dataset300

in DreamCatcher, with rarer events often holding greater significance. Based on the DreamCatcher301

dataset, we generated a balanced dataset through data augmentation methods and trained classification302

models on it, as shown in Appendix C.3. We envision the generation of rare sleep events, which must303

aligns with the patterns of human sleep, will be a highly valuable area for future research.304

Moreover, privacy concerns in multi-sleeper settings preclude video verification, resulting in potential305

label inaccuracies despite requiring a consensus among at least three annotators for challenging-to-306

identify events. Furthermore, the emergence of commercial earphones equipped with physiological307

sensors like photoplethysmography (PPG) presents an opportunity to enhance DreamCatcher with308

additional data modalities in future iterations.309

The current prototype earbuds used in our study may not be the epitome of comfort for all users,310

especially for those who have difficulties falling asleep. However, the existence of commercially311

available sleep earbuds that are small, soft, and ergonomically designed (e.g., Amazfit Zenbuds6 and312

Bose Sleepbuds7) underscores the potential for earbuds to become a comfortable and viable sleep313

monitoring platform. These options point towards a promising future for the application of earbud314

technology in sleep studies.315

6 Conclusion316

This paper introduces DreamCatcher, the first open-source dataset featuring multi-sleeper, multi-317

modal data from a commodity device along with fine-grained annotations of sleep disorder-related318

sound events. DreamCatcher encompasses 420 hours of synchronized dual-channel audio and motion319

data, offering a rich and challenging resource for sleep monitoring. We validated DreamCatcher’s320

utility by establishing benchmarks across three distinct tasks, and we hope that these results motivate321

other researchers to innovate further on our dataset.322
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A Experiment Detail481

A.1 Hardware482

The detailed hardware implementation is described in Table 6. Temperature was recorded but not483

used during annotation and benchmarking models.484

Module Hardware Frequency Configuration Detail

dual-microphones Bose QC 20 24 kHz I2S protocol, 16-bit PDM data format
IMU MPU6090 ≈94 Hz I2C protocol, 7-channel including accelerometer, gyro-

scope and thermometer
compute chip ESP32-WROOM 240 MHz data transfer at 100KB/s with SPI protocol and an external

TF card, 3.7V 800 mAH battery

Table 6: Hardware Implementation Detail.

A.2 Anonymized Participant Information485

We recruited participants for our study through a campus study recruitment platform that included486

students, faculty, and their family members. Table 7 shows the self-reported sleep disorder information487

for all participants along with whether any apnea events were detected by those who wore the PDX488

device.489

Pair # P1 Reported Disorder P1 Apnea Detected (Y/N) P2 Reported Disorder

1 Snore/Bruxism/Somniloquy Y —
2 Snore Y –
3 Bruxism N –
4 Snore/Bruxism Y –
5 – N –
6 Snore N –
7 Snore/Bruxism N Snore
8 Snore Y Snore
9 Bruxism/Somniloquy N –
10 Bruxism/Somniloquy N Somniloquy
11 Snore Y –

Table 7: Self-reported Sleep and Detected Sleep Disorders Among Participants.

A.3 Protocol and Compensation490

To familiarize study participants with the data collection hardware and protocol, they were given a491

video tutorial along with the following set of instructions:492

1. Wear the PDx device according to the user guide and video to ensure that the sensors are working493

properly.494

2. Put on the headphones and start recording. To synchronize the data, please set an alarm on a495

networked mobile phone for the nearest whole hour (e.g., 9 PM, 10 PM) after the headphones496

begin recording. When the alarm sounds, please announce the time loud enough so that it can be497

heard by both sets of headphones.498

3. You should wear the headphones throughout the night for three consecutive nights, ensuring at499

least 6 hours of data recording each night.500

4. You should charge the devices after each recording so that they are ready for the next night’s501

experiment.502

5. After waking up each morning, please fill out a sleep diary to indicate when you fell asleep,503

when you woke up, and any instances when you woke up during the night. In addition, please504

fill out a PSQI sleep quality questionnaire.505
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Given that the hourly minimum wage was $10 USD where this research was conducted, participants506

were paid $70 USD per night of sleep. We collected 62 nights of data in total, totaling $4,340 USD507

across the entire study.508

A.4 Manual Annotation509

Figure 5 shows the Audacity UI annotators used to examine and label data. The interface included510

each participant’s dual-channel audio and six-channel IMU data. Annotators created a separate511

"annotation" track where they could set the start and stop times of different events along with their512

labels. Table 8 shows the total number of events identified within each participant’s data.513

Figure 5: Annotation Software UI.

LabelUser Non-wearer’s Sounds Bruxism Swallow Somniloquy Breathe Cough Snore Movement
1-1 634 450 121 68 4565 32 13396 320
1-2 16720 399 214 86 2580 4 96 393
2-1 734 588 197 61 9629 6 3153 325
2-2 2400 118 116 100 3682 2 4 596
3-1 708 499 167 13 5684 2 328 266
3-2 882 245 90 10 1308 2 12 293
4-1 1059 478 319 6 8447 14 2419 217
4-2 5061 53 21 1 831 7 19 153
5-1 523 407 222 27 5589 1 18 438
5-2 614 599 131 26 9491 3 153 311
6-1 206 1050 102 36 12210 2 470 316
6-2 202 428 151 12 10248 3 484 226
7-1 7547 655 178 17 8280 3 2778 184
7-2 2600 240 183 36 8512 4 6126 246
8-1 43 81 26 6 2602 1 2245 47
8-2 2161 199 19 4 63 1 31 47
9-1 267 661 57 71 6954 3 328 148
9-2 2197 321 39 75 5708 0 11 177

10-1 316 519 85 93 8617 2 205 195
10-2 464 633 97 129 6160 0 26 320
11-1 1 43 43 6 578 0 1739 40
11-2 1847 37 10 1 1060 0 4 31
12-1 1058 658 62 30 9802 3 3178 162
12-2 4615 126 50 1 5071 0 7 139
Total 52859 9487 2700 915 137671 95 37230 5590

Table 8: Count of Sleep Events Per Participant.
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(a) Comparing Signals Across Sensors.

(b) Comparing Audio Across Participants.

Figure 6: Aligned Data Annotation.

As shown in Figure 6, comparing data across wearers and non-wearers helped annotators identify the514

sources of different sounds. While loud breathing, snoring, or body movement by one individual can515

be captured by the earbuds of another in the same room, annotators were able to attribute the event’s516

origin to the device that recorded the higher audio intensity. In some cases, the movement data also517

facilitated annotation. For example, the audio spectrograms of swallowing and body movement are518

quite similar and often occur simultaneously. However, the latter typically induces large fluctuations519

in IMU data due to changes in posture while swallowing is more subtle.520

B Benchmark: Wearer Event Identification521

B.1 Supplementary Results522

Figure 7 shows the importance of the audio and motion features we used in the lightweight and523

complex models for this task.524

C Benchmark: Wearer-Aware Sleep Sound Event Classification525

C.1 Model Architectures526

All of the models were built using PyTorch 1.13.0 and trained on an NVIDIA GeForce RTX 4090527

GPU. We followed each paper as closely as possible and leveraged the accompanying code when528

available, using 5-second-long data inputs. The following describes the specific implementations we529

employed in this benchmark:530
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(a) Lightweight Models.

(b) Complex Models.

Figure 7: Feature Importances for the Wearer Event Identification Models.

SleepTSM [11]: We processed audio segments into log-scaled Mel filter bank features using a 0.1-s531

Hanning window with a 2-ms stride, yielding a 128×1501 input for each channel. Since SleepTSM532

is not open-sourced, we re-implemented it as described in the paper. The model was trained for 50533

epochs using the Adam optimizer with a constant learning rate of 1e-4, a batch size of 32×4, and a534

warmup ratio of 0.1.535

EarVAS [51]: We processed audio segments into log-scaled Mel filter bank features using a 25-ms536

Hanning window with a 10-ms stride, yielding a 2×498×128 input across both channels. As a537

requirement of the model’s EfficientNet-B0 sub-module, we implemented zero-padding on the filter-538

bank features along the time axis to obtain 2×512×128 (channel×time×frequency) feature vectors.539

The motion input of EarVAS is raw 6-axis IMU data without any pre-processing. For the model540

itself, we leveraged the open-source code available at https://github.com/thuhci/EarSAVAS,541

which is shared under the MIT License found at https://github.com/thuhci/EarSAVAS?tab=542

MIT-1-ov-file. The model used SpecAugment [32] for data augmentation and was trained for 30543

epochs using the Adam optimizer with a constant learning rate of 1e-4 and a batch size of 128.544

Wav2Vec2.0 [5]: We processed audio segments using the authors’ bespoke feature extractor. We545

then finetuned their open-sourced base model found at https://huggingface.co/facebook/546

wav2vec2-base, which is shared under the Apache v2.0 License found at https://huggingface.547

co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md. The548

model was trained for 10 epochs using the Adam optimizer with a constant learning rate of 3e-549

5, a batch size of 32×4, and a warmup ratio of 0.1.550

BEATs [10]: We processed audio segments into log-scaled Mel filter bank features using a 25-ms551

Hanning window with a 10-ms stride, yielding 498×128 input for each channel. We leveraged the552

open-source model available at https://github.com/thuhci/EarSAVAS/tree/main/BEATs_553

on_EarSAVAS, which is licensed under the MIT License found at https://github.com/thuhci/554

EarSAVAS?tab=MIT-1-ov-file. The model was trained for 30 epochs using the Adam optimizer555

with a constant learning rate of 1e-4 and a batch size of 32.556
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CLAP [47]: We performed zero-shot classification on the open-source model avail-557

able at https://huggingface.co/laion/larger_clap_general under the Apache v2.0558

License found at https://huggingface.co/datasets/choosealicense/licenses/blob/559

main/markdown/apache-2.0.md.560

C.2 Supplementary Results561

Figure 8 shows the confusion matrices associated with all of the models that were trained in this562

benchmark. The rest of this subsection describes the notable trends.563

Figure 8: Confusion Matrices of the Wearer-aware Sleep Sound Event Classification Models.

Challenges in class imbalance: Coughing was the most underrepresented sleep event category in564

our dataset. Many of the models struggled to correctly identify these events, often confusing them565

with somniloquy or external sounds. This underscores the necessity of accounting for dataset class566

imbalance in wearer-aware sleep sound event classification. Although the class imbalance represents567

the real distribution of events in sleep scenarios, we have constructed a balanced dataset based on568

DreamCatcher to investigate whether models can achieve improved classification category-balanced569

conditions. The details are discussed in Appendix C.3.570

Challenges in jointly optimizing wearer event identification and sleep sound classification:571

While traditional machine learning methods with feature engineering enable effective wearer event572

identification, wearer-aware sleep sound classification is a more challenging task because it also573

requires a model to perform sound event classification. While SleepTSM and CLAP have both been574

successfully used to discriminate between different sound events, introducing an additional class for575

background sounds and noises from the non-wearer resulted in poor accuracy. This underscores the576

necessity of carefully designing joint optimization methods specifically tailored for this task.577

Utility of the feedback microphone audio: In Table 1, we found that benchmark models using578

only the feedback microphone audio exhibited a slightly improved performance compared to those579

that only used feedforward microphone audio. Upon further examination of the confusion matrices in580

Figure 8, we observe that utilizing feedback microphone audio can more effectively detect subtle581

swelling events that likely have lower intensity compared to other categories. This result highlights582

an important affordance of active noise-cancelling earbuds.583

Potential benefits of sensor fusion: Comparing the performance of the EarVAS variants with584

different input feature modalities, we observed that leveraging both audio channels yielded higher585
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accuracy compared to either channel alone. Integrating motion data enhanced the model’s ability to586

discriminate wearer events from non-wearer events, which aligns with the conclusions drawn in the587

previous benchmark. However, the classification accuracy for categories like body movement and588

somniloquy decreased with this inclusion. With the proposed multi-modal DreamCatcher dataset, we589

encourage researchers to explore efficient sensor fusion methods for wearer-aware sleep sound event590

classification.591

C.3 Wearer-Aware Sleep Sound Event Classification on Balanced Dataset592

To investigate the influence on performance caused by the class imbalanced in wearer-aware sleep593

sound event classification, we constructed a balanced dataset based on DreamCatcher. Additionally, a594

comparison of the results from training Wav2Vec2.0 on both balanced and imbalanced datasets is595

conducted. The following describes the construction methods of the balanced dataset and notable596

points we found among the comparison.597

Construction of balanced training dataset based on DreamCatcher: The categories and cor-598

responding number of samples in the imbalanced training dataset of DreamCatcher are as follows:599

Bruxism 6055, Swallow 1669, Somniloquy 612, Breathe 87898, Cough 61, Snore 23626, Movement600

3957. We set 10,000 as the target sample numbers for each category. For categories with more than601

10,000 samples, we randomly select 10,000 samples in each epoch. We also augment the categories602

with fewer than this number to 10,000.603

The augmentation methods conducted to the rare events are detailed as below: in terms of audio604

augmentation, we referred to the augmentation methods in Audiomentations 8, which include 1)605

gain adjustment (×0.5 to ×2), 2) time shift (-0.15 to 0.15 seconds), 3) pitch shift (×0.5 to ×2), 4)606

speed adjustment (×0.5 to ×2), and 5) random masking by making 0–10% of random points zero.607

As for motion data, we implemented augmentation according to the methods proposed by Terry et608

al. [43], including jittering, scaling, magnitude-warping, time-warping, rotations among three-axis609

accelerometer and three-axis gyroscope respectively, and permutation.610

Evaluation of Wav2Vec2.0 on balanced and imbalanced dataset: We trained Wav2Vec2.0 on611

the balanced training dataset described above with the same settings as the Wav2Vec2.0 training on612

the imbalanced DreamCatcher. The two models are evaluated on the same testing dataset of the raw613

DreamCatcher. We present a comparative results of Wav2Vec2.0 before (w2v-before-bal) and after614

the balancing of training dataset (w2v-after-bal) in Table 9 and Figure 9.615

Method input channel Evaluation Metrics (%)

Acc. Macro-AUC Macro-F1 MCC

w2v-before-bal feedback 75.45 91.60 48.36 56.72
w2v-after-bal feedback 70.70 89.93 46.04 48.76

Table 9: Comparative performance of Wav2Vec2.0 training on balanced and imbalanced dataset.

According to the results in the figure 9, we find that balanced dataset enhances the model’s ability616

to learn the patterns of rare events, thereby improving the recall rate. This is particularly notable617

for the ’Cough’ category. However, data balancing also led to an overall decline in performance as618

shown in the table 9. This also highlights the diversity of samples from downsampling categories,619

making DreamCatcher a valuable dataset for sleep monitoring. We envision the generation of rare620

sleep events, which must aligns with the patterns of human sleep, will be a highly valuable area for621

future research.622

8https://github.com/iver56/audiomentations

20



Figure 9: Confusion Matrices of Wav2Vec2.0 training on balanced and imbalanced dataset.

D Benchmark: Wearer-Aware Sleep Sound Event Detection623

D.1 Model Architectures624

Both models were built using PyTorch 1.13.0 and trained on an NVIDIA GeForce RTX 4090 GPU.625

We followed each paper as closely as possible and leveraged the accompanying code that was made626

available in both cases. Following the data format standards from the DCASE Challenges [18], we627

segmented the audio into 10-second clips and then generated the corresponding event onsets, offsets,628

and categories as labels.629

SEDNet [1]: The original SEDNet leveraged audio sampled at 44.1 kHz, but we scaled its630

pre-processing steps to account for the fact that our audio was sampled at 16 kHz. Specif-631

ically, we processed audio segments by extracting log-scaled Mel-band energies using 40632

bands within a 2048-point Hamming window and a 1024-point stride, yielding a 2×155×40633

(channel×time×frequency) feature vectors. We leveraged the open-sourced model found at https:634

//github.com/sharathadavanne/sed-crnn, which is shared under the license found at https:635

//github.com/sharathadavanne/sed-crnn?tab=License-1-ov-file#readme. The model636

was trained using the Adam optimizer with a batch size of 32. Training was stopped early if the637

Macro-F1 did not improve for 50 epochs.638

ATST-SED [38]: For the model’s CNN module, we processed audio segments by extracting 128639

log-scaled Mel features from frames with a 128-ms length and a 16-ms stride. For the model’s640

ATST-Frame module, we converted the audio segments into log-Mel spectrograms using a 64-ms641

Hamming window with a 10-ms stride. The resulting spectrogram comprised 64 Mel-frequency642

bins spanning a frequency range from 60 Hz to 7800 Hz. We leveraged the open-source model643

found at https://github.com/Audio-WestlakeU/ATST-SED, which is shared under the MIT644

License found at https://github.com/Audio-WestlakeU/ATST-SED?tab=MIT-1-ov-file.645

The model was trained using the Adam optimizer with a batch size of 24. We trained the first stage of646

ATST-SED for 200 epochs, during which the pretrained ATST-Frame module was frozen while the647

remaining parts were trained. Due to significant performance degradation observed during the second648

stage of training, we did not utilize it in this benchmark.649

D.2 Evaluation Metrics650

We evaluated the models in this benchmark using collar-based metrics [21] that compare the onset and651

offset of a predicted and target event. An offset is often used to account for differences in prediction652

resolution. Based on the empirical standard proposed by Serizel et al. [37] for sound event detection,653

we used a 200 ms tolerance to compare onset timestamps, and we used the maximum of 200 ms and654

20% of the duration of the sound event to compare offset timestamps. With these considerations in655

mind, we calculated the following performance metrics:656
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Macro-F1. The macro-averaged F1 score is the arithmetic mean of F1 scores in a multi-class model.657

In this context, true positives are defined as events in the system output that have a temporal position658

overlapping with the temporal position of an event with the same label in the ground truth. False659

positives are defined as events in the system output that have no correspondence to an event with660

the same label in the ground truth within the allowed tolerance, while false negatives are defined as661

events in the ground truth that have no correspondence to an event with the same label in the system662

output within the allowed tolerance. These metrics are computed on a per-class basis to produce663

class-specific F1 scores that are combined to calculate Macro-F1.664

Error Rate. Error rate is calculated as the total number of substitutions, deletions, and insertions665

divided by the total number of events in the ground truth. Substitutions are events in the system666

output with a correct temporal position but an incorrect class label, insertions are extraneous events667

in the system output, and deletions are events in ground truth not included in the system output.668

D.3 Supplementary Results669

Table 10 examines the class-wise performance of the models that were trained in this benchmark.670

The rest of this subsection describes the notable trends671

Challenges in class imbalance: Similar to the supplementary results for the previous benchmark,672

class imbalance also had an impact on sound event detection. Both models performed poorly on the673

severely undersampled cough class, to the point that they were never able to detect such events in674

the dataset. However, the data imbalance issue extends beyond different categories of events. It also675

includes variation in the duration of individual samples and imbalances between active and inactive676

frames [16], which caused notable challenges for SEDNet specifically. Since our dataset reflects the677

natural distribution of sleep events in non-restrictive environments, we encourage the development of678

targeted solutions to address these challenges.679

Utility of the feedback microphone audio: In Table 5, we found that benchmark models using680

only the feedback microphone audio exhibited better performance compared to those that only used681

feedforward microphone audio. Upon further examination of the class-wise accuracies in Table 10,682

we observed that the high signal-to-noise ratio of the feedback microphone audio enables the model to683

detect subtle sounds. This was particularly evident with ATST-SED, which saw a marked performance684

boost in classes like bruxism.685

Potential benefits of sensor fusion. Since SEDNet supports multi-channel audio, we used it to686

examine the utility of dual-channel audio fusion methods. However, we found that this approach687

actually resulted in performance degradation. This may be because SEDNet was designed to688

utilize a multi-channel microphone array to localize sound sources, whereas the microphones in689

this application are in much closer proximity to one another and the sound source. The EarVAS690

model [51] for subject-aware vocal activity classification demonstrates that models intentionally691

trained for earbud hardware can overcome this issue. Furthermore, we did not investigate the utility692

of using IMU data for event detection, but given its utility in wearer event identification, it may be693

fruitful to pursue this direction further in a multi-modal architecture.694
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Event label F1 Pre. Rec. ER. Del. Ins.
Bruxism 12.7% 30.4% 8.0% 1.10 0.92 0.18
Swallow 4.1% 33.3% 2.2% 1.02 0.98 0.04

Somniloquy 5.0% 14.3% 3.0% 1.15 0.97 0.18
Breathe 56.2% 56.6% 55.7% 0.87 0.44 0.43
Cough 0.0% 0.0% 0.0% 1.00 1.00 0.00
Snore 52.1% 55.6% 49.0% 0.90 0.51 0.39

Movement 38.7% 41.2% 36.4% 1.15 0.64 0.52

(a) ATST-SED With Feedforward Microphone Audio.

Event label F1 Pre. Rec. ER. Del. Ins.
Bruxism 21.6% 30.8% 16.7% 1.21 0.83 0.37
Swallow 6.9% 16.4% 4.4% 1.18 0.96 0.22

Somniloquy 2.8% 20.0% 1.5% 1.05 0.98 0.06
Breathe 57.6% 56.7% 58.5% 0.86 0.41 0.45
Cough 0.0% 0.0% 0.0% 1.00 1.00 0.00
Snore 47.4% 54.3% 42.0% 0.93 0.58 0.35

Movement 36.8% 42.1% 32.6% 1.12 0.67 0.45

(b) ATST-SED With Feedback Microphone Audio.

Event label F1 Pre. Rec. ER. Del. Ins.
Bruxism 0.0% 0.0% 0.0% 1.01 1.00 0.01
Swallow 0.0% 0.0% 0.0% 1.01 1.00 0.01

Somniloquy 0.0% 0.0% 0.0% 1.02 1.00 0.02
Breathe 50.8% 50.4% 51.2% 0.99 0.49 0.50
Cough 0.0% 0.0% 0.0% 1.11 1.00 0.11
Snore 44.2% 48.4% 40.6% 1.03 0.59 0.43

Movement 3.2% 3.3% 3.0% 1.86 0.97 0.89

(c) SEDNet With Dual-channel Audio.

Event label F1 Pre. Rec. ER. Del. Ins.
Bruxism 0.0% 0.0% 0.0% 1.00 1.00 0.00
Swallow 0.0% 0.0% 0.0% 1.00 1.00 0.00

Somniloquy 0.0% 0.0% 0.0% 1.00 1.00 0.00
Breathe 49.5% 48.9% 50.1% 1.02 0.50 0.52
Cough 0.0% 0.0% 0.0% 1.00 1.00 0.00
Snore 44.6% 48.1% 41.6% 1.03 0.58 0.45

Movement 31.7% 31.5% 31.9% 1.37 0.68 0.69

(d) SEDNet With Feedforward Microphone Audio.

Event label F1 Pre. Rec. ER. Del. Ins.
Bruxism 0.0% 0.0% 0.0% 1.00 1.00 0.00
Swallow 0.0% 0.0% 0.0% 1.00 1.00 0.00

Somniloquy 0.0% 0.0% 0.0% 1.00 1.00 0.00
Breathe 52.7% 52.9% 52.6% 0.94 0.47 0.47
Cough 0.0% 0.0% 0.0% 1.00 1.00 0.00
Snore 47.7% 48.9% 46.5% 1.02 0.54 0.49

Movement 31.6% 35.4% 28.5% 1.24 0.71 0.52

(e) SEDNet With Feedback Microphone Audio.

F1: F1 Score; Pre.: Precision, Rec.: Recall; ER.: Error Rate; Del.: Deletion Rate; Ins.: Insertion Rate

Table 10: Class-wise Results of the Wearer-aware Sleep Sound Event Detection Models.
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