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Abstract

In this paper, we study differentially private mechanisms for functions whose
outputs lie in a Euclidean Jordan algebra. Euclidean Jordan algebras capture many
important mathematical structures and form the foundation of linear programming,
second-order cone programming, and semidefinite programming. Our main con-
tribution is a generic Gaussian mechanism for such functions, with sensitivity
measured in /5, 1, and £, norms. Notably, this framework includes the important
case where the function outputs are symmetric matrices, and sensitivity is measured
in the Frobenius, nuclear, or spectral norm. We further derive private algorithms
for solving symmetric cone programs under various settings, using a combination
of the multiplicative weights update method and our generic Gaussian mechanism.
As an application, we present differentially private algorithms for semidefinite
programming, resolving a major open question posed by [Hsu, Roth, Roughgarden,
and Ullman, ICALP 2014].

1 Introduction

As modern machine learning leverages increasingly large models and ever-growing datasets, protect-
ing the privacy of data has become a paramount concern. Differential privacy [DMNS06, DKM T06]
has emerged as the gold standard for data privacy, owing to its simplicity, practicality, and
strong theoretical guarantees. Designing machine learning algorithms with differential privacy
(DP) is particularly valuable, as it enables protection of both user data and model parame-
ters [BIK*17, GKN17, MRTZ18, TLC*20, ATMR21, NBD22, FHL"24]. However, most dif-
ferentially private algorithms for machine learning are developed in a case-by-case manner
— tailored specifically to individual problems to ensure good privacy and utility trade-offs.
More generic approaches, such as making stochastic gradient descent (SGD) differentially pri-
vate [XLW12, BST14, ACG™16], have gained significant traction. Since SGD is a core subrou-
tine in many training algorithms, this line of work provides automatic privacy guarantees across
a wide range of models. Following this direction, we develop differentially private algorithms
for solving symmetric cone programs (SCP), a broad class of convex optimization problems that
includes linear programs (LP), second-order cone programs (SOCP), and semidefinite programs
(SDP). These convex formulations arise in many machine learning applications, including sup-
port vector machines [BGV92, CV95, MMR ™01, Joa06, CL11, SSSSC11, GSZ25], matrix comple-
tion [CT10, Recl1, CR12,INS13, ZWL15, GLZ17, KLL*23, GSYZ24, SYYZ25], robust mean and
covariance estimation [CDG19, CDGW19], experimental design [VAG19, AZLSW20], and sparse
PCA [dEGJL04, ZHT06, dBEGO0S, ZdEG10, VCLR13].

Symmetric cone programming (SCP) has been extensively studied from an algorithmic per-
spective, with both first-order methods [CLPV23, ZVTL24] and second-order methods [Fay97a,
Fay97b, SA03, Per23] developed, as they provide valuable insights for solving semidefinite
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programs. However, algorithms for SCP with differential privacy (DP) guarantees have re-
ceived little attention, largely due to the abstract nature of the problem class. In fact, to
the best of our knowledge, the only known DP algorithms in this family are for linear pro-
grams [HRRU14, DFVH120, MMSVV21, BBDH24, BBDH25], and designing DP algorithms for
SDPs was posed as a major open question in [HRRU14]. In this paper, we take a significant step
forward by designing DP mechanisms not only for SDPs, but for the broader class of SCPs — a
much richer and more general family of convex optimization problems. Our main contributions are
two-fold: (1) We begin by examining Euclidean Jordan algebras (EJAs), a class of real inner product
spaces that includes R* and the space of real or complex symmetric matrices of size 7 x r. We develop
a generic Gaussian mechanism over EJAs that provides (¢, 6)-differential privacy guarantees when
sensitivity is measured in the /1, {5, or £, norms. In the case of symmetric matrices, this corresponds
to nuclear, Frobenius, and spectral norms, respectively. This stands in contrast to the well-known
matrix mechanism [LHR™ 10, HT09], which aggregates multiple linear queries into a matrix and
measures sensitivity column-wise in vector norms. Our framework instead captures the geometric
structure of matrices by modeling perturbations to their spectrum. (2) We then design a suite of
private first-order algorithms for solving SCPs under various neighboring data settings. Specifically,
given two neighboring databases D and D’, we consider the following cases: (i) D’ has one additional
linear constraint compared to D (high sensitivity constraint privacy), (ii) D and D’ differ in one entry
of the scalar vector b (low sensitivity scalar privacy), (iii) the constraint sets differ in ¢, norm (low
sensitivity constraint privacy), and (iv) the objective elements differ (low sensitivity objective privacy).
For the high sensitivity constraint setting, we show that the multiplicative weights update algorithm
over constraints from [HRU13, HRRU14] naturally extends to SCP. For the remaining cases, we
develop a novel variant of the multiplicative weights algorithm that operates over the primal variable
space, guided by an approximate oracle that identifies the most violated constraint. This is combined
with the Gaussian mechanism we previously designed for the EJA structure. As a byproduct, we
design a multiplicative weights algorithm that could utilize a noisy oracle to for solving SCPs, which
we believe could lead to applications beyond differential privacy.

Roadmap. In Section 2, we survey related work on both differential privacy and symmetric
cone programming. In Section 3, we provide preliminary background on differential privacy and
Euclidean Jordan algebras. Section 4 introduces a generic Gaussian mechanism for Euclidean Jordan
algebras and establishes privacy guarantees under /1, /5, and ¢, sensitivities. In Section 5, we
present algorithms for private symmetric cone programming, covering both high sensitivity and
low sensitivity constraint privacy settings. For the high-sensitivity case, we give algorithms for
solving covering semidefinite programs and covering symmetric cone programs. Section 6 concludes
with a discussion of open problems and limitations of our work. Appendix A provides additional
preliminaries, particularly on Euclidean Jordan algebras and regret bounds for symmetric cone
multiplicative weights updates. Appendix B presents the full details, analysis, and applications for
the high sensitivity constraint privacy setting. In Appendix C, we describe algorithms for the low
sensitivity setting, including scalar privacy, constraint privacy, and objective privacy.

2 Related Work

Differential Privacy. Since its introduction in [DMNSO06], differential privacy has become the
standard notion for providing rigorous privacy guarantees in algorithm design. It has found
widespread applications across general machine learning [CM08, WM10, JE19, TF20], deep neural
networks [ACG™'16, BPS19], computer vision [ZYCW20, LWAL21, TZXL19], natural language
processing [YDW 21, WK18], federated learning [BIK*17, SYY ™23, SWYZ23] and adaptive data
structures [HKM 22, BKM 122, ACSS23, CSW123, SYYZ23, FFL*25]. The line of work most
relevant to ours concerns differentially private algorithms for convex programming, particularly linear
programming. The work of [HRU13] was among the first to study private algorithms for zero-sum
games, a special case of linear programming. Subsequently, [HRRU14] systematically examined
private linear programs under various notions of sensitivity, including constraint, scalar, and objective
perturbations. Their algorithms typically produce solutions that may violate constraints slightly due
to privacy noise. To address this, [MMSVV21] considered the case where only the scalar vector
is private, and showed that constraint satisfaction can be maintained by explicitly perturbing the
scalar vector. An alternative approach was proposed in [DFVH™20], which reformulates the private
problem as a stochastic chance-constrained program, whose solution satisfies the original constraints



with high probability. Building on these ideas, [BBDH24] extended the framework of [MMSVV21]
to handle private constraints, and [BBDH25] further demonstrated that it is possible to privatize all
components of a linear program while still satisfying the constraints. Our work is most closely related
to [HRRU14], as the other approaches heavily rely on the specific structure of linear programs and
extensively use the Laplace mechanism. In contrast, we show that extending these ideas to symmetric
cone programming poses significantly greater challenges, both technically and algorithmically.

Euclidean Jordan Algebras and Symmetric Cone Programming. Euclidean Jordan algebras
form the algebraic foundation of symmetric cone programming. It is well known that any EJA
can be decomposed into a direct sum of simple Jordan algebras, and up to isomorphism, there are
exactly five types of simple EJAs: real symmetric matrices, complex Hermitian matrices, quaternionic
Hermitian matrices, spin factors, and the Albert algebra [FK94]. Among these, real symmetric
matrices underlie semidefinite programming, while spin factors correspond to second-order cone
programming. EJAs are commutative but non-associative algebras, and this structure provides key
insights into the geometry and algorithmic design of semidefinite programming. As symmetric
cone programming generalizes both SOCP and SDP, interior point methods have been extensively
developed for this broader setting [Fay97a, Fay97b, SA03, Vie07], with significant effort devoted to
abstracting and extending classical SDP techniques. In particular, [Per23] proposes a novel interior
point method for symmetric cone programs using geodesic updates on the Riemannian manifold
defined by the interior of the symmetric cone. Our work builds heavily on the multiplicative weights
update framework introduced in [CLPV23] for online linear optimization over symmetric cones,
and extended in [ZVTL24] to general symmetric cone programming. This framework is especially
well suited for designing differentially private algorithms, as the oracle component required by
multiplicative weights can be implemented via the exponential mechanism.

3 Preliminaries

In this section, we provide some preliminary knowledge on Euclidean Jordan algebras, symmetric
cone programming and differential privacy.

3.1 Notations

We use O(f) to denote O(f poly log f). For two real vectors x,y € R¥, we use (z,y) to denote
xTy. Weuse ||z||1, ||z]|2, ||| o to denote the vector £1, £5 and £+, norms. For two real symmetric
matrices X,Y € R™ ", we use (X, Y’) to denote Tr(X "Y'), where Tr(:) is the trace of the matrix.
We use || X||s,, || X || 7 and || X || to denote the matrix nuclear, Frobenius and spectral norms. We use
X = Y todenote X —Y is a positive semidefinite matrix. We use N'(u, 3) to denote the multivariate
Gaussian distribution with ; and covariance matrix 3.

3.2 Euclidean Jordan Algebras and Symmetric Cone Programming

We will exclusively work with Euclidean Jordan algebras, which, as we will see later, generalize
many important spaces, including R* and the set of all r x r real symmetric matrices.

Definition 3.1 (Euclidean Jordan algebra (EJA)). An Euclidean Jordan algebra (EJA) is a finite-
dimensional vector space J equipped with:

e a bilinear product o : J x J — J that satisfies, for all x,y € J, xoy = yox, and

z?o(zoy)=wo(2®oy);

o aninner product {(-,-) : J x J — R that satisfies, for all x,y,z € J, (xoy,z) = (x,y 0 2);
o an identity element e that satisfies, forallx € J,eox =xoe = x.
As an example, if 7 is the set of all » x r real symmetric matrices, then the Jordan product is defined

byzxoy= %(:cy + yx), where - denotes standard matrix multiplication. Euclidean Jordan algebras
induce a geometric structure known as a symmetric cone, which can be characterized as follows:

Definition 3.2 (Symmetric cone, [Vie07]). A symmetric cone is a closed convex cone K in a finite-
dimensional inner product space J that satisfies the following properties:

o Kisself-dual, ie., K* :={y € T : (y,z) > 0,Vx € K} = K.



o KCis homogeneous, i.e., for any u,v € int(K), there exists an invertible linear transformation
L:J — J such that L(u) = v and L(K) = K.

KC can be characterized as the cone of squares of an EJA, specifically, there exists an EJA J with
K={2?:2€ J}wherex®> =xoxforxzeJ.

There are two key parameters associated with a Euclidean Jordan algebra (EJA) J: its dimension and
rank.

Definition 3.3 (Dimension and isomorphism). Let J be an EJA. Then there exists a positive integer
k such that J is isomorphic to R*. This integer k is called the dimension of J, denoted by
dim(J) = k. Moreover, there exists a linear isomorphism ¢ : J — R* such that forall x,y € J,
we have (x,y) = ((x), p(y)), i.e., ¢ is an isometry with respect to the inner product.

As an example, consider the set of r x r real symmetric matrices. The dimension of this space is

1 . . . .
LT; ) , since one can map these matrices to vectors of the same dimension. To define the rank, we

first introduce a suitable spectral decomposition for any element x € 7.

Definition 3.4 (Jordan frame). Let q1,...,q, € J be elements satisfying idempotency (¢? = q;)
and primitiveness (q; # 0 and cannot be written as a sum of two nonzero idempotents). We say
{q1,....q-} is a Jordan frame if (1) q; 0 qj = 0 fori # j; (2) >, ¢; = e.

The rank of an EJA is defined as the size of a Jordan frame used to form a spectral decomposition.

Definition 3.5 (Spectral decomposition). For any x € J, there exists a set of unique real numbers
A1,..., Ar and a Jordan frame {q, . .., q;} such that v = >"._, X;q;. The minimal such r is called
the rank of J (denoted by rank(J) = r). We use Tr(x) = Y_._, A; to denote the trace of the element

x. We define the exponentiation function exp : J — J as exp (3_i_; Nigi) := Y., exp(\i) g

Returning to the example of the set of r X r real symmetric matrices, we observe that the spectral
decomposition coincides with the standard matrix spectral decomposition. Therefore, the rank of this
space is r. Note the quadratic gap between the rank and the dimension for this example. The final
concept we introduce here is the trace-based inner product and the associated family of norms.

Definition 3.6 (Inner product and norm). Given x,y € J, we define their inner product as {x,y) =
Tr(z o y). For any p € [1,00), the €, norm of x is defined as ||z||, = (>i_, \/\i(a:)|p)1/p, and for
p = 00, the o norm is defined as ||z||oc = max;cpy |Xi(2)].

Standard inequalities related to the inner product, such as Cauchy—Schwarz and Hélder’s inequality,
continue to hold in this setting; we defer their proofs to Appendix A. We are now ready to define
symmetric cone programming.

Definition 3.7 (Symmetric cone programming). Given a collection of elements a1, ... ,apy,c € J
and b € R™, the symmetric cone program (SCP) is defined as

max {c, )
s.t. (a;,x) <b;, Vie[m],
T rK 07

where = denotes the generalized cone inequality, i.e., x > y means x —y € K.

3.3 Differential Privacy

Differential privacy is a strong and rigorous notion of privacy, first introduced in [DMNS06]. We
state its formal definition below.

Definition 3.8 (Differential privacy, [DMNSO06]). A randomized mechanism M : D — R is said to
provide (e, 6)-differential privacy if, for every pair of neighboring databases D, D’ € D (differing in
exactly one record) and every measurable subset S C R,

PrM(D) € S] < e Pr[M(D') € S] + 6.

Here ¢ > 0 and 0 < § < 1 are privacy parameters. The special case § = 0 is referred to as
e-differential privacy.

We will make use of the standard Gaussian mechanism.



Definition 3.9 (Gaussian mechanism [DKM*06]). Let €,6 > 0. A mapping f : D — R* has
Uy-sensitivity Ao if for all neighboring databases D, D’ differing in one record, || f(D) — f(D')||2 <
As. The Gaussian mechanism releases M(D) = f(D) + v, where v ~ N(0,02I};) and 0 =

Aoy/21og(1.25/6)

. This mechanism satisfies (¢, §)-differential privacy.

We note that [BW18] has improved the parameters of Gaussian mechanism, in particular the depen-
dence on €, § for . They further extend the analysis to work for all ranges of €. In this work, we
focus on providing a preliminary privacy analysis of EJA, thus we adopt the more traditional and
simple bound for Gaussian mechanisms.

To analyze the utility of the Gaussian mechanism, it is convenient to recall a standard tail bound for
Gaussian random vectors.

Lemma 3.10 (Laurent and Massart [LMO00]). Let Z ~ Xﬁ be a chi-squared random variable with k
degrees of freedom. Suppose each component has zero mean and variance o2. Then:

Pr[Z — ko? > (2Vkt 4 2t)0?] < exp(—t),
Prlko? — Z > 2Vkto?] < exp(—t).

We also make use of the exponential mechanism [MTO7], a tool for achieving privacy when the output
lies in a discrete or non-numeric domain. This mechanism relies on a quality score, a real-valued
function that evaluates the utility of pairing a database with a candidate output. Given a database, the
exponential mechanism then selects, in a privacy-preserving way, an element whose quality score is
close to the maximum achievable value.

Definition 3.11 (Exponential mechanism, [MTO7]). For a database D and range 'R, the exponential
mechanism chooses v € 'R with probability proportional to exp (iQ(r, D)) Here Q : RxD — R
is a quality score function, and /A denotes its sensitivity with respect to neighboring databases. This
mechanism is e-differential privacy.

The exponential mechanism satisfies the following utility guarantee.

Lemma 3.12 (Accuracy guarantee for exponential mechanism, [KPRU14]). Given § € (0,1) and
database D, let OPT denote the maximum value of the quality score Q) can attain on database D.
Then, with an e-private exponential mechanism with quality score on database D and outputs satisfies

that, with probability at least 1 — 8, Q(r, D) > OPT —% log (%)

Finally, we recall a standard composition tool to combine private mechanisms.

Lemma 3.13 ((DRV10]). Letd € (0,1), and M, ..., My, be € -private, adaptively chosen mecha-
nisms, then the composition My o ... o My, is (€, 0)-private, provided that ¢ = £

\/8klog(1/8)

We remark that while adaptive composition has been improved via moment accountant [ACG™16]
and Rényi DP [Mirl7, WBK19], we use the simpler adaptive composition for illustrating the main
idea.

4 A DP Framework for Euclidean Jordan Algebras

In this section, we introduce a differential privacy (DP) framework for Euclidean Jordan algebras
(EJA), based on the Gaussian mechanism. We begin with a motivating example. Let S” denote the
set of all  x r real symmetric matrices. Suppose we are designing a private recommendation system,
where each client record is represented by an r-dimensional feature vector u. The goal is to privately
release the covariance matrix of the dataset. In this setting, two neighboring databases D, D’ differ
in exactly one feature vector, and the function f : D — S” outputs the covariance matrix of the
data. It is then natural to define sensitivity using the matrix Schatten-p norms rather than entrywise
norms. For instance, the £, sensitivity corresponds to the spectral norm || f(D) — f(D’)||, while the
¢y sensitivity corresponds to the nuclear norm || f(D) — f(D’)||s,. These spectrum-aware notions of
sensitivity highlight the inadequacy of mechanisms like the Laplace mechanism, which adds noise
entrywise, and motivate the need for a more principled approach. This leads us to consider a general
formulation of differential privacy in the context of EJAs, which we refer to as DP-EJA.



Definition 4.1. Let D be the universe of databases, and let f : D — J. For neighboring databases
D, D', we define:

o f has tq sensitivity Ay if || f(D) — f(D')|h < Ay;
o [ has {y sensitivity Ao if || f(D) — f(D')|l2 < Agy
o [ has o sensitivity Ao if || f(D) — f(D')|loo < Aso

Perhaps the first question one might ask for DP-EJA is: how do we define an additive noise mecha-
nism? It is not immediately clear what constitutes a “Gaussian element” in an EJA 7. Thus our first
order of business is to develop a Gaussian mechanism for EJAs.

Lemma 4.2 (Generic Gaussian mechanism). Let J be an EJA with diim(J) = k, equipped with
an isometry ¢ : J — R¥. Let€,6 > 0 and let f : D — J be a function with Uy sensitivity As.
Consider the following mechanism:

Asy/210g(1.25/6) .

>

o Seto =
€

« Generate a Gaussian noise vector v ~ N (0, 021);
o Setz=¢ (v).

The mechanism releases f(D) + z and is (e, §)-differentially private.

Proof. The proof is straightforward. Since ¢ is an isometry, we have that for any z,y € J,
(p(z),0(y)) = (x,y), which implies that ||z|s = ||[¢(x)||2. Therefore, the ¢ sensitivity of f
satisfies || f(D) — f(D))|l2 = |lo(f(D)) — ¢(f(D’))||2. By Definition 3.9, the Gaussian mechanism
(pof)(D)+vi 1s (e7 §)-differentially private. Since ¢~ is also an isometry, we have ¢~ ((¢o f)(D)+
v) = f(D)+ ¢~ 1(v) = f(D) + 2, which implies that the release f(D) + z is (¢, d)-private. [

Lemma 4.2 provides a simple method for constructing a Gaussian element in 7: choose an isometry
¢, generate a Gaussian vector in R¥, and then apply ¢—!. Such an isometry always exists, as one
can construct it using an orthonormal basis for 7. As an example, consider 7 = S”, the space of

r X r real symmetric matrices. Then dim(J) = k = w, and the isometry ¢ maps a symmetric
matrix to a vector with the entries from its upper triangular part. Lemma 4.2 in this case corresponds
to generating a Gaussian vector in R¥, and then applying ¢! to obtain a symmetric matrix with the
upper triangular part filled by the Gaussian vector. The ¢2 norm on S” corresponds to the Frobenius
norm, so it is easy to see that Lemma 4.2 recovers the standard Gaussian mechanism for matrix-valued
functions under Frobenius norm sensitivity. As a consequence, we obtain private mechanisms for /;
and ¢, sensitivity via norm inequalities:

Corollary 4.3. Let J be an EJA with diim(J) = k, equipped with an isometry ¢ : J — RF.
Lete, 0 > 0, and let f : D — J have {1 sensitivity A1. Then, the generic Gaussian mechanism
(Lemma 4.2) with sensitivity parameter Ay is (¢, 0)-differentially private.

Corollary 4.4. Let J be an EJA with dim(J) = k, equipped with an isometry ¢ : J — R*. Let
€,0 >0, and let f : D — J have l, sensitivity A,. Then, the generic Gaussian mechanism
(Lemma 4.2) with sensitivity parameter \/1 A is (€, §)-differentially private.

One might wonder whether it is possible to perturb only the eigenvalues instead of all k£ dimensions.
This idea is particularly tempting for S”, since k = O(r?) while the rank is only . A naive approach
would be to first compute a spectral decomposition f(D) = 22:1 i@, then inject scalar Gaussian
noise to each eigenvalue, yielding >__, (A\;+;)g;. This approach also appears attractive for handling
¢4 sensitivity by injecting Laplace noise to each eigenvalue. Unfortunately, this method fails to ensure
differential privacy. It is not sufficient to perturb only the eigenvalues — the Jordan frame must also
be randomized. This can sometimes be achieved by sampling a random Jordan frame {p1,...,p.}
and outputting Z;zl (Ai + v;)pi- However, this raises challenges in bounding the ¢5 norm of the
result, as one must account for differences between Jordan frames. In the special case J = R*, this
issue disappears since there is a unique Jordan frame {ey, .. ., e; } and rank coincides with dimension.
For /7 sensitivity, one might wish to obtain a pure e-private mechanism using the Laplace mechanism:
namely, sample a Laplace noise vector in R* with suitable parameters and map it into 7 via ¢ 1.
Unfortunately, this also fails: the /; norm in R* does not, in general, correspond to the ¢; norm in J
(except when 7 = R¥). In essence, the isometry ¢ only preserves the inner product — and hence



the /> norm — but not other norms. For this reason, our mechanisms for ¢; and ¢, sensitivity are
derived from the generic Gaussian mechanism.

We also note that the utility guarantee for the generic Gaussian mechanism follows from the isometry
property of ¢: the ¢ norm of the noise element z € J equals the /2 norm of the Gaussian vector
v € R¥, which scales as vk due to Lemma 3.10. This implies a weaker bound when translating to
£, norm. For 8", standard results in random matrix theory state that ||z||.c = O(+/r) [Wig58]. For
general EJAs, it is well-known that they are direct sums of five simple EJAs [FK94], and if it does not
has spin factor as its component, then ||z||oc = O(/Tmax) Where 7,y is the largest rank among its

components, and is O(v/kmax + +/Tmax ) if it has spin factor as its component and k., is the largest
dimension. To unify the discussion, we conservatively adopt the weaker O(+/k) bound in this work.

S Private Symmetric Cone Programming

In this section, we develop differentially private algorithms for solving symmetric cone programs.
As an application, we obtain private algorithms for semidefinite programming, resolving a major
open question posed in [HRRU14]. Following the framework of [HRRU14] for linear programming,
we study private algorithms under several settings: (1) High sensitivity constraint privacy, where
neighboring databases may differ by one entire constraint; (2) Low sensitivity constraint privacy,
where all databases have the same number of constraints, and neighboring databases differ in the ¢,
norm of those constraints; (3) Scalar privacy, where neighboring databases differ in the right-hand
side vector b, again measured in /., norm; (4) Objective privacy, where neighboring instances differ
in the objective element ¢ under ¢, norm. Our algorithm for the high sensitivity constraint setting
is a generalization of the dense multiplicative weights update (MWU) method used in [HRRU14]
for linear programs. For the other three settings, we adopt the MWU framework for symmetric cone
programming introduced in [CLPV23, ZVTL?24], but propose a novel scheme in which the update
direction is determined by identifying the most violated constraint.

5.1 High Sensitivity Constraint Privacy

In this setting, the SCP instances for two neighboring databases share the same objective element
c € J but differ by one constraint and its corresponding scalar value: they have the same first
m constraints, while D’ contains an additional constraint and scalar value b, ;. Note that this
additional constraint can be arbitrary. As first observed in [HRRU141], it is generally impossible to
design a private algorithm that satisfies all constraints, as a new constraint can significantly alter the
optimal solution of the original program. The key idea in [HRRU14] is to run an MWU procedure
over a restricted set of constraints, so that the output solution satisfies most of the constraints while
preserving privacy. This is achieved by applying Bregman projection [HWO01] and performing MWU
over a projected dense distribution over the constraints. While [HRRU14] analyzes this method in the
context of linear programming, we show that it extends naturally to symmetric cone programming,
since the algorithm operates over constraints. As a consequence, we obtain private algorithms for
covering semidefinite programs that are especially useful in regimes where the number of constraints
m is much larger than the matrix dimension r. Specifically, consider the following covering SDP:

min Tr(X)
X =0
st (A, X) > 1, Vie[m],
where A1, ..., Ay, = 0 and max;cpy,) | As|| < 1. All matrices are of size r x 7. Covering SDPs have

a wide range of applications in machine learning, including robust mean estimation [CDG19], robust
covariance estimation [CDGW19], and E-optimal experimental design [VAG19].

Theorem 5.1 (Informal version of Theorem B.10). Let e > 0, § € (0,1) be the DP parameters,
and let § € (0,1) be the failure probability. Given a covering SDP with m constraints over r X r
matrices, there exists an algorithm (Algorithm 3) that finds X* »= 0 such that (A;, X*) > 1 — « for
all but s constraints, with probability at least 1 — (3. s and « satisfy

s=Q (g log'/2(1/5) log(1/8) log m) ., a=O0(OPT).

Moreover, the algorithm is e-differentially private with respect to high sensitivity constraint privacy.



The core idea behind Theorem 5.1 is to use the dense MWU framework described above, paired
with a private oracle that performs a simple linear minimization. To ensure privacy, the oracle is
implemented using the exponential mechanism. A major technical challenge is that, even when
the optimal value of the program is fixed to OPT, the number of feasible solutions is infinite, as
they correspond to extreme rays of the positive semidefinite cone intersected with a hyperplane. A
naive application of Lemma 3.12 would yield a vacuous bound due to |R| = oo. To overcome this,
we use a y-net argument to discretize the space of feasible solutions. By carefully choosing v, we
ensure the size of the net is exp(r), which allows us to apply Lemma 3.12 with a penalty factor of r.
This contrasts with the private covering LP algorithm in [HRRU14], where the feasible solutions are
simply scaled standard basis vectors in R", and hence |R| = r, resulting in no such dependence on r-.

Inspired by our private algorithm for covering SDP, we further extend the framework to any covering
symmetric cone program over a simple Euclidean Jordan algebra:

in T
ip (0

s.t{a;,x) > 1, Vie[m].

It is well-known that, up to isomorphism, there are five types of simple Jordan algebras: r x r real
symmetric matrices, X r complex Hermitian matrices, X r quaternionic Hermitian matrices,
r-dimensional spin factors, and the exceptional Albert algebra [FK94]. In particular, the cone of
squares for r-dimensional spin factors corresponds to the r-dimensional second-order cone. To apply
the machinery developed for private covering SDP to general SCP, we observe that the oracle’s
optimal solutions are (scaled) primitive idempotents in 7. Therefore, a y-net argument requires
bounding the dimension of the set of primitive idempotents. For all simple Jordan algebras, this
dimension is O(r) [FK94], which mirrors the dimension in the SDP case where 7 = S”. To the best
of our knowledge, this is the first attempt to quantize the rays of primitive idempotents via a vy-net,
and we hope this approach enables further applications and tighter bounds in future work.

Theorem 5.2 (Informal version of Theorem B.13). Let J be a simple EJA of rank r. Let ¢ > 0,
d € (0,1) be the DP parameters, and let 8 € (0, 1) be the failure probability. Given a covering SCP
with m linear constraints, there exists an algorithm (Algorithm 3) that outputs a point x* € K such
that {a;,x*) > 1 — « for all but s constraints, with probability at least 1 — 3. The parameters s and
« satisfy

s=0Q (C log'/2(1/6)1og(1/8) log m) , a=O0(0PT).
€
Moreover, the algorithm is e-differentially private with respect to high sensitivity constraint privacy.

5.2 Low Sensitivity Constraint Privacy

In the low sensitivity setting, two neighboring databases have the same number of constraints
and differ in the ¢, norm. Specifically, let A(D), A(D’) be the constraint sets corresponding to
neighboring databases D and D', respectively. We assume that max; ¢, ||ai(D) —a;(D’)[|co < Ase.
As observed in [HRRU14] for the LP setting, it is possible to approximately satisfy all constraints
by applying MWU over the variables. In particular, the oracle in this setting is given the constraint
set A € J™, scalar vector b € R™, and a point € K, and it must return an approximately most
violated constraint a; such that (a;, z) — b; > max;epm){a;, r) — b; — a with high probability. We
refer to such an oracle as an («, v)-dual oracle, which achieves additive approximation « and fails
with probability at most ~y. This oracle is particularly well-suited to privatization via the exponential
mechanism: the score function Q(,b) = (a;, x) — b; leads to both privacy and accuracy guarantees.
It remains to show that one can indeed solve the SCP in a first-order fashion using such an oracle. In
the case of linear programming, this is already established by the classical work of [PST95]. Our first
result shows that an approximate most violated constraint oracle can likewise be used to solve SCPs
over symmetric cones in a first-order manner. Before stating the result, we define the width of the
constraint set as p = maxX;e ] ||| oo-

Theorem 5.3 (Informal version of Theorem C.2). Given an SCP with m linear constraints, suppose
there exists a feasible point x € K with Tr(x) = 1, and access to an («/2,7)-dual oracle. Then, there
exists an algorithm (Algorithm 5) that finds a distribution element x* € IC such that {(a;,z*) < b; +«

Sor all i € [m], with probability at least 1 — Ty, where T = O (%).



The assumption on the existence of z with Tr(z) = 1 is without loss of generality, as it can always
be satisfied by scaling down any optimal solution by its ¢; norm. Previous MWU algorithms for
symmetric cone programming have relied on a primal oracle, where the input is a point x € K
with Tr(z) = 1, and the output is a vector y € R™ satisfying (>°, y;a; — c,z) > Oand b’y <
a [ZVTL24]. Our proof instead builds on the regret bound for MWU over EJAs as established
in [CLPV23].

Algorithm 1 Constraint private SCP solver.

1: procedure CONSTRAINTPRIVATESCP(A € J™, b € R™)

2: xl «—e/r

Let o, v be the parameters for the oracle, ¢, § be the parameters for DP
Let ORACLE be an («, 7y)-dual oracle

144logr s € o
T = 4,/T10g(1/5)’77<_ 12p
fort=1—Tdo

Asor/2rlog(T/6
o 6,g(/)

p! < ORACLE(A, b, z})
vt~ N(07021k>

2 o ()

- a 1,+zt

{F e 25—

YR D UNAEW

—_ =
—

t g
12: tH1 exp(=> i, an)‘
g Tr(exp(— 320y 72)

13: end for ’

) | t
14: return” < £y, | T
15: end procedure

We observe that the private data A is accessed both during the oracle step and the loss computation.
To ensure privacy in the oracle step, we use the exponential mechanism; for the loss computation, we
apply the generic Gaussian mechanism developed in Section 4, injecting a Gaussian noise into the
constraint returned by the oracle.

Theorem 5.4 (Informal version of Theorem C.7 and C.9). Let A € J™ satisfy A(a;) C [—1,1] for
alli € [m), and letb € R™. Let B,e > 0 and ¢ € (0,1). Then Algorithm 1 using the exponential
mechanism to implement a dual oracle returns a distributional element x* such that with probability
at least 1 — f3, {a;,x*) < b; + a for all i € [m], where

~ [ ALPp1/ag/
a=0 (el/z - polylog(r,1/8,1/6) | .

Moreover, the algorithm is (e, 0)-private with respect to low sensitivity constraint privacy.

Compared to the low sensitivity constraint privacy LP result of [HRRU14], our bound incurs an
additional k'/4 factor in a.. This arises because the sensitivity is measured in the /o, norm, yet the
noise added is a k-dimensional Gaussian vector. By standard concentration bounds on the norm of
Gaussian vectors (see Lemma 3.10), the /5 norm of the Gaussian vector — and consequently, the
corresponding Gaussian element z — scales with v/k. In contrast, [HRRU14] adds independent
entrywise Laplace noise, and the magnitude of any single perturbation is at most A, /e with high
probability. As discussed in Section 4, our framework does not permit injecting noise directly into
the eigenvalues of the EJA elements, since this would require sampling a random Jordan frame as
well — posing additional complexity and potential distortion. We also develop algorithms for the
setting where the scalar vector b € R™ or the objective element ¢ € J is private under low sensitivity.
These follow as variants of the MWU algorithm developed for low sensitivity constraint privacy SCP.
We defer the details to Appendix C.

Remark 5.5. We interpret Algorithm 1 as an approximate multiplicative weights update (MWU)
scheme with noisy oracles. Instead of applying the MWU rule directly to the primal variables, the
algorithm first perturbs the oracle output with Gaussian noise and then uses the perturbed value
for the update. Theorem 5.4 can thus be viewed as quantifying how the injected noise influences
constraint violations. More broadly, by altering the noise distribution, one can adapt the noisy MWU
[framework to other settings that require different types of error guarantees.



6 Conclusion

We study differentially private algorithms for convex programming, with a particular focus on
symmetric cone programming. To this end, we develop a generic Gaussian mechanism for Euclidean
Jordan algebras that provides differential privacy guarantees under /1, {2, and ¢, norms. We
incorporate this mechanism into private solvers for symmetric cone programs under both high and
low sensitivity settings. For the high sensitivity regime, we generalize the analysis of [HRRU14]
beyond linear programming and apply it to covering semidefinite programs and covering symmetric
cone programs. In the low sensitivity setting, we design a private solver based on an approximately
most violated constraint oracle, in conjunction with our generic Gaussian mechanism. As a direct
consequence, we obtain a family of differentially private algorithms for semidefinite programming —
a longstanding open problem originally posed by [HRRU14] — that also encompass a wide range of
applications in machine learning.

There are several limitations of our work, which we leave as directions for future research. (1)
The differential privacy mechanisms we employ are relatively basic; recent advances in moment
accounting and Rényi DP [ACG™ 16, Mir17, WBK19] could yield stronger trade-offs between privacy
and utility. (2) Although our private solvers provide meaningful guarantees, they only approximately
satisfy the constraints. In high sensitivity settings, this manifests as a small number of constraint
violations. A central open question is whether it is possible to design private algorithms that satisfy all
constraints exactly. For linear programming, [MMSV V21, BBDH24, BBDH25] develop techniques
to preserve feasibility under privacy. Extending these methods to the broader setting of symmetric
cone programming (and even SDPs) is considerably more challenging, since one must contend with
privacy-preserving perturbations to the spectrum of matrices rather than to entries of a vector.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16



Answer: [Yes]

Justification: All assumptions and proofs are provided, specifically, see Section 4 for the
privacy proof of the generic Gaussian mechanism, Appendix B for the settings and proofs
for high sensitivity constraint privacy with applications, and Appendix C for a slew of results
in the low sensitivity setting.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper is theoretical in nature and does not contain experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper is theoretical and does not contain data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper is theoretical hence contains no experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper is theoretical hence contains no experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper is theoretical hence contains no experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Authors have reviewed and ensured the paper adheres to the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader societal impacts have been discussed in Appendix D.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is theoretical in nature, therefore does not contain data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper is theoretical in nature, therefore does not use any assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper is theoretical in nature, therefore does not create any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is theoretical in nature, therefore does not have any crowdsourcing
or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is theoretical in nature, therefore does not require and IRB approvals.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM was only used for word editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A  More Preliminaries

In this section, we provide more preliminaries on standard inequalities for EJA and multiplicative
weights update for SCP.

Cauchy-Schwarz inequality is automatically satisfies given an proper inner product, we record it here.

Definition A.1 (Cauchy-Schwarz inequality for EJA). Let z,y € J, then we have the following
standard Cauchy-Schwarz inequality:

(@, u)] < llzll2 - [[yll2-
While Cauchy-Schwarz inequality only requires an inner product space, Holder’s inequality requires
dual norms and a pairing. Nevertheless, we prove the Holder’s inequality for EJA.
Lemma A.2 (Holder’s inequality for EJA). Let p,q € [1,00] satisfy 1/p+1/q =1, let z,y € T,

then we have

(@ )| < llzllp - [[Yllq-

Proof. The idea is to write z, y in their spectral decomposition and apply the standard vector Holder’s
inequality. Let z = >_'_, Aju;,y = Y _;_, p;v; be their respective spectral decomposition. Note that
given a primitive idempotent element u, we have that Tr(c) = ||c||3 = 1 because its rank-1. Then

[(z,y)| = [Tr(z o y)|

= | Tr(z Aju; © Z piv;)|
i=1 4
=13 hapa (s 0 0y)|

,J
T T

<N I gl - (uivg),
i=1 j=1

consider the matrix P; ; = (ug, vj>, note that P is a doubly stochastic matrix: since all u;’s, v;’s are
primitive idempotent, it must be that (u;, vj> > 0. Moreover, it’s easy to verify that if we fix ¢, then

T

> (uisvg) = <%ZUJ'>

j=1
= <ui7 €>
= Tr(u;)
=1,

and the same argument holds for rows. By Birkhoff—-von Neumann theorem [Bir46], P can be
written as a convex combination of permutation matrices : P = 22:1 c;11; where ¢;’s form a convex
combination, so it suffices to work with any permutation matrix IT and its corresponding permutation
function o : [r] — [r], set |A[, || be the vector with entries in |X;|, |1/, then

Dl gl - Ty = AT

1,7
=il oo - 6))
i=1
Thus, we can conclude that

D Il il - (uiy05) = (AT Pyl
i.j
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= > Ny
=1

< > cillMpIipl,

i=1

T
=Y _cillMllplulg
i=1

= [IMllpllellq
= llzllpllylq:

where we use vector Holder’s inequality in the third step. This completes the proof. O

[TWK22] proves a generalized Golden-Thompson inequality for EJA, as follows.
Lemma A.3 (Generalized Golden-Thompson inequality, [TWK22]). Ler (J,0) be an EJA and
z,y € J, the generalized Golden-Thompson inequality holds:

Tr(exp(z +y)) < Tr(exp(z) o exp(y)).

We now describe the online linear optimization framework over symmetric cones.

Definition A.4 (Online linear optimization (OLO) framework using symmetric cone multiplicative
weights update (SCMWU), [CLPV23]). At each time t, the algorithm needs to pick a distributional
element p' such that Tr(p') = 1 and p* € K. Once the element is picked, a linear loss function
0 (p) = (m?, p) where m' € J. The SCMWU computes the next iterate as

41 _ exp(—n 23:1 m’)
Tr(exp(—n Y r_, m™))

where p! = e/ Tr(e) is the uniform distribution over K.

p

The main idea of SCMWU is to incur cumulative losses comparable to the losses of the best set of
actions that an algorithm can make in hindsight. The discrepancy between the cumulative losses of
our algorithm and the optimal algorithm is usually referred to as the regret as a function of time ¢.
We recall the regret bound of SCMWU proved in [CLPV23].

Theorem A.5 (Theorem 5.1 of [CLPV23]). Let (J,0) be an EJA of rank r, K be its cone of squares.
For any n € (0, 1] and any sequence of loss vectors {£*,... (T} satisfy ||0*|| o < 1, the iterates A*
generated by Algorithm 4 satisfy

T

DoAY <

t=1 t

[M]=

1
(€', B) + T + —,
n

Il
_

where B is any point in K satisfying Tr(B) = 1.

B High Sensitivity Constraint Private SCP

In this section, we study algorithms for SCP in the high sensitivity constraint privacy setting. We
generalize the algorithm and analysis of [HRRU14] in the LP setting.

B.1 Solving SCP with Dense Multiplicative Weights Update

Let us begin by considering constraint private SCPs over a symmmetric cone X in an EJA 7, with
the general form

max (e, x)

st (aj, ) < bj,Vj € [m]
r €K,
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where c,a1,...,am € J,b1,...,0p, € Rand KL C J.
Let Copr = KN {zx € J | (c,z) = OPT}. We reduce the SCP to the feasibility program

find z € Kopr
sit. (aj, ) <b;,Vj € [ml],

then binary search the value OPT. Hence, it suffices to solve the feasibility program. As Kopr is
convex, so we write K for ICopr for simplicity.

Let A = {a1,...,am} € J™ be a collection of constraints. A database D defines an SCP as
a tuple (¢(D), A(D),b(D)), where ¢(D) is the objective element, A(D) is the set of constraints
and b(D) is the right hand vector. In a constraint private SCP, we have that ¢(D) = ¢(D’), the
only differing parts are the constraints A(D), A(D’) and their associated scalar value. In particular,
|A(D) N A(D")| = m,|A(D)| = m,|A(D")| = m+ 1, so A(D), A(D’) coincide with all m but
one constraint. The scalars for the coinciding m constraints are the same, except the scalar value for
the differing constraint. We define the adjacency as differing by exactly one constraint.

Definition B.1 (High sensitivity constraint privacy). Given m € N, vector b € R™, and a constraint
set A € J™, a randomized mechanism M that outputs a vector in J is (e, 0)-high sensitivity
constraint private if for any A, A" such that A’ = AU {am 1}, and b, b such that b/ = [b; by, 1] ",

Pr[M(m,b, A) € S| < e Pr[M(m+ 1,b',A") € S]+ 4§
for any subset S C J.
Next, we introduce the dense MWU framework. Let F denote the universe of actions, F' be the
measures on the set of actions F' : F — [0, 1], and F be the respective probability distribution,

defined as F = \%I where [F| =}, » Iy is density of F. A key concept we will be relying on is
the Bregman projection.

Definition B.2 (Bregman projection). Let F' be a measure with |F| < s for some s > 0, we define
Ty F as the Bregman projection of F onto the set of 1/s-dense distributions:

1
I Ff = B -min{l,cFy} VYfeF,

where ¢ > 0 is the value satisfying s = 3 ;.  min{1, cFy}.

Algorithm 2 Dense multiplicative weights update, [HWO1].
1: procedure DENSEMWU(F,7)

2 F! « the uniform distribution on F > F! e RIZI
3 fort=1—T—-1do

4 Bt « T F?

5: Receive loss vector £ > ¢t e RIZI
6: for f € Fdo

7 Ft e F

8 end for

9 end for
10 return F'T

11: end procedure

The following lemma due to [HWO1] gives the regret bound for Algorithm 2.

Lemma B.3 ([HWOL1]). Let F denote the uniform distribution over F (so that |Fy| = 1). Consider
the sequence of projected distributions { B'}_, produced by Algorithm 2 under an arbitrary loss
sequence {{*}L_| with |[0!||c < 1 and step size 1 < 1/2. Define B* as the uniform distribution

supported on some subset S* C F of size s. Then,

1 log | 7|

T 1 T
¢t BY < =N (et B*
;< : >_T;< ,B*Y + 10+ T

el
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As standard for any MWU algorithm, we define the width of an SCP, denoted as p:

> . _ b
p 2 maxmax max [(ai(D), ) = bi(D)],

MWU algorithm usually assumes an oracle that can efficiently perform “simpler” minimization
problem, and in our case, it corresponds to minimize over a simple linear function.

Definition B.4 ((«, 5)-approximate, p-bounded oracle). Given a distribution y € R™ and a set
A={ay,...,an} € J™, an («, §)-approximate, p-bounded oracle returns x* € K with probability
at least 1 — (3 such that

Zyzaza < Imnelerl Zyzau +a and 2l'élaX’ a;,T bl| < p.

To solve symmetric cone programs, we employ the dense symmetric cone multiplicative weights
update algorithm, which maintains a distribution over the constraints and, at each iteration, selects a
point z* € K that approximately minimizes the weighted violation of those constraints. Intuitively,
losses increase the weight assigned to violated constraints, thereby steering subsequent iterates toward
improved feasibility. Averaging the points x* across all iterations then produces an approximately
feasible solution. The full procedure is described in Algorithm 3.

Algorithm 3 SCP feasibility via DENSESCMWU.

1: procedure SCPDENSEMWU(A, b)

2: gt 1, /m

3: Let p > maxp maxyex MaX;e(m) [(ai(D),z) — b;(D)| be the width of the SCP, s € N be
the density parameter, o > 0 be the desired accuracy

4: Let ORACLE be an («, 8)-accurate, p-bounded oracle

5: n <+ +/(logm)/T, T + 36a=2p?logm

6: fort =1— T do

7: Jit <+ ORACLE(Y', A)

8: ¢ (1/2p)(b; — (@i, a")) +1/2

9: Update y' ! from ! and ¢! via dense multiplicative weights with density s

10: end for
11: return T < (1/7") Zle z!
12: end procedure

Algorithm 3 differs significantly from other MWU algorithms for solving SCP such as [CLPV23,
ZNV'TL24], where the algorithm updates the variable x € I instead of a distribution over the
constraints. In the following, we show that Algorithm 3 provides utility guarantee for solving the
program. The proof is similar to [HRRU14], as the analysis focuses on the constraint, which does not
exploit the structure of EJA J.

Lemma B.5 (Approximate SCP feasibility via SCPDENSEMWU). Let A = {a1,...,a,,} € J™
and b € R™, p be the width of the SCP. Let o € [0,9p], 3 € (0,1) and T = 36a~2p? logm.
Suppose the SCP is feasible, then Algorithm 3 with density s that utilizes an («/3, B/T')-approximate,
p-bounded oracle can output x* in IC such that, with probability at least 1 — [3, there exists a subset
of constraints S C [m] with |S| < s and {a;,z*) > b; + aforalli € S.

Proof. We will condition on the event that the oracle succeeds on all steps, note that this could be
achieved via a union bound over T steps to obtain a success probability of at least 1 — .

Let s = {y e R™ | (L, vy = 1, |lyllc < 1/s} be the set of 1/5 dense distribution. The
oracle finds 2 with )" i1 yila;, xt) < Yot yib; + /3. Define the i-th item in the loss vector is
= (1/2p)(b; — (a;, Z>)+1/2 Then we have

= Zfﬁyf

- 1
1/2p Z a“ 7, Y; + §||yH1

i=1
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> (1/2p)( Zy yibi) — a/3) + *Hylll

1 lo'

2 6p’
if < 9p, then (¢¢,yy*) > —1. To prove an upper bound, we recall that the oracle is p-bounded:

m

(05 =(1/20) (01— (aas 2yt + ol

@
Il
-

~

1 « 1 logm
<= Yk
5 6 T:< Py +n+ T
S i (et Ly
Tt:1pz 2 i i, T 9 nT >
rearranging gives
_g<liz i(b (a5, 1)) + | logm
GPithl i:1pz 2 i i n nT )

recall that we set the final outputas T = 1/T' Zthl x*, the above bound could further be written as

m

2plogm  «
sz- a;, T ;pz it 20+ ==+ g
picking 77 = 6™ and T' = 1002# gives

m

sz i, T sz bi+a.

As the above bound holds for any p € K, it must be the case that T satisfies all but at most s — 1
constraints with additive error ae. Suppose otherwise, there are s constraints violate the a-additive
error condition, then we could set p as the uniform distribution over these s constraints and this
implies that these s constraints satisfy the c-additive error condition, a contradiction. O

B.2 Privacy Guarantee of Dense Multiplicative Weights Update

Next, we prove that Algorithm 3 is private as long as the oracle is private. The algorithm only utilizes
the private data via the oracle minimization, hence, as long as the oracle is privately minimizes over
K at each step ¢ € [T, the final output will automatically be private as K is convex. To do so, we
recall a lemma first proved in [HRU13], showing that for two neighboring databases that differ by
one action, then their projected distributions % and ¢’ satisfy ||g — 7'||1 < 2/s.

Lemma B.6 ((HRU13]). Let F : F — [0,1] and F' : FU{f'} — [0,1] be two measures over
their respective set of actions. Let density parameter s € N and it satisfies that (1) |F|,|F'| < s,

(2) Fy = FJ’c forevery f € F. Let F, F’ be the corresponding Bregman projections onto the set of
1/s-dense distributions, then we have

IF = 'l < 2/s
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Now we are able to present our main theorem for high sensitivity constraint privacy:

Theorem B.7 (Privacy guarantee). Let ¢,d > 0. Consider a symmetric cone program with constraint
matrix A € J™, vector b € R™, and width p. Fix parameters « € [0,9p], 5 € (0,1), and
T = 3,a 2p?logm. Given access to an (o/3, 3/T)-approximate, p-bounded oracle that is also

€'-private where ¢ = m. For any neighboring instances, the oracle inputs satisfy
og

Gl <5 W<t 19-7h<2

Then Algorithm 3, run with density parameter s, is (e, §)-high sensitivity constraint private.

Proof. Since the oracle is ¢ -private, the overall (¢, d)-constraint private is achieved via adaptive
composition (Lemma 3.13). When adding or removing a constraint, we note that A and A’ are
identical except for one additional constraint. Since we project the distribution onto /g, it must
be the case ||J]|co, |7 [|oo < 1/s, and ||§ — ¥’||1 < 2/s follows from Lemma B.6. Thus, since two

distributions are identical except for the probability associated with the additional constraint, we have
completed the proof. O

B.3 Application I: Private Solver for Covering SDP

As an application, we show how to develop a private solver for covering semidefinite programming:
min  Tr(X)
X ERT Xr
s.t. (A, X) > 1,Vi € [m)]
X*>0

where Ay, ..., A, = 0. We without loss of generality assume max;c[ [|A;|| < 1, note that this
can be done via scaling all the A;’s. Again, we consider the convex set Lopr = {X = 0: Tr(X) =
OPT} and we will assume OPT is known, as otherwise it could be found by binary search. Thus,
we can consider the feasibility problem

find X € Kopr
s.t. (A;, X) > 1,Vi € [m].

It is natural to study high sensitivity constraint privacy in this setting, as one could view A; as
the positive semidefinite constraint matrix associated with each individual data point as in the
case of robust mean estimation [CDG19], robust covariance estimation [CDGW19] and E-optimal
experimental design [VAG19].

We need to design an oracle to solve the minimization problem

O(y) = arg_min (> y,4;, X),
1

XeKopT 4
i=

this is a linear minimization problem, and Copr is the intersection of a hyperplane and the positive
semidefinite cone, and the solutions to the linear minimization are the extreme rays of the cone:

X*=wuu',

where ||u||3 = OPT. To implement a private oracle, it is tempting to use exponential mechanism
directly, but note that there are infinitely many r-dimensional vectors u satisfying ||u||3 = OPT, so
the accuracy guarantee of Lemma 3.12 because meaningless as |R| = oo. To address this issue, we
use a y-net argument to quantize the ball B = {u € R" : |lu/|3 < OPT} into finitely many points.

Lemma B.8 ([LT91, Verl8]). Let B = {u € R" : ||ju|l2 < R}, there exists a finite collection of
points N C R” such that for any u € B, there exists v € N such that ||u — vl||s < v for v > 0.
Moreover, |[N| = O((R/~)").

Our private oracle will then be the exponential mechanism, over the net V.

Lemma B.9. Let OPT,e > 0, 8 € (0,1), s € N, and define B = {u € R" : ||u||§2 < OPT}.
Assume neighboring inputs y,y' € R™ satisfy ||y|lcc < 2, |y loc < L and ||y —y'|l1 < 2. Let N be

= g’
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a \/OPT /2-net of B (Lemma B.8), and let O(y) denote the e-private exponential mechanism on N

with quality score

m
= <Z yiAi7 UUT> -
i=1

Then O(y) is an («, B)-approximate, p-bounded oracle with
6r OPT

o= log(1/0), p <30PT-1.

Proof. We first need to prove the width of the oracle. For any point v € [N, we know that there exists
apointv € B with ||u — v||2 < 7, therefore

(Ajuu’) =1 =u" Aju — 1
< Jlull3 -
< 2Jjoll3 + 2w — v]3 -
< 2(0OPT +4?) — 1.

For accuracy guarantee, we first need to compute the sensitivity of the quality score. To do so, note
that for the first m entries, we have >\ | |y; — y| < 2/s and D’ might have one more constraint,

therefore the extra entry of ¢’ has its magnitude being at most 1/s. We let y, 3y’ € R™"! and set
Ym+1 = 0, the sensitivity is

ZyzA Z%Auuu Z%A Zyz
=|§: — yi)u TAUI

max lu” Azul - [ly =[x

IN

IN

max || Ai| - [Jull3 - 3/5
30PT

S

To obtain the final bound, we need a handle on [N|. Pick v = |/ 95T, then |N| < exp(r) and by
Lemma 3.12, we can choose « as

6 OPT

s(IN1/B)
6r - OPT
= —log(1
o log(1/B),
this ensures a success probability of at least 1 — 5. We hence complete the proof. O

We are set in a position to state the final privacy and utility guarantee of our algorithm for high
sensitivity constraint privacy.

Theorem B.10 (Formal version of Theorem 5.1). Let 8, € (0,1),e > 0. Algorithm 3 with the
oracle O(y) as in Lemma B.9 solves a covering SDP with m constraints by outputting X* = 0 such
that with probability at least 1 — (3, we have (A;, X*) > 1 — « for all but s constraints where

s=0Q (C “log'/%(1/6)1og(1/8) log m)
€
and « = O(OPT). Moreover, Algorithm 3 is e-private with respect to high sensitivity constraint

privacy.

Proof. To apply Theorem B.7, we require o < 9p, and need to use an («/3, 3/T)-approximate
oracle with €/-private. As T = 36a2p? logm and € = we plug in these choices into

Lemma B.9:

€
8T log(1/6)’

187" OPT 0g(T/3)
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54r OPT- \/Tlog 1/5

og(T/p)
_o(’“ oPTVT R logt w)
~0 (W - \/log(1/6) log(1/5) logm) :

S

solve for a, we get

a=C- \/@ log'/4(1/8) 1og"/?(1/8) log/?

and the requirement a < 9p forces that

r-OPT-
mlogl/4(1/5) 10g1/2(1/ﬂ) logl/Zm < C/p,
1 .OPT
\/E 2 a . \/T 10g1/4(1/5) 10g1/2(1/l8) 10g1/2
- €

s=0Q <TPOIZT -log'/2(1/6) log(1/B) logm>

=Q (E -log'/2(1/6) log(1/B) logm> .

This completes the proof. O

rearranging gives

B.4 Application II: Private Solver for Covering SCP

More generally, consider the covering symmetric cone programming:
min Tr(z)
zeJ

s.t. {a;, ) > 1,Vi € [m]
r ek,

where a1, ..., an, € K. We can again without loss of generality assume max;e[,,] ||ailoo < 1. Set
Kopt = {a: € K : Tr(x) = OPT}, we reduce the optimization to feasibility:

find x € Kopr
s.t. {a;,z) > 1,Vi € [m].

Recall that we need to design an oracle to solve

O(y) = arg_min Zyz'amx

z€ELopT 4
1=

in the case of SDP, we noted that the optimal solutions to a linear minimization over the positive
semidefinite cone are the extreme rays of the cone, i.e., rank-1 positive semidefinite matrices. For
SCP, we consider the case where 7 is a simple Jordan algebra, which covers the interesting cases
including real symmetric matrices, Hermitian symmetric matrices and spin factors (the algebra whose
cone of the squares is the second-order cone). In this scenario, it’s easy to see that the optimal
solutions are the primitive idempotent ¢ with ||¢||3 = OPT. To use a y-net argument, we need to
understand the dimension of all the primitive idempotents in 7. These primitive idempotents form a
connected and compact manifold, whose dimension can be characterized as follows:

Lemma B.11 ([FK94]). Let J be a simple Jordan algebra with rank r and Peirce constant d. Let
Q = {q € J : q is a primitive idempotent}, then dim(Q) = d(r—1). LetC = {c-q: c € R,q € Q},
then dim(C) = d(r — 1) + 1.
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Algebra J Rank r | Peirce constant d
r X r real symmetric matrices

r x r complex Hermitian matrices

r X r quaternionic Hermitian matrices
r-dimensional spin factors

Albert Algebra

ISR
ool 3| BN —

Table 1: Five types of simple Jordan algebras, their rank and Peirce constant.

Peirce constant is a parameter related to the Pierce decomposition of a Jordan frame. We list r and d
for all the simple Jordan algebras.

We note that r-dimensional spin factors are (r + 1)-dimensional vectors whose cone of the square is
the second-order cone. We can hence conclude that for all simple Jordan algebras, the dimension of
C is at most 47. We could then use exactly the same argument for Lemma B.9 and B.10 for covering
SCP.

Lemma B.12. Let OPT,e > 0, 3 € (0,1), s € N, let Copt = {c-q : > < OPT,q € Q}.
Assuming neighboring inputs y,y’ € R™ satisfying ||Y|loos |V lcc < 1/s,|ly — ¥'|l1 < 2/s. Let N

be a \/OPT /2-net of Copr and let O(y) denote the e-private exponential mechanism on N with
quality score

Q(pa y) = <Z yiai,p) —1.

Then, O(y) is an («, B)-approximate, p-bounded oracle with
_ 2r.OPT
. s-€

(0%

log(1/8), p<30PT-1.

Theorem B.13 (Formal version of Theorem 5.2). Let 5,6 € (0,1),e > 0. Algorithm 3 with the
oracle O(y) as in Lemma B.12 solves a covering SCP with m constraints by outputting x* € K such
that with probability at least 1 — (3, we have {a;, z*) > 1 — « for all but s constraints where

s=Q (E -log'/2(1/6) log(1/B) 1ogm>

and o = O(OPT). Moreover, Algorithm 3 is e-private with respect to high sensitivity constraint
privacy.

C Low Sensitivity SCPs

For low sensitivity SCPs, the divergence between neighboring inputs diminishes as the database size
increases. We continue to study the feasibility program in the following form:

findz e K
s.t. {a;,x) < b, Vi € [m].

We further without loss of generality normalize the constraints so that the feasible solutions are
distributions over 7. The reduction is simple, if the optimal solution has trace L, then consider

findz e K
s.t. (a;,x) < b;/L,Vi € [m]

has a distribution solution. Once computing a solution x*, we can scale back to obtain a solution for
the unscaled program. The only downside is that if the constraints are only approximately satisfied:
(a;,x*) < b;/L + aforall i € [m], by setting & = o’/ L, then {(a;, Lz*) < b; + .

C.1 Seolving SCPs with Multiplicative Weights

For convenience, we present a standard algorithm framework for multiplicative weights update. We
note Algorithm 4 is quite different from the standard multiplicative weights update, which would
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take the form
F' o exp(—nt")
Te(F" o exp(—t"))’
however, this turns out to be insufficient since exp(A) o exp(B) # exp(A + B) in general unless A

and B commute, see [CLPV23] for more details. The regret bound of Algorithm 4 has been recorded
in Lemma B.3.

Pl

Algorithm 4 Multiplicative weights update algorithm.

1: procedure MWU(F,n)
2: F' + the uniform distribution on F
fort=1—T—1do
Receive loss ¢! € 7 (may depend on !, ... F?)
t+1 exp(=n 327, £%)
F — Roptas, o)

return FT

3
4
5
6: end for
7
8: end procedure

Our MWU algorithm for solving SCP is somewhat different from the variants introduced in [ZVTL24],
as it relies on a dual oracle that returns an approximately most violated constraint. This should be
treated as a generalization of the dual oracle for LP introduced in [HRRU14].

Definition C.1 (Dual oracle). Fory > 0, an («,7y)-dual oracle, given A = {aq,...,amn}t € J™,
b € R™, and x € K as input, returns an index i € [m] such that

(@i, z) — b; > max((a;,x) — b;) — «,
j€[m]
with probability at least 1 — ~y, provided that
max ({(a;,z) — b;) > 0.

JE[mM]

The full algorithm is given in 5.

Algorithm 5 Solving SCP feasibility via MWU over primal variables.

1: procedure SCPMWUPRIMAL(A € J™, b € R™)
2: xl«—e/r

3: Let p = max;c(m) ||ai|| be the width of the SCP, a > 0 be the desired accuracy
4: Let ORACLE be a (v, y)-dual oracle,

a 16p2 log
5: n — @, T %
6: for t=0—T—-1do
7: pt < ORACLE(A, b, z?)
8: 0 L,

P )

9: sl e i nt)

Tr(exp(— 32y 1€%))”
10: end for

11:  returnT = (1/T) 3, «'

12: end procedure

Our MWU framework is based on SCP variant introduced in [CLPV23, ZVTL24], hence its proof dif-
fers significantly from [PST95] as the update is different. Moreover, the SCP solver due to [ZVTL24]
utilizes primal oracle. Hence, we prove a convergence theorem for the dual oracle.

Theorem C.2 (Formal version of Theorem 5.3). Suppose the SCP admits a distributional feasible
solution © € IC with Tr(x) = 1. Then Algorithm 5, when equipped with an (o./2,)-dual oracle,
returns x € K such that

(a;,2) <b;+« Vi € [m],
with probability at least 1 — Ty.
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Proof. Our proof will be applying Theorem A.5, to do so, we first need to verify that the sequence of
loss satisfy that ||¢;||oo < 1. As we set p to be the max infinity norm over all constraints, it’s easy to
see that ||¢*]| .o < 1. Next, we assume the oracle is exact, i.e., it returns max; e (a;, z) — b;. Then
we show how to generalize the argument to approximate oracles. By Theorem A.5, we have that

T

T
Doty < () +nT+h17T, 2

t=1 t=1

for any probability distribution y € K. Set 7! := (a,¢, ") — byt, we can explicitly compute the LHS:

T 1 X
Z([t zt) = - Z(apt,a:t>
t=1 Pi=
1 Z
= - Z(bpt + Tt),
Pi=

meanwhile since we can choose any distribution y € K, we choose a feasible y so that for any
i € [m], (a;,y) < b;, thus

T

a 1
Z<€tay> = ; Z(ap"ay>

t=1 t=1
1
<15
p t=1

combining these inequalities yields

multiplying both sides by £ gives

T
; t <np+ nTT,

4p lnr

setting n = — and T = , the above bound simplifies to

1
T 7”§€7
T;t

to obtain a final bound for any constraint, fix ¢ € [m], we note that for any ¢ € [T7], it must be the
case that (a;, z") — b; < (a,t,z"') — by, and if we average it gives

T
Z a;, T <CL¢,T> —b;

i

IA
'ﬂ\

€

as desired. Now recall in our algorithm we are using an approximate dual oracle, and we slightly
modify the analysis by setting e = «/2, and note that the only place we are using the most violated
constraint is to prove all constraints, where using an («/2, )-dual oracle would blow up the final error
by a factor of /2. Together with the choice of €, we conclude that for any i € [m], (a;,T) — b; < «
holds with probability at least 1 — 7Ty (via a union bound). O
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C.2 Scalar Private SCPs

We first consider the “simpler” case of scalar private SCPs. This is when the objective and constraints
are public data, and only the scalar vector b is private. A private database D is mapped to a tuple
(A(D), ¢(D),b(D)). For neighboring databases D, D’, the mappings satisfy

(D) = c(D"),

A(D) = A(D'),
i.e., both the objective vector ¢ and the constraint matrix A are independent of the data. Moreover,
the right-hand side vectors differ only by a bounded amount:

15(D) = b(D")llo0 < Acs.
Note that since b € R™, here the infinity norm is the standard vector /., norm. We again focus on
the feasibility SCP. Formally:

Definition C.3. Given a vector b € R™, and a constraint set A € J™, a randomized mechanism M
that outputs a vector in J is (€, §)-low sensitivity scalar private if for any b, b’ with ||b— V|| < As,
Pr[M(b, A) € S] < e Pr[M(V', A) € S]+ 6

for any subset S C J.

To achieve privacy, we will implement a private dual oracle via exponential mechanism, henceforce
privatize Algorithm 5.

Lemma C.4. Let ¢ > 0and v € (0, 1). Suppose that on neighboring instances the vector b changes
by at most A in £+, norm. Then, the e-private exponential mechanism with quality score

Q(i,b) = (as,z) — b;
is an (o, y)-dual oracle, where

o — mioolog(ﬂ).
€ Y

Proof. Note that our oracle will be following the procedure:

* Given A, x, b, computing Q(i, b) for all i € [m];

* Sample constraint 7 with probability exp(5x— - Q(i,0)).

This procedure is automatically e-private following the definition of exponential mechanism
(Def. 3.11), so it remains to prove the procedure indeed implements an (c,y)-dual oracle. By

Lemma 3.12, this is true if o« = MT‘” . log(%), which completes the proof. O

‘We are now in the position to provide privacy and accuracy guarantees for scalar private SCPs.

Theorem C.5. Let ¢ > 0, 6,3 € (0,1), and define p = maxec[yy ||Gi|loo. Then Algorithm 5 is
(e, 8)-low sensitivity scalar private with sensitivity A, and with probability at least 1 — [3 outputs
x* € K such that {(a;, z*) < b; + « for all i € [m], where

= P1/2Ac1>é2 1/4 1/4 1/2 1/2
a=0 61Wlog rlog/*(1/d)log™/“(1/B)log™ " “m | .

Proof. Lete = , we use exponential mechanism to implement an € -private dual oracle,

\/STlc;g(l/J)
and by adaptive composition (Lemma 3.13), this gives a final (¢, ¢)-private algorithm. For success
probability, we set v = /7. By Lemma C.4, we have

29A ., T
a = — ~log(—n;3 )
_ 2A44/8T'log(1/9) log(mT)
= - : 5

34



8Aoplog!/? rlog1/2(1/6) 16mp? logr
= - log( 5 ),
Qe a?p

solving for a gives

= 01/2Aéé2 1/4 1/4 1/2 1/2
a=0 61Wlog rlog'/*(1/6)log"?(1/8)log*?* m | ,
as desired. This completes the proof. O

C.3 Low Sensitivity Constraint Private SCPs

Given the feasibility program
findz € K
s.t. {a;,x) < b, Vi € [m],
and a neighboring instance would perturb some constraints by small amounts. More specifically, for
two set of constraints A, A’ € J™, we define the global infinity norm as

IM—A%w:g%WM—MM7

and we assume for two neighboring instances, their distance in global infinity norm is at most A ..

Similarly to the scalar private setting, a private database D is mapped to a tuple (A(D), c(D), b(D)).
For every pair of neighboring databases D, D’, the mappings satisfy

(D) = ¢(D'),

b(D) = b(D"),
i.e., both the objective vector ¢ and the scalar b are independent of the data. Moreover, the constraints
differ by a bounded amount

[A(D) = A(D)[|s0 < Ac.
Formally:
Definition C.6. Given a vector b € R™, and a constraint set A € J™, a randomized mechanism
M that outputs a vector in J is (€, d)-low sensitivity constraint private if for any A, A’ such that
HA - A/”oo < Aoo’
Pr[M(b, A) € S] < e Pr[M(b, A") € S|+ 6

for any subset S C J.

We without loss of generality normalize the constraints so that the spectrum of each a; lies in [—1, 1].
Our algorithm will again be implementing the dual oracle with exponential mechanism. However, as
the oracle returns a constraint and it will be used to compute the loss, we have to add one more layer
of privacy via the generic Gaussian mechanism.

Theorem C.7 (Privacy guarantee of Theorem 5.4). Let €, €/, and A, be as defined in Algorithm 1, and

suppose the algorithm employs an €' -private dual oracle. Then Algorithm 1 is (e, §)-low sensitivity
constraint private with sensitivity A .

Proof. We note the privacy comes from two sources: the Gaussian mechanism and the oracle
operation. For Gaussian mechanism, by Lemma 4.2, we know that each operation is (¢, 6 /T)-private,
and each oracle is ¢’-private. By an adaptive composition over 27" operations, we see that the
algorithm is (¢, §)-private. O

We prove that the exponential mechanism is a private dual oracle under this setting of neighboring.

Lemma C.8. Let e > 0 and vy € (0,1). Suppose that on neighboring instances the constraint set A
changes by at most A in Lo norm. Let x € K be any distributional element. Then, the e-private
exponential mechanism with quality score

Q(i,A) = <a¢,x> —b;

is an (a, v)-dual oracle, for

2A
a=— ~log(@).
€ v
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Proof. Since z is a distribution, the quality score () changes by at most A, on neighboring inputs,
and hence is A,-sensitive. The claimed accuracy bound then follows directly from the accuracy
guarantee of the exponential mechanism (Lemma 3.12). O

To prove the convergence, we need to slightly change the original argument, as we have to perturb
each constraint by a Gaussian noise element. We give a customized proof based on standard regret
bound.

Theorem C.9 (Utility guarantee of Theorem 5.4). Let A € J™ satisfy A(a;) C [—1,1] for all
i € [m], and letb € R™. Fix ,e > 0 and 6 € (0, 1). Let r denote the rank of J and k its dimension.
Then, with probability at least 1 — (3, Algorithm 1, when run with the exponential mechanism as a
dual oracle (Lemma C.8), returns a distribution x* such that

(a;, ") < b+« Vi € [m],
where

~ Aéé2r1/4k1/4
a=O<61/2p01ylog(7‘,1/ﬁ,1/5) .

Proof. Let € be as in Theorem C.7, T be the number of iterations in Algorithm 1, and set v = 8/(27).
By Lemma C.8, with probability at least 1 — -, the oracle returns p’ such that for all constraints
1 € [m],

2A m

— 10&’;(;) 3)
Here p? is chosen as the constraint that is nearly the most violated, up to an additive factor of cv. Define
the vanilla loss £* = a,:. Note that the left-hand side of (3) is exactly ({a;, ') —b;) — ((¢*, z") — byt).
Applying a union bound over the T oracle calls, inequality (3) holds simultaneously for all ¢ € [T]
with probability at least 1 — 3/2. We henceforth condition on this event.

((ai, z') = bi) = ((ape, x') = by) <

€

We next need to bound the norm of the noise element z. Again, we utilize the isometric between [J
and R in /5 norm: recall that ¢(2*) is a Gaussian vector sampled from N(0, o21}), by Lemma 3.10,
with probability at least 1 — 3/(27),

I <o (VE+ 1og<%>)

_ A (\/2rklog(T/3) + /2rog(T/3) log(1/7)) @

€

union bound over 7" noise elements, it succeeds with probability at least 1 — 3/2, condition on this
event happen. Note that the bound on ||2¢||2 (Eq. (4)) subsumes the error introduced by the oracle

(Eq. (3)).
We proceed by assuming the norm of Gaussian noise is small, in particular,

Ao (/2rklog(T/8) + /2rlog(T/5) log(1/7)) ca 5)
€ 6’

since o < 1, this implies that the norm of the noise is at most 1/6. Hence,

< [loo + 112"l
= 2

< [l + 112112
= 2

<1

12

We can then apply Theorem A.5: pick y € K be a feasible distribution element, then
1 < 1 & logr
L@y < iy
TZ< @) < TZ< Y) +n+ T

t=1 t=1
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b t ot
set 1y i= Lot Z) pt 4 L ) we compute

WIS, w—g

T logr
Z Tt

t=1

’ﬂ \

Fix any constraint a;, since we assume the error of the exponential mechanism is at most 25z= log(%)
by Eq. (5) and 2! is a distribution, it must be the case that

T T
1 (a;, zt) —b; (2t 2ty 1 a
= < = =
T s toa Sglnity
t=1 t=1
T
1 ~ byt logr «
< = Y _ o
_Tt=1< L i S

where the first step is by Eq. (3). Recall that we also have shown that the norm of Gaussian noise is
small and we could bound the term introduced by it:
(25 &) < ll2*fl1 - 12" o
< a/6,
where the first step is by Holder’s inequality (Lemma A.2) and the second step is by Eq. (5). Thus,

we have
T

1 & 1 2logr
bty — b < =S 28 y) — by 2 .
;a T; L) +2+ + T

[

It remains to examine 2(€ ,Y) — by, since y is feasible, it must be that for any 4, (a;,y) — b; <0,
therefore

2<@7y> — byt = (apt, y) + (', y) — by,
< (")
<yl - 12"l
< a/6,
put things together, we have

1 T
*Z (ag,a"y — b; = (a;,T) — b;
t=1

T
2a 2logr
< —+2
S 3 +2n+ T
< a,

where the last step is by the choice of 7 and 7. It remains to provide a value of « that satisfies Eq. (5),
and we can take

oo (\/2rk log(T/5) + \/2rlog (T/5)log(1/7))
_ 240 -(Vk + \/W ) - log(T/6)
_ 288Axy/rlogr - (\/E +/1og(T/B)) - log(T/5)

rearranging gives

12A1/2 /4 (logr)t/4k1/4 288logr
- (log —5

288log r
<7 )1/4. (1OgT)1/2-

This completes the proof. O

37



Remark C.10. Our algorithm differs significantly from the row private LP algorithm of [HRRU14],
where they ensure the constraints are private by injecting Laplace noises to each entry. This comes
from the fact that for J = R", the only Jordan frame is the standard basis, hence to develop a
differential private mechanism, it is enough to perturb the eigenvalues. For other [J, this is no longer
the case. Consider [J to be the set of all r X r real symmetric matrices, then a Jordan frame can be
formed by taking any set of orthonormal vectors uy, . . . ,u, € R" and computing uyu] , ..., u.u, .
This large degree of freedom means that private mechanism must also perturb the Jordan frame to
ensure the basis information is preserved. We achieve so by implicitly resorting to the isomorphism
between J and R¥, as such a random Gaussian element would possess both random eigenvalues and
Jordan frame. Note that we choose Gaussian mechanism instead of Laplace mechanism, as we will
only provide either {5 or {1 norm guarantee instead of { ., and {5 norm only distorts L. by a factor
of V'k instead of k that is given by the {1 norm.

C.4 Objective Private SCPs

Finally, we consider objective private SCP, where instead of solving a feasibility problem, we try
to solve the optimization version. In contrast to [HRRU14], we again consider two neighboring
objectives differ in £, norm.

max (c,x)

s.t. (a;, x) < b, Vi € [m]
z e k.
Given two neighboring databases D, D', we have A(D) = A(D’),b(D) = b(D’) and ||¢(D) —
¢(D")]|co < Aoo. Formally,

Definition C.11. Given a vector b € R™, ¢ € K and a constraint set A € J™, a randomized
mechanism M that outputs a vector in J is (¢, 0)-low sensitivity objective private if for any c,c
such that ||c — || oo < Ao,

Pr[M(c, b, A) € S] < e Pr[M(c',b, A) € S] + 8
for any subset S C J.
Next, we present a simple algorithm, based similarly on the Gaussian mechanism introduced in

Lemma 4.2, but applied to the objective element. We further assume a somewhat unusual but
necessary condition on the SCP: there exists an optimal solution with unit £5 norm.

Theorem C.12. Let the objective private SCP has optimal value OPT and the optimal solution
has unit {5 norm. Suppose dim(J) = k and ¢ : J — RF is an isomorphism between J and RF.
Consider the following mechanism:

o Setog = 7Am‘/@;
e Generate a Gaussian noise vector v ~ N(O, azlk),'
o Set z = ¢ (v).

Then, let ¢ := ¢ + z, and the perturbed SCP

max (¢, x)
s.t. {ag, x) < by, Vi € [m]
lzllz =1
rek
is released. Then, the algorithm is (¢, §)-low sensitivity objective private with sensitivity A .. With

probability 1 — f3, solving the perturbed SCP non-privately produces x* such that {(a;,x*) < b;,Vi €
[m] and {c,z*) > OPT — «, where

18 /PTOBTBVE + VIOR(I7))

o =
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Proof. Recall that ||c||2 < /T - ||¢|| 0o, by Corollary 4.4, indeed the mechanism is (e, §)-private. For
accuracy, by Lemma 3.10, with probability at least 1 — /3,

I2ll2 < o - (VE + V/1og(1/5))
_ Auo(V/2rklog(1/8) + \/2rlog(1/5) log(1/5))

€

Suppose that

o Ax(y/2rklog(1/d) + /2rlog(1/0) log(1/B))

2 €

Let * be the optimal solution to the perturbed SCP, and let z* be the optimal solution to the original
SCP. Note that if

(¢, %) < OPT — a,
then
@7 =(c+9¢71(2),7")
<OPT —a+ (¢ (2),T%)
<OPT —a+[l¢7 (2|2 - [|7*2
= OPT — a/2,

where we use ¢ is an isometry (can be achieved by picking an isomorphism with respect to an
orthonormal basis), Cauchy-Schwarz inequality and the definition of /2. Meanwhile, note that

(#2%) = OPT + (67 (2), ")
> OPT — |[z]l2 - [|lz"[|2

contradicts the definition of z*. Thus, it must be the case that (¢, 7*) > OPT — «, and Z* is feasible
since it’s a feasible solution to the perturbed SCP, and the perturbation does not change feasibility.
This completes the proof. O

Remark C.13. In [HRRUI14], they impose a much standard assumption that ||z||y = 1. This again
comes from the fact that for J = R¥, the isomorphism is just the identity map, and in addition to the
isometry in Uy norm ||¢(x)||2 = ||z||2, all norms are preserved. This is particularly important when
applying Holder’s inequality: when ||z||1 = 1, we could upper or lower bound the inner product by
the £, norm of the noise z. This is no longer true for J # R¥, as ¢(-) only preserves the {5 norm,
translating between different norms would incur blowup or shrinkage factors dependent on r. Of
course, imposing an {s norm constraint makes the constraint set no longer an affine subspace, which
would require solvers that could handle quadratic constraints.

D Impact Statement

Our work concerns the privacy of symmetric cone programming, we believe its development would
help protect the data and model privacy for various machine learning tasks. At its current stage, our
work is theoretical, so it does not lead to any direct negative societal consequences.
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