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ABSTRACT

Most large-scale chemical language models are trained on a single textual molec-
ular representation using self-supervised learning over large unlabeled corpora.
These models excel in tasks such as property prediction and molecule generation
by learning contextualized representations of input tokens. However, relying solely
on one representation may result in the loss of structural or semantic information
captured by alternative formats and may limit the model’s ability to generalize
across diverse molecular encodings. To address this limitation, we incorporate
multiple textual molecular representations—including SMILES, SELFIES, molec-
ular formula, IUPAC name, International Chemical Identifier (InChl), serialized
polymer graph (SPG), and electrolyte formulations in an unified vocabulary to
harness the unique strengths of each format. Here, we introduce a large encoder-
decoder chemical foundation model based on the Bamba architecture, a hybrid
of Transformers and Mamba-2 layers, designed to support multi-representational
inputs. The model is pre-trained in a BERT-style on 588 million samples, resulting
in a corpus of approximately 29 billion molecular tokens. These models serve
as a foundation for language chemical research in supporting different complex
tasks, including molecular properties prediction, classification, and molecular trans-
lation. Furthermore, extensive studies of the multimodal molecular latent space
indicate cross-representation alignment and reveal how different textual encod-
ings of the same molecule can converge toward a unified semantic representation.
This shared space may facilitate deeper insights into molecular structure, enhance
generalization, and support a broad range of downstream applications.

1 INTRODUCTION

The development of large-scale pre-training methodologies for chemical language models (LMs)
constitutes a significant advancement in the field of cheminformatics Sadybekov & Katritch|(2023).
These methodologies demonstrate a notable efficacy in addressing complex molecular tasks, including
the prediction of properties and the generation of molecules Ross et al.| (2022b); Soares et al.
(2023b). The effectiveness of these models is mainly due to their ability to acquire contextualized
representations of input tokens through self-supervised learning on extensive unlabeled corpora
Bommasani et al.| (2021)).

With the advance of the Transformers architecture, several chemical models have been proposed to
leverage attention as its core module |Pesciullesi et al.| (2020); |(Chithrananda et al.| (2020); Janakarajan
et al.[(2023); Soares et al.| (2023a; 2025b). The effectiveness of self-attention is attributed to its ability
to route information densely within a context window [Vaswani et al.| (2017), allowing it to model
complex data [Tay et al. (2022)). However, this property presents essential limitations, such as the
inability to model anything outside of a finite window and the quadratic scaling with respect to the
window length Lin et al.|(2022). A considerable amount of research has emerged on more efficient
variants of attention to overcome these drawbacks |Kotei1 & Thirunavukarasu| (2023).

In particular, structured state-space sequence models (SSMs) have been introduced as a promising
class of architectures to support much longer context lengths for sequence modeling |Gu et al.
(2021). These models can be interpreted as a combination of recurrent neural networks (RNNs)
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and convolutional neural networks (CNNs)|Smith et al.|(2022). The Mamba model is a simplified
end-to-end SSM-based neural network architecture without attention or even MLP blocks |Gu & Dao
(2023)). In this context, recent approaches have demonstrated the efficiency and capability of SSMs in
learning a chemical language better than or comparable to Transformer-based models Soares et al.
(20254). To address the limitations and harness the advantages of the self-attention and state-space
modules, recent works have proposed a hybrid architecture of Transformer and Mamba-2 layers for
general large language models (LLMs) [Lieber et al.|(2024); Ren et al.|(2025);|Zhu et al.| (2025).

Most of the proposed chemical foundation models rely solely on a single representation or require the
adaptability of a new notation for model compatibility. Common molecular representations the models
are trained on include SMILES, SELFIES, and PSMILES. However, the use of specific notation may
limit the ability of the model to generalize across diverse molecular encodings. Furthermore, diverse
molecular notations may complement important molecular information that a specific one does not
contain. For PSMILES we used the serialized polymer graph (SPG) representation since it could
accommodate both a broad array of polymer architectures and be easily interoperable with existing
literature datasets—simplifying assembly of pre-training and benchmarking datasets [Soares et al..

In this study, we present a novel hybrid architecture of a large general string-based molecular founda-
tion model of the Transformer and Mamba-2 layers, denoted STR-Bambao63,. Our STR-Bambayogas
encoder-decoder foundation model leverages multiple molecular string textual representations in a
single vocabulary using an efficient attention and SSM-based model. Our main contributions are:

* We pre-train a large-scale encoder-decoder foundation model for molecules, denoted STR-
Bambayogs, on more than 117 million small molecules from PubChem |[Kim et al.| (2023)),
2 million synthetic and real polymers from the literature |Soares et al., and 258 electrolyte
formulations [Sharma et al.| (2023)), resulting in 119 million unique molecules. With the
multimodal setting, the total training data is composed of 588 million samples, which is
equivalent to 29 billion molecular tokens.

* A special custom tokenizer for enconding the different molecular representations individually.
We built a custom tokenizer to handle each modality properly in a single unified vocabulary
of molecular textual representations.

* Our STR-Bambays6,s foundation model is an inference-efficiency hybrid Transformer and
Mamba-2 base model of 426 million parameters. The design of the model architecture
allows for the use of longer context lengths, opening space to leverage multiple molecular
representations into a single input. All used code and checkpoints for these models are in
progress to be fully open-sourced.

* We perform extensive experimentation on several classification and regression property
prediction tasks from 29 benchmark datasets, covering a wide range of tasks for small
molecules, polymer molecules, and electrolyte formulations. We also study the quality
of the latent space created by the STR-Bambaysgy, model to represent the multimodal
setting of molecular representations. Furthermore, an evaluation of the capabilities of the
encoder-decoder configuration of the proposed architecture is conducted by translating
different molecular formats of the same molecule.

2 OVERVIEW OF THE PROPOSED APPROACH

The following detail the proposed approach of the STR-Bamba architecture to leverage the multimodal
molecular textual representations setting in a unified vocabulary and model.

Tokenization: A custom tokenizer was carefully built to encode the seven different molecular
representations supported by STR-Bamba appropriately. Specifically, we employed the Byte-Pair
Encoding (BPE) tokenization for the main encoding process, and a pre-tokenizer step is performed to
handle each modality individually. To identify each modality, we considered the special token repre-
sentations, i.e., <smiles> for SMILES, <selfies> for SELFIES, <iupac> for [IUPAC name, <inchi>
for InChl, <formula> for molecular formula, <polymer_spg> for SPG, and <formulation_start> for
electrolyte formulations.

For SMILES, SELFIES and SPG we used the regular expression from [Schwaller et al.| (2018) to split
in an atom-wise approach since it has been extensively used for molecular models |Schwaller et al.
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Figure 1: This figure illustrates the general architecture of the base STR-Bambayo, model.

(2019); Irwin et al.| (2022); Ross et al.| (2022a); [Soares et al.| (2025b)). For the molecular formula
and InChl notations, we first extract the numbers associated with the atoms. Finally, formulations
use the same atom-wise tokenization with the addition of recognizing formulation compositions.
Although the IUPAC name is not preprocessed beforehand, the BPE appropriately encodes the high-
frequency pieces of the name. We trained the tokenizer with 5% of the total training data, resulting in
approximately 28 million samples for all molecular modalities. The size of the constructed vocabulary
yields 5000 tokens, with 13 special tokens and 4987 molecular tokens.

Pre-training Data: A combination of small and polymer molecules, and electrolyte formulation
data was used to compose our training data. The data on small molecules were extracted from the
PubChem database, resulting in a total of 118 million molecules. However, since it does not contain
the SELFIES representations, we generated the SELFIES format from the SMILES notation. Hence,
the remaining data consist of 117 million molecules with a minimum loss of the total extracted data.

The collection of polymer data for pre-training is a composition of synthetics with experimental
datasets, forming a dataset of approximately 2 million polymer structures. The use of generated
polymer data is known to contain non-viable polymer structures. Hence, the pre-training data were
carefully pooled from a selection of open literature sources, |Aldeghi & Coley| (2022); Yang et al.
(2022); [Long et al. (2024); Reis et al.| (2021); Tiwart et al.| (2024); |Giro et al.| (2023); Tao et al.
(2021); |Lo et al.| (2023)); Hatakeyama-Sato et al.[(2023)); [Huang et al.|(2023); [Bradford et al.| (2023);
Xu et al.[(2023), avoiding whenever possible, datasets containing potentially problematic structure.
We also enriched the training data with an additional 258 electrolyte formulations. Therefore, the
total dataset size for pre-training the STR-Bambayo6s model comprises approximately 588 million
samples. From this total, each of the five molecular modalities from PubChem is used, resulting in
585M samples added with the polymer and formulation data.

Model Architecture: STR-Bambaysgs is an encoder-decoder model built on the Bamba archi-
tecture El, an inference-efficient hybrid approach of Transformer and Mamba-2. This architecture
leverages the strengths of both attention and state-space mechanisms. We slightly modified the
Bamba architecture to handle multiple molecular representations and exploit the multimodal setting

"https://huggingface.co/blog/bamba
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into a single unified vocabulary and model, which are shown in Fig. [T} The model configuration for
the base architecture, Mamba-2, and Transformer used in our implementation is shown in Table E}

Table 1: STR-Bambayogps base architecture specificity.

Hiddensize ~ Layers Irstart ~ Vocabsize  Datasetsize  #tokens  #Encoder  #Decoder  Total params
1024 24 3e-5 5000 119M 29B 163M 263M 426M

dstate dconv  headdim  expand factor dtmin dtmax  dtinit floor
128 4 64 2 0.001 0.1 le-4

attn layer index ~ head dim  num heads  numheadskv ~ out proj bias  gkv proj bias  rotary emb size
6, 18 64 16 8 false false 64

To align different representations of the same molecule, we performed a modification of the embedding
layer similar to the BERT model. To achieve this, we trained the encoder with an aggregation of
token and sentence embeddings. The token embedding learns to encode each molecular token
properly, and the sentence embedding learns to align one molecular input concatenated to another or
a series of representations separated by the <sep> special token. In addition, there is no need to add
positional encodings after the embedding layer, since Mamba operates in a recurrent way. Finally, the
embeddings are shared between the encoder and the decoder to take advantage of the embeddings
learned from the encoder.

Following the Bamba model specificity, we placed two attention layers at the beginning and end of
the total of 24 layers. Specifically, one attention is followed by 6 layers of Mamba-2 and the other by
18 layers. Additionally, Grouped Query Attention (GQA) and Rotary Position Embeddings (RoPE)
are employed in the attention mechanisms to improve training and inference efficiency without losing
performance. The use of RoPE embeddings is also exploited to further optimize the relative encoding
through position-dependent rotations R,,, of the query and keys at position m. These rotations can be
implemented as pointwise multiplications and do not significantly increase computational complexity
as shown in Eq. ().

25:1 (O(Rmam), o(Rykn)) vp
21]:[:1 <@(Qm)7 Lto(kn»

where (),K,V are the query, key and value, respectively, and ¢ is a random feature map.

Attention, (Q, K,V) = (1

Since the base Bamba architecture is a decoder-only model, we also added a cross-attention layer
after each Mamba-2 and Transformer layers of the decoder to construct an effective encoder-decoder
architecture. The addition of the cross-attention layer is incorporated to generate valid molecular
notations conditioned with the embeddings from the encoder. In the implementation, we used the
same cross-attention mechanism as in the BART model, receiving the contextual queries and keys
from the encoder’s embeddings |Lewis et al.[(2019).

For the state-space layers, we specifically used the Mamba-2 architecture Dao & Gul(2024). The
Mamba-2 is an improvement of the original Mamba work by simultaneously allowing much larger
state dimensions and reducing the training. The Mamba models originate from a continuous-time
system that maps an input function or sequence x(t) € R™ to an output response signal y(t) €
RO through an implicit latent state h(t) € R which can be mathematically formulated using the
following ordinary differential equations.

@

where A € RV*N and C' € RO*N control how the current state evolves over time and translates to
the output, B € RV*M and D € RO*M depict how the input influences the state and the output,
respectively.

The tokens extracted from the molecular representations through the hybrid Transformer and SSM
encoder are embedded in a 1024-dimensional space. Furthermore, each encoder-decoder layer
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is designed to process the molecular token embeddings, represented as x € RT*%, where T
denotes the input tokens, and L represents the dimension of the embedding space. The length of
T has no theoretical limit except for hardware limitations, which opens space to leverage multiple
representations in a single input string text.

Pre-training strategies: The STR-Bambaysg), model was pre-trained in a two-stage strategy. We
first train the encoder part to construct a strong embedding space representation for all molecular
modalities. Finally, the decoder is trained using the contextual representation of the encoder to
correctly predict the next token generation. We used 396 and 8 NVIDIA A100 (40GB) GPUs to train
phase 1 and phase 2, respectively. Each phase is described in the following:

* Phase 1 consists of training only the encoder to better learn to encode and align different
molecular formats. We employ a similar strategy defined in|Devlin et al.|(2019) using token
and sentence embedding. The token embedding processes the molecular tokens, while the
sentence embedding handles a boolean value for each token to assess whether a molecular
format B is equivalent to format A for depicting the same molecule. We also used the
masked language model from Devlin et al.|(2019) to train in a self-supervised way. Thus, the
objective of encoder training is to learn to correctly classify masked tokens and to determine
if the different molecular formats A and B are the same molecule or not.

* Phase 2 consists of training only the decoder by generating a valid molecular representation
given the contextual embeddings of the encoder. To achieve this, we build a batch consist-
ing of reconstructing the input molecule format with the addition of two representations
randomly selected of the same molecule. Representations that do not have more than one
format are trained to only reconstruct the input text.

3 EXPERIMENTS

To evaluate the capability of the STR-Bambays,, model in harnessing all molecular modalities, we
performed a series of experiments for all types of molecular notation. An analysis of the latent space
is performed to evaluate the effectiveness of the encoder in representing each molecular modality
appropriately. For this, we plotted the latent space with t-SNE using 2000 random samples of each
modality, except for the electrolyte formulation, we used all 258 samples. A K-means algorithm was
used to cluster the semantic regions by varying the number of clusters from 2 to 10. The goal is to
evaluate whether a clustering algorithm is capable of recognizing the seven different representations
the model supports. For this experiment, we evaluated it using the following clustering metrics:
Davies-Bouldin Index, Adjusted Rand Index, V-Measure, and Fowlkes-Mallows Score.

We also evaluated the performance of the STR-Bambayogs model on a wide range of property predic-
tion tasks on 29 datasets, giving a total of 99 tasks. To assess the performance of the model on the data
trained in the PubChem database in downstream tasks, we used the MoleculeNet benchmark. To take
advantage of the multimodal setting of molecular representations, we assessed each individual and a
combination of modalities in the same input text combining the molecular information strengths of
each. Thus, we determined all possible combinations between formats and performed an optimization
with the Tree-Structured Parzen Estimator (TPE) algorithm using the validation set to find the top-3
combinations for each task.

To evaluate the performance of property predictions for polymer structures, we employed a variety
of benchmark datasets sourced from the existing literature. We also used the dataset benchmarks
from [Sharma et al.| (2023)) to assess the electrolyte formulation in property prediction tasks. All
experiments were carried out with five different seeds to ensure the statistical relevance of the
results. In addition, to ensure an unbiased assessment, we maintained consistency with the original
benchmark by adopting identical train/validation/test splits for all tasks. Detailed specification for
each benchmark dataset and evaluation metrics used is provided in the Supplementary Materials.

Finally, the encoder-decoder architecture of STR-Bamba enables a wide range of tasks. Therefore,
we also assessed the ability of the decoder to translate a molecular representation into another in the
same molecule. For this, we evaluated the model on 3007 random molecules from the training data to
generate valid and structure similarity SMILES and SELFIES using the RDKitE] library and tanimoto

“https://www.rdkit.org
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similarity, respectively. Additionally, the generation of the IUPAC name text and the molecular
formula was assessed using the BLEU-1, BLEU-2 and Jaccard similarity.

4 RESULTS AND DISCUSSION

In this section, we provide a wide range of experimental results for the STR-Bambayogp, architecture,
accompanied by a discussion. The experiments consist of: i) A latent space analysis of multiple
molecular representation; ii) Performance assessment on various property prediction tasks; iii)
Translation of different representations of the same molecule.

4.1 LATENT SPACE STUDY

To evaluate the effectiveness of the encoder in learning the seven molecular representations, the
K-means clustering algorithm is used to delimit the different regions in the latent space. Figure
shows the projection of the t-SNE of the encoder embeddings for each molecular format and Fig. @
shows seven clusters determined by the K-means algorithm.
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(a) Latent space of the 7 different molecular modalities. (b) Identified clusters using the K-means algorithm.

Figure 2: Latent space analysis of multiple molecular representation.

Table 2: Performance of K-means latent space clustering.

Number of clusters (n) n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=I10
Davies-Bouldin Index | 1.18 0.87 0.73 0.75 081 070 0.69 0.71 0.71
Adjusted Rand Index 1 026 041 061 074 084 091 084 079 0.79
V-Measure 1 043 057 074 082 083 092 0388 0.87 0.87
Fowlkes-Mallows Score 1+ | 0.51 0.58 0.71 0.80 086 092 087 0.83 0.83

In Table [2]the number of clusters is varied between distinct clustering metrics to systematic determine
the best number of regions. The Davies-Boulding Index shows that eight clusters yield the most
perfect match followed by seven, nine, and ten regions, respectively. Similarly, the Adjusted Rand
Index, V-Measure, and Fowlkes-Mallows Score exhibit the best delimitation by seven clusters. This
shows that by clustering the latent space achieves the same number of molecular representations as
STR-Bambaysg s supports.

It is noteworthy that the metrics employed suggest that eight clusters also have a good clustering
determination. This can be seen as the PSMILES represented by the SPG notation and SMILES have
an intersection, which is seen to be natural since both have similar textual appearances with slightly
different notation.

4.2 COMPARISON WITH SOTA ON PROPERTY PREDICTION BENCHMARKING TASKS

MoleculeNet benchmark: An assessment of the learned multimodal latent space for property
prediction is conducted for small molecules using the MoleculeNet benchmark across various tasks.
Tables |2| and@ show the performance comparison between the STR-Bambaysgs model and the latest
models in the literature for classification and regression, respectively. For our model, we individually
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tested each molecular representation and the top-3 combination of formats. Thus, these tables show
the best performing results. Detailed results for all individual and combined notations tested, and a
full comparison with SOTA models can be found in the Supplementary Materials.

Table 3: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets.

Blue and indicates best and second-best performing model, respectively.
Dataset
Method BBEP CTimTox HIV BACE SIDER Tox2T
SOTA 92811027  90.818.1  83.1410.34
STR-Bambazzg s (Pre-trained) 9332509 8565067 66421038 81.57X037
STR-Bambayogas (Fine-tuned)  94.30--0.61 84.7740.46  89.84--0.23  69.411+0.62  85.02-£0.65

Table 4: Methods and Performance for the regression tasks of MoleculeNet benchmark datasets. Blue

and indicates best and second-best performing model, respectively.
Dataset
Method QM9 QM3 ESOL FreeSolv Lipophilicity
SOTA 1.324610.0157 _ 0.0095-0.0001 _ 0.611220.0096 0.532£0.013
STR-Bambaaag s (Pre-trained)  6.861820.0538  0.017620.0002 1.3989£0.0837  0.682520.0061
STR-Bambayag s (Fine-tuned) 0.0104£0.0001  0.5585--0.0201  0.9426+0.0412  0.574140.0073

For classification tasks, the STR-Bambayo6, model outperformed five of the six downstream tasks
compared to the SOTA models. The ClinTox dataset was the only task surpassed by another model,
which is the MetaGIN architecture, a graph-based model. Although the MetaGIN model achieved the
best performance in the ClinTox task, our model reached the second-best performance. Furthermore,
the variation in MetaGIN results is considerable high with a ROC-AUC average of 90.8%. In contrast,
the STR-Bamba model achieved an ROC-AUC average of 96.44% with a very slight variation between
different seeds. This can demonstrate some instability of the MetaGIN model in this task, which can
occasionally outperform STR-Bamba on the ClinTox task.

Although the STR-Bambays6,, model outperformed two of five regression tasks, the model obtained
very close results compared to the SOTA models. Our model achieved outstanding performance in
the ESOL and FreeSolv tasks. Additionally, it achieved the second best performing model for the
ESOL task with the pre-trained model and QM9 dataset with the fine-tuned model.

These results demonstrate the ability of the hybrid approach to perform better or have performance
comparable to Transformer-based or SSM-based only models by leveraging multiple formats. Finally,
in nine out of 11 downstream tasks evaluated on the MoleculeNet benchmark, the combination
of molecular representations obtained the best results with the STR-Bambaysgy, model. This
demonstrates the importance of taking advantage of the strengths of each modality in a unified model.

Polymer benchmarks: The STR-Bamba,sgy; model was also evaluated in a wide range of polymer
property prediction tasks from the literature. Thus, Figure [3] shows the results in 17 downstream
tasks in which the normalized error is considered to assess the model compared to the SOTA models.
Similarly, we conducted more 9 polymer property prediction tasks in which the R? metric was used,
resulting in a total of 26 downstream tasks for polymer structures. The results obtained from Fig.
[3]and the results of the 9 mentioned polymer prediction tasks are detailed in the Supplementary
Materials.

In all 26 polymer tasks, the STR-Bamba,os, model outperformed or reached near-state-of-the-art
results in 17 downstream tasks. In Fig. [3] with the tasks in which the error was used to evaluate the
models, the green area on the left shows that the model was equal or better than the SOTA models in
10 of 17 property prediction tasks.

In the nine remaining polymer tasks, especially for polymer membrane tasks, the STR-Bambayog s
model notably outperformed the models documented in the literature. In tasks Ty 1 and log(Pco,), the
pre-trained model achieved a better performance than SOTA models with an additional improvement
from fine-tuned models.

Finally, for the gas permeability of polymer tasks (CalTech), the STR-Bambaysgy, model was
capable of outperforming or achieving SOTA results in 4 out of 6 tasks and achieved the second
best performance for the remaining two tasks. Although STR-Bamba did not surpass the DNN
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Figure 3: Comparison of the STR-Bambayogs model with state-of-the-art models across various
polymer property predictions. The results show that STR-Bambayos outperforms SOTA models in
10 out of 17 properties. The errors are normalized such that a value of 1 represents the maximum
error observed in the comparison.

ensemble(MFFs) model on the O, task with a R? of 0.92, it reached a very close performance with a
R? average of 0.91. Similarly, for the CO, task, our model achieved an average R? of 0.90, while the
SPG-TEDygg s obtained a R? of 0.91.

This may illustrate the richness capability of the latent space of STR-Bamba in learning multiple
molecular formats. Therefore, the shared common space of diverse chemical representations may
enhance the molecular prediction, in which the SMILES share some properties with SPG as seen in
the latent space study.

Electrolyte formulation benchmarks: We also evaluated our model on electrolyte formulation
tasks for property prediction. In particular, we used two datasets to predict the LCE of formulations
and the specific battery capacity. The best results for the STR-Bamba,a6,, model compared to the
SOTA models are shown in Table[5] Detailed results for each individual format are provided in the
Supplementary Materials.

Table 5: Electrolyte formulation prediction performance. RMSE is used as evaluation metric,
therefore, in this case lower is better. Blue and indicates best and second-best performing
model, respectively.

Method - Dataset - -
Li/Cu Half-Cell (LCE) Li-I Full-Cell Battery (Capacity)

MoLFormer|Aldeghi & Coley| (2022) 0.213 -

Multimodal MoLFormer -

F-GCN 1@» 0.389 39.823

F-GCN with HL-EM descriptors|Sharma et al. 42023[) - 20.495

STR-Bambaysog s (Pre-trained) 0.235+0.017 33.17443.007

STR-Bambaysg s (Fine-tuned) 0.21440.031

From the two tasks, the STR-Bambaysg, model was able to surpass the SOTA models in the LCE
task and reach the second-best model for the specific battery capacity task. The significant variation in
the results may be due to the limited data size of no more than 150 samples for each of both datasets,
which reinforces the need for statistical validity of the results. In the LCE task, the fine-tuned model
had slightly higher RMSE average compared to the Multimodal MoLFormer and MoLFormer models.
However, due to the high standard deviation, our model was able to outperform with the SELFIES
notation the Multimodal MoLFormer, which does not provide any variation in the results.

For the specific battery capacity task, the STR-Bambayogs model outperformed the F-GCN model
but achieved the second best performance with the InChl notation of an average RMSE of 32.496
comparing the variant of F-GCN with the HOMO-LUMO (HL) and electric moment (EM) molecular
descriptors of an RMSE of 20.495. Furthermore, the results demonstrate the capability of the diverse
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multimodal latent space of our model, since the STR-Bamba,o6, model was pre-trained in a limited
sample of only 258 electrolyte formulations.

4.3 REPRESENTATION TRANSLATION

The encoder-decoder architecture setting of STR-Bamba gives flexibility to a range of downstream
tasks. Hence, we also evaluated the performance of the STR-Bambayssy; model in translating
between different representations of the same molecule. The results of translating a representation
to SMILES and SELFIES are shown in Fig. while the translation of a representation to ITUPAC
name and molecular formula are shown in Fi%
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(a) Translation to SMILES and SELFIES. (b) Translation to IUPAC and molecular formula.

Figure 4: Translation of different molecular representations.

As the decoder training was conducted without using the entire training data, all results show
with a few-shot learning approach. For translating from SMILES to SELFIES and vice versa, the
representations achieved the best structural and validity generation, which can be explained that
SELFIES is a notation derived from SMILES notation. Similarly, the IUPAC name format may
generate a similar SMILES notation but with less structure and valid molecules guarantees. In
addition, the model was tasked with generating SMILES and SELFIES from the molecular formula
notation. This can be a challenging task due to multiple valid molecules with different structure
properties that can be composed from the molecular formula. However, it is noteworthy that the
SELFIES notation generated a considerable number of valid molecules compared to SMILES since
this representation was developed to be a robust molecular representation.

The task of generating the molecular formula from SMILES and SELFIES achieved results very close
to the original formula. In particular, the translation from the SELFIES notation was slightly better
compared to SMILES representation. However, generating the [UPAC name was a more difficult task.
The SMILES notation achieved the best results from this task, whereas the InChl achieved the lowest.
In general, the performance achieved in the representation translation task shows the potential ability
of the STR-Bambayo6, model to generate similar and valid molecular representations in the same
molecule. The proposed architecture of multiple molecular formats in a unified latent space helps the
model align the different modalities in generation tasks.

5 CONCLUSION

This paper introduces the STR-Bambayo6, model, a multimodal textual molecular representation
foundation model of a hybrid Transformer and Mamba-2 architecture capable of encoding multiple
molecular notations in a single model. A custom tokenizer was developed to allow the encoding of
each modality appropriately for the model. Additionally, the STR-Bamba architecture allows for the
aggregation of multiple representations in a single text input, as it does not contain any token length
limitation, except for hardware limitations.

Extensive experimentation with prediction of the molecule properties of small molecules, polymers,
and electrolyte formulations achieved competitive results by leveraging the multimodal setting
compared to state-of-the-art models. Furthermore, the latent space analysis demonstrates the model’s
capability to represent each molecular format. Finally, the encoder-decoder architecture allows
multiple tasks, such as translating between representations of the same molecule, showing the
potential to walk between modalities.
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A SUPPLEMENTARY MATERIALS

A.1 PROPERTY PREDICTION BENCHMARKS DETAILS

Here, we provide detailed results for all the property prediction experiments conducted in this paper.
To ensure the robustness of our claims, we conducted all experiments with five different seeds. For
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training models with pre-trained weights, we utilized XGBoost |Chen et al.| (2015) as the learner
and Optuna Akiba et al.| (2019) for hyper-parameter optimization. All experiments with pre-trained
models were conducted using a single NVIDIA A100 (40G) GPU.

For fine-tuning STR-Bambayo6,s, we used a fully connected network with 2 layers using a single
NVIDIA A100 (40G) GPU. Tables [6] [7} and [§] provide a detailed overview of small and polymer
molecules, and electrolyte formulation benchmark datasets used in our experiments, respectively.

Table 6: Evaluated small molecular datasets description

Dataset Description # compounds  # tasks Metric
BBBP Blood brain barrier penetration dataset 2039 1 ROC-AUC
HIV Ability of small molecules to inhibit HIV replication 41127 1 ROC-AUC
BACE Binding results for a set of inhibitors for 3 — secretase 1 1513 1 ROC-AUC
Clintox Clinical trial toxicity of drugs 1478 2 ROC-AUC
SIDER Drug side effect on different organ classes 1427 27 ROC-AUC
Tox21 Toxicity measurements on 12 different targets 7831 12 ROC-AUC
QM9 12 quantum mechanical calculations 133885 12 Average MAE
QM8 12 excited state properties of small molecules 21786 12 Average MAE
ESOL Water solubility dataset 1128 1 RMSE
FreeSolv Hydration free energy of small molecules in water 642 1 RMSE
Lipophilicity Octanol/water distribution coefficient of molecules 4200 1 RMSE

Table 7: Evaluated polymer molecular datasets description

Dataset Description Metric Source
DFTB computed electron affinity .
Copolymers (MIT) and ionization potential of copolymers. RMSE Aldeghi & Coley) 2022)
IBM-Membrane Computed thermal and gas R? Giro et al.|(2023)
permeability properties of polymers.
ACS-AMI-Homopolymer-Tg Tg of homopolymers RMSE Hu et al.[(2023)
Polymer-Refractive-Index Polymer refractive index RMSE  |Hatakeyama-Sato et al.[(2023)
Polymer-Electrolyte-Conductivity (MIT) Conductivity of polymers MAE Bradford et al{(2023)
and polymer formulations
Polymer-Gas-Permeability (NETL) Gas permeability and selectivity of polymers MAE Tiwari et al.|(2024)
Polymer-Gas-Permeability (CalTech) Gas permeability of polymers R? Yang et al.| (2022)
Polyimide-Tg Tg of polyimides MAE Long et al.|(2024)
. . Kuenneth et al.|(2021)
Polymer-Chain-Bandgap-(Egc) DFT computed polymer chain bandgap RMSE o ot al (0023)

Kuenneth et al.[(2021)

Polymer-Electron-Affinity-(Eea) DFT computed electron affinity of polymers RMSE S et al[(2023)
o o . Kuenneth et al.[(2021)
Polymer-Bulk-Bandgap-(Egb) DFT computed bulk bandgap of polymers RMSE o ot al[(2023)
. . N Kuenneth et al.|(2021)
Polymer-Ionization-Energy-(Ei) DFT computed ionization energy of polymers RMSE o ot al | (0023)
. . » . N ) Kuenneth et al[(2021)
Polymer-Dielectric-Constant-(EPS) DFT computed dielectric constant of polymers ~ RMSE Su ot al[(2023)
L. L. . Kuenneth et al.|(2021)
Polymer-Refractive-Index-(Nc) DFT computed refractive index of polymers RMSE Ko et al [ (0023)
L DFT computed crystallization Kuenneth et al.|(2021)
Polymer-Crystallization-Tendency-(Xc) tendency of polymers RMSE S et al[(2023)
Polymer-Conductivity-(PE-II) Conductivity of polymers RMSE Xu et al.| (2023)
Table 8: Evaluated electrolyte formulation datasets description
Dataset Description Metric Source

Li/Cu Half-Cell Logarithmic Coulombic efficiencies (LCE) g rop  |x}qeghi & Coley|(2022)
of a wide range of electrolyte formulations

Li-I Full-Cell Battery Specific capacities of Li-I battery coin cells ~ RMSE Giro et al.[(2023)

A.2 DETAILED RESULTS - FULL COMPARISON WITH SOTA MODELS IN MOLECULENET
BENCHMARK

We provide the detailed comparison with the SOTA models in the MoleculeNet benchmark. Thus,

Table E] and['@] show the full comparison with the STR-Bamba,o6, pre-trained and fine-tuned models
in the classification and regression tasks, respectively.
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Table 9: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets.

Blue and indicates best and second-best performing model, respectively.
Dataset

Method BBBP ClinTox HIV BACE SIDER Tox21
GraphMVP|Liu et al] (2021 T24E16 791£238 770E12 812£09 639%12 759+05
GEM |Fang et al.] (2022) 724404 90.141.3 80.6-£0.9 85.6+1.1 67.240.4 78.140.1
GROVER| . [Rong et al.| (2020) 69.540.1 76.243.7 68.241.1 81.0£1.4 65.440.1 73.540.1
ChemBerta |Chithrananda et al.{(2020) 64.3 90.6 62.2 - - -
ChemBerta2|Ahmad et al.|(2022) 71.94 90.7 - 85.1 - -
Galatica 30B[Taylor et al.|(2022) 59.6 82.2 759 72.7 61.3 68.5
Galatica 120B |Taylor et al.|(2022) 66.1 82.6 74.5 61.7 63.2 68.9
Uni-Mol[Zhou et al|(2023) 72.940.6 91.9+1.8 80.8:£0.3 85.7£0.2 65.9+1.3 79.640.5
MolCLRgx [Wang et al] (2022) 73.6+0.5 93.2+41.7 80.6+1.1 79.840.7
MolFM [Zhou et al](2023) 72.9+40.1 797416 78.8+1.1 83.9+1.1 64.240.9 772407
MoLFormer|Chang & Ye| (2024) 73.6+0.8 912414 80.5+1.65 86.3+0.6 65.5+0.2 80.46£0.2
MetaGIN [Zhang et al] (2024) 91.74+1.8 90.8-£8.1 64.5+2.4 83.0+0.1

SMI-TED289M Soares et al.| (2025b) 92.26+£0.57  94.27+1.83  80.51£1.34  88.24+0.50  66.01+£0.88  81.85+1.42
SMI-SSED336 01 |Soares et al.[(2025a) ~ 92.8140.27 90.0240.5 83.14+0.34  86.12+0.96  63.171+0.75

STR-Bambayoe s (Pre-trained) 93.32+0.9 85.6+0.67 66.42+0.38  81.57+0.37
STR-Bambay26 s (Fine-tuned) 94.30+0.61 84.77+0.46  89.84+0.23  69.41+0.62  85.02+0.65

Table 10: Methods and Performance for the regression tasks of MoleculeNet benchmark datasets.

Blue and indicates best and second-best performing model, respectively.
Dataset

Method QMO QM8 ESOL FreeSolv Tipophilicity
D-MPNN|Yang et al|(2019) 32410119 0.0143£0.0022 0.98%F0.26 218091 0.65£0.05
N-Gram|Liu et al|(2019) 2514019 0.03240.003 1.07440.107 2.6884-0.085 0.81240.028
PretrainGNN Hu et al (2019) - - 1.100£0.006 2.764-£0.002 0.73940.003
GROVER{yrg¢ [Rong et al] (2020) - - 0.89540.017 2.272+0.051 0.8230.010
ChemBERTa-2[Ahmad et al|(2022) - - 0.89 - 0.80
SPMM Chang & Ye(2024) - - 0.8180.008 1.90740.058 0.6920.008
MolCLRgy [Wang et al](2022) 235740.118  0.0174+0.0013 1.1140.01 2.20+0.20 0.65+0.08
Hu et al. [Hu et al.| 2020) 434940061  0.0191+0.0003 1.2240.02 2.8340.12 0.7440.00
MoLFormer[Chang & Ye| (2024) 1.5894-0.0567 0.88040.028 2.342+0.052 0.70040.012
MetaGIN [Zhang et al] (2024) - - 0.780-0.061 1.39740.062 0.532:£0.013
SMI-TED289M Soares et al|(2025b) ~ 1.3246--0.0157  0.0095--0.0001  0.6112+0.0096
SMI-SSEDz36 v [Soares et al. [(2025d) 22175403194 0.010440.0001  0.722240.0139  1.6374+0.0682  0.6048+0.0023
STR-Bambas2g s (Pre-trained) 6.8618£0.0538  0.017620.0002 1.3989£0.0837  0.6825%0.0061
STR-Bambayze as (Fine-tuned) 0.010440.0001  0.558540.0201  0.9426+0.0412  0.5741+0.0073

A.3 DETAILED RESULTS - INDIVIDUAL AND COMBINED MOLECULAR REPRESENTATIONS IN
MOLECULENET BENCHMARK

Here we detail the results in the MoleculeNet benchmark for each molecular representation and the
top-3 combination of small molecule notations. The results for each modality using pre-trained and
fine-tuned models are shown in Tables[T1]and[T2]for classification and regression tasks, respectively.

We used TPE optimization by evaluating the validation set to find the top-3 combinations of molecular
representations that demonstrate the best performance for each task. The optimization process was
repeated with three different seeds for each task to ensure the statistical validity of the results. To
obtain a single combination for the repeated optimization steps, we performed an intersection of
the top combinations between each optimization execution. Hence, combination 1 shows the top-1
combination, combination 2 show the top-2 and combination 3 show the top-3 combination. To
separate each chemical representation for the fused molecular input, we used the <sep> special token
between them. Furthermore, in the sentence embedding from the encoder embedding layer, the first
molecule notation was represented as the molecule A and the remaining notations as the molecule or
a series of molecules B.

Finally, we also provide each molecular combination for the top combinations used in the evaluated
tasks in the MoleculeNet benchmark. Tables and [15|show the combinations for top-1, top-2,
and top-3, respectively. For molecular combinations, we tried all the possible combinations where
the order was considered and individual representations are also included, yielding 325 possible
combinations.
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Table 11: Individual and combined molecular representations performance for the classification tasks
of MoleculeNet benchmark datasets

Dataset
BBBP ClinTox HIV BACE SIDER Tox21
Molecular Formula Pre-trained  87.67+£0.39  90.224+0.50  71.8641.01 77.4940.16  63.614+0.73 74.6710.86
Canonical SMILES Pre-trained  91.2740.37 91.040.71 80.984+0.69  85.60+£0.67  66.42+0.38 80.334+0.39

Representation Method

IUPAC Name Pre-trained  93.854+0.50  85.284+1.60  83.144+0.62  69.194+1.44  65.054+0.53  80.1140.90
InChl Pre-trained  91.084+0.32  85.424+1.50  78.1740.95  84.044+0.66  63.564+0.65  79.0740.46
SELFIES Pre-trained  90.66+0.57  93.324+0.90  79.914+0.97  85.184+0.75  65.834+0.38  79.85+0.72
Combination 1 Pre-trained  93.85%+0.50 90.69+1.0 81.304+1.37  85.354+0.58  66.42+0.38  81.57£0.37
Combination 2 Pre-trained  90.734+0.46  91.7940.96  81.47+0.76  85.60+0.67  65.60+0.44  81.2340.70
Combination 3 Pre-trained  91.254+1.02  91.2440.85  82.784+0.86  83.824+1.40  65.1640.31 81.21+0.47

Molecular Formula Fine-tuned 87.74+0.28  87.85+0.39  72.75£0.59  75.99+1.37  63.05£1.39  80.09+0.39
Canonical SMILES  Fine-tuned 92.45+0.78  94.77+0.73  80.88+1.42  86.94+0.95  67.03+0.76  85.07+0.30

TUPAC Name Fine-tuned 92.15+0.80  91.11+0.80  79.46+1.58  69.91+1.63  67.49+091 83.411+0.46
InChI Fine-tuned 91.31+0.55  90.30+1.20  77.29+0.96  81.91+1.66  63.47+0.74  82.45+0.19
SELFIES Fine-tuned 91.85+0.74  96.06+0.31 81.91+0.37  87.15+0.31 66.41+£1.06  84.391+0.33
Combination 1 Fine-tuned 92.15+0.80  94.81+£129  84.4440.31 88.15+0.62  67.03+0.76  85.14%0.51
Combination 2 Fine-tuned 92.93+0.48  96.441+0.07  84.77+0.46  86.94+095 69.41+0.62  85.16+0.36
Combination 3 Fine-tuned 94.30+0.61 95324093  84.46+0.65 89.84+0.23  68.19+0.55  85.024+0.65

Table 12: Individual and combined molecular representations performance for the regression tasks of
MoleculeNet benchmark datasets

. Dataset
Representation Method atase

QM9 QM8 ESOL FreeSolv Lipophilicity

Molecular Formula Pre-trained 13.387540.0037 0.029740.0001 0.669440.0152 1.700540.0556  0.8124+0.0082
Canonical SMILES ~ Pre-trained 6.8618+0.0538 0.0176+0.0002 0.6439+0.0219 1.526940.0850  0.6888+0.0066

TUPAC Name Pre-trained ~ 20.7505+0.0209 0.0245+0.0001 0.8039+0.0243 1.77844+0.0472  0.7071£0.0031
InChI Pre-trained 6.85531+0.0388 0.0210+0.0003 0.7048+0.0127 1.728440.0831  0.7289+0.0330
SELFIES Pre-trained 6.6983+0.0257 0.0178+0.0002 0.667940.0179 1.6113+0.0916  0.7096+£0.0076
Combination 1 Pre-trained 6.5891+0.0355 0.019440.0008 0.619910.0457 1.4586+0.070 0.6950+0.0087
Combination 2 Pre-trained 6.8737+0.0260 0.0220+0.0020 0.6302+0.0103 1.548240.0721 0.6825+0.0061
Combination 3 Pre-trained 6.836310.0406 0.023240.0024 0.634610.0261 1.398940.0837  0.6867+0.0099

Molecular Formula Fine-tuned 12.981940.0092  0.0257-£0.00003  0.771940.0348 1.72204+0.1481  0.8787+£0.0239
Canonical SMILES ~ Fine-tuned 1.5574+0.0156 0.0107+0.0001 0.6073+0.0190 1.09094+0.0325  0.5741£0.0073

TUPAC Name Fine-tuned 18.3474+0.0110 0.0193+0.0001 0.9553+0.0207 1.6983+0.0366  0.6392+40.0096
InChI Fine-tuned 2.38861+0.0619 0.0161+0.0001 0.726210.0256 1.28924+0.0216  0.6988+0.0115
SELFIES Fine-tuned 1.595040.0302 0.011140.0001 0.63461+0.0317 1.2546£0.0678  0.6063+0.0104
Combination 1 Fine-tuned 1.573240.0338 0.0105+0.0001 0.56831+0.0168  0.9426+0.0412  0.5857+0.0032
Combination 2 Fine-tuned 1.737440.0262 0.0104+-0.0001 0.55144-0.0087 1.104940.1087  0.5914+£0.0021
Combination 3 Fine-tuned 1.6183+0.0267 0.0104+0.0001 0.558540.0201 1.11054+0.0587  0.5814+0.0073

A.4 DETAILED RESULTS - POLYMER PROPERTY PREDICTION TASKS

Here we provide the detailed results of the nine polymer prediction tasks in which the R? metric was
used and the results for the remaining 17 polymer property prediction tasks, resulting in a total of 26
polymer downstream tasks.

Specifically, Tables|16|and|1/|show the results for the polymer membranes and the gas permeability
of polymers (CalTech) datasets, respectively. The polymer membrane prediction dataset contains
three different tasks. Similarly, the gas permeability of polymers (CalTech) dataset contains six
different tasks.

The latter of 17 polymer property prediction tasks comprises a total of six different datasets. Hence,
Tables [T8] [T9] 20} 21} 22} and 23] show the comparison between STR-Bambayagys model with
SOTA models for polymer ionic conductivity, gas permeability (NETL), polymer refractive index,
polymer multitask prediction, copolymer electron affinity and ionization potential, and glass-transition
temperature datasets, respectively.

A.5 DETAILED RESULTS - INDIVIDUAL MOLECULAR REPRESENTATIONS IN ELECTROLYTE
FORMULATION TASKS

Finally, we detail the results for each individual molecular representation for electrolyte formulation
tasks, which are shown in Table[24] Each result was tested on five different seeds to determine the
robustness and statistical validity of our experiments. For the electrolyte formulation strings, we
placed the special tokens <formulation_start> and <formulation_end> at the beginning and end of
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Table 13: Top-1 molecular combinations for the MoleculeNet benchmark datasets.

Dataset Task Molecular combination
BBBP p_np TUPAC_NAME
ClinTox all INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
HIV HIV_active CANONICAL_SMILES + SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME
BACE Class IUPAC_NAME + MOLECULAR_FORMULA + SELFIES + INCHI + CANONICAL_SMILES
SIDER all CANONICAL_SMILES
Tox21 all TUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
QM9 alpha TUPAC_NAME + SELFIES + MOLECULAR_FORMULA + INCHI
QM9 cv SELFIES + MOLECULAR_FORMULA + INCHI
QM9 2298 SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM9 gap CANONICAL_SMILES
QM9 h298 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 homo CANONICAL_SMILES
QM9 lumo CANONICAL_SMILES
QM9 mu CANONICAL_SMILES
QM9 2 MOLECULAR_FORMULA + INCHI + SELFIES + CANONICAL_SMILES
QM9 u0 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 u298 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 zpve SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM8 E1-CAM CANONICAL_SMILES
QM8 El1-CC2 SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM8 E1-PBEO CANONICAL_SMILES
QM3 E2-CAM CANONICAL_SMILES
QM8 E2-CC2 CANONICAL_SMILES
QM8 E2-PBEO CANONICAL_SMILES
QM8 f1-CAM CANONICAL_SMILES
QM8 f1-CC2 SELFIES + CANONICAL_SMILES
QM8 f1-PBEO MOLECULAR_FORMULA + CANONICAL_SMILES + IUPAC_NAME
QM8 f2-CAM CANONICAL_SMILES
QM8 f2-CC2 CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 f2-PBEO CANONICAL_SMILES
ESOL log solubility = TUPAC_NAME + MOLECULAR_FORMULA + SELFIES + INCHI + CANONICAL_SMILES
FreeSolv expt SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA + INCHI
Lipophilicity y SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES

Table 14: Top-2 molecular combinations for the MoleculeNet benchmark datasets.

Dataset Task Molecular combination
BBBP p_np SELFIES + CANONICAL_SMILES
ClinTox all CANONICAL_SMILES + IUPAC_NAME + SELFIES + MOLECULAR_FORMULA
HIV HIV_active IUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
BACE Class CANONICAL_SMILES
SIDER all TUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
Tox21 all INCHI + CANONICAL_SMILES + SELFIES + [UPAC_NAME + MOLECULAR_FORMULA
QM9 alpha MOLECULAR_FORMULA
QM9 cv TUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
QM9 2298 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 gap CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM9 h298 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 homo SELFIES + CANONICAL_SMILES + INCHI + MOLECULAR_FORMULA
QM9 lumo INCHI + CANONICAL_SMILES + SELFIES + IUPAC_NAME + MOLECULAR_FORMULA
QM9 mu TUPAC_NAME + SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA
QM9 2 SELFIES + INCHI + CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME
QM9 u0 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 u298 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 zpve CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM8 E1-CAM CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 El1-CC2 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM8 E1-PBEO MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-CAM MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-CC2 MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-PBEO MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 f1-CAM IUPAC_NAME + CANONICAL_SMILES
QM8 f1-CC2 CANONICAL_SMILES
QM8 f1-PBEO SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME
QM8 f2-CAM CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 f2-CC2 CANONICAL_SMILES
QM8 f2-PBEO CANONICAL_SMILES + IUPAC_NAME + SELFIES + MOLECULAR_FORMULA
ESOL log solubility ~ INCHI + MOLECULAR_FORMULA + SELFIES + CANONICAL_SMILES + [IUPAC_NAME
FreeSolv expt SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
Lipophilicity y MOLECULAR_FORMULA + IUPAC_NAME + INCHI + CANONICAL_SMILES + SELFIES

the formulation string, respectively. In addition, each molecular notation was included with their
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Table 15: Top-3 molecular combinations for the MoleculeNet benchmark datasets.

Dataset Task Molecular combination
BBBP p_np MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + INCHI + SELFIES
ClinTox all TUPAC_NAME + SELFIES + MOLECULAR_FORMULA
HIV HIV_active MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + INCHI + SELFIES
BACE Class INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
SIDER all SELFIES + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
Tox21 all IUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM9 alpha SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 cv CANONICAL_SMILES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + SELFIES
QM9 2298 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 gap INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM9 h298 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + SELFIES
QM9 homo CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI + SELFIES
QM9 lumo INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM9 mu SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 2 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM9 u0 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + SELFIES
QM9 u298 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + SELFIES
QM9 zpve IUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
QM8 E1-CAM SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM8 El1-CC2 INCHI + CANONICAL_SMILES + SELFIES + [UPAC_NAME + MOLECULAR_FORMULA
QM8 E1-PBEO CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM3 E2-CAM MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-CC2 MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-PBEO INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM8 f1-CAM CANONICAL_SMILES + INCHI + SELFIES + [UPAC_NAME + MOLECULAR_FORMULA
QM8 f1-CC2 CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 f1-PBEO INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM8 f2-CAM MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 f2-CC2 MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
QM8 f2-PBEO SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME
ESOL log solubility ~ SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
FreeSolv expt MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + INCHI + SELFIES
Lipophilicity y IUPAC_NAME + SELFIES + CANONICAL_SMILES + INCHI + MOLECULAR_FORMULA

Table 16: Polymer membranes prediction performance. R? is used as evaluation metric, therefore, in

this case higher values is better. Blue and indicates best and second-best performing model,
respectively.
Dataset
Method
e Tay T, Tog(Pco,)

Lasso|Giro et al.[(2023) 0.81 0.87

ElasticNet|Giro et al.[(2023) 0.81 0.88 0.89

Ridge|Giro et al.| (2023) 0.82 0.90

SPG-TEDag9 a1 [Soares et al. 0.96 0.86 0.88

STR-Bambagzg s (Pre-trained) 0.86+0.007

STR-Bambayoe s (Fine-tuned) 0.984+0.003  0.91£0.008  0.96+0.001

Table 17: Gas permeability of polymers (CalTech) prediction. R? is used as evaluation metric,
therefore, in this case higher values is better. Blue and indicates best and second-best
performing model, respectively.

Method Dataset

He H2 02 N2 C02 CH4
RF (descriptors)|Yang et al[(2022) 0.73 0.74 0.75 0.74 0.38 0.75
DNN ensemble(descriptors)|Yang et al.|(2022) 0.87 0.88 0.89 0.90 0.90
DNN ensemble(MFFs)|Yang et al.[(2022) 091 0.92 0.90 0.88
SPG-TED2gg s |Soares et al. 0.87 0.89 0.91 0.85
STR-Bambayog s (Pre-trained) 0.740.02 0.73£0.03 0.75£0.05 0.76£0.02 0.78+£0.03  0.78+0.02
STR-Bambayoeps (Fine-tuned) 0.92+0.01 0.914+0.01 0.9110.004 0.904-0.01

respective special token. Finally, formulation compositions were also added after each molecule
separated with the <sep> special token.
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Table 18: Polymer ionic conductivity. MAE is used as evaluation metric, therefore, in this case lower

is better. Blue and

indicates best and second-best performing model, respectively.

Method 7Dataslet -
Polymer ionic
conductivity
XGBoost|Hatakeyama-Sato et al.[(2023) 1.09
Chemprop |Hatakeyama-Sato et al.|(2023) 1.08
ChemAurr Hatakeyama-Sato et al.[(2023) 1.00
SPG-TEDg2gg s [Soares et al.
STR-Bambayog ps (Pre-trained) 0.92+0.001
STR-Bambayag s (Fine-tuned) 0.89--0.004

Table 19: Gas permeability of polymers (NETL) prediction. MAE is used as evaluation metric,

therefore, in this case lower is better. Blue and
model, respectively.

indicates best and second-best performing

Dataset
Method CO5 CO,/CH, CH; CO5/Nz N>
SOTA [Tiwari et al. (2024) 0.29 534 037 114 038
SPG-TED2s9 a7 |Soares et al, 0.29 0.35 0.31
STR-Bambayse ps (Pre-trained) 6.22+0.13 4.05+0.09
STR-Bambayog s (Fine-tuned) 0244001  4.69-£0.16  0.28--0.002  3.83+0.08  0.25--0.01

Table 20: Polymer refractive index prediction. RMSE is used as evaluation metric, therefore, in this

case lower is better. Blue and

indicates best and second-best performing model, respectively.

Dataset
Method Refractive

index (n)
GPT-4/Hatakeyama-Sato et al.[(2023) 0.0310
Boruta|Hatakeyama-Sato et al.|(2023) 0.0339
SPG-TED2gg s |Soares et al.
STR-Bambayog ps (Pre-trained) 0.027640.003
STR-Bambayse as (Fine-tuned) 0.0234+0.0057

Table 21: Polymer multi-task prediction. RMSE is used as evaluation metric, therefore, in this case

lower is better. Blue and

indicates best and second-best performing model, respectively.

Method Dataset
Polymer Polymer Polymer Polymer Polymer Polymer Polymer
Chain Electron Bulk ITonization Dielectric ~ Refractive  Crystallization
Bandgap (Egc) Affinity (Eea) Bandgap (Egb) Energy (Ei) Constant (EPS) Index (Nc¢)  Tendency (Xc)
SOTA
Kuenneth & Ramprasad, (2023) 0.49 0.52 ~
Xu et al.|(2023) 0.09 16.57
SPG-TED Soares et al. 0.49 0.29
2891 0.32 0.37 0.38
STR-Bambayaens (Pre-trained) — 0.5540.01 0.36£0.01 0.63£0.02 0.63+0.02  0.77+£0.03 0.15+0.01  22.26+1.02
STR-Bambayoe s (Fine-tuned) 0.434-0.01 0.184-0.01 0.444-0.02 0.13+0.01  18.98+0.74

Table 22: Copolymer electron affinity and ionization potential. RMSE is used as evaluation metric,

therefore, in this case lower is better. Blue and
model, respectively.

indicates best and second-best performing

Dataset
Method EA (V) PEY)
Neural Networks (Monomer)|Aldeghi & Coley|(2022) 0.22 0.19
Neural Networks (Polymer)|Aldeghi & Coley|(2022) 0.18
wD-MPNN |Aldeghi & Coley|(2022) 0.03 0.03
SPG-TED2gg s |Soares et al.
STR-Bambayag ns (Pre-trained) 0.214-0.001 0.204-0.001
STR-Bambaysg ps (Fine-tuned) 0.1840.001 0.1740.001
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Table 23: Glass-transition temperature prediction. MAE is used as evaluation metric, therefore, in this

case lower is better. Blue and indicates best and second-best performing model, respectively.
Dataset
Method T,
SOTA|Long et al]{2024) 53.02 (24.42)
SPG-TED2gg s |Soares et al. 9.56
STR-Bambaysg s (Pre-trained)
STR-Bambayse ps (Fine-tuned) 3.36+0.52

Table 24: Individual molecular representations performance for the electrolyte formulation tasks.
RMSE is used as evaluation metric, therefore, in this case lower is better.

. Dataset
Representation Method - — = Aol (D) Li-T Full-Cell Batiery (Capacity)
Molecular Formula Pre-trained 0.2554+0.021 38.27244.775
Canonical SMILES Pre-trained 0.288+0.007 33.65543.368
IUPAC Name Pre-trained 0.23540.017 33.17443.007
InChl Pre-trained 0.29540.028 40.3104+1.899
SELFIES Pre-trained 0.2484+0.023 38.55740.933
Molecular Formula Fine-tuned 0.247+0.019 40.7191+6.970
Canonical SMILES Fine-tuned 0.2314+0.033 35.02249.222
ITUPAC Name Fine-tuned 0.201+£0.011 45.7301+6.182
InChl Fine-tuned 0.2361-0.034 32.49647.066
SELFIES Fine-tuned 0.21440.031 42.38945.105
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