Under review as a conference paper at ICLR 2026

REASONING ON TIME-SERIES FOR FINANCIAL TECH-
NICAL ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

While Large Language Models have been used to produce interpretable stock
forecasts, they mainly focus on analyzing textual reports but not historical price
data, also known as Technical Analysis. This task is challenging as it switches
between domains: the stock price inputs and outputs lie in the time-series do-
main, while the reasoning step should be in natural language. In this work,
we introduce Verbal Technical Analysis (VTA), a novel framework that com-
bine verbal and latent reasoning to produce stock time-series forecasts that are
both accurate and interpretable. To reason over time-series, we convert stock
price data into textual annotations and optimize the reasoning trace using an
inverse Mean Squared Error (MSE) reward objective. To produce time-series
outputs from textual reasoning, we condition the outputs of a time-series back-
bone model on the reasoning-based attributes. Experiments on stock datasets
across U.S., Chinese, and European markets show that VTA achieves state-of-
the-art forecasting accuracy, while the reasoning traces also perform well on eval-
uation metrics judged by industry experts. Our code is available at: https:
//anonymous.4open.science/r/VITA-finance—-293C/

1 INTRODUCTION

With the advent of Large Language Models (LLMs), an increasingly popular application is in finan-
cial analysis (Wu et al., 2023} Xie et al.,[2023)). This spans a wide range of tasks, including financial
question answering (FinQA) (Liu et al., |2025b; |Q1an et al., 2025)), investment decision-making (Yu
et al., [2025; 2024), and market forecasting (Yu et al 2023 |Koa et al.| 2024). Majority of existing
approaches primarily utilize the strong natural-language capabilities of LLMs to analyze financial
reports or do sentiment analysis on social texts (see Table I]), but neglects interpretable analysis on
stock price data, which arguably contain useful information for financial practitioners.

The current solutions from the general time-series domain are not yet sufficient for this task. Existing
studies on time-series reasoning (Merrill et al., 2024; (Chow et al [2024) consistently report that
LLMs struggle to reason over raw time-series inputs. Meanwhile, time-series LLMs (Jin et al.,[2024;
Liu et al} 2025a) often rely on reprogramming the embedding space, which produces time-series
outputs but sacrifices verbal reasoning ability, which is an essential requirement for interpretable
financial analysis. The closest effort is TimeCAP (Lee et al., 2025)), which generates explanations
by contextualizing the series with auxiliary information. However, its reasoning trace is derived from
external data, and it produces classification label forecasts rather than full time-series trajectories.

Unlike other time-series data, financial time-series contains intrinsic interpretable signals which are
widely studied by experts, known as Technical Analysis (Kirkpatrick II & Dahlquist, | 2010). We use
these signals to verbally analyze financial time-series and produce interpretable stock forecasts.

The use of LLMs for time-series reasoning is hindered by three main challenges. Firstly, current
LLMs have limited capabilities in time-series forecasts. Some works have tackled this by modifying
the embedding space to produce time-series outputs (Jin et al., [2024; Liu et al., |2025a), but this
comes at the cost of interpretability as the LLM loses its natural language capability. Secondly, on a
higher level, current LLMs are not known to have the ability to do verbal reasoning on time-series to
produce accurate forecasts (Merrill et al.,[2024;|Chow et al.}[2024). This involves understanding how
to best analyze the predictive signals in the time-series data in an unsupervised manner. Thirdly, the
reasoning trace of the LLM further needs to be converted into time-series output to produce useful
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Table 1: Comparison of relevant works. Our work contributes a novel explainable financial signal for
practitioners and produces some insights into how time-series forecasting can be made interpretable.

Models Domain Input Output

Financial LLMs

Fin-R1 (Liu et al.|[2025b), Finol (Qian et al.|2025) Financial Question Answering  Financial Reports Textual Answers

FinMem (Yu et al.|[2025), FinCon (Yu et al.|[2024) Investment Decision-Making Text, Tabular, Audio Binary (Buy/Sell)

GPT-4 (Yu et al.[[2023), SEP (Koa et al.|[2024) Market Direction Forecasting ~ News, Social Texts Binary or Quantile-Based
Time-Series LLMs

Time-LLM (Jin et al.||2024), CALF (Liu et al.|[2025a) ~ Time-Series Forecasting General Time-Series Time-Series

TimeCAP (Lee et al.|[2025) Time-Series Reasoning Time-Series + Auxiliary ~ Classification + Reasoning
Ours

Time-Series Reasoning

Verbal Technical Analysis (VTA) (Financial) Financial Time-Series Time-Series + Reasoning

stock forecasts. LLMs are typically fine-tuned on next-token predictions (Radford et al.,|2019), and
using direct time-series outputs would not produce the best forecasts, which we verify empirically.

To address these problems, we present three key contributions. Firstly, we propose our Verbal Tech-
nical Analysis (VTA) framework, which combines a backbone time-series model (which we termed
as “latent thinking”) with a reasoning LLM (termed as “verbal reasoning”) to produce interpretable
stock time-series forecasts. This framework combines the strong pattern processing ability of state-
of-the-art time-series models and the strong reasoning ability of LLMs to produce forecasts that are
both accurate and interpretable. Secondly, for reasoning over time-series, the stock time-series data
is converted into textual annotations (Lin et al.l 2024) as inputs to the LLM. The reasoning trace
is then optimized through a modified Group Relative Policy Optimization (GRPO) objective (Shao
et al., 2024)) that uses an inverse Mean Squared Error (MSE) reward scoring, which we termed as
Time-GRPO. Thirdly, to produce time-series outputs from the reasoning traces, we condition (Ho &
Salimans| 2022)) the generated outputs from the time-series model on the reasoning-based attributes.

To demonstrate the effectiveness of VTA, we perform extensive experiments across established stock
baselines (Xu & Cohen, [2018)) and additional stock data across the U.S., Chinese, and European
markets. We show that our model forecasts achieve state-of-the-art results in prediction accuracy,
while also being interpretable. In addition, evaluation by industry experts show that the reasoning
traces score high across various evaluation metrics from literature. Finally, to justify the practical
capability of the model, we form Markowitz portfolios across the prediction length and show that
the portfolios formed from VTA forecasts can also perform well on investment metrics.

2 RELATED WORKS

Financial Large Language Models. The rise of Large Language Models (LLMs) has spurred a
growing body of research on their application in finance. The earliest works focus on developing
general-purpose financial LLMs, such as BloombergGPT (Wu et al} [2023)) and FinMA (Xie et al.,
2023), by finetuning on a large set of financial corpora across multiple downstream tasks. Later
works began to tackle the specific challenges of LLMs in finance. For example, works on finan-
cial question-answering (FinQA) (Liu et al.l [2025b} |Qian et al., |2025) focus on teaching LLMs to
analyze financial reports, which requires the ability to read structured financial tables and extract
insights from complex documents (Zhu et al., 2021). LLMs for investment decision-making (Yu
et al.|, |2025} [2024) typically utilize multi-agent systems to handle different parts of an investment
decision, including but not limited to document analysis, memory, risk control, etc. LLMs for finan-
cial forecasting (Yu et al.,|2023; Koa et al.,2024) seeks to predict the direction in which the market
will go. Typically, these works analyze textual sources in order to understand the sentiment or finan-
cial health of a company. Our work positions itself in this field by learning to produce interpretable
forward-looking signals from financial time-series data, which could benefit all applications above.

Time-Series Large Language Models. At the same time, there is also a growing body of research
in utilizing LLMs in the time-series domain. LL.Ms for time-series (Jin et al.,|2024; |Liu et al.,[2025al)
leverage the large scale parameters and robust pattern recognition of LLMs by fine-tuning them for
time-series forecasting tasks. However, these approaches typically modify the embedding space of
the LLMs, making them lose their original language reasoning capabilities. Some works have also
explored the ability of LLMs to reason over time-series data. It was found that language models
are “remarkably bad” at zero-shot time-series reasoning (Merrill et al., 2024)), whereas fine-tuning
them using a latent encoder (Chow et al., 2024)) shows some promising early results in reasoning
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over time-series for captioning. The closest work on time-series reasoning comes from TimeCAP
(Lee et al.l[2025)), which perform forecasting by contextualizing the input time-series with auxiliary
time-series information. It produces explanations by searching for similar historical contexts, and
produces classification label forecasts, in textual form. Our work builds on this line of research
by exploiting the predictive signals within financial time-series to produce interpretable time-series
forecasts, providing some insights on the capabilities of LLMs in reasoning over time-series data.

3 VERBAL TECHNICAL ANALYSIS

The Verbal Technical Analysis (VTA) framework is shown in Figure[I] There are three components:
(1) In Time-Series Reasoning, we teach an LLM to verbally reason over the time-series inputs. This
is done through a textual annotator to extract useful indicators, and a proposed Time-Series Group
Relative Policy Optimization (Time-GRPO) method; (2) In Time-Series Forecasting, we train a
backbone forecasting model, which can better learn from the complex low-level patterns in the time-
series data; (3) In Joint Conditional Training, the time-series forecast is conditioned on the reasoning
attributes, and the model is trained over the conditional and unconditional forecasts concurrently.
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L Reasoning Output D,
Textual __  Cold-start __  SFTfor | RL for |, 0

Annotator f RL Reasoning Reasoning . sthink> = |
Given the provided statistics,
- Min value: 0.1630 1 ¥ the price values have a min Reasoning
- Max value: 0.3564 — - . O HEC T Attributes ¢
- SMA: [0.3597, 0.3410, ..] Rejection Sampling Time-GRPO The Simple Moving Average
- EMA: [0.3597, 0.3429, ...] Loss L _ (SMA) points téwards [.]
- Momentum: [-0.094, -0.131, ..] time-grpo L
Time-Series ’ Latent Thinking (Time-Series Forecasting) WL Time-Series
Input X ( M : Output
P ] Aligned Text Tokens D, S w puty
M Principal E—7——* Transformer —» . — IextFeature . - ‘FW
Embeddings D i*l Output Peexe Jolvnt' Cond.ltlonal
Training (Figure 3)
Cross Attention
l Feature Regularization Output Consistency
Loss Lyeapure L0sS Loyepue
Projected Time Tokens X e Unconditional
Forecast 7o(X)
Time-Series Multi-Head
| S— Temporal
Embeddings Attention Transformer —» .. —

Output Yeime

Figure 1: The Verbal Technical Analysis (VTA) framework. We first teach an LLM to reason over
time-series data. The reasoning outputs are used to condition a time-series forecasting model, to
produce forecasts with similar attributes. This results in forecasts with interpretable reasoning traces.

3.1 PROBLEM FORMULATION

We consider the task of forecasting short-term future stock prices, based on a historical window
of T trading days. Let X = {X¢_741,X¢t—T+2, " ,Xt}, where the input vector consists of the
open price, high price, low price, volume traded, closing price and adjusted closing price, i.e., x; =
[0, b, i, ve, ¢, pt]. We aim to generate an output Y = {v,y}, which consists of the verbal reason-
ing trace v and the price trajectory over the next 7" trading days y = {pt41,Pe42,** » Pet1 }-

3.2 TIME-SERIES REASONING

To teach an LLM to reason over time-series inputs, we use a textual annotator to extract useful
interpretable signals for forecasting. The LLM uses these indicators to reason over the time-series
to make forecasts without any supervision data. This is achieved through our proposed Time-Series
Group Relative Policy Optimization (Time-GRPO) method, which uses a multi-stage reinforcement
learning (RL) pipeline, together with a modified GRPO objective (Shao et al., [2024).

The time-series input is first converted into textual annotations (Lin et al.|[2024)), which consist of its
statistics information (Jin et al.,[2024)) (e.g., its mean, minimum and maximum values) and financial
technical indicators (Murphy), |1999) (e.g., moving averages, momentum, efc.). Formally, we have:

X' = f(X), (1)
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where f contains the annotation functions and X' are the annotated values. A full list of the financial
technical indicators used, with their descriptions and calculations, are provided in Appendix

Training Objectives. Using both the time-series X and their annotations X', we form a prompt
q, and let the LLM forecast the upcoming time-series sequence through verbal reasoning. The
objective of the LLM is to produce an output o, which consists of a sequence prediction ¥y and
a verbal reasoning trace V. Formally, we denote the set of all task prompts as Q and a group of
generated outputs as O = {01,02, - ,0c}. The time-series reasoning LLM policy g is then
optimized across all groups using the following Time-GRPO objective:

Etime-grpo(e) = EQNQv{Oi ?=1N7r901d(0|q)

1y o (01]a) o (01]a)
5 Z (min (A“ clip (), 1—¢61+ 6) A1> — BDK]_(ﬂgnﬂ'mf))
=1

T Go1a (Oi ‘Q) b (Oi |q
Tret(0i]Q) Tref(0i|q) )
Dk (7o | Teer) = ———~ —log ———~ — 1, 3)
o(0i|q) mg(0i]q)
where € and 3 are hyper-parameters. A; denotes the advantage of the LLM policy, which is derived
from a set of rewards {rq, 9, - ,rg} that are associated with outputs O produced in each group:
A = r; — mean({ry,ro, - 77‘@}). 3)

std({r1,72, - ,rq})

We utilize the format reward that was used in previous works (Guo et al., [2025)), that enforces the
model to always employ a thinking process that is between < think > and < /think > tags.

Ideally, the generated reasoning trace should also maximize the expected accuracy of the time-series
forecasts. This is achieved by utilizing the Mean-Squared Error (MSE) score as an additional reward:

ruse(0) =1/ <)\' 1370 — Y||§) ; 4)
where ) is a hyperparameter. The inverse MSE was used as the reward scores are to be maximized.

Training Pipeline. Following established practices in LLM fine-tuning literature (Guo et al.| [2025}
Ouyang et al., 2022} [Lu et al., [2024; |Chow et al.,[2024), Time-GRPO utilizes a multi-stage pipeline
to fine-tune the time-series reasoning LLM.

The first stage represents the cold-start phase (Guo et al.| 2025)). As there were no “gold-standard”
supervision data, this stage is used for generating the initial training samples, guided by the Liime-grpo
objective. Empirically, we find that the forecasting performance would not significantly improve in
this stage, but the process lets us generate training data for the next stage to fine-tune the base model.

The second stage focuses on teaching the model to produce more effective reasoning. This is
achieved through rejection sampling, where we keep only the reasoning traces that lead to fore-
casts with lower Mean Squared Error (MSE). To ensure better consistency of training samples, we
also bucket the samples across different stocks and time-periods, and filter for those with MSE in the
bottom 10" percentile in each bucket. The model is then trained on these filtered samples through
the use of supervised fine-tuning (SFT).

The third stage optimizes the model for the best forecasting performance for our Technical Analysis
(TA) task. Given that the model has learnt to reason over time-series data in the previous stage, this
stage now aims to search for the best reasoning policy that can maximize the expected accuracy of
the predicted time-series. For this stage, the model is also optimized using the Liime-grpo Objective.

3.3 TIME-SERIES FORECASTING

To perform time-series forecasting, we employ LLM-based time-series models. Works have shown
that the powerful contextual modeling capabilities of LLMs can be effectively adapted for time-
series forecasting tasks (Zhou et al., 2023} |Chang et al., 2023; |Cao et al., 2023). A key technique is
to align the time-series and language distributions (Sun et al.l [2023; [Jin et al., [2024) such that the
model is able to understand the context of time-series data (e.g., up, down, steady, efc.). For our
backbone model, we repurpose an LLLM for cross-modal fine-tuning (Liu et al., 2025a).
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For this step, we first pass the time-series input X through an embedding layer, followed by a multi-
head attention layer, to obtain the projected time tokens Xmne. Next, it is observed that similar
words are usually close to each other in the LLM embedding space, and for non-text based tasks, it
is sufficient to keep cluster centers to reduce training costs (Sun et al., 2023} |Liu et al.| [2025a). To do
this, we perform Principal Component Analysis (PCA) to retrieve the principal word embeddings D.
Following this, we then pass the projected time tokens Xy, and the principal word embeddings D
through a Multi-head Cross-Attention layer. This lets us align the time tokens and word embeddings
in the forecasting model’s embedding space to obtain the aligned cross-modal text tokens, i.e.,

KT
Xiext = Softmax <Q> V,
vC

where Q = XjneW,, K=DW;, V=DW,,.

&)

W,, W, and W, are the projection matrices for query, key and value in the multi-headed attention
layer, and C' is the embedding dimension per attention head. Xy refers to the aligned text tokens.

Next, the projected time tokens Xy and aligned text tokens X are passed through consecutive
LLM transformer blocks. To guide modality alignment, after each transformer block in the tempo-
ral and text branches, the embeddings pass through a projection layer (Chen et al., 2020) and are
matched via a feature regularization loss. This ensures that the text representations are consistent
with the temporal dynamics at each layer. Formally, given F{} . and F{} ,, which are outputs of the
n® transformer block in the temporal and text branches, we define the feature regularization loss as:

N
Efeature = Z ’Y(Nin) Sim(d)gxt(ngt)v d):ilme(F:ilme))v (6)

n=1

where v(N=") are the scaling hyperparameters, sim(+, -) is the L; regularization loss to ensure em-
bedding similarity, and ¢y, ®i,, are the projection layers in the temporal and textual branches.

At the end of the transformer blocks, the features are passed through a final dense layer to produce
the temporal-based and text-based outputs, yime and ¥ex. These are also matched via L; loss:

ﬁoutput = Sim(y time 5 ylexl) . (7

The temporal-based output ¥y is extracted, which we denote as the time-series forecast y¢(x).

3.4 JOINT CONDITIONAL TRAINING

On its own, the time-series forecasting pipeline represents a black-box model, given that the
embedding space of the LLM blocks have been modified, resulting in only time-series outputs.
To preserve the interpretability of the time-
series forecasts, we condition the time-series
forecasts on the outputs produced by the rea-

soning model. At the same time, to also pre- %CP
serve the forecast accuracy, we fine-tune the ) 9
model to optimize for both the conditional and ter
unconditional forecasts concurrently. Reasoning
. 2
For this step, we first prompt for the reason- e )

ing output o using the time-series reasoning
policy mg. Next, we extract descriptive at-
tribute classes ¢ (i.e., its maximum, minimum,
mean values) from the generated time-series
Yo, which are used to condition (Dhariwal &
Nichol| 2021)) the time-series forecasts via joint
conditional training (see Figure[2): For each la- ) ) o o
bel, we concatenate it with the time-series fore-  Figure 2: Joint conditional training component.
casts ¥4(X) from the time-series forecasting

model. These inputs pass through separate linear layers for fine-tuning, and are then aggregated via
a projection layer to generate the conditioned time-series forecasts, which we denote as (X, c).

" skip-through
Puncond P s

Vo(X)
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Finally, we use a single neural network to parameterize both the conditional and unconditional mod-
els (Ho & Salimans, [2022)). Both the unconditional and conditional pipelines are trained concur-
rently by randomly setting c to the unconditional class identifier @ with a predefined probability
Puncond- The model is then fine-tuned using MSE loss with the ground truth series y. We have:

Lioeust(#) = Exy.c | I50(X,€) = ¥I] ®)
. c, with probability 1 — pyncond
¢~ : o : 9)

&, with probability pyncond

During inference, our forecast is then a combination of the conditional and unconditional forecasts:
y=s-yp(X,c)+ (1—3) yo(X), (10)

where s is a hyperparameter representing the guidance scale, that controls the reasoning guidance.

4 EXPERIMENTS

Dataset: We evaluate our Verbal Technical Analysis (VTA) model extensively across multiple
datasets. The first is the ACL18 StockNet dataset (Xu & Cohenl 2018)), which includes historical
price data for 88 U.S. stocks that are selected to represent the top 8-10 companies by market capi-
talization in each of the major industries. The dataset spans the period of 01/09/2012 to 01/09/2017.
This dataset is a standard stock prediction benchmark that has been evaluated in multiple works
(Feng et al., [2018; [Sawhney et al., [2020; Feng et al.| 20215 [Li et al.l 2023} |Chen & Wang|, [2025)).

To further show the generalization ability of the model, we also collect additional stock data from
across the U.S., Chinese, and European markets for testing. To ensure a bias-free selection, we
choose the stocks from well-known indices, i.e., the Dow Jones, the FTSE China A50 Index and the
EURO STOXX 50. For these datasets, we test on the time period from 01/01/2024 to 01/01/2025.

Baselines: We compare against 12 state-of-the-art time-series methods: Transformer (Vaswani et al.,
2017), Reformer (Kitaev et al.| [2020), Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021),
DLinear (Zeng et al.| [2023), FILM (Zhou et al., 2022), Crossformer (Zhang & Yan| [2023), MICN
(Wang et al., [2023)), LightTS (Campos et al., [2023)), TimesNet (Wu et al., [2022), TSMixer (Chen
et al., 2023)) and Non-Stationary Transformer (Liu et al.| [2022). We also compare with two LLM-
based time-series models: TimeLLM (Jin et al., [2024) and CALF (L1u et al.,[2025a)). These models
are not explainable, including the two LLMs, which modify the embedding space for forecasting.

For evaluation against explainable models, we compare with reasoning LLMs: GPT-4.1 mini (Ope-
nAll|2025) and DeepSeek-R1 (Guo et al., [2025)). To do so, we prompt these models to produce the
time-series forecasts (Gruver et al.|[2023; Wang et al., 2024)) by reasoning on the time-series inputs.

Implementation Details: All LLMs used in the VTA model, including the reasoning model and the
transformer blocks for time-series forecasting, are trained using Low-Rank Adaptation (LoRA) (Hu
et al.l [2022). Both input and output lengths T and T” are set to 10, which is considered short-term
forecasting in time-series works (L1 et al., [2022; [Liu et al., [2025a). Technical Analysis is typically
utilized for short-term stock trading (Schwager, [1995)).

For the reasoning model, we use Qwen2.5-7B-Instruct (Team) 2024)) as our base model. For the
forecasting model, we use GPT-2 (Radford et al.l [2019) as the base model. For hyperparameters,
we set the conditional probability pyncond to 0.3 and the guidance scale s to 0.1. More details on the
experimental settings and computational resources used can be found in Appendix [A]

5 RESULTS

Performance Comparison. Table [2]reports the forecasting results. We can observe the following:

* The inference-only reasoning LLMs (i.e., GPT-4.1 mini, DeepSeek-R1) do not show very strong
performances, as they are likely not fine-tuned for time-series forecasting. However, they were
still able to beat some of the fine-tuned time-series models (e.g., Transformer, DLinear), which
demonstrate some effectiveness of verbally reasoning over time-series inputs to do forecasting.
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Table 2: Performance comparison. The best baselines are underlined, and the best results are bolded.

StockNet China A50 EUROSTOXX 50 Dow Jones All Data % Improvement

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Large Language Models
GPT-4.1 mini (OpenAlL![2025) 0.0846 0.1827 0.4875 0.3191 0.0997 0.2128  0.1340 0.2358 0.2014 0.2376 | 0.4153 0.1072
DeepSeek-R1 (Guo et al.||2025) 0.0788 0.1853 0.2920 0.3093 0.0776  0.2095  0.1227 0.2251 0.1428 0.2323 | 0.1750 0.0868
Time-Series Models
Informer (Zhou et al.{|2021) 2.1846 09778 4.6823 1.1080 2.8986 1.0968 3.7031 1.1255 3.3672 1.0770 | 0.9650 0.8030
Transformer (Vaswani et al.|2017) 1.5071 0.7762 3.9865 0.9784 2.1002  0.9042 2.8248 0.9194 2.6047 0.8946 | 0.9548 0.7628
Crossformer (Zhang & Yan!2023) 1.1848 0.6475 4.3396 0.9641 1.5656 0.7644 23503 0.8173 2.3601 0.7983 | 0.9501 0.7343
TSMixer (Chen et al.[[2023) 1.4974 0.8193 3.5863 1.0905 1.1696  0.7227 25077 0.8473 2.1902 0.8700 | 0.9462 0.7561
Reformer (Kitaev et al.[[2020) 1.1823  0.7628 2.4537 0.8503 1.5342  0.8302 2.4280 0.9048 1.8995 0.8370 | 0.9380 0.7465
LightTS (Campos et al.[[2023) 0.6081 0.5213 1.0634 0.5509 0.6160 0.5128  1.0994 0.6103 0.8467 0.5488 | 0.8609 0.6134
DLinear (Zeng et al.[[2023} 0.1589 03021 0.3880 0.4126 0.1716  0.3189  0.2407 0.3566 0.2398 0.3475 | 0.5088 0.3896
FiLM (Zhou et al.|[2022) 0.0806 0.1927 0.2852 0.3085 0.0894 0.2157 0.1246 0.2370 0.1449 0.2385 | 0.1873 0.1103
Non-stationary (Liu et al.||2022) 0.0729 0.1822 0.2723 0.2993 0.0861 0.2079  0.1207 0.2305 0.1380 0.2300 | 0.1463 0.0776
MICN (Wang et al.[[2023) 0.0764 0.1878 0.2498 0.2922 0.0874 0.2108  0.1373 0.2405 0.1377 0.2328 | 0.1449 0.0888
Autoformer (Wu et al.||2021) 0.0748 0.1866 0.2427 0.2947 0.0853  0.2103  0.1132 0.2273 0.1290 0.2297 | 0.0868 0.0765
TimesNet (Wu et al.[|[2022} 0.0708 0.1789 0.2527 0.2902 0.0796  0.2022  0.1112 0.2203 0.1286 0.2229 | 0.0841 0.0482
Time-Series LLMs
TimeLLM (Jin et al.|[2024) 0.0704 0.1780 0.2439 0.2850 0.0776  0.1993  0.1127 0.2216 0.1262 0.2210 | 0.0663  0.0400
CALF (Liu et al.|[2025a] 0.0674 0.1738 0.2412 0.2843 0.0762  0.1957 0.1092 0.2181 0.1235 0.2180 | 0.0460 0.0267
Our Model Avg Avg
VTA (Ours) 0.0659 0.1701 0.2265 0.2737 0.0748  0.1929  0.1040 0.2120 0.1178 0.2122 | 0.4672 0.3417

* Among the time-series baselines, the biggest performance jump comes from the models which
decomposes the data by trend and seasonality (i.e., FILM, MICN, Autoformer and TimesNet).
This could be attributed to the characteristics of stock prices, which are often affected by long-
term and short-term business cycles (Dalio, |2018). Another notable model that performs well is
the non-stationary transformer, which might be attributed to the non-stationary behavior of stock
price data (Malkiel, 2019).

The time-series LLMs are able to surpass the performance of non-LLM-based models. These
models typically align the LLM’s internal word embeddings to time-series embeddings to do
time-series forecasting. It is possible that the intrinsic knowledge of the LLM helps the model to
understand the characteristics of stock data, thus allowing it to capture forecasting patterns better.

Our proposed VTA model demonstrates the best performance in stock forecasting in both MSE
and MAE. VTA explicitly combines internal (latent) understanding with external (verbalized) rea-
soning. The empirical improvements suggest that integrating these two techniques can be benefi-
cial for time-series forecasting. In addition to improved accuracy, the VTA model also produces
interpretable reasoning traces for its forecasts, which do not exist in most baseline models.

More details of the statistical significance of the experiments can be found in Appendix [D}
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4.00 Table 3: Ablation study of the LLM fine-tuning stages.
3.75
§ 3.50 Llama-3.1-8B  Qwen-2.5-3B  Qwen-2.5-7B (Ours)
=325 MSE 0.1482 0.1707 0.0949
3.00 Base Model
MAE 0.2543 0.2181 0.2040
Lama3.1.68 Cold Start  MSE 0.1475 0.1648 0.0941
. 4 RL MAE 0.2536 0.2153 0.2036
~ | h‘ y', J I l‘ W ' SFTfor  MSE 0.1168 0.1032 0.0893
EE il M | l" l Reasoning ~MAE  0.2267 0.1884 0.1997
& . M ' \ RL for MSE 0.0955 0.0832 0.0686
? r Reasoning  MAE 0.2062 0.1745 0.1741
0 160 200 300 400 500 Conditioning MSE 0.0667 0.0672 0.0659
Steps (VTA) MAE 0.1713 0.1710 0.1701

Figure 3: Correctness reward over steps.

Ablation Study. We conduct an ablation study to demonstrate the effectiveness of the model design.

* From Figure E[, we observe that the inverse MSE reward rysg, a component of the Time-GRPO
objective, increases across the number of training steps. This suggests that it is possible to learn
verbal reasoning steps for time-series forecasting, which our VTA model was able to achieve.

* From Table[3] we see that each fine-tuning stage helps to improve the results of the model. How-
ever, the first RL fine-tuning, which uses the Time-GRPO objective, was not efficient by itself,
showing a small improvement of 1.6% over the base model in MSE averaged across all variants.
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» However, after rejection sampling and SFT to teach the model how to reason over time-series,
the second RL fine-tuning, which uses the same Time-GRPO objective, produces an average im-
provement of 20.3%. This highlights the usefulness of fine-tuning over a multi-stage pipeline.

* Finally, conditioning on the additional forecasting model helped to improve the performance fur-
ther, showing the benefit of enhancing external verbal reasoning with internal latent understanding.

Contribution of Reasoning Component. To study the contribution of the reasoning component
on forecasting performance, we artificially corrupt the reasoning trace to observe their impact on
the final forecasts. This was done in two ways: (1) Adversarial: We add adversarial noise to the
technical indicator values; (2) Remove Information: Within the prompt, we force the LLM to not
utilize certain indicators in its reasoning. The forecasting performances are reported in Figure 4]
0.0680 0.0680
0.0675 0.0675
W 0.0670 w 0.0670

= =
0.0665 0.0665

0.0660| 0.0660

0.0655 0.0655
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1 2 3 4 2 3
Adversarial Noise Multiplier (x Std) Number of Indicators Removed

Figure 4: Change in reasoning performance when the reasoning traces are corrupted.

In Figure[d] removing the indicators leads to a clear degradation in performance, demonstrating that
the reasoning traces provide genuinely useful guidance to the model. Adding adversarial noise also
reduces overall performance but does not yield a consistent trend. A possible explanation is that,
during joint conditional training, the model gradually learns to rely more heavily on the time-series
forecasting component once it detects that the reasoning signals have become unreliable.

Reasoning Quality. To evaluate the quality of the reasoning traces, we refer to past works on LLM
explainability (Koa et al., 2024} [Lin et al., |2024) to design a set of relevant metrics for our task.
The explanations of the metrics are found in Appendix [C.I] Using these metrics, we surveyed 25
industry experts with professional experience in financial market analysis, with backgrounds from
organizations such as JPMorgan, UBS, Evercore, and Allianz Global Investors, efc. For each, we
presented the model outputs from VTA (ours), GPT-4.1 mini, and Deepseek-R1, showing both the
forecasts and the textual reasoning. Respondents were blind to which model produced which output
and were shown 15 randomly selected samples for evaluation. The samples were rated from 1 to 5.

GPT-4.1 mini DeepSeek R1 VTA (Ours)

4.04

3.43 3h7
37 315303
2.532.56 2.632.64

2.20 2157
1.88

Score

Clarity Depth Accuracy Coherence Relevance Overall

Figure 5: Performance of VTA on the financial time-series reasoning task.

From Figure[5] the results show that VTA achieved the highest average rating across all five metrics
when compared to the other two LLMs. The best performance gains were observed in Depth, Ac-
curacy, and Relevance. These criteria most directly reflect technical reasoning ability and the use
of financial indicators. These findings suggest that our model, which was designed specifically for
technical analysis, was able to produce reasoning outputs that were preferred by domain experts,
demonstrating its practical strengths. The differences in Coherence and Clarity were smaller, which
can be attributed to the fact that general-purpose LLMs like GPT-4.1 mini and Deepseek-R1 are
good at producing fluent, well-structured text, even if they lack domain specialization. More details
on this, including statistical significance and open-ended responses, are found in Appendix [C.2}
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Case Study. To illustrate the capabilities of VTA, we present a case study to demonstrate its reason-
ing process. In Figure[6] we see that VTA was able to correctly reason about the (downward) price
correction and subsequent upward trend. More reasoning case studies are presented in Appendix [E]

. — GroundTrutn
<think> prediction

The stock prices have been fluctuating significantly, with a recent upward trend. The moving averages
suggest a decreasing trend, while the momentum and RSl indicate a weak buying pressure. The MACD
line is slightly positive, but the Williams %R and CCl suggest overbought conditions. Bollinger Bands
show the current price is within the lower band, indicating a possible bounce. However, the stochastic
indicators are in the overbought region, which might lead to a correction. Given the recent trend and
indicators, it's likely the stock will correct and then continue the upward trend.

\
0.6
Predicting the next 10 days, I'll assume a slight correction followed by a rebound, staying within the

04
recent range. \\/
5 100 125 15.0 17.5

</think> 00 25 50 7.

Figure 6: An example of VTA reasoning about a slight correction and possible rebound in price.

Generalization to Other Domains. In general, VTA is able to produce reasoning traces for any
time-series data. To verify this, we run VTA on datasets from other domains. These include
Healthcare (Wu et al., [2021)) and Energy (Zhou et al.| 2021), which contains time-series data on
ILI (influenza-like illness) cases and oil temperature respectively. The generated reasoning traces
are shown in Figure In these domains, we observe that the time-series do not contain any intrinsic
interpretable signals to reason over, and VTA do not go beyond simple trend extrapolation in its rea-
soning. It has also been shown in previous studies that large complex models do not meaningfully
improve performance in these use cases (Tan et al.,[2024). For these cases, VTA are still able to pro-
duce reasoning traces, but these do not contribute significant additional signals for the forecasting
model. The forecasting performance of VTA on these datasets can be found in Appendix|[l]

Healthcare (ILI dataset):

Energy (ETTh1 dataset):

The data shows a clear pattern of fluctuation,
with a general trend of decreasing % Weighted
ILI values over the last few weeks. The most
recent values are in the negative range,
indicating a decline in influenza-like iliness. Given
this trend, it's reasonable to predict a
continuation of this decline, but with some
variability. The last few weeks have shown a
steady decline, so we can expect this trend to
continue, but with some fluctuation. I will predict
a gradual decrease with some variability.

The given data is the standardized transformer
measurements (OT) for 96 hours. The task is to predict the
oil temperature for the next 24 hours. Given the nature of
the data and the task, a simple moving average or a trend
extrapolation can be used for prediction. However, for this
example, I will use a basic approach of taking the last value
of the OT series as a reference and slightly adjusting it based
on the recent trend. The last value of the OT series is -0.954.
The recent trend shows a slight decrease in the last few
values. I will predict a slight decrease in the next 24 hours,
considering the recent trend and the range of the data.

Figure 7: Examples of VTA reasoning traces on the Healthcare and Energy domains.

Portfolio Optimization. To justify the practical capability of VTA, we also evaluate the model
in a real-life investment setting. We form our portfolios by performing Markowitz optimization
(Markowitz, [1952) across the 10-day predictions. The portfolio is rebalanced daily, using the pre-
dicted returns and their covariance matrix. For evaluation, we compare against similar portfolios
formed using the top-5 performing time-series models and all LLM baselines. The portfolio are
compared on common investment metrics, such as their returns, volatility, maximum drawdown and
Sharpe ratio (Sharpel |1994)), which is a measure of risk-adjusted returns. Explanations of the metrics
can be found in Appendix [H] We evaluate the portfolios across all 4 datasets, and report the average.

From Table [d] we see that the portfolio con-
structed using VTA predictions demonstrates
strong overall performance. It ranks as the

Table 4: Comparison on common portfolio metrics.

3 . Returns Volatility Drawdown Sharpe
strongest baseline on the returns, volatility —

d . drawd tri d th GPT-4.1mini  0.1868 0.1226 -0.0947 1.3096
and maximum drawdown metrics, and the  peopeer.ri 02069  0.1356 -0.1243 1.4074
values are very close to the top-performing  FLM 02211 0.1184 -0.1085 1.4421
models for each. Notably, VTA achieves the Non-stationary 0.2122 0.1186 -0.0825 1.4430

. . . MICN 0.1603 0.1193 -0.1094 1.1809
highest Sharpe ratio among all models, which  autoformer 0.2495  0.1341 01121 14736
represents the risk-adjusted returns. Given — TimesNet 0.1714 0.1198 -0.0947 1.2748

. TimeLLM 02185 0.1193 -0.1040 1.5230
that the Sharpe ratio is one of the most com- ik 02019 01247 0.0981 11566
mon measure of investment performance, this  vTta (Ours) 0.2409 0.1185 -0.0883 17190

highlights the practical effectiveness of the
VTA forecasts. More advanced financial analysis on the portfolios can be found in Appendix [{
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6 CONCLUSION

In this work, we tackled the task of verbally reasoning over financial time-series data. This task is
challenging as it switches between the time-series and natural language domain for the stock price
data and the reasoning step. To deal with this, we introduce our Verbal Technical Analysis (VTA)
framework, which combines verbal and latent reasoning to produce interpretable time-series fore-
casts. The framework utilizes our Time-GRPO method to finetune the reasoning model, and con-
ditions its forecasts on the reasoning attributes. We conducted extensive experiments and find VTA
can achieve state-of-the-art forecasting accuracy while producing high-quality reasoning traces.
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A  ADDITIONAL EXPERIMENT DETAILS

A.1 MODEL AND TRAINING HYPERPARAMETERS

This section summarizes the key hyperparameters used for training the Verbal Technical Analysis
(VTA) model. All Large Language Model (LLM) components were trained using the Unsloth frame-
work'| which supports 4-bit quantization and Low-Rank Adaptation (LoRA) 2022). The
implementation of Group Relative Preference Optimization (GRPO) follows the principles outlined
by the Hugging Face TRL libraryﬂ

Time-Series Reasoning. The reasoning model was developed from Qwen2.5-7B-Instruct using a
multi-stage training pipeline consisting of GRPO and supervised fine-tuning (SFT). The maximum
sequence length was controlled via the max_seqg_length parameter, and inference was performed
with a temperature of 0.2.

LoRA was applied with a specific lora_rank, targeting key modules such as the attention pro-
jections (gq_proij, k_proj, v.proj, oproj) and feed-forward layers (gate_proj, up_proj,
down_proj). During the initial and final GRPO training phases—used for format learning—a

'nttps://unsloth.ai/blog/rl-reasoning
https://huggingface.co/docs/trl/main/en/grpo_trainer
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learning rate of 5 x 10~ was used over two epochs. Each device processed a batch size of 4,
with two gradient accumulation steps. For GRPO, four generations were produced per prompt, and
the combined prompt and completion length was capped at 500 tokens. Rewards were based on
adherence to the target format and accuracy of the prediction.

For SFT data generation, a rejection sampling mechanism was employed to select the top 10%
Mean Squared Error (MSE) examples from a total of 100 buckets. This was followed by reasoning
enhancement through SFT, using a learning rate of 2 x 10~ over two epochs. Here, the per-device
batch size was reduced to 1, while increasing the number of gradient accumulation steps to 4.

Time-Series Forecasting. The forecasting component of the VTA model is adapted from GPT-2 and
uses a fixed input and output sequence length of 10 days (denoted as 7" and 7). This component
was trained for 20 epochs with a learning rate of 1 x 10~# and a batch size of 16. The architecture
comprises 6 GPT-style transformer layers, as defined by the gpt _layers parameter.

LoRA was configured with a rank of 8, a scaling factor (Lora_alpha) of 32, and a dropout rate
of 0.1. The joint conditional training was implemented with a probability of unconditional training
Puncond = 0.30, and a guidance scale of s = 0.1. Additionally, alignment loss was incorporated
using the statistical properties (i.e., minimum, maximum, and mean) of the predicted sequences.

A.2 COMPUTATIONAL RESOURCES

All experiments were conducted using 4 x NVIDIA A5000 GPUs (24 GB VRAM each). Full reason-
ing model training—including cold-start reinforcement learning, supervised fine-tuning, and reward-
guided GRPO—takes approximately 120 GPU-hours for LLaMA 3.1-8B, 100 GPU-hours for Qwen
2.5-7B, and 60 GPU-hours for Qwen 2.5-3B, using Unsloth’s LoRA fine-tuning implementation
with gpu_memory_utilization=0.5 (requiring around 21 GB VRAM per process).

Once reasoning traces are generated, downstream forecasting runs are significantly more efficient.
Training a forecasting model for a single stock with approximately 1000 training and 250 test points
takes around 3 minutes on a single GPU (using ~2.7 GB VRAM). A complete run over the full
StockNet dataset requires approximately 4.5 hours on one GPU.

B LIST OF TECHNICAL INDICATORS

Table 5: A list of the financial technical indicators used in Time-GRPO.

Indicator Description Formula

Simple Moving Average (SMA) Identifies trend by smoothing price data | SMA = ]; >, Price;
over a period
Exponential Moving Average (EMA) | Measures the trend by smoothing price | EMA, = Price; - « + EMA,_; - (1 — )
data with greater weight to recent

prices

Momentum Tracks the speed of price changes for | Momentum = Close; — Close;_,
trend momentum

Relative Strength Index (RSI) Identifies overbought/oversold condi- | RSI = 100 — (%)
tions using average gains and losses Aveloss

MACD Line Measures momentum via difference | MACD = EMA 5, — EMAog
between short and long EMAs

Williams %R Measures overbought/oversold condi- | Williams %R = M%
tions by comparing close to recent | (_100) o
highs

Commodity Channel Index (CCI) !dentiﬁes price devi_ations from a mov- | CCI = m
ing average for cyclical trends

Average Directional Index (ADX) Measures trend strength using direc- | ADX = 100 x %w

tional movement

Upper Band = MA + k- o

Bollinger Bands Mez_lsures volatility using standard de- Lower Band = MA — k - o
viations around a moving average
- - D — Close; —Lowest Low,,
Stochastic Oscillator Measures momentum by comparing | %K = Highest High, —Lowest Lowy, X 100

current close to a range of highs and
lows
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C DETAILS ON EXPERT EVALUATION

C.1 EVALUATION METRICS

We evaluated the quality of the reasoning traces produced by our model using five criteria: clarity,
depth, accuracy, coherence, and relevance. Each reasoning trace and its associated numeric forecast
was scored on a scale from 1 (poor) to 5 (excellent). The criteria are defined as follows:

* Clarity: How clearly and succinctly the reasoning explains its analysis in a structured manner.

* Depth: How well the reasoning incorporates explicit financial or technical indicators (e.g.,
MACD, RSI, Bollinger Bands, EMA) to meaningfully support its conclusions.

* Accuracy: How precisely financial indicators are interpreted and technically described.

* Coherence: How logically consistent and organized the reasoning is, ensuring clear alignment
between analysis and conclusion.

* Relevance: How directly and effectively the chosen indicators are linked to the stock-price fore-
cast provided.

C.2 SUPPLEMENTARY INFORMATION

We conducted significance tests for our expert evaluation results:

Table 6: Significance testing (paired ¢-tests). Values indicate p-values for pairwise comparisons.

Comparison Clarity Depth Accuracy Coherence Relevance Overall
VTA vs GPT-4.1 mini 0.0765 9.1 x 1071 4.4 x 107 0.0280 1.6x107° 1.3 x 1076
VTA vs Deepseek R1 0.0024 1.8x1077 3.1x107° 0.0034 1.0x107° 2.3 x 1076
GPT-4.1 mini vs Deepseek Rl ~ 0.0555 0.0045 0.0247 0.4594 0.6854 0.8515

A statistical analysis using paired t-tests shows that the differences between VTA and the other two
models are significant at the 5% level for all criteria except Clarity, where the base LLMs are already
good at. Thus, the higher expert ratings for our model’s reasoning are statistically robust.

In addition to the quantitative scores, we also allowed the experts to provide open-ended responses
on the strengths and weaknesses of the models. We summarize the key points here:

Experts highlighted the strengths of VTA in using a wider variety of relevant indicators and in
providing conclusions that align with the explanation (e.g., “The analysis included a variety of
different indicators and used them to create a coherent story”, “Interesting use and relevance of
indicators”). In contrast, outputs from Deepseek-R1 and GPT-4.1 mini tended to be either vague in
analysis depth or not clearly linked to the price forecast, especially in the case of Deepseek-R1.

On the other hand, experts suggested that VTA could further improve by discussing indicators in
more detail and by using clearer formatting (e.g., “Should use bullet points for readability”, “Should
specify explicit indicator thresholds”). While better formatting and longer explanations can be ad-
dressed in future work, precise thresholds could be more difficult to enforce since the model learns
them adaptively from data.

C.3 SURVEY PARTICIPANTS

For the expert evaluation, we have surveyed domain experts with professional experience in financial
market analysis. A list of their surveyed background are as follows (duplicates are removed):

J.P. Morgan, UBS, Allianz Global Investors, Evercore, Perella Weinberg Partners, Bain & Com-
pany, McKinsey & Company, L.E.K. Consulting, H.1.G. Capital, Simon Kucher, Axxion S.A., TCG
Corporate Finance, BayernLB, Spinone Capital, Phillip Nova, Check24, SD Guthrie, MSMIF, Asian
Institute of Digital Finance, Harvard Business School
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D STATISTICAL SIGNIFICANCE OF MAIN RESULTS

To assess whether the differences relative to the second-best model in the model performance exper-
iments (MSEq = 0.06737, MAEy = 0.17380) are statistically significant, we ran our model n = 10
times with different random seeds and performed one-sample, one-sided Student’s ¢-tests under the
alternative hypothesis that our model’s errors are lower than those of the second-best model. Let &
and s denote the sample mean and sample standard deviation of the metric over the 10 runs.

T
s/v/n’

where i is the error of the second-best model. We reject the null hypothesis for p < 0.05. Both

Table 7: One-sample, one-sided ¢-test results against the second-best model.

Metric T s t p (one-sided)

MSE  0.06661 0.00054  —4.42 8.3 x 10~*
MAE  0.17081 0.00047 —20.04 4.5 x 107°

tests yield p < 0.05, indicating that the reductions in error relative to the second-best model are
statistically significant. For completeness, we report the full distribution over seeds as:

MSE = 0.06661 4 0.00054, MAE = 0.17081 4- 0.00047 (mean = std, n = 10).
We select the single best run (MSE = 0.06594, MAE = 0.17008) for all subsequent evaluations.

E ADDITIONAL CASE STUDIES

<think>
The stock prices have been fluctuating but generally increasing over the past 10 days. The moving
averages suggest a slight upward trend, but the momentum and RSl indicate a potential reversal or (

pullback. The MACD line is slightly negative, suggesting a bearish signal. The Williams %R and CCl show 230
that the stock is overbought, which could lead to a correction. Bollinger Bands show the stock is close to
the lower band, indicating support. The stochastic indicators are in the overbought region, which might
lead to a pullback.

Given the recent trend and indicators, it's likely that the stock will experience some volatility but may
not see a significant increase in the next 10 days. A pullback is possible, but the support from the
Bollinger Bands and the recent upward trend suggest that the stock might not fall too much.

—— GroundTruth

Predicting the exact prices is challenging, but based on the current trend and indicators, a moderate 210 Prediction
increase with some pullbacks is likely. 00 25 50 75 100 125 150 175
</think>

Figure 8: VTA reasoning about a moderate increase (from the last price) with some pullbacks.

<think>
The stock price has been fluctuating but generally trending upwards over the past 10 days. The moving
averages suggest a slight upward trend, with the exponential moving average showing a more recent

upward trend. The momentum indicator has been positive, indicating an upward momentum. The RSl is 18 - f:;::z:‘“
above 50, suggesting the stock is not oversold. The MACD line has been positive, indicating a bullish 17 /\,/_
trend. The Williams %R is in a relatively low range, suggesting the stock is not overbought. The Bollinger

Bands show the stock price is within the upper band, which could indicate a potential reversal. The
stochastic indicators are also in a positive range, suggesting the stock is in an uptrend. e

Given the current positive momentum and trend, and the fact that the stock price is near the upper
Bollinger Band, it might be expected to correct or consolidate in the near future. However, the overall
trend remains positive. A reasonable prediction would be a slight correction followed by a continuation
of the upward trend. 1

Let's predict the next 10 days' closing prices to be slightly lower than the current price but still within
the recent range.
</think>

Figure 9: VTA reasoning about prices to be slightly lower than the last price but within recent range.
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<think>
The stock has been showing a trend of recovery from its minimum price of -0.7191 to its maximum price —
of -0.1486. The moving averages suggest a slight upward trend, with the simple moving average (SMA) Prediction
and exponential moving average (EMA) both indicating positive values. The momentum and relative 0.0
strength index (RSI) are also positive, indicating a bullish trend. The MACD line is positive, suggesting a ~NA
bullish momentum. The Williams %R and Commodity Channel Index (CCl) suggest that the stock is not
overbought and is in a bullish phase. The Bollinger Bands show that the stock price is within the upper
band, indicating a strong bullish trend. The stochastic indicators are also positive, suggesting that the
stock is in an uptrend.

Given these indicators, it is likely that the stock will continue to rise in the next 10 days. However, the ~06
exact values are hard to predict precisely. We can assume a slight increase in the closing prices, staying

within the range of the current prices and the upper Bollinger Band.

</think>

Figure 10: VTA reasoning about a slight increase in price but staying within the current range.

<think>

The stock has been showing a downward trend with the lowest price on day 9 and the highest on day 3. 06 frr:;:ig:m
The moving averages suggest a declining trend as well. The RSl is quite low, indicating the stock might
be oversold. The MACD line is also negative, suggesting a bearish trend. The Williams %R is very
negative, indicating strong overselling. The Bollinger Bands show the stock price is below the middle
band, which is consistent with a bearish trend. The Stochastic Oscillator is also in the oversold region,
which might suggest a potential bounce.

Given the current trend and indicators, it's likely that the stock will continue to decline but might 02 /\\_1/
experience a short-term bounce. However, the overall trend is bearish. | will predict a slight decline with /\/

a potential short-term bounce. 01 vl

</think>

00 25 50 7.5 100 125 150 175

Figure 11: VTA reasoning about a potential short-term bounce, which realized in the ground truth.

<think>

The stock prices have been increasing over the past 10 days, with a recent peak on day 9. The moving o5 ] T proandmth

averages suggest a slight upward trend, but the momentum and Williams %R indicate some overbought

conditions. The Bollinger Bands show the current price is above the middle band, but not yet at the 300 /\/\/\
upper band, suggesting a potential for a pullback. However, the RSI and MACD are still in positive 295 X

territory, indicating a bullish trend. Given the recent increase and the positive indicators, the stock is
likely to continue its upward trend, but with some potential for a pullback.

Predicting the exact prices is challenging, but we can use the recent trend and indicators to make an 280
educated guess. The prices are likely to remain above the recent lows but not necessarily break new
highs. We can assume a slight increase from the last price, with some potential for a pullback.

</think> 2.70

Figure 12: VTA reasoning about a slight increase, with potential for a pullback (i.e., trend reversal).

F FINANCIAL ANALYSIS OF PORTFOLIOS

To assess the robustness of our portfolio returns, we apply standard performance attribution models
widely used in finance. These models allow us to separate returns that can be explained by common
risk exposures from those that reflect potential strategy-specific value.

 Capital Asset Pricing Model (CAPM): A baseline model that relates portfolio returns to overall
market returns. It provides a measure of whether the strategy delivers excess returns (alpha) after
adjusting for market risk (beta).

* Fama—French multi-factor models: Extensions of CAPM that incorporate additional risk fac-
tors, such as company size, value versus growth, profitability, investment patterns, and momentum.
These factors capture well-documented drivers of returns beyond market exposure.

These models enables us to evaluate whether our results are explained by general market and factor
exposures or whether they demonstrate incremental performance beyond established benchmarks.

Following industry practice, we conduct an in-depth performance attribution study of the portfolio
formed from our VTA method, using both CAPM and the Fama-French 6-factor model.
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F.1 THE CAPM REGRESSION MODEL

For CAPM, the following model was applied to the daily returns of our portfolio and the market:
(Rvtay — Rypt) = a4 B - (Rmarket,t — Rypt) + €,

where:

. (Rpm—tfolio’t —R N): The excess return of our portfolio on day .

(Rmarket,t — Ry.+): The excess return of the market benchmark on day ¢.

Alpha («): The regression intercept, which represents the portion of the portfolio’s return
that is not explained by market movements.

Beta (3): The regression slope, which measures the portfolio’s systematic risk relative to
the market.

* Epsilon (¢;): The error term for day ¢.

A positive and statistically significant alpha is indicative of a superior strategy, whereas an alpha of
0 would mean that it has the same performance as the benchmark CAPM method. Additionally, we
also report the R-squared of the methods against the benchmark, which show how much of the return
variation can be explained by CAPM. For investors, low R-squared would be ideal as they show that
the trading signals are less correlated, which reduces the idiosyncratic risk of the portfolio.

We regressed our daily portfolio returns against the excess market return for each region, using the
representative market indices. Below is a summary of results across the four datasets:

Table 8: CAPM Regression Results.

Dataset Market Index Used Beta (3) Annualized Alpha (o) Alpha p-value R-squared
dowjones_30 Dow Jones Industrial (DJI) 0.6745 +3.41% 0.701 44.04%
stocknet MSCI World (ACWI) 0.6312 +10.12% 0.198 36.28%
ftse_china_a50 FTSE China AS0 ETF (2822.HK)  0.3562 +53.91% 0.008 26.72%
eurostoxx_-50  EURO STOXX 50 (STOXX50E) 0.2804 +15.44% 0.120 15.93%

The CAPM regression results provide a useful first diagnostic for understanding the risk-adjusted
performance of our strategy. Across all four datasets, the strategy exhibits positive annualized alpha,
which suggests that returns exceed those predicted by exposure to the overall market alone. How-
ever, statistical significance is only achieved in the China A50 dataset, where the alpha is both high
(+53.91%) and significant (p = 0.008). In other markets, while alpha remains positive, the higher
p-values suggest weaker evidence of systematic outperformance.

Beta values in the range of 0.28 to 0.67 indicate moderate market exposure. This shows that the
strategy is not entirely market-neutral, but it is also not simply tracking index movements. This
aligns with our use of short-term technical forecasts rather than macro-driven positions.

The R-squared values, which range from 15.93% to 44.04%, show that a significant portion of return
variation is not explained by CAPM, particularly in the European and Chinese markets. This points
to a meaningful degree of idiosyncratic return generation, consistent with a model that is extracting
useful trading signals beyond traditional market risk.

F.2 THE FAMA-FRENCH 6-FACTOR MODEL

We further evaluated performance using the Fama-French 6-factor model. This model expands on
CAPM by adding five more factors: market, size, value, profitability, investment, and momentum:
R,— Ry =a+ Bi1(Ry — Ry¢)+ B2- SMB + 33 - HML + 34 - RMW + 35 - CMA + 35 - WML + €
The Fama-French 6-factor analysis gives a more granular view of performance. While positive alpha
persists in all datasets, their signficance varies, ranging from 0.001 in China A50 (very significant)

to 0.985 (not significant). One possible reason for the lack of significance could be due to the short
period horizon of our test dataset (1 year).
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Table 9: Fama—French 6-Factor Regression Results.

Dataset Annualized Alpha (o) Alpha p-value R-squared
dowjones_30 +0.18% 0.985 38.77%
stocknet +9.57% 0.213 39.37%
ftse_china_aS0 +73.40% 0.001 13.81%
eurostoxx_50 +13.67% 0.184 12.35%

The R-squared values, ranging from 12.35% to 39.37%, indicate that even after accounting for a
broader set of risk factors beyond CAPM, a significant share of return variation remains unexplained,
which is good. In our work, technical analysis is typically designed for short-term optimization,
capturing brief momentum, reversal, or volume-based effects. Because of this short-term focus, our
model is not expected to align closely with long-horizon economic models like CAPM or Fama-
French, which are typically evaluated over months or quarters.

Overall, the results demonstrate that our approach does offer some complementary value to CAPM
and Fama-French 6 factors to be used as an interpretable, forward-looking portfolio signal.

G LLM-AS-A-JUDGE

To ensure reproducibility of the evaluation method, we further evaluated the quality of the reasoning
generated by VTA using LLM-as-a-judge (Zheng et al.| 2023} |Gu et al.||2024). To do this, we first
randomly sample 1,000 reasoning traces for evaluation. The reasoning samples are then evaluated
using a stronger model as the judge, GPT-4.1 (OpenAll 2025). The samples are judged on the same
metrics on a scale of 1-5 and the average scores over all samples is reported.

Table 10: Comparison on reasoning quality across different VTA variants and reasoning LLMs.

Clarity ~ Depth  Accuracy  Coherence  Relevance  Overall

GPT-4.1 mini 4.06 1.87 2.37 4.05 2.29 2.93
Deepseek-R1 3.95 3.02 2.97 3.98 3.25 3.43
VTA (Ours) 4.21 4.14 3.96 4.57 4.58 4.29

From Table [T0} we observe that there is a clear improvement in all metrics from the inference-
only reasoning models to our VTA model, showing the effectiveness of the fine-tuning process.
Importantly, when comparing these LLM-as-judge results to the human experts ratings, we also find
that the relative differences are highly consistent: VTA shows the largest margin over baselines in
Depth, Accuracy, and Relevance, while the smallest gap is seen in Coherence and Clarity.

H PORTFOLIO METRICS

We evaluated the performance of the VTA-generated portfolio according to several standard perfor-
mance metrics, commonly used in empirical asset management. These metrics are:

* Returns: Measure the percentage change in portfolio value over a given period, indicating
overall profitability.

* Volatility: Captures the dispersion of returns over time, with higher volatility reflecting
greater fluctuations and uncertainty.

* Maximum Drawdown: Represents the largest peak-to-trough decline in portfolio value,
highlighting the worst observed loss during the evaluation window.

» Sharpe Ratio: Assesses risk-adjusted performance by comparing excess returns to return
volatility, where higher values indicate more efficient risk-taking.

20



Under review as a conference paper at ICLR 2026

I COMPARISON IN OTHER DOMAINS

Table @reports the performance comparison on the Healthcare (ILI) and Energy (ETTh1) datasets.

Here, we observe that the healthcare and energy datasets do not follow the same performance pat-
terns we saw in financial time-series, which could be attributed to different defining characteristics.
For example, models that benefit from trend-seasonal decomposition on financial data do not show
the same advantage here, likely because ILI and ETTh1 do not exhibit the same cyclical structure.

In these domains, especially on the ILI dataset, our VTA model also does not exhibit performance
that is too far away from the time-series LLM model (CALF). It is possible that the additional
reasoning traces provide limited benefit when there is not much complex signals to reason over
outside of simple trend extrapolation, which was previously visualized in Figure[7}

Table 11: Performance comparison on time-series from other domains. The best results are bolded.

ILI ETTh1
MSE MAE MSE MAE
Informer 1.7372  0.8669 0.3128 0.4848

Transformer 1.6827 0.8122 0.2505 0.4360
Crossformer 1.3320 0.7270 0.1298 0.2914

TSMixer 2.1163 0.9504 0.0877 0.2375
Reformer 1.5554 0.8134 0.2422  0.4020
LightTS 23121  1.0612  0.0625 0.1921
DLinear 29160 1.3933 0.0404 0.1499
FiLM 2.6761 1.3856 0.0423 0.1543
Non-stationary  1.4328  0.8538 0.0403  0.1530
MICN 1.3431 0.8732 0.3063 0.4649
Autoformer 1.7554 1.0350 0.0736 0.2146
TimesNet 1.0795 0.6910 0.0410 0.1572
CALF 1.4442  0.7409 0.0361 0.1411

VTA (Ours) 1.4366 0.7090 0.0346 0.1374
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