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ABSTRACT

Many fields collect large-scale temporal data through repeated measurements (‘trials’),
where each trial is labeled with a set of metadata experimental variables. These metadata
often include labels spanning several categories. For example, a trial in a neuroscience
study is linked to a value from category (a): task difficulty, and category (b): animal
choice. A critical challenge in time-series analysis is thus to understand how these la-
bels are encoded within the multi-trial observations, and disentangle the distinct effect of
each label entry across categories. Here, we present MILCCI, a novel data-driven method
that i) identifies the interpretable components underlying the data, ii) captures cross-trial
variability, and iii) integrates label information to understand each category’s representa-
tion within the data. MILCCI extends a sparse per-trial decomposition that leverages la-
bel similarities within each category to enable subtle, label-driven cross-trial adjustments
in component compositions and to distinguish the contribution of each category. MIL-
CCI also learns each component’s corresponding temporal trace, which evolves over time
within each trial and varies flexibly across trials. We demonstrate MILCCI’s performance
through both synthetic and real-world examples, including voting patterns, online page
view trends, and neuronal recordings.

1 INTRODUCTION

A key step in understanding high-dimensional, temporally evolving systems (e.g., the brain) is analyzing
time-series data from multiple repeated observations (hereafter ‘trials’). Each trial is typically labeled with
a set of experimental metadata variables. Typically, such metadata span multiple categories; for example,
each trial in neuronal recordings can be labeled with an attribute from category (a) task difficulty, and from
category (b) animal’s choice; each trial in weather measurements can be a time series of temperature over
a day, labeled with (a) city, (b) humidity level, and (c) precipitation. We therefore refer to a trial’s label as
the tuple of its category values, e.g., ‘(easy task, correct choice)’ or ‘(New York, 90% humidity, 1” snow)’.
Notably, different trials can have similar or distinct labels. When one label entry (e.g., task difficulty)
changes between trials (e.g., easy vs. challenging task), other entries (e.g., correct vs. incorrect choice) may
remain the same or change as well.

Given a collection of trials in a real-world dataset, interpreting how such multi-trial, multi-label (‘multi-
way’) data varies across the space of labels is complicated by the data’s high-dimensionality and variability
across trials. High-dimensional data, however, can typically be represented by a smaller number of ‘compo-
nents’ that capture the key patterns driving observed variability. Analyzing the data in this low-dimensional
space can reveal underlying trends and dynamics that capture the data’s behavior across categories and the
interactions amongst labels.

Existing methods for analyzing multi-way data often factorize a single, large tensor into components; how-
ever, they typically overlook trial labels and require constraints on the data structure (e.g., a tensor formed of
equal-length trials). Applying these factorizations to each trial separately (via matrix factorization or other
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dimensionality reduction) can account for the irregularity in data structure, but then overlooks cross-trial
relationships.

Hence, there is a need for new flexible yet interpretable methods to (1) expose the underlying structure within
high-dimensional multi-way data, (2) reveal how it captures label information, and (3) disentangle the effect
of each category. This, in turn, demands leveraging the trial-to-trial relationships captured by the labels and
understanding how these relationships govern the overall observation dynamics.

In this paper, we present MILCCI, a novel method to uncover the underlying structure of multi-way time-
series data and disentangle how multi-category labels are embedded within it, both structurally and tempo-
rally. Our contributions include:

* We introduce MILCCI, a flexible model that exposes interpretable sparse components underlying multi-
way data and reveals how they capture diverse label categories.

* MILCCI learns how the components capture label-driven variability across trials and how their activations
evolve within individual trials—thus capturing the full spectrum of trial-by-trial variability.

* We validate MILCCI on synthetic data, showing it better recovers true components than baselines.

* We further demonstrate MILCCT’s ability to uncover interpretable, meaningful patterns in real data, in-
cluding the discovery of voting trends across US states that match actual events, patterns of online ac-
tivity reflecting language and device, and neural ensembles supporting decision-making in multi-regional
recordings over a thousand trials.

2 RELATED WORK

The naive approach for analyzing multi-way data is to apply dimensionality reduction individually per trial
or jointly across all trials (by stacking multiple trials into a single matrix). This can be done, e.g., via linear
matrix decomposition such as PCA, ICA (Hyvarinen et al., 2001), NMF (Lee & Seungl [1999)), sparse
factorization for improved interpretability (e.g., SPCA [Zou et al.| (2006))), or via non-linear embeddings
(e.g., t-SNE (Maaten & Hinton, 2008))). However, per-trial analysis overlooks cross-trial relationships, while
analyzing all trials with a single mapping ignores trial-to-trial variability in internal structure.

Demixed PCA (dPCA) (Kobak et al.,[2016) isolates task-related neural variance into low-dimensional com-
ponents, however it does not address missing data, different trial durations, and varying trial sampling rates,
which hinders alignment across heterogeneous trials. |Mudrik et al.| (2024) recently introduced a unified
cross-trial model that identifies building blocks encoding label information in multi-array data; however,
their method handles only a single dimension of label change and thus cannot disentangle effects of mul-
tiple categories that change jointly or separately across trials. TDR and its extensions (Mante et al., 2013}
Aoi & Pillow, |2018) capture multi-category labels via per-trial scalar reweighting of fixed matrices, but as-
sume cross-trial variance arises only from linear reweighting of fixed temporal signals and cannot capture
variability across trials sharing the same label.

Tensor Factorization (TF), e.g., PARAFAC (Harshman, [1970) and HOSVD (Lathauwer et al., 2000), goes
beyond individual trials by treating trials as an extra data dimension in a multi-dimensional array. How-
ever, existing TF methods, including those incorporating Gaussian processes (Tillinghast et al., [2020; |Xu
et al.l 2011} |Zhe et al.,[2016) or dynamic information (Wang & Zhe, [2022), are not designed to distinguish
label-driven variability from other sources of variability and often produce components that are difficult to
interpret. |Chen et al.|(2015) enable flexibility in cross-trial representations based on meta-data information,
but their assumption of component orthogonality prevents the model from capturing correlated or partially
overlapping patterns, which limits the representation’s expressive power.

Unlike the methods above, MILCCI addresses (1) identifying the core structure of multi-trial, multi-label
data with irregularities, (2) capturing trial-to-trial variability, including within repeated measures of the same
label, (3) disentangling how each category is encoded within the temporal observations.
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Figure 1:  Illustration. I: Time-series (e.g., brain recordings) across M trials of varying duration
({T™}M_ Y. Each trial m is associated with a label L(™), which is a set of experimental variables span-
ning different categories (e.g., L("™) = (easy task, correct choice)). II: Each category (k)’s components are
represented by a tensor A®, whose i-th layer (A(kz) ) refers to the ¢-th option of that category (e.g., if the
2-nd option of category (b): correct choice, then A(bz) are correct-choice components). III: Each trial m
is modeled via a sparse factorization, with its sparse components defined by selecting a layer from each
category’s tensor, based on that trial’s label (green borders, II), and then concatenating all selected layers
horizontally (green borders, III). This forms the loading matrix of that trial. Importantly: 1) trials with
identical labels use identical loadings, 2) components can subtly adjust their composition under shifts in
the respective category values to maintain consistency (e.g., same component under task difficulty 1 vs. 2:
|A® — A% ||r < €), and 3) component temporal traces ({®(™ }M_, ) can vary flexibly across trials.

3 OUR METHOD: MILCCI

Problem formulation: Let Y = {Y(m)}%:1 be a set of M time-series (trials), where each

y(m) ¢ RNxT represents measurements from N channels across 7" time points (Fig. |1} I). We assume
that the NV channel identities are fixed across trials, while trial durations, 7T’ (m), can vary. Each trial Y (™) is
observed under a set of trial-related metadata variables. We thus define the label of trial m as the tuple L(™)
containing the set of each category’s value in that trial (e.g., L") = (task difficulty: easy, choice: correct)).
Notably, different trials may exhibit identical labels across all entries, partially overlapping labels, or entirely
distinct labels.

To model how the labels {L("™}M_ shape the time series {Y (") }M_, we model each Y (™) as being

linearly generated by a small set of P trial- and time-invariant components A € RY*F_ Specifically, we
assume Y™ = A(®(™)T 4 ¢, where ™) ¢ RT"™ %P are the components’ temporal traces that define
their evolution within trial m, and € is i.i.d. Gaussian noise. We further assume that, rather than being
fixed across trials, these components can undergo small adjustments in their composition between trials of
different labels. For example, a brain network may recruit a few neurons during a hard task but not during an
easy one. Here, our goal is to leverage the observed data {Y (™ }M_ to recover the underlying components
A, identify how they adjust to changes across diverse categories, and track how they evolve over time within
and across trials {®(™ }M_ . This problem, however, is inherently challenging, as {Y (™)} mixes all labels’
effects across categories, making it hard to disentangle each category’s contribution to the data.
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Figure 2: MILCCI Recovers True Representations in Synthetic Data. A&B: Generated synthetic data
(full data in Fig. 5). Ground-truth components (examples in panel A) vary slightly across labels but re-
main fixed across same-label trials (rows). Ground-truth traces vary across trials (B, colored by difficulty).
C&D: Identified vs. ground-truth components (top) and time-traces (bottom) for random trials. E: His-
togram of correlations between identified components and traces vs. their true counterparts. F&G: Com-
parison of MILCCI to other methods (limited to the same 4-component dimension) based on traces (random
trial, F) and overall reconstruction (G).

Our model: MILCCI learns the underlying structures from data by identifying sparse, interpretable com-
ponents that adjust to changes in labels across categories. MILCCI assumes components of each category
k € {a,b,...} are captured by a category-specific sparse tensor A® € RN *P"'*#k (Fig_|1] IT), where p®
is the number of components and #k is the number of unique options (e.g., distinct choices) in category (k).

Each tensor entry A(T]f])l captures the degree of membership of the observed channel n = 1,..., N in the j-th
component under the ¢-th option of category (k), with 0 indicating no membership (e.g., how much neuron n
participates in a specific neuronal ensemble under a correct choice). For terminology, we will denote the i-th
‘layer’ of A® as A(kl) , 1.e., all the components corresponding to the ¢-th option of category (k) (e.g., correct
choice components, Fig 1| II dark pink in A®). Notably, different tensors can have different numbers of
layers, depending on how many unique values their corresponding category contains (Fig. [T} IT: « options
for task difficulty vs. 2 options for choice).

For each trial m = 1, ..., M with the tuple label £ = L™, we use the tensors to build a ‘dummy’ matrix that
captures the components to be present in that trial. From each category’s tensor A®, we select a single layer
i based on the category’s value in £ (e.g., ‘correct choice’). Next, we horizontally concatenate the matrices of
all selected layers to form the ‘dummy’ matrix A“) € RN*” (where P = Y, p), which represents trial
m’s components (Fig. [I] IIT). Notably, this creates a label-dependent (rather than time- or trial-dependent)
component matrix that reuses layers from the global tensor set. While the components are defined by the
label only, each j-th component is also associated with a temporally evolving trace (‘I>:(;n) e RT™ *1) that
marks its activation within each trial m and can vary flexibly between and within trials.

This label-driven variation of component compositions over distinct-label trials allows flexibility, yet should
ensure the consistency of each component across trials (e.g., if a neuronal ensemble recruits additional
neurons only under a difficult task, it should still be identifiable as the ‘same’ ensemble under an easy task).
Hence, any pair of layers ¢ # 4’ of each (k) category’s tensor (Afi-), Aff‘i),) are constrained to be similar,
but need not be strictly identical, via ||AY — AY ||z < §(k;, ki) (Fig. |1} 1II). Here, § is a small value
reflecting the similarity between the i-th and 7’-th options of category (k) (e.g., how ‘close’ task difficulty 1
is to task difficulty 4). This way, the degree of compositional adjustment scales with the magnitude of label

change (App.[A22).
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We then model the data Y (™) of each trial m as lying in the low-dimensional space defined by the sparse
‘dummy’ matrix A®), via Y (™) = A® (<I*(m))T + ¢, where € is i.i.d. Gaussian noise.

Model training: MILCCI uncovers the underlying per-category component tensors ({A®, A® 1) and
their traces from the time series ({Y™}*_.). To support both categorical and ordinal labels, MILCCI
optionally pre-computes a label similarity graph A® for each (k) (App. , which is used in component
inference to allow the compositional adjustments to reflect label similarity. Then, we initialize the compo-
nents and traces (App. and take an iterative procedure to infer { A%} ccategories and {@mM_

Inferring {A®@, A® 1

For each unique option k; of each category (k) (e.g., each task difficulty level), we infer the :-th
layer of the tensor A® (A%). For this, we use all trials observed under this k; value, regardless
of the values of the other categories. Namely, we use the subset of observations {Y(m)}m cni Where

M= {me{l,...,.M}| Ll((m) =k;} (e.g., all trials with difficulty level = 1, regardless of choice).

Using this observations subset {Y(m)}m a7 We first need to separate Af]fi)’s contribution from that of the

other components (coming from layers of other tensors) in the concatenated matrix AT, Hence, for each
m € M, we first calculate the residual between Y™ and the contributions of all layers A(kz) v(k’) # (k),

- : T , :
by: Y™ =y (™ — 37 A?‘L)(m) (<I>(’g()k)) , where A(kL)(m) are the components from some layer of A®)
sl ’ 4 K

(category (k’)’s tensor), and <I',(Tg()k’-) € RT™ xp" are the traces of these (k’) category components.

B

We can then solve the following optimization for A(kz) using LASSO (Tibshiranil |1996):

AL} = arg min [V — AD@GE 4+ 91 3 N AL - AR+ qslvee(AD], ()
i i #

where A(kl) > 0 applies an optional non-negativity constraint on the components, ‘vec(-)’ flattens a matrix
into a vector, )\?f)l denotes the similarity regularization between the i-th and i’-th option of category (k)
(App.[A.2), and 7, 72 are hyperparameters promoting cross-label smoothness and sparsity, respectively. The
first term thus enforces data fidelity; the second promotes consistency between corresponding components
proportional to their label similarity as captured by A%; and the third encourages component sparsity. Each
component is then normalized to a fixed sum to avoid scaling ambiguity with (™).

Updating {®M™}M_, .
Since traces vary over trials, updates are applied per trial m. For each trial m with multi-category label
¢ := L™, we update @™ by:
TOm)
$=arg min [YV"-AO (@) 1y Y |18 -2+ |vee(CO (1-T)) 0 D)y (2)
data fidelity =1 de-correlation
temporal smoothness
where C := (®(™)T®(™) with © denoting element-wise multiplication, Dy ; := |\<I>:(Z”)||;1H<I>:(;")||51,
and 73, 74 hyper-parameters. This optimization thereby promotes data fidelity and smoothness (first and
second terms), and regularizes temporal trace correlations within trials (third term). See Alg.[I]and Fig.[I]

4 EXPERIMENTS

MILCCI Recovers True Components from Synthetic Data: We generated synthetic data arising from
P = 4 sparse components with time-varying traces (1" = 500 time points; M = 250 trials). We defined two
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Figure 3: Wikipedia Results (A): Identified Wiki page-view exemplary components (A.1) and traces aver-
aged by different categories (A.2); Voting Results (B): Identified exemplary components (B.2) and traces
(B.3, Mean and 80% confidence interval). See full in Fig. |§|

categories: (a) ‘task difficulty’ (5 options), and (b) ‘choice’ (2 options), such that p® = p® = 2 ensembles
adjust with changes in (a) and (b) (Fig.[5B). Each trace was generated as a Gaussian process with parameters
varying across components and trials: some reflect task difficulty, some choice, and some vary each trial
(Fig. 2} B, Fig.[| A, App.[C). We ran MILCCI on this data, comparing to (1) Tucker (Tucker, [1966), (2)
PARAFAC [1970), (3) non-negative PARAFAC, (4) SVD, and (5) SiBBIInGS (Mudrik et al,,
2024), all using the same P = 4 components (Fig. 2} F,G). Since TF is invariant to component permutation,
we resorted the components of each method using linear sum assignment to align with the ground truth.

MILCCI recovered the true components (Fig. 2} C) and traces (Fig. 2] D), with high correlations to the
ground truth for both (Fig.[2] E). Compared to other methods, the representation identified by MILCCI was
most similar to the ground truth (Fig. |ZL F,G, green). SiBBIInGS also performs well (Fig. |ZF) but produces
smoother traces. Correlation of the reconstructed components with the ground truth (Fig. 2G) is higher
for MILCCI than the baselines; while SiBBlInGS achieves a similar correlation, MILCCI provides greater
interpretability by distinguishing the contribution of each category.

MILCCI Reveals State-Level Voting Patterns by Party and Office: Voting data consist of 50 US states
X 23 years (sampling every 2 or 4 years) x party (e.g., Democrat, Republican, Libertarian; see Tab. 2) x
office (Presidency, Senate, House) were extracted from (Data & Lab 2017aHbD and normalized for each
state (App.[D). Some states lack data for certain years or office due to differing election schedules (Fig. [6).

We applied MILCCI to this data using P = 8 components, with categories (a) party, and (b) office (p! = 4
components each). MILCCI discovers components capturing state-specific voting patterns that vary by
office, party, and time. For example, component AP (Fig. B. 1) highlights Montana (MT) and Pennsyl-
vania (PA) having increased membership in the ‘Other’ category, primarily driven by the Independent Party
(MT, Fig.[13] right) and the Constitution Party (PA, Fig.[T3] left). This aligns with MT’s historical emphasis
on individualism (Kitayama et al.l 2010) and PA hosting the Constitution Party headquarters. The same
component identifies Oregon’s increased Libertarian membership, matching the 2001 law that eased ballot
access for minor parties (Oregon Elections Division, and reflecting that the Libertarian Party of Oregon
was among the earliest state branches. Notably, its trace (‘P:g;pa.-ty), Fig. 3| B.1, top-left) shows overlapping

Democrat—Republican activations diverging ~2004, with Democrat activity rising and Republican activity
decreasing, reflecting long-term partisan realignment driven by national political shifts (e.g., Iraq War 2003).
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In component A% (Fig. 3| B.1, right), MILCCI groups AK, OK, AL, AZ, MS, MT together. This group-
ing matches the legislative similarities between these states, e.g., strict voter ID laws (National Conference
of State Legislatures| [2025), demonstrating MILCCI’s effectiveness in recovering hidden trends directly
from observations. Temporally, its trace (P:gé’pz\rly) (Fig. , B.2, bottom-left) shows opposing trends between

Democrat and Republican activations, with Republican activation rising, and Libertarian activity emerging
around 2016. This trend reflects a rise in Republican votes, a decline in Democratic votes, and a possible
shift of some Democratic support toward the Libertarian party in these states. These and other patterns
identified by MILCCI (App. demonstrate its ability to uncover state—party—office—dependent patterns.
Notably, components from other TF methods (Fig. are dense (PARAFAC), include negative values
(SVD, PARAFAC, Tucker), or, in SiBBIInGS, fail to disentangle party from office, which hinders inter-
pretability (Fig.[9). Moreover, due to their restrictive tensor structure, PARAFAC and Tucker do not capture
compositional adjustments and cannot flexibly vary their traces to capture trial-to-trial temporal variability.

MILCCI Finds Wikipedia Page Clusters Across Devices and Languages: Next, we extracted Wikipedia
Pageview counts (Meta, 2022) (Oct. 20’24, T'=1482, daily) across three categories: (a) agent: user/spider
(i.e., web crawler), (b) platform: desktop/web/app, and (c) language: en/ar/es/fr/he/hi/zh. Each trial records
the number of Pageviews under a label (e.g., Y (™): Pageviews over time in English, via desktop, by a
human); data pre-processing in App. We identified components that cluster related Wiki-pages together
and vary across categories (Fig.|3] A), with some pages (e.g., unsupervised learning) appearing in more than
one component, emphasizing MILCCT’s ability to capture multi-meaning terms.

Particularly, we identiﬁed e.g., A" grouping Learning Theory (in Psychology) pages (Fig. [3| AL red

arrows, list in App. [E.2); A%™ grouping social-media pages (purple arrows); and component Aplattorm)
grouping computer s01ence basws (blue arrows). Interesting patterns emerge when exploring how compo-
nents composition adjust to e.g., user<»spider and desktop<>web<>app.

For A(lagem) (Learning theory in Psychology), MILCCI finds small differences across agents (spider vs. user,
Fig.[3] A.L left). For instance, the Bobo Doll Experiment’s Wiki-page (a psychological experiment on social
learning theory) appears under ‘spider’ but not ‘user’. This matches it being less familiar to the average
person than other psychology terms in the cluster, while spiders are linked to it through the actual Wikipedia
links connecting this page to other related terms. Accordingly, other Wiki-pages, like classical and operant
conditioning, which are foundations in psychology, show higher membership magnitudes in user. ‘Unsu-
pervised learning’ and ‘embedding’ also show small membership in this component, higher in ‘user’ than
‘spider’. Interestingly, these pages refer to CS terms (not psychology), but since they also carry meaning in
psychological learning, the higher ‘user’ membership compared to ‘spider’ matches human behavior: users
enter the page but leave upon realizing the term refers to a different field, whereas spiders follow predictable
navigation. These findings highlight MILCCTI’s ability to reveal distinct human vs. spider behaviors within
the same component, and also underscore the importance of allowing compositional adjustments to capture
nuanced trends, unlike other methods (Fig. @])

This component’s trace (P, ;uem,, Fig. , A.II top-left) captures its fluctuations and higher activation in
:gleen),

English compared to other languages. This aligns with professional terms being more elaborated in English,
often using jargon not fully defined/used in non-English languages, and with non-English native speakers
possibly preferring to read professional material in English (Miquel-Ribé & Laniado, [2018]).

The social-media component A(;gem) shows small structural adjustments user<»spider: ‘Mark Zuckerberg’
is higher in spider, while ’social media’ is higher in user, possibly reﬂecting reduced human interest in
figures versus common terms like social media. Its trace (P, e ) rises until a peak in Mar. 2024 in
both English and non-English (Fig. BA.II, bottom-left), matchlng the general increase in social media and
possibly related to, e.g., Florida’s Social Media Ban in Mar. 2024, which was widely noted and is mentioned
on the corresponding |‘social media’| Wiki-page captured by this component.


https://en.wikipedia.org/wiki/Wikipedia:Pageview_statistics
https://en.wikipedia.org/wiki/Bobo_doll_experiment
https://www.flgov.com/eog/news/press/2024/governor-desantis-signs-legislation-protect-children-and-uphold-parental-rights
https://en.wikipedia.org/wiki/Social_media
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APH™ (computer science basic terms) captures membership adjustments to platform, with, e.g., com-
puter scientist (a short Wikipedia page without math/graphs) showing higher membership under app/web
compared to under desktop. This contrasts with, e.g., unsupervised learning, whose page is more complex
(includes math and graphs) and shows lower membership in the app compared to the other platforms. This
may match users’ preference to read ‘easy’ terms on the app and more complex terms on desktop, and shows
MILCCT’s ability to reveal interpretable processing differences across platforms.

This component’s temporal trace (P, (pldmm) shows higher activity in English (F1g , with access domi-

nated by desktop and mobile web (Flg EL A.II, bottom-right). The temporal trace is mostly driven by users
rather than spiders (Fig.[3] A.IL, top-right); the user trace decreases over time, aligning with these terms being
basic (‘old’) in CS (compared to newer trends, like LLMs). This highlights MILCCI’s power in discovering
platform-specific engagements and behavioral fingerprints.

Some more interesting patterns include, e.g., Afglatform) that captures terms related to Cambridge Analytica;

its trace peaks around 2020, mainly in English, and decreases since, aligning with the timeline of this case.
See Figs. [T4] [17] [16] [18] [19] for comparisons and full traces.

MILCCI Finds Neural Ensembles underlying Multi-Region Brain Data: Finally, we apply MILCCI
to neuronal activity patterns from multi-regional, single-cell-resolution recordings of mice in a decision-
making task (Laboratory et al| (2025); [Angelaki et al] (2025), App. [F). In this experiment mice reported
the location of a visual grating with varying contrast by turning a wheel left or right (Fig. ] A). We used
data from a random session, extracted the available spike time data, and estimated firing rates by applying
a Gaussian convolution. We removed inactive neurons, and split trials into trial start and end, yielding
N = 270 neurons over 137 time points across M = 1011 trials (example processed trials in F1g [21).
We defined p® = 2 components (‘neuronal ensembles’) per category: (a) trial number, (b) prior side,
(c) stimulus side, and (d) fixed components that are fixed across trials. This setup (1) enables distinguishing
representational drift (Rule et al. [2019; [Driscoll et al [2022)) potentially related to learning or attention,
from task variables, and (2) demonstrates MILCCI’s ability to simultaneously support both non-adjusting
and adjusting components, across both categorical and ordinal categories.
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We found neuronal ensembles selective for diverse task variables (Fig. 4)). For example, <I>(’gn(1)) is tuned to

1
choice correctness, with activity surging during stimulus presentation (Fig. 4 B left) under correct choice
only. Interestingly, MILCCI also found an ensemble sensitive to incorrect decisions, activated just after
stimulus presentation (®. 0., Fig. . Notably, these components can provide insight as to how neuronal
GY:

ensembles integrate stimulus information to support correct decision-making, and to relate these traces to
the specific neurons involved (Fig. . In another example, ‘I’(;Lb)) is mostly active during trials with a
G0

random-prior (i.e., p(left) = 0.5), throughout before, during, and after the stimulus, and is largely inactive
in trials where the prior favors one side (Fig. |4l B right). This highlights MILCCT’s efficiency in suggesting
the involvement of priors in decision-making, and its capability of exposing hidden similarities within traces
of similar conditions.

Moreover, MILCCT’s ability to isolate components that track representational drift (‘i)_(gfc)) B Fig. C brown;
@ reveals how neuronal coding evolves over trials, which can be the result of learniné, attention, or adap-
tation. MILCCI reveals how ensemble compositions across regions (Fig. 4} D; colors on the left mark
brain regions of neurons) capture distinct local structures. For example, Af?) captures many neurons in the
primary visual area (VM, orange arrow in Fig. @D), suggesting it may be involved in visual stimulus pro-
cessing. We can also identify interesting patterns via the ensemble compositions (Fig. @ D), and how they
change between trials (e.g., between two exemplary trials with differing stimulus sides; Fig. dE.1, zoom-in
on changes in Fig. E.2). These reveal patterns in ensemble composition adjustments: the first ensemble
of A® (Fig. .2, left column) adjusts minimally, while the second ensemble exhibits distributed adjust-
ments across areas. In stimulus-adjustinensembles (5-th and 6-th columns), adjustments occur with some

4

localization around VM (e.g., Af;), Fig.[4), suggesting an adaptive VM composition tracking stimulus side.

5 DISCUSSION, LIMITATIONS, AND FUTURE STEPS:

Here, we presented MILCCI, a data-driven method for analyzing multi-trial, multi-label time series. MIL-
CCI (i) identifies interpretable components underlying the data, (ii) captures cross-trial relationships, and (iii)
integrates label information, while accounting for trial-to-trial variability beyond label effects. By allowing
components to adjust their composition with label changes, MILCCI uncovers similarities that could remain
hidden under fixed-component factorizations. Unlike tensor factorization approaches, MILCCI maintains
interpretability while modeling cross-trial variability, integrating labels, and disentangling label-driven from
non-label-driven sources of variation. Another strength of MILCCI, in contrast to existing methods, is its
ability to simultaneously handle multiple label types within a single dataset, including categorical, non-
continuous ordinal, continuous, and trial-varying labels (e.g., as in the IBL experiment).

We validated MILCCI on synthetic data, where it outperformed alternative methods, and demonstrated its
effectiveness in diverse real-world settings: (1) exposing voting patterns aligned with real-world events; (2)
recovering interpretable components in Wikipedia view data and tracking how memberships vary across
languages, platforms, and agents; and (3) revealing neuronal ensembles that adapt their composition across
trials and task variables, including ensembles tuned to decision correctness and prior information.

One potential concern is the scaling ambiguity between components and traces, which MILCCI addresses
by normalizing components after each iteration while allowing traces to flexibly vary across trials to cap-
ture trial-specific amplitudes. Although component dimension per category is a hyperparameter, MILCCI
naturally handles this, as sparsity drives redundant components to zero, which mitigates hyperparameter sen-
sitivity. The current approach assumes linear decomposition within each trial, which ensures interpretability,
with exciting opportunities to extend it to nonlinear relationships. Another exciting direction for future work
is to extend the non-directional components into directional ones that capture interactions between mem-
ber channels, for example, by introducing a dynamics prior during inference (via e.g./Chen et al.| (2024);
Linderman et al.|(2016)).
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Appendix

A RUNNING DETAILS

A.1 INITIALIZATION:

We initialize the components and traces using dictionary learning [Mairal et al.| (2009) with sparsity on the
components, using Sklearn.decomposition (Pedregosa et al., 2011) DictionaryLearning. Within the model,
sparsity is applied through PyLops|Ravasi & Vasconcelos| (2020) SPGL1’s solver Van Den Berg & Friedlan-
der{ (2009)).

A.2 DETAILS ABOUT STATE SIMILARITY GRAPH CALCULATION:

MILCCI allows disentangling of categorical, continuous, and non-continuous ordinal categories. It further
supports allowing the components to adjust across trials with label change in a way that captures the degree
of similarity between the corresponding labels for each category. For example, if we assume neuronal
ensembles gradually present compositional shifts over the course of learning, this requires capturing the
gradual / ordinal order of trials. Another example is when a certain category represents a continuous variable
(e.g., x-position of a stimulus), where again we would like to capture label relationships (i.e., distance
between labels).

Hence, MILCCI augments the model with a set of label-driven graphs that are pre-calculated before the be-
ginning of the iterative optimization process and are reused across iterations for smoother cross-component
regularization that maintains label similarity. For each category (k), we build the graph A® € R#kx#k,
where #k is the number of unique options observed under category (k) (e.g., if category “choice” can be
correct / wrong, then #k=2). This graph captures the degree of similarity between its possible values.

For categorical labels, we use a constant value for the graph (e.g., A0 =1 v, 7).

Qi
. . ® M=k 13 . ,
For ordinal labels: We use a Gaussian kernel /\i, =€ 207 Vi, ', where k; and k;- are the i-th and ¢’-th
option of category (k) (e.g., task difficulty 1 vs. 5). Notably, MILCCI supports integration of diverse graph
calculation distance metrics, so one can easily use a different distance metric (not Gaussian) if they assume
similarities between labels are captured differently.

After the graph calculation, we recommend normalizing the graph by the per-row absolute sum of 1 to ensure
that different labels are regularized to the same degree:

(k)

(k) 1yt .
4 Vi, 1.
R PV PR

An i-th row of zeros in A% means that the i-th option of category (k) is not regularized to be consistent with
the others. This can be used if there is some intention to create completely trial-varying components that
vary flexibly between trials, which is another feature MILCCI offers.

B VERSIONS

We trained the model using Python 3.10.4 (conda-forge) with matplotlib 3.8.2, scikit-learn 1.0.2, seaborn
0.11.2, numpy 1.23.5, pandas 1.5.0, PyLops 1.18.2, and SPGL1 0.0.2.
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Algorithm 1 MILCCI Algorithm

1: Input: Observed trial data {Y ™ }M_  with associate multi-category labels { L™ }M_

2: Pre-calculate: Label-similarity graph A® for each category (k) (App.[A.2).

3: Initialize: Sparse components { A® }yccuegories and traces { @™} > App.|A.1

4: while not converged do

5 for each category (k) do

6: for each label value k; do

7: Compute residuals for trials with label k;

8: Solve for A(kZ) with cross-label consistency and sparsity via LASSO > equation

9: Normalize each component to sum to 1 (A(l;)l — i :((i?z“l ) > to prevent scaling ambiguity
with @

10: for each trial m with label ¢ do ~

11: Build the stacked component matrix A() by selecting a layer from each A®.

12: Update traces ®(™) to minimize data fidelity, smoothness and de-correlation > equation
Qiggagent): @:géagem): @:g:(sagem): ‘I):giagent): q):giplatform): q):gép]atform): q):géplalform):
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Figure 17: Wikipedia Page View Experiment. Traces colored by agent (Spider vs. User) Across All
Ensembles

C ADDITIONAL INFORMATION—SYNTHETIC EXPERIMENT

We generated synthetic datasets with 80 channels, 4 components (2 categories, x 2 components adjusting
per category), S00 time points per trial, and 250 trials. Each trial received one label per axis: category (a)
(difficulty)’s labels were sampled from the set {I, II, III, VI, V} (5 levels) and category (b) (choice) labels
from {I,1I} (2 levels), yielding up to 10 unique label combinations. Component-to-neuron maps were
initialized for the reference trial with values in [0.5,1.0], then updated across label layers according to
a trial-similarity graph calculated based on trial labels and thresholded at the 60th percentile to enforce
sparsity on the component compositions.

Temporal activity for each label pair was drawn from a Gaussian-process prior with an RBF kernel scaled by
a per-sample amplitude: the amplitude was drawn per sample in ~ [0.2, 1.533], and the kernel length scale
was drawn per sample in [0.05,0.2] in normalized time units (0—1), which corresponds roughly to 25-100
time points given 500 samples per trial. A white-noise term of 1 x 10~® was included in the kernel. For
each label we drew one GP sample and then generated multiple similar trial traces by adding multivariate-
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Figure 22: Traces of P, g, across trials, separated by decision correctness. Solid pink: stimulus on. Dashed
pink: stimulus off. The stlmulus appears for a median duration of 1.45 s across trials.
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Figure 23: <I>(1°) presents an increasing temporal drift over trials.
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of labels indicated.
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Abbreviation State \ Abbreviation State

AL ALABAMA AK ALASKA

AZ ARIZONA AR ARKANSAS

CA CALIFORNIA CcO COLORADO

CT CONNECTICUT DE DELAWARE

DC DISTRICT OF COLUMBIA | FL FLORIDA

GA GEORGIA HI HAWAIIL

ID IDAHO IL ILLINOIS

IN INDIANA 1A IOWA

KS KANSAS KY KENTUCKY

LA LOUISTIANA ME MAINE

MD MARYLAND MA MASSACHUSETTS
MI MICHIGAN MN MINNESOTA

MS MISSISSIPPI MO MISSOURI

MT MONTANA NE NEBRASKA

NV NEVADA NH NEW HAMPSHIRE
NJ NEW JERSEY NM NEW MEXICO

NY NEW YORK NC NORTH CAROLINA
ND NORTH DAKOTA OH OHIO

OK OKLAHOMA OR OREGON

PA PENNSYLVANIA RI RHODE ISLAND
SC SOUTH CAROLINA SD SOUTH DAKOTA
TN TENNESSEE TX TEXAS

UT UTAH VT VERMONT

VA VIRGINIA WA WASHINGTON
\YVAY WEST VIRGINIA WI WISCONSIN

WY WYOMING

Table 1: List of US States and Their Abbreviations

normal perturbations with covariance scaled by o2, where 0 = 0.15 (62 = 0.0225), so trials that share a
label exhibit correlated dynamics.

One component was designated as a random (trial-varying) component. Component activations were shifted
to be nonnegative and rescaled so their 98th percentile matched the 98th percentile of the component maps.
The observed data were produced by multiplying each trial’s component-to-neuron map by that trial’s tem-
poral activations, yielding data of shape (neurons x time x trials) = (80 x 500 x 250).

D ADDITIONAL INFORMATION—VOTING EXPERIMENT

D.1 VOTING DATA PRE-PROCESSING

Data were acquired from |Data & Lab| (2017aibic), which included vote information for presidential, senate,
and house elections in 51 states, including Washington, DC. The datasets cover the years 1976 to 2020 for
presidential and senate elections, and 1976 to 2022 for house elections. For our analysis, we used the range
1976 to 2020 to ensure that all office types were included, resulting in 23 time points for house and senate,
and 12 time points for presidential elections. For each year and each state, we took the total number of
votes received by each party category (democrat, libertarian, republican, other) and divided each by the total
number of votes cast in that state for that year’s election. We excluded special elections. We designed the
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Table 2: Parties Detailed vs. Simplified Versions. ‘Other’ includes only parties with at least 10 instances
over all years & states.

Democrat Republican Other Libertarian
Democrat; Democratic- | Republican Prohibition; Inde- | Libertarian
Farmer-Labor; pendent; American
Democratic- Independent; U.S. La-
Nonpartisan ~ League; bor; Socialist Workers;
Democratic-Npl; American; Conserva-
Democrat (Not Identi- tive; Socialist Labor;
fied On Ballot) Independent Amer-

ican; Constitution;

Socialist; Liberty

Union; Statesman;

Citizens; New Al-
liance; Workers World;
Workers League;
Independence; Pop-
ulist; Nominated By
Petition;  Grassroots;
No Party Affiliation;
Green; Natural Law;
Unaffiliated; Other;
Working Families; Al-
liance; Non-Affiliated;
Constitution Party;
American Independent
Party; Communist
Party Use; Peace &
Freedom;  Taxpayers
Party; Reform Party;
U.S. Taxpayers Party;
Socialism And Liber-
ation Party; American
Delta Party; American
Solidarity Party; Party
For Socialism And
Liberation; Becoming
One Nation

model to capture two following categories: 1) party (4 options), and 2) office (3 options). We ran MILCCI
with p® = 4 components for each category, that can structurally adjust per class, resulting in p = 8 total
components. Due to the positive-only nature of the data, we applied a non-negativity constraint on both the
unit-to-component memberships and the temporal traces.

D.2 ADDITIONAL FINDINGS—VOTING DATA

Some more interesting voting patterns, beyond these discussed in the main text, can be found in Figs.
and[8l
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Figure 25: IBL Neuronal Ensembles
Components Identified by Base-
lines.

Neurons

L
4, A

8

In component Affany), Washington DC appears as its own distinct cluster. This likely reflects its highly
unique political profile as the nation’s capital, overwhelmingly Democratic, with very high voter turnout,

which differs significantly from other states. In Ag’fﬁce) (i.e., the 6-th component overall), which unlike
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previous components changes its composition depending on the office, West Virginia (WV) is included for
House and Senate voting but excluded for the Presidency. This component reflects strong Democratic dom-
inance in those legislative elections. The distinction for WV may align with its historical voting pattern of
supporting Democrats more in local and state-level offices (House and Senate), while trending more Repub-
lican in presidential elections, reflecting a split in voter behavior based on the office. When exploring all
traces colored by party (Fig. [I2] top), Democrat vs. Republican is the dominant axis, consistently driving
the most prominent distinctions over time. In some traces (<I>:g<1pany> , P gae)» <I>:g<3pany;), a noticeable diver-

gence emerges around the year 2000, suggesting that the two parties began to separate more sharply around
that period. This trend may correspond to the aftermath of the 2000 presidential election dispute (Bush vs
Gore), which catalyzed a lasting partisan split, possibly further intensified by the ideological polarization
following 9/11. Other traces, such as ® gt tice), and ® gleffice)s show broader fluctuations over time in

opposite directions, which may reflect deeper long standlng historical or structural differences between the
parties. Trace ®. glof fice) Appears to capture short-term variation or noise, including year-to-year peaks in
73

party voting behavior. In contrast, the projections based on the office (Fig.[T2)) exhibit far fewer separations.
The traces overlap substantially and show wide confidence intervals, suggesting that electoral behavior is
less differentiated by office type than by party affiliation.

E ADDITIONAL INFORMATION-WIKIPEDIA EXPERIMENT

E.1 WIKIPEDIA PAGEVIEW DATA PRE-PROCESSING

We extracted daily Wikipedia pageview data from October 9, 2020, to October 29, 2024 (T = 1482 time
points) for 48 diverse pages (“terms”) related to college, computer science, machine learning, and psychol-
ogy majors (|Metal (2022)). Notably, we intentionally chose topics with both corollaries and co-variates.
For each term, we collected data separately for three access platforms: (1) desktop, (2) mobile web, and (3)
mobile app. We also distinguished the agent accessing the data: 1) a user or 2) a spider (for spider data was
extracted only for web and desktop platform due to extreme sparsity of app + spider combination).

We focused on seven languages representing diverse world regions: English (en), Chinese (zh), Spanish
(es), Hindi (hi), Arabic (ar), French (fr), and Hebrew (he). To ensure comparability, data for each language
were range-normalized across all terms and time points using the 99th percentile to reduce outlier influence:
Y..;+ (Y..; —min(Y..;))/perc(Y:.;,99), where Y. ., is the full dataset for language [.

Each term was then normalized across all languages and time points using the same 99th percentile pro-
cedure: Yy .. < (Yj.. — min(Yy,..))/perc(Yy .., 99), where Y% . . denotes the full time-course of term k
across languages. This concludes to overall three categories candidate for compositional adjustments in the
data: (1) agent (user or spider), (2) platform (desktop / mobile web / mobile app), and (3) language (one of
the seven listed).

E.2 CLARIFICATION ON FINDINGS—WIKIPEDIA DATA

Lists of terms of components mentioned in main text (Sec. [):

« A (psychology): Classical conditioning; Bobo doll experiment; Operant conditioning; Self-

concept; Little Albert experiment; Unsupervised learning; Embedding;
A(age"t) (Social Media): The Social Network (movie); Social media; Ivan Pavlov;Mark Zucker-

berg

o APRtorm. (Computer Science): Data mining; Computer science; Supervised learning; Unsuper-
vised learning; Computer scientist; Social media;
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F ADDITIONAL INFORMATION ABOUT NEURONAL ENSEMBLES EXPERIMENT

The IBL dataset is part of the International Brain Laboratory (IBL) effort to map neural activity underlying
decision-making in mice across the whole brain. We accessed the IBL’s data via the Dandi archive, in an
NWB Riibel et al.| (2022); Laboratory et al.| (2025) format.

The randomly selected session was recorded on February 11, 2020 in the Churchland Lab at CSHL (currently
at UCLA). In the IBL task, mice view a grating stimulus on the left or right side of a screen (or no stimulus)
and report its location by turning a wheel. The task includes block-wise priors, where one side is more
likely than the other, requiring mice to combine sensory evidence with prior expectations. Stimulus contrast
varies across trials to manipulate difficulty, enabling precise measurement of perceptual decision-making
and neural correlates during electrophysiology recordings. Electrophysiological recordings were collected
using Neuropixels probes from diverse brain areas. These recordings provide single-spike resolution activity
during a decision-making task and include additional data such as sensory stimuli presented to the mouse,
behavioral responses and response times. The subject (ID: CSHL052) was a female C57BL/6 mouse (Mus
musculus), 6 months old and 22g at the time of recording. The full description of the session and task
protocol is provided in (Angelaki et al., [2025]).

G INFORMATION ABOUT BASELINE CALCULATION AND EXECUTION

We compared MILCCI to matrix (SVD), tensor (PARAFAC, HOSVD), and multi-array (SiBBlInGS (Mudrik
et al., 2024))) decompositions.

G.1 COMPARISONS SVD, TUCKER, PARAFAC

We compared these methods to MILCCI both quantitatively and qualitatively. For the qualitative com-
parison, we provide exemplary figures in the main text and appendix that emphasize MILCCI’s superior
performance. Notably, in all these methods the component matrix is fixed, as defined by the first mode;
therefore, unlike MILCCI, they cannot (1) reveal structural adjustments over trials or disentangle category
effects via the components, and (2) capture free trial-to-trial variability without tensor constraints (except
for SVD). Consequently, their ability to capture such effects is inherently limited, though they represent the
closest methods to MILCCI that we can reasonably compare to (in the sense that they provide comparable
components and traces). Thus, the comparison is also limited in that we cannot show structural variability
that these methods fundamentally do not support. Quantitatively, we calculated information criteria (AIC,
BIC, HQC; lower values indicate better fit) using the degrees of freedom of each method. As seen in the
appendix figures, these methods struggle to capture the data when constrained to the same dimensionality
as MILCCI, which we attribute to (1) the need for small structural adjustments, and (2) their inability to
capture free trial-to-trial variability.

See below running details for these methods:

* SVD: We used NumPy’s ‘linalg.svd’ package, using the same number of components as in MILCCI
for each experiment. The SVD was applied to the data from all trials concatenated horizontally.
For experiments containing missing values (e.g., the voting experiment), NaNs were filled with
zeros. Components were extracted from the left singular vectors (U), and the corresponding traces
were obtained by multiplying the singular values matrix (X) with the right singular vectors (V' ).

¢ PARAFAC (Harshman, [1970): We used the PyLops [Ravasi & Vasconcelos| (2020) PARAFAC
implementation, with the same rank and number of components as MILCCI. For experiments with
trials of varying durations (e.g., the IBL), we used the 90-th percentile trial length to prevent outliers
from dominating, stacking trials along a third dimension and zero-padding shorter trials.
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Components (A) were extracted from the first tensor mode (first factor), and traces were obtained
by multiplying the second mode and the third mode according to the trial and component count.

* Tucker (Tucker, [1966) (HOSVD): Also for Tucker, we used the PyLops |[Ravasi & Vasconcelos

(2020) PARAFAC implementation, with the same dimensions and number of components as MIL-
CCI. For the 3-rd mode, we used the minimum between the number of time points and the number
of trials. Again, for experiments with trials of varying durations (e.g., the IBL), we used the 90-th
percentile trial length to prevent outliers from dominating, stacking trials along a third dimension
and zero-padding shorter trials.
Components (A) were extracted from the first tensor mode (first factor), and traces were obtained
by multiplying the second mode, the core matrix, and the trial and component count. Notably, the
component matrix in these methods is fixed, as defined by the core tensor, and therefore cannot
adjust over time or disentangle label variability via the components.

For some datasets (e.g., Wikipedia), PARAFAC and Tucker (PyLops [Ravasi & Vasconcelos|(2020) imple-
mentation) could not converge at the same MILCCI dimensionality (p = 12), even with SVD initialization,
various normalization schemes, high tolerance (1e-2), £52 regularization, and maximum iterations of 10,000,
due to least-squares optimization instability. We attribute this to: (1) many missing values (replaced with 0),
(2) high-resolution (daily) measurements introducing considerable noise and temporal complexity, and (3)
each trial being observed only once (i.e., a single observation per unique L(")). Hence, for the Wikipedia
comparison, we used only SVD and SiBBIInGS (see below).

G.2 SIBBLINGS

MILCCT’s (our method’s) main advantage over SiBB1InGS is interpretability for multi-way, multi-label data.
Particularly, SiBBIInGS cannot disentangle the effects of co- or separately-varying labels, making it difficult
to understand their individual contributions. SiBBIInGS, by Modeling each unique label tuple as a distinct
label would further increases tensor size and computational complexity. This is especially pronounced in
experiments where some label categories vary across many unique values (e.g., IBL trial number with over
1000 values), or are continuous or non-continuous ordinal. MILCCI can handle all of these without re-
quiring additional dimensions, and can also account for the ordinal nature of each category. In contrast,
SiBBIInGS requires choosing a single sorting across all categories. Since SiBBIInGS applies multiple regu-
larizations across axes, which hinders degrees-of-freedom calculation for information criteria, information-
criteria comparison is intractable. Hence, we focused on qualitative comparisons that emphasize MILCCI’s
interpretability advantages. Notably, for all figures comparing SiBBlInGS and MILCCI (throughout the
appendix), SiBBIInGS components vary uninterpretably across labels, while MILCCI clearly disentangles
these effects. For visualization only, MILCCI was run with repeated columns for the same category under
exemplary random trials. Importantly, all comparisons used identical initialization and parameters for both
methods.

H ETHICS STATEMENT AND LLLM USAGE

Our work does not raise any ethical concerns. All real data used are publicly available. For synthetic
data, we provide the code used for generation. Large language models were employed only at the word or
sentence level during manuscript writing to improve the language, with no influence on the scientific content
or analysis.
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