

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 MULTI-INTEGRATION OF LABELS ACROSS CATEGORIES FOR COMPONENT IDENTIFICATION (MILCCI)

Anonymous authors

Paper under double-blind review

ABSTRACT

Many fields collect large-scale temporal data through repeated measurements ('trials'), where each trial is labeled with a set of metadata variables spanning several categories. For example, a trial in a neuroscience study may be linked to a value from category (a): task difficulty, and category (b): animal choice. A critical challenge in time-series analysis is to understand how these labels are encoded within the multi-trial observations, and disentangle the distinct effect of each label entry across categories. Here, we present MILCCI, a novel data-driven method that i) identifies the interpretable components underlying the data, ii) captures cross-trial variability, and iii) integrates label information to understand each category's representation within the data. MILCCI extends a sparse per-trial decomposition that leverages label similarities within each category to enable subtle, label-driven cross-trial adjustments in component compositions and to distinguish the contribution of each category. MILCCI also learns each component's corresponding temporal trace, which evolves over time within each trial and varies flexibly across trials. We demonstrate MILCCI's performance through both synthetic and real-world examples, including voting patterns, online page view trends, and neuronal recordings.

1 INTRODUCTION

A key approach to understanding high-dimensional, temporally evolving systems (e.g., the brain) is analyzing time-series data from multiple repeated observations (hereafter '*trials*'). Each trial is typically labeled with a set of experimental metadata variables. Often, such metadata spans multiple *categories*; for example, each trial in neuronal recordings can be labeled with an attribute from category (a) task difficulty, and from category (b) animal's choice; each trial in weather measurements can be a time series of temperature over a day, labeled with (a) city, (b) humidity level, and (c) precipitation. We therefore refer to a trial's *label* as the tuple of its category values, e.g., '(easy task, correct choice)' or '(New York, 90% humidity, 1" snow)'. Notably, different trials can have similar or distinct labels. When one *label entry* (e.g., task difficulty) changes between trials (e.g., easy vs. challenging task), other entries (e.g., correct vs. incorrect choice) may remain the same or change as well. Given such multi-trial, multi-label ('*multi-way*') data, interpreting how the observations vary across the label space is complicated by the data's high dimensionality and trial-to-trial variability.

A practical approach is to analyze the data in a lower-dimensional latent space (Ma & Zhu, 2013), where label-related structures become easier to interpret. In this space, the activity can be described by a small set of *components*—units that capture the dominant sources of variability across trials and labels. Existing dimensionality reduction methods for analyzing multi-way data often factorize a single, large tensor into such components (Harshman, 1970), but they typically overlook trial labels and require constraints on the data structure (e.g., equal-length trials). An alternative is to apply factorizations separately to each trial, which can accommodate varying trial structure but sacrifices information about cross-trial relationships.

Hence, there is a need for new flexible yet interpretable methods to (1) discover the underlying structure within high-dimensional multi-way data, (2) reveal how it captures label information, and (3) disentangle

047 the effect of each category. This, in turn, demands leveraging the trial-to-trial relationships captured by the
 048 labels and understanding how these relationships govern the observations.
 049

050 In this paper, we present MILCCI, a novel method to uncover the underlying structure of multi-way time-
 051 series data and disentangle how multi-category labels are embedded within it, both structurally and tempo-
 052 rally. Our contributions include:

- 053 • We introduce MILCCI, a flexible model that discovers interpretable sparse components underlying multi-
 054 way data and reveals how they capture diverse label categories.
- 055 • We identify components that capture label-driven variability across trials and track how their activations
 056 evolve within individual trials, thereby encompassing the full spectrum of trial-by-trial variability.
- 057 • We validate MILCCI on synthetic data, showing it better recovers true components than other methods.
- 058 • We demonstrate MILCCI’s ability to uncover interpretable, meaningful patterns in real data, including the
 059 discovery of voting trends across US states that match actual events, patterns of online activity reflecting
 060 language and device, and neural ensembles supporting decision-making in multi-regional recordings over
 a thousand trials.

062 2 RELATED WORK

063 The naive approach for analyzing multi-way data is to apply dimensionality reduction individually per trial
 064 or jointly across all trials (by stacking multiple trials into a single matrix). This can be done, e.g., via linear
 065 matrix decomposition such as PCA, ICA (Hyvärinen et al., 2001), NMF (Lee & Seung, 1999)), sparse
 066 factorization for improved interpretability (e.g., SPCA (Zou et al., 2006)), or via non-linear embeddings
 067 (e.g., t-SNE (Maaten & Hinton, 2008)). However, per-trial analysis overlooks cross-trial relationships, while
 068 analyzing all trials with a single mapping ignores trial-to-trial variability in internal structure.
 069

070 Demixed PCA (dPCA) (Kobak et al., 2016) isolates task-related neural variance into low-dimensional com-
 071 ponents, however it does not address missing data, different trial durations, and varying trial sampling rates,
 072 which hinders alignment across heterogeneous trials. Mudrik et al. (2024) recently introduced a unified
 073 cross-trial model that identifies building blocks encoding label information in multi-array data; however,
 074 their method handles only a single dimension of label change and thus cannot disentangle effects of mul-
 075 tiple categories that change jointly or separately across trials. TDR and its extensions (Mante et al., 2013;
 076 Aoi & Pillow, 2018) capture multi-category labels via per-trial scalar reweighting of fixed matrices, but as-
 077 sume cross-trial variance arises only from linear reweighting of fixed temporal signals and cannot capture
 078 variability across trials sharing the same label.

079 Tensor Factorization (TF), e.g., PARAFAC (Harshman, 1970) and HOSVD (Lathauwer et al., 2000), goes
 080 beyond individual trials by treating trials as an extra data dimension in a multi-dimensional array. How-
 081 ever, existing TF methods, including those incorporating Gaussian processes (Tillinghast et al., 2020; Xu
 082 et al., 2011; Zhe et al., 2016) or dynamic information (Wang & Zhe, 2022), are not designed to distinguish
 083 label-driven variability from other sources of variability and often produce components that are difficult to
 084 interpret. [SliceTCA \(Pellegrino et al., 2024\)](#) extends tensor factorization by simultaneously demixing neural,
 085 trial, and temporal covariability classes within the same dataset, allowing components to capture structure
 086 across different types of neural variability. However, sliceTCA does not incorporate explicit label informa-
 087 tion, is limited to tensor structure of the data, and does not inherently promote sparse components that *subtly*
 088 adjust compositions with corresponding freely varying traces (see Sec. H.2). Chen et al. (2015) enable
 089 flexibility in cross-trial representations based on meta-data information, but their assumption of component
 090 orthogonality prevents the model from capturing correlated or partially overlapping patterns, which limits
 the representation’s expressive power.

091 Unlike the methods above, MILCCI addresses (1) identifying the core structure of multi-trial, multi-label
 092 data that vary over sessions, (2) capturing trial-to-trial variability, including within repeated measures of the
 093 same label, (3) disentangling how each category is encoded within the temporal observations.

Figure 1: **Illustration.** **I:** Time-series (e.g., brain recordings) across M trials of varying duration ($\{T^{(m)}\}_{m=1}^M$). Each trial m is associated with a label $L^{(m)}$, which is a set of experimental variables spanning different categories (e.g., $L^{(m)} = (\text{easy task, correct choice})$). **II:** Each category (k)'s components are represented by a tensor $\mathbf{A}^{(k)}$, whose i -th variant ($\mathbf{A}_{::i}^{(k)}$) refers to the i -th option of that category (e.g., if the 2-nd option of category (b): correct choice, then $\mathbf{A}_{::2}^{(b)}$ are correct-choice components). **III:** Each trial m is modeled via a sparse factorization, with its sparse components defined by selecting a variant (layer) from each category's tensor, based on that trial's label (green borders, **II**), and then concatenating all selected variants horizontally (green borders, **III**). This forms the loading matrix of that trial. Importantly: 1) trials with identical labels use identical loadings, 2) components can *subtly* adjust their composition under shifts in the respective category values to maintain consistency (e.g., same component under task difficulty 1 vs. 2: $\|\mathbf{A}_{::1}^{(a)} - \mathbf{A}_{::2}^{(a)}\|_F < \epsilon$), and 3) component temporal traces ($\{\Phi^{(m)}\}_{m=1}^M$) can vary flexibly across trials.

3 OUR COMPONENT-IDENTIFICATION APPROACH

PROBLEM:

Let $\mathbf{Y} = \{\mathbf{Y}^{(m)}\}_{m=1}^M$ be a set of M time-series (trials), where each $\mathbf{Y}^{(m)} \in \mathbb{R}^{N \times T^{(m)}}$ represents measurements from N channels across $T^{(m)}$ time points (Fig. 1, I). We assume that the identities of the N channels are fixed across trials, while trial durations, $T^{(m)}$, can vary. Each trial $\mathbf{Y}^{(m)}$ is observed under trial-related metadata variables belonging to categories $C := \{a, b, \dots, f\}$ (e.g., (a) task difficulty, (b) animal's choice, etc.), such that $|C|$ is the number of categories. We define the *label* of trial m as the tuple $L^{(m)}$ containing its metadata variables (e.g., $L^{(m)} = (\text{task difficulty: easy, choice: correct})$), such that each *label entry* $L_i^{(m)}$ is the value of the i -th category in that trial. Notably, different trials may exhibit identical labels, partially overlapping labels, or entirely distinct labels. We aim to understand how these labels are encoded within the multi-way observations via their underlying components and their traces.

A parsimonious modeling strategy is to model observations in each trial m ($\mathbf{Y}^{(m)}$) as being linearly generated by a small set of P basis components that present temporally-evolving activations $\Phi^{(m)} \in \mathbb{R}^{P \times T^{(m)}}$, such that $\mathbf{Y}^{(m)} = \mathbf{A}\Phi^{(m)} + \epsilon$, with ϵ representing e.g., *i.i.d.* Gaussian noise. Such an approach, common in traditional matrix- or tensor-factorization, however, assumes that component compositions (\mathbf{A}) either vary freely across trials (if applied separately per trial) or remain fixed across all trials (if applied on a stacked version of the data). Consequently, they cannot capture cases where components *slightly* adjust their composition under label changes. For example, consider a brain network (i.e., a neuronal 'component') that

141 recruits a few more neurons during a hard task absent from the network during an easy task. Methods based
 142 on linear scaling of fixed components, if applied independently to trials from each task difficulty, would fail
 143 to recognize the network as identical across these conditions. Alternatively, if applied to all trials stacked,
 144 they would force identical component structures for both easy and difficult tasks, which would misrepresent
 145 the new recruited neurons (e.g., by averaging their membership across the two task difficulties). Moreover,
 146 in such a case, as $\mathbf{Y} \approx \mathbf{A}\Phi$, inaccurate estimates of \mathbf{A} would distort the estimation of Φ , which will com-
 147 pensate to maintain good data representations. Hence, there is a need for methods that can identify how
 148 labels are encoded, both structurally and temporally, within multi-way multi-label data.

149
 150
OUR MODEL:

151 MILCCI assumes that each trial’s ob-
 152 servations arise from the decom-
 153 position of $|C| \in \mathbb{Z}_{>0}$ matrices of
 154 components, $\{\mathbf{A}^{(k)}\}_{(k) \in C}$, where each
 155 matrix $\mathbf{A}^{(k)} \in \mathbb{R}^{N \times p^{(k)}}$ represents
 156 the components for category $(k) \in C$.
 157 Each entry $\mathbf{A}_{nj}^{(k)}$ captures channel n ’s
 158 membership degree in the j -th com-
 159 ponent (e.g., the extent to which neu-
 160 ron n participates in a neuronal en-
 161 semble), where $\mathbf{A}_{nj}^{(k)} = 0$ indicates non-membership (Fig 1, II). We assume that component memberships
 162 are sparse, i.e., each channel n belongs to *only a few* components. Hence, we place a Laplace prior on each
 163 entry: $\mathbf{A}_{nj}^{(k)} \sim \text{Laplace}(0, \frac{1}{\gamma_1})$, where γ_1 is a sparsity-scaling parameter (see Sec. C for details).

164
 165 Each of the P components also exhibits a time-varying trace within each trial, collectively represented by
 166 the rows of the per-trial traces matrix $\Phi^{(m)} \in \mathbb{R}^{P \times T} \sim \mathcal{MN}_{P \times T}(\mathbf{0}, \sigma^2 \mathbf{I}_P, \mathbf{I}_T)$, where σ is a scalar that
 167 controls the prior’s variance and \mathbf{I}_P and \mathbf{I}_T are identity matrices of dimensions P and T . In each trial
 168 $m = 1, \dots, M$ with associated label $L^{(m)}$, we aim to model the observations $\mathbf{Y}^{(m)}$ as a decomposition of
 169 the label-driven components weighted by their corresponding traces: $\mathbf{Y}^{(m)} \approx \sum_{(k) \in C} \mathbf{A}^{(k)} \Phi_{\mathcal{G}^{(k)}}^{(m)}$, where \mathcal{G}_k
 170 are the row indices of the traces of category (k) ’s components.

171
 172 Here, however, we depart from the fixed-component assumption underlying the decomposition above, and
 173 instead assume that components can exhibit compositional variants by subtly adjusting their memberships
 174 under label changes. Formally, we posit that each $\mathbf{A}^{(k)}$ comprises $|k|$ variants (Fig. 1, II), where $|k|$ equals
 175 the number of unique label options for that category (e.g., $\mathbf{A}^{(\text{choice})}$ has $|k| = 2$ variants for binary choice
 176 tasks). Hence, we generalize the above decomposition by extending each component matrix to a 3D tensor
 177 $\mathbf{A}^{(k)} \in \mathbb{R}^{N \times p^{(k)} \times |k|}$, such that $\mathbf{A}_{::i}^{(k)}$ is the i -th variant of $\mathbf{A}^{(k)}$. Importantly, different tensors in $\{\mathbf{A}^{(k)}\}_{k \in C}$
 178 can be associated with distinct numbers of variants (and thus have varying 3rd dimensions), depending on
 179 how many unique values their corresponding category contains (Fig. 1, II: κ options for task difficulty vs. 2
 180 options for choice).

181
 182 While the variants of each component need not be structurally identical, our model assumes they remain
 183 close to each other in a way that reflects the similarity between their label values (for distinct options $k_i \neq k_{i'}$
 184 within category k , $\|\mathbf{A}_{::i}^{(k)} - \mathbf{A}_{::i'}^{(k)}\|_F^2 < \delta(k_i, k_{i'})$ for small, category-dependent $\delta(k_i, k_{i'}) \in \mathbb{R}$) to preserve
 185 component identity. Importantly, as the number of components P is limited across trials, the $\{\mathbf{A}^{(k)}\}$ tensors
 186 must learn meaningful synergies between different label combinations rather than provide simple one-to-one
 187 per-trial mappings. This constraint promotes alignment of components across trials and enables revealing
 cross-label shared underlying patterns that would otherwise remain obscured.

188 The decomposition model is thereby extended to the following label-specific formulation for each trial m :
 189
 190
 191

$$\mathbf{Y}^{(m)} = \sum_{(k) \in C} \mathbf{A}_{::L_k^{(m)}}^{(k)} \Phi_{G^{(k)}}^{(m)} + \epsilon, \quad \epsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \quad (1)$$

192 MODEL FITTING PROCEDURE:

193 Learning the component compositions and their traces directly from $\{\mathbf{Y}^{(m)}\}$ is hindered by the mixing of
 194 all labels' effects across categories. We address this through a three-stage procedure:

- 195 • *Stage 1: Pre-computing label similarity graphs.* To accommodate both categorical and ordinal labels,
 196 MILCCI includes a pre-computing step that calculates a label similarity graph $\lambda^{(k)} \in \mathbb{R}^{[k] \times [k]}$ for each
 197 category k (see graph calculation details in App. A.2). These graphs can be integrated into *Stage 3* to
 198 ensure that compositional adjustments reflect label-to-label distances for ordinal labels.
- 199 • *Stage 2: Initialization.* We initialize the components and traces following Appendix A.1.
- 200 • *Stage 3: Iterative optimization.* Updating $\{\mathbf{A}^{(k)}\}_{k \in C}, \{\Phi^{(m)}\}_{m=1}^M$ until convergence as detailed below.

202 **Inferring $\{\mathbf{A}^{(k)}\}_{k \in C}$:** For each unique category (k) 's option k_i (e.g., each task difficulty level), we infer the
 203 variant $\mathbf{A}_{::i}^{(k)}$ using all trials observed under k_i ($\tilde{M} = \{m \in \{1, \dots, M\} \mid L_k^{(m)} = k_i\}$), regardless of those
 204 trials' values in other categories (e.g., all trials where difficulty: easy, regardless of choice).

205 Since each trial m is modeled via a decomposition of components from multiple categories (Eq. 1), to learn
 206 this variant's ($\mathbf{A}_{::i}^{(k)}$) structure, we need to separate its per-trial effect from those of the other categories'
 207 components. Hence, for each $m \in \tilde{M}$, we first calculate the residual matrix $\tilde{\mathbf{Y}}^{(m,k)}$, which represents the
 208 difference between $\mathbf{Y}^{(m)}$ and its partial reconstruction based on all components excluding $\mathbf{A}_{::i}^{(k)}$, specifically:

210 $\tilde{\mathbf{Y}}^{(m,k)} := \mathbf{Y}^{(m)} - \sum_{k' \neq k} \mathbf{A}_{::L_k^{(m)}}^{(k')} \Phi_{G^{(k')}}^{(m)}$. We then infer $\mathbf{A}_{::i}^{(k)}$ via LASSO (Tibshirani, 1996):

$$\mathbf{A}_{::i}^{(k)} = \arg \min_{\mathbf{A}_{::i}^{(k)} \geq 0} \|\tilde{\mathbf{Y}}^{(m,k)} - \mathbf{A}_{::i}^{(k)} \Phi_{G^{(k)}}^{(m)}\|_F^2 + \gamma_1 \|\mathbf{A}_{::i}^{(k)}\|_{1,1} + \gamma_2 \sum_{i' \neq i} \lambda_{i',i}^{(k)} \|\mathbf{A}_{::i'}^{(k)} - \mathbf{A}_{::i}^{(k)}\|_F^2, \quad (2)$$

211 where $\mathbf{A}_{::i}^{(k)} \geq 0$ applies an optional non-negativity constraint on the components, $\lambda_{i',i}^{(k)}$ promotes similarity
 212 among same-category (k) variants (App. A.2), and γ_2, γ_1 are hyperparameters for cross-label smoothness
 213 and sparsity. Collectively, Equation 2 balances data fidelity (1st term), consistency between corresponding
 214 components proportional to their label similarity by $\lambda^{(k)}$ (2nd), and component sparsity (3rd). Each
 215 component is then normalized to a fixed sum to avoid scaling ambiguity with $\Phi^{(m)}$.

216 **Updating $\{\Phi^{(m)}\}_{m=1}^M$:** Since traces vary independently of labels across trials (i.e., unsupervised), they
 217 can be learned per trial m using the label-driven loading matrix of realized components in that trial. This
 218 loading matrix $\tilde{\mathbf{A}}^{(m)} := [\mathbf{A}_{::L_1^{(m)}}^{(a)}, \mathbf{A}_{::L_2^{(m)}}^{(b)}, \dots] \in \mathbb{R}^{N \times P}$ is constructed by horizontal concatenation of the
 219 appropriate variants from all categories as defined by the trial's label $L^{(m)}$ (Fig. 1, III). For each trial
 220 $m = 1 \dots M$, $\Phi^{(m)}$ is then updated by:

$$\hat{\Phi}^{(m)} = \arg \min_{\Phi^{(m)}} \underbrace{\|\mathbf{Y}^{(m)} - \tilde{\mathbf{A}}^{(L^{(m)})} \Phi^{(m)}\|_F^2}_{\text{data fidelity}} + \gamma_3 \underbrace{\sum_{t=1}^{T^{(m)}} \|\Phi_{:,t}^{(m)} - \Phi_{:,t-1}^{(m)}\|_2^2}_{\text{temporal smoothness}} + \gamma_4 \underbrace{\|(\mathbf{C} \odot (\mathbf{1} - \mathbf{I}_P)) \odot \mathbf{D}\|_{1,1}}_{\text{within-trial trace decorrelation}}, \quad (3)$$

221 where γ_3, γ_4 are hyperparameters, \odot is element-wise multiplication, $\mathbf{C} := \text{Gram}(\Phi^{(m)})$, and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is
 222 for normalization ($D_{j,j'} := \|\Phi_{:,j}^{(m)}\|_2^{-1} \|\Phi_{:,j'}^{(m)}\|_2^{-1}$). Eq. 3 overall promotes data fidelity (1st term), smoothness
 223 (2nd), and trace decorrelations (3rd). See algorithm, notations, and illustration in Alg.1, Tab.1, and Fig. 1.

224 4 EXPERIMENTS

225 We validate MILCCI on synthetic data and demonstrate its components on four real-world datasets.

Figure 2: **MILCCI Recovers True Representations in Synthetic Data.** **A&B:** Generated synthetic data (full data in Fig. 6). Ground-truth components (examples in panel A) vary slightly across labels but remain fixed across same-label trials (rows). Ground-truth traces vary across trials (B, colored by difficulty). **C&D:** Identified vs. ground-truth components (top) and time-traces (bottom) for random trials. **E:** Histogram of correlations between identified components and traces vs. their true counterparts. **F&G:** Comparison of MILCCI to other methods (limited to the same 4-component dimension) based on traces (random trial, F) and reconstruction performance (G, baselines details in Sec. H).

MILCCI Recovers True Components from Synthetic Data: We generated synthetic data arising from $P = 4$ sparse components with time-varying traces ($T = 500$ time points; $M = 250$ trials). We defined two categories: (a) ‘task difficulty’ (5 options), and (b) ‘choice’ (2 options), such that $p^{(a)} = p^{(b)} = 2$ ensembles adjust with changes in (a) and (b) (Fig. 6B). Each trace was generated as a Gaussian process with parameters varying across components and trials: some reflect task difficulty, some choice, and some vary each trial (Fig. 2, B, Fig. 6, A, App. D). We ran MILCCI on this data, comparing to (1) Tucker (Tucker, 1966), (2) PARAFAC (Harshman, 1970), (3) non-negative PARAFAC, (4) SVD, (5) SiBBInGS (Mudrik et al., 2024), and (6) sliceTCA (Pellegrino et al., 2024); all using the same $P = 4$ components (Fig. 2, F,G, Sec.H). Since TF is invariant to component permutation, we used linear sum assignment to align the components of each method with the ground truth.

MILCCI recovered the true components (Fig. 2, C) and traces (Fig. 2, D), with high correlations to the ground truth for both (Fig. 2, E). Compared to other methods, the representation identified by MILCCI was most similar to the ground truth (Fig. 2, F,G, green). SiBBInGS also performs well (Fig. 2F) but produces blurred traces compared to the ground truth. Correlation of the reconstructed components with the ground truth (Fig. 2G) is higher for MILCCI than the baselines, while SiBBInGS achieves a similar correlation, MILCCI provides greater interpretability by distinguishing the contribution of each category.

MILCCI Reveals State-Level Voting Patterns by Party and Office: We next tested MILCCI on voting data consist of 50 US states \times 23 years (sampling every 2 or 4 years) \times party (e.g., Democrat, Republican, Libertarian; see Tab. 3) \times office (Presidency, Senate, House) that we extracted from (Data & Lab, 2017a;b;c) and normalized for each state (App. E). Some states lack data for certain years or office due to differing election schedules (Fig. 7).

We applied MILCCI using $P = 8$ components, with categories (a) party, and (b) office ($p^{(k)} = 4$ components each). MILCCI discovers components capturing state-specific voting patterns that vary by office, party, and time. For example, component $A_1^{(\text{party})}$ (Fig. 3, B.1) highlights Montana (MT) and Pennsylvania (PA) having increased membership in the ‘Other’ category, primarily driven by the Independent Party (MT, Fig. 15, right) and the Constitution Party (PA, Fig. 15, left). This aligns with MT’s historical emphasis on individualism (Kitayama et al., 2010) and PA hosting the Constitution Party headquarters. The same component identifies Oregon’s increased Libertarian membership, matching the 2001 law that eased ballot

Figure 3: **Voting Results:** Identified example components (A) and traces (B, Mean and 80% confidence interval). See full in Fig. 7.

access for minor parties (Oregon Elections Division, n.d.) and reflecting that the Libertarian Party of Oregon was among the earliest state branches. Notably, its trace ($\Phi_{:G_1^{(party)}}$, Fig. 3, B.1, top-left) shows overlapping Democrat–Republican activations diverging ~ 2004 , with Democrat activity rising and Republican activity decreasing, reflecting long-term partisan realignment driven by national political shifts (e.g., Iraq War 2003).

In component $A_3^{(party)}$ (Fig. 3, B.1, right), MILCCI groups AK, OK, AL, AZ, MS, MT together. This grouping matches the legislative similarities between these states, e.g., strict voter ID laws (National Conference of State Legislatures, 2025), demonstrating MILCCI’s effectiveness in recovering underlying trends directly from observations. Temporally, its trace $\Phi_{:G_3^{(party)}}$ (Fig. 3, B, bottom-left) shows opposing trends between Democrat and Republican activations, with Republican activation rising, and Libertarian activity emerging around 2016. This trend reflects a rise in Republican votes, a decline in Democratic votes, and a possible shift of some Democratic support toward the Libertarian party in these states. These and other patterns identified by MILCCI (App. E.2) demonstrate its ability to uncover state–party–office–dependent patterns. Notably, components from other TF methods (Fig. 12,9) are dense (PARAFAC), include negative values (SVD, PARAFAC, Tucker), or, in SIBBIInGS, fail to disentangle party from office, which hinder interpretability (Fig. 11). Moreover, due to their restrictive tensor structure, PARAFAC and Tucker do not capture compositional adjustments and cannot flexibly vary their traces to capture trial-to-trial temporal variability.

MILCCI Finds Wikipedia Page Clusters Across Devices and Languages: Next, we extracted Wikipedia Pageview counts (Meta, 2022) (Oct. 20’–24’, $T = 1482$, daily) across three categories: (a) agent: user/spider (i.e., web crawler), (b) platform: desktop/web/app, and (c) language: en/ar/es/fr/he/hi/zh. Each trial records the number of Pageviews under a label (e.g., $Y^{(m)}$): Pageviews over time in English, via desktop, by a human); data pre-processing in App. F.1. **We ran MILCCI on the data with $p_j = 4$ components per category**, and identified components that cluster related Wiki-pages together and vary across categories (Fig. 4, A), with some pages (e.g., unsupervised learning) appearing in more than one component, emphasizing MILCCI’s ability to capture multi-meaning terms.

Particularly, we identified, e.g., $A_1^{(\text{agent})}$ grouping Learning Theory (in Psychology) pages (Fig. 4, A, red arrows, list in App. F.2); $A_2^{(\text{agent})}$ grouping social-media pages (purple arrows); and component $A_4^{(\text{platform})}$ grouping computer science basics (blue arrows). Interesting patterns emerge when exploring how components composition adjust to e.g., user↔spider and desktop↔web↔app.

For $A_1^{(\text{agent})}$ (Learning theory in Psychology), MILCCI finds small differences across agents (spider vs. user, Fig. 4, A, left). For instance, the Bobo Doll Experiment’s Wiki-page (a psychological experiment on social learning theory) appears under ‘spider’ but not ‘user’. This matches it being less familiar to the average person than other psychology terms in the cluster, while spiders are linked to it through the actual Wikipedia

Figure 4: Identified Wiki page-view example components (A) and traces averaged by different categories (B).

links connecting this page to other related terms. Accordingly, other Wiki-pages, like classical and operant conditioning, which are foundations in psychology, show higher membership magnitudes in user. ‘Unsupervised learning’ and ‘embedding’ also show small membership in this component, higher in ‘user’ than ‘spider’. Interestingly, these pages refer to CS terms (not psychology), but since they also carry meaning in psychological learning, the higher ‘user’ membership compared to ‘spider’ matches human behavior: users enter the page but leave upon realizing the term refers to a different field, whereas spiders follow predictable navigation. These findings highlight MILCCI’s ability to reveal distinct human vs. spider behaviors within the same component, and also underscore the importance of allowing compositional adjustments to capture nuanced trends, unlike other methods (Fig. 22). This component’s trace ($\Phi_{\mathcal{G}_1^{(\text{agent})}}$, Fig. 4, B top-left) captures its fluctuations and higher activation in English compared to other languages. This aligns with professional terms being more elaborate in English, often using jargon not fully defined/used in other languages, and with non-English native speakers possibly preferring to read professional material in English (Miquel-Ribé & Laniado, 2018).

The social-media component $A_2^{(\text{agent})}$ shows small structural adjustments user↔spider: ‘Mark Zuckerberg’ is higher in spider, while ‘social media’ is higher in user, possibly reflecting reduced human interest in figures versus common terms like social media. Its trace ($\Phi_{\mathcal{G}_2^{(\text{agent})}}$) rises until a peak in Mar. 2024 in both English and non-English (Fig. 4 B, bottom-left), matching the general increase in social media and possibly related to, e.g., Florida’s Social Media Ban in Mar. 2024, which was widely noted and is mentioned on the corresponding ‘social media’ Wiki-page captured by this component.

$A_4^{(\text{platform})}$ (computer science basic terms) captures membership adjustments to platform, with, e.g., computer scientist (a short Wikipedia page without math/graphs) showing higher membership under app/web compared to under desktop. This contrasts with, e.g., unsupervised learning, whose page is more complex (includes math and graphs) and shows lower membership in the app compared to the other platforms. This may match users’ preference to read ‘easy’ terms on the app and more complex terms on desktop, and shows MILCCI’s ability to reveal interpretable processing differences across platforms. This component’s temporal trace ($\Phi_{\mathcal{G}_4^{(\text{platform})}}$) shows higher activity in English (Fig. 17), with access dominated by desktop and mobile web (Fig. 4, B, bottom-right). The temporal trace is mostly driven by users rather than spiders (Fig. 4, B, top-right); the user trace decreases over time, aligning with these terms being basic (‘old’) in CS (compared to newer trends, like LLMs). This highlights MILCCI’s power in discovering platform-specific engagements and behavioral fingerprints. Some more interesting patterns include, e.g., $A_2^{(\text{platform})}$ that captures terms re-

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
lated to Cambridge Analytica; its trace peaks around 2020, mainly in English, and decreases since, aligning with the timeline of this case. See Figs. 17, 20, 19, 21, 22 for comparisons and full traces.

Figure 5: **MILCCI identifies meaningful neuronal ensembles in real-world brain data.** **A:** Experimental setting (from Angelaki et al. (2025)). **B:** Traces (all 1011 trials) sorted horizontally by trial correctness (left panel) and $p(\text{left})$ (right panel). **C:** Average within-trial values of exemplary traces reveal varying degrees of temporal drifts over trials. **D:** Ensembles identified (example trial). **E:** Differences in ensemble composition across trials. **F:** Trial-adjusted ensemble compositions over first 250 trials.

MILCCI Finds Neural Ensembles underlying Multi-Region Brain Data: Finally, we apply MILCCI to neuronal activity patterns from multi-regional, single-cell-resolution recordings of mice in a decision-making task (Laboratory et al. (2025); Angelaki et al. (2025), App. G). In this experiment mice reported the location of a visual grating with varying contrast by turning a wheel left or right (Fig. 5, A). We used data from a random session, extracted the available spike time data, and estimated firing rates by applying a Gaussian convolution. We removed inactive neurons, and split trials into trial start and end, yielding $N = 270$ neurons over 137 time points across $M = 1011$ trials (example processed trials in Fig. 30). We defined $p^{(k)} = 2$ components ('neuronal ensembles') per category: (a) trial number, (b) prior side, (c) stimulus side, and (d) fixed components that are fixed across trials. This setup (1) enables distinguishing representational drift (Rule et al., 2019; Driscoll et al., 2022) potentially related to learning or attention, from task variables, and (2) demonstrates MILCCI's ability to simultaneously support both non-adjusting and adjusting components, across both categorical and ordinal categories.

We found neuronal ensembles selective for diverse task variables (Fig. 5). For example, $\Phi_{:G_1^{(a)}}^{(m)}$ is tuned to choice correctness, with activity surging during stimulus presentation (Fig. 5, B left) under *correct* choice only. Interestingly, MILCCI also found an ensemble sensitive to *incorrect* decisions, activated just after stimulus presentation ($\Phi_{:G_2^{(b)}}$, Fig. 31). Notably, these components can provide insight as to how neuronal ensembles integrate stimulus information to support correct decision-making, and to relate these traces to the specific neurons involved (Fig. 33). In another example, $\Phi_{:G_1^{(b)}}$ is mostly active during trials with a random-prior (i.e., $p(\text{left}) = 0.5$), throughout before, during, and after the stimulus, and is largely inactive in trials where the prior favors one side (Fig. 5, B right). This highlights MILCCI's efficiency in suggesting involvement of priors in decision-making, and its capability exposing similarities of similar-condition traces.

Moreover, MILCCI's ability to isolate components with characteristics that track temporal drifts ($\Phi_{:G_1^{(c)}}$, Fig. 5, C brown; 32) reveals how neuronal coding evolves over trials, which can be the result of learning, attention, or adaptation. MILCCI reveals how ensemble compositions across regions (Fig. 5, D; colors on

423 the left mark brain regions of neurons) capture distinct local structures. For example, $A_{:,2}^{(c)}$ captures many
 424 neurons in the Ventral Medial nucleus of the thalamus (VM, orange arrow in Fig. 5D), suggesting it may
 425 be involved in arousal regulation and motor coordination. We can also identify interesting patterns via the
 426 ensemble compositions (Fig. 5, D), and how they change between trials (e.g., between two example trials
 427 with differing stimulus sides; Fig. 5, E.1, zoom-in on changes in Fig. 5, E.2). These reveal patterns in
 428 ensemble composition adjustments: the first ensemble of $A^{(a)}$ (Fig. 5, E.2, left column) adjusts minimally,
 429 while the second ensemble exhibits distributed adjustments across areas. In stimulus-adjusting ensembles
 430 (5-th and 6-th columns), adjustments occur with localization around VM (e.g., $A_{:,2}^{(c)}$, Fig. 5), suggesting an
 431 adaptive VM composition.

432 5 DISCUSSION, LIMITATIONS, AND FUTURE STEPS:

433 We presented MILCCI, a data-driven method for analyzing multi-trial, multi-label time series. MILCCI
 434 identifies interpretable components underlying the data, captures cross-trial relationships, and integrates la-
 435 bel information, while accounting for trial-to-trial variability beyond label effects. MILCCI allows compo-
 436 nents to adjust their composition with label changes, which uncovers similarities that could remain hidden
 437 under fixed-component factorizations. Unlike other approaches, MILCCI maintains interpretability while
 438 modeling cross-trial variability, integrating labels, and disentangling label-driven from non-label-driven
 439 sources of variation. Another strength of MILCCI is its ability to simultaneously handle multiple label
 440 types within a single dataset, including categorical, non-continuous ordinal, continuous, and trial-varying
 441 labels (e.g., as in the IBL experiment). We validated MILCCI on synthetic data, where it outperformed
 442 alternatives, and demonstrated its effectiveness on real-world data: (1) exposing voting patterns aligned
 443 with real events; (2) recovering interpretable Wikipedia view components with memberships varying across
 444 languages, platforms, and agents; and (3) revealing neuronal ensembles adapting across trials and task vari-
 445 ables. **Notably, MILCCI’s architecture (low-rank, sparse components) is robust to noise by constraining the**
 446 **model to learn patterns that are reused and generalize across trials under varying label combinations.** **Another**
 447 **MILCCI advantage is its applicability to diverse tensor decompositions beyond temporal data, though we**
 448 **focused on time series here for clarity.**

449 One potential concern is the scaling ambiguity between components and traces, which MILCCI addresses
 450 by normalizing components after each iteration while allowing traces to flexibly vary across trials to cap-
 451 ture trial-specific amplitudes. Although component dimension per category is a hyperparameter, MILCCI
 452 naturally handles this, as sparsity drives redundant components to zero, which mitigates hyperparameter
 453 sensitivity. **This first MILCCI version assumes a linear decomposition within each trial for interpretability**
 454 **and consistency with other multi-way decompositions.** Capturing nonlinear structures beyond preprocessing
 455 transformations (e.g., tanh applied pre-fitting, Appendix J.1) is an exciting future direction. This could be
 456 achieved through a kernelized version of MILCCI that operates in implicit feature spaces, or by directly
 457 modeling nonlinear relationships using gradient-based optimization methods. For large datasets, MILCCI,
 458 similarly to any iterative optimization method, may take longer, which can be addressed via parallel opti-
 459 mization or batch processing. MILCCI’s modular design supports substitution of our current MSE metric
 460 (reflecting normal distribution assumptions) with alternative distributions or cost metrics, broadening its ap-
 461 plicability in future extensions. Another exciting direction for future work is to extend the non-directional
 462 components into directional ones that capture interactions between member channels, for example, by intro-
 463 ducing a dynamics prior during inference (via e.g., Chen et al. (2024); Linderman et al. (2016); Mudrik et al.
 464 (2025)).

470 REFERENCES
471

472 Dora Angelaki, Brandon Benson, Julius Benson, Daniel Birman, Niccolò Bonacchi, Kcénia Bougrova, Se-
473 bastian A Bruijns, Matteo Carandini, Joana A Catarino, et al. A brain-wide map of neural activity during
474 complex behaviour. *Nature*, 645(8079):177–191, 2025.

475 Mikio Aoi and Jonathan W Pillow. Model-based targeted dimensionality reduction for neuronal population
476 data. *Advances in Neural Information Processing Systems*, 31, 2018.

477

478 Po-Hsuan (Cameron) Chen, Janice Chen, Yaara Yeshurun, Uri Hasson, James Haxby, and Peter J Ramadge.
479 A reduced-dimension fmri shared response model. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
480 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates,
481 Inc., 2015.

482 Yenho Chen, Noga Mudrik, Kyle A Johnsen, Sankaraleengam Alagapan, Adam S Charles, and Christopher
483 Rozell. Probabilistic decomposed linear dynamical systems for robust discovery of latent neural dynamics.
484 *Advances in Neural Information Processing Systems*, 37:104443–104470, 2024.

485

486 MIT Election Data and Science Lab. U.S. President 1976–2020, 2017a. URL <https://doi.org/10.7910/DVN/42MVDX>.

487

488 MIT Election Data and Science Lab. U.S. House 1976–2022, 2017b. URL <https://doi.org/10.7910/DVN/1G0UN2>.

489

490 MIT Election Data and Science Lab. U.S. Senate statewide 1976–2020, 2017c. URL <https://doi.org/10.7910/DVN/PEJ5QU>.

491

492 Laura N Driscoll, Lea Duncker, and Christopher D Harvey. Representational drift: Emerging theories for
493 continual learning and experimental future directions. *Current opinion in neurobiology*, 76:102609, 2022.

494

495 Richard A Harshman. oundations of the parafac procedure: Models and conditions for an "explanatory"
496 multimodal factor analysis. *UCLA Working Papers in Phonetics*, 16(1):1–84, 1970.

497

498 Aapo Hyvärinen, J Karhunen, and E Oja. Independent component analysis and blind source separation,
499 2001.

500

501 Shinobu Kitayama, Lucian Gideon Conway III, Paula R Pietromonaco, Hyekyung Park, and Victoria C
502 Plaut. Ethos of independence across regions in the united states: The production-adoption model of
503 cultural change. *American Psychologist*, 65(6):559, 2010.

504

505 Dmitry Kobak, Wieland Brendel, Christos Constantinidis, Claudia E Feierstein, Adam Kepcs, Zachary F
506 Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K Machens. Demixed principal
507 component analysis of neural population data. *elife*, 5:e10989, 2016.

508

509 International Brain Laboratory, Brandon Benson, Julius Benson, Daniel Birman, Niccolò Bonacchi, Mat-
510 teo Carandini, Joana Catarino, Gaelle Chapuis, Peter Dayan, Eric DeWitt, Tatiana Engel, Michele
511 Fabbri, Mayo Faulkner, Ila Fiete, Charles Findling, Laura Freitas-Silva, Berk Gerçek, Kenneth Har-
512 ris, Sonja Hofer, Fei Hu, Félix Hubert, Julia Huntenburg, Anup Khanal, Christopher Langdon, Petrina
513 Lau, Guido Meijer, Nathaniel Miska, Jean-Paul Noel, Kai Nylund, Alejandro Pan-Vazquez, Alexan-
514 dre Pouget, Cyrille Rossant, Noam Roth, Rylan Schaeffer, Michael Schartner, Yanliang Shi, Karolina
515 Socha, Nicholas Steinmetz, Karel Svoboda, Anne Urai, Miles Wells, Steven West, Mathew White-
516 way, Olivier Winter, and Ilana Witten. Ibl - brain wide map [deprecated] (version draft). <https://dandiarchive.org/dandiset/000409/draft>, 2025. Data set, DANDI Archive.

517 Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition.
 518 *SIAM J. Matrix Anal. Appl.*, 21:1253–1278, 2000. URL <https://api.semanticscholar.org/CorpusID:14344372>.

520

521 Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization.
 522 *Nature*, 401(6755):788–791, 1999.

523

524 Scott W Linderman, Andrew C Miller, Ryan P Adams, David M Blei, Liam Paninski, and Matthew J Johnson. Recurrent switching linear dynamical systems. *arXiv preprint arXiv:1610.08466*, 2016.

525

526 Yanyuan Ma and Liping Zhu. A review on dimension reduction. *International Statistical Review*, 81(1):
 527 134–150, 2013.

528

529 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning
 530 research*, 9(Nov):2579–2605, 2008.

531

532 Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse coding.
 In *Proceedings of the 26th annual international conference on machine learning*, pp. 689–696, 2009.

533

534 Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent computa-
 535 tion by recurrent dynamics in prefrontal cortex. *Nature*, 503(7474):78–84, 2013.

536

537 Meta. Pageviews analysis — meta, discussion about wikipedia projects, 2022. URL https://meta.wikimedia.org/w/index.php?title=Pageviews_Analysis&oldid=23610159. [Online; accessed 31-October-2024].

538

539 Marc Miquel-Ribé and David Laniado. Wikipedia culture gap: quantifying content imbalances across 40
 540 language editions. *Frontiers in physics*, 6:54, 2018.

541

542 Noga Mudrik, Gal Mishne, and Adam Shabtai Charles. Sibblings: Similarity-driven building-block inference
 543 using graphs across states. In *Forty-first International Conference on Machine Learning*, 2024.

544

545 Noga Mudrik, Ryan Ly, Oliver Ruebel, and Adam Shabtai Charles. Creimbo: Cross-regional ensemble
 546 interactions in multi-view brain observations. In *The Thirteenth International Conference on Learning
 547 Representations*, 2025.

548

National Conference of State Legislatures. Voter identification laws. <https://www.ncsl.org/elections-and-campaigns/voter-id>, 2025. Updated June 2, 2025.

549

550 Oregon Elections Division. *Political Party Manual*. Oregon Secretary of State, 255 Capitol St NE, Suite
 551 126, Salem, OR 97310-0722, n.d. URL <https://sos.oregon.gov/elections/Documents/PoliticalPartyManual.pdf>. Oregon Administrative Rule No. 165-010-0005.

552

553 Lia Papadopoulos, Suhyun Jo, Kevin Zumwalt, Michael Wehr, David A McCormick, and Luca Mazzucato.
 554 Modulation of metastable ensemble dynamics explains optimal coding at moderate arousal in auditory
 555 cortex. *bioRxiv*, 2024.

556

557 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
 558 Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
 559 David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine
 560 learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011. URL <http://jmlr.org/papers/v12/pedregosa11a.html>.

561

562 Arthur Pellegrino, Heike Stein, and N Alex Cayco-Gajic. Dimensionality reduction beyond neural subspaces
 563 with slice tensor component analysis. *Nature Neuroscience*, 27(6):1199–1210, 2024.

564 M. Ravasi and I. Vasconcelos. Pylops—a linear-operator python library for scalable algebra and optimization.
 565 *SoftwareX*, 11:100495, 2020. doi: <https://doi.org/10.1016/j.softx.2020.100495>. URL <https://www.sciencedirect.com/science/article/pii/S2352711020302449>.

567

568 Oliver Rübel, Andrew Tritt, Ryan Ly, Benjamin K Dichter, Satrajit Ghosh, Lawrence Niu, Pamela Baker,
 569 Ivan Soltesz, Lydia Ng, Karel Svoboda, et al. The neurodata without borders ecosystem for neurophysiological data science. *Elife*, 11:e78362, 2022.

570

571 Michael E Rule, Timothy O’Leary, and Christopher D Harvey. Causes and consequences of representational
 572 drift. *Current opinion in neurobiology*, 58:141–147, 2019.

573

574 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 58(1):267–288, 1996.

575

576 Conor Tillinghast, Shikai Fang, Kai Zhang, and Shandian Zhe. Probabilistic neural-kernel tensor decomposi-
 577 tion. In *2020 IEEE International Conference on Data Mining (ICDM)*, pp. 531–540. IEEE, 2020.

578

579 Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31(3):279–311,
 580 1966.

581

582 Ewout Van Den Berg and Michael P Friedlander. Probing the pareto frontier for basis pursuit solutions.
 583 *Siam journal on scientific computing*, 31(2):890–912, 2009.

584

585 Zheng Wang and Shandian Zhe. Nonparametric factor trajectory learning for dynamic tensor decomposition.
 586 In *International Conference on Machine Learning*, pp. 23459–23469. PMLR, 2022.

587

588 Zenglin Xu, Feng Yan, et al. Infinite tucker decomposition: Nonparametric bayesian models for multiway
 589 data analysis. *arXiv preprint arXiv:1108.6296*, 2011.

590

591 Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Yuan Qi, and Zoubin Ghahramani.
 592 Distributed flexible nonlinear tensor factorization. *Advances in neural information processing systems*,
 593 29, 2016.

594

595 Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. *Journal of computa-
 596 tional and graphical statistics*, 15(2):265–286, 2006.

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611 612 Appendix

614 A ADDITIONAL FITTING DETAILS:

616 A.1 INITIALIZATION:

618 We initialize the components and traces using dictionary learning Mairal et al. (2009) with sparsity on the
 619 components, using Sklearn.decomposition (Pedregosa et al., 2011) DictionaryLearning. Within the model,
 620 sparsity is applied through PyLops Ravasi & Vasconcelos (2020) SPGL1’s solver Van Den Berg & Friedlan-
 621 der (2009).

622 A.2 DETAILS ABOUT STATE SIMILARITY GRAPH CALCULATION:

624 MILCCI allows disentangling of categorical, continuous, and non-continuous ordinal categories. It further
 625 supports allowing the components to adjust across trials with label change in a way that captures the degree
 626 of similarity between the corresponding labels for each category. For example, if we assume neuronal
 627 ensembles gradually present compositional shifts over the course of learning, this requires capturing the
 628 gradual / ordinal order of trials. Another example is when a certain category represents a continuous variable
 629 (e.g., x-position of a stimulus), where again we would like to capture label relationships (i.e., distance
 630 between labels).

631 Hence, MILCCI augments the model with a set of label-driven graphs that are pre-calculated before the be-
 632 ginning of the iterative optimization process and are reused across iterations for smoother cross-component
 633 regularization that maintains label similarity. For each category (k), we build the graph $\lambda^{(k)} \in \mathbb{R}^{\#k \times \#k}$,
 634 where $\#k$ is the number of unique options observed under category (k) (e.g., if category “choice” can be
 635 correct / incorrect, then $\#k=2$). This graph captures the degree of similarity between its possible values.

636 **For categorical labels**, we use a constant value for the graph (e.g., $\lambda_{i,i'}^{(k)} = 1 \ \forall i, i'$).

638 **For ordinal labels**: We use a Gaussian kernel $\lambda_{i,i'}^{(k)} = e^{\frac{\|k_i - k_{i'}\|_2^2}{2\sigma^2}} \ \forall i, i'$, where k_i and $k_{i'}$ are the i -th and i' -th
 639 option of category (k) (e.g., task difficulty 1 vs. 5). Notably, MILCCI supports integration of diverse graph
 640 calculation distance metrics, so one can easily use a different distance metric (not Gaussian) if they assume
 641 similarities between labels are captured differently.

642 After the graph calculation, we recommend normalizing the graph by the per-row absolute sum of 1 to ensure
 643 that different labels are regularized to the same degree:

$$645 \quad \lambda_{i,:}^{(k)} \leftarrow \frac{\lambda_{i,:}^{(k)}}{\|\lambda_{i,:}^{(k)}\|_1} \quad \forall i, i'.$$

648 An i -th row of zeros in $\lambda^{(k)}$ means that the i -th option of category (k) is not regularized to be consistent with
 649 the others. This can be used if there is some intention to create completely trial-varying components that
 650 vary flexibly between trials, which is another feature MILCCI offers.

653 A.3 ABOUT SPARSITY AND CONSISTENCY HYPERPARAMETERS

655 Like most machine learning models, MILCCI includes hyperparameters that control model behavior, though
 656 notably fewer than complex models such as deep networks. Two key hyperparameters in MILCCI control
 657 component behavior: γ_1 (sparsity) and γ_2 (cross-label consistency).

γ_1 controls the ℓ_1 regularization on component memberships (Eq. 2). Higher γ_1 values produce sparser components with fewer non-zero entries, which is crucial for interpretability but potentially missing weaker relationships. Lower γ_1 values allow denser components that capture more subtle patterns but may include noise. γ_2 promotes similarity between component variants within the same category via ℓ_2 regularization on their distances (Eq. 2). Higher γ_2 values force variants to remain nearly identical, losing the ability to capture label-driven adjustments. Lower γ_2 values allow more flexibility but risk components diverging too much across labels.

We recommend selecting γ_1 by examining component sparsity and interpretability (e.g., inspecting the number of non-zero entries and their meaningfulness), and by testing information criteria (e.g., AIC, BIC) post training. For γ_2 , we recommend analyzing the distribution of pairwise distances between same-category component variants to ensure they remain similar yet allow meaningful adjustments. When domain knowledge is available (e.g., in neuroscience, we may have an estimate of how many neurons form a group based on the amount of data we recorded), this can further guide hyperparameter selection. In practice, we found MILCCI’s performance relatively robust across reasonable hyperparameter ranges: we tested 20 values for $\gamma_1 \in [0.002, 0.5]$ and 20 values for $\gamma_2 \in [0.0002, 0.5]$ (800 total combinations, see Sec. J.3 and Fig. 37).

B RUNNING DETAILS

B.1 DATA AND CODE AVAILABILITY

All real-world data used in this paper are publicly available online, with sources cited in the corresponding sections. Code for the model implementation and synthetic data generation will be made available upon publication.

B.2 VERSIONS

We trained the model using Python 3.10.4 (conda-forge) with matplotlib 3.8.2, scikit-learn 1.0.2, seaborn 0.11.2, numpy 1.23.5, pandas 1.5.0, PyLops 1.18.2, and SPGL1 0.0.2.

C ELASTIC NET PRIOR OF COMPONENTS

In Section 3, we specified that the components follow a Laplace distribution:

$$\mathbf{A}_{nj}^{(k)} \sim \text{Laplace}(0, \frac{1}{\gamma_1}) = \frac{\gamma_1}{2} \exp\left(-\gamma_1 |\mathbf{A}_{nj}^{(k)}|\right)$$

When we later extended the model to multiple component variants for each category k with constrained ℓ_2 distances between them (i.e., $\|\mathbf{A}_{n:i}^{(k)} - \mathbf{A}_{n:i'}^{(k)}\|_2 < \epsilon$), we essentially employ a hierarchical Bayesian framework. The variant-specific components $\mathbf{A}_{n:i}^{(k)}$ thus follow an elastic net prior:

$$p(\mathbf{A}) \propto \exp\left(-\gamma_1 \sum_k \sum_{n,j} |\mathbf{A}_{nj}^{(k)}| - \gamma_2 \sum_{i' \neq i} \lambda_{i',i}^{(k)} \|\mathbf{A}_{::i}^{(k)} - \mathbf{A}_{::i'}^{(k)}\|_2^2\right)$$

The first term corresponds to the ℓ_1 penalty inherited from the Laplace prior, promoting sparsity. The second term introduces an ℓ_2 penalty on variant differences, encouraging similarity within variant groups.

Figure 6: **Generated Synthetic Data.** **A:** Generated traces, colored by difficulty (top) or choice (bottom). **B:** Generated components. Each subplot shows one component and how it varies over the labels of each category (changes across rows). In other words, each subplot corresponds to $A_{:,j}^{(k)}$ for some component j . **C:** Random example generated synthetic trials $\{\mathbf{Y}^{(m)}\}$.

This combination yields elastic net regularization, emerging naturally from the hierarchical structure where variants share statistical strength through their common base component.

Algorithm 1 MILCCI Algorithm

- 1: **Input:** Observed trial data $\{\mathbf{Y}^{(m)}\}_{m=1}^M$, with associate multi-category labels $\{L^{(m)}\}_{m=1}^M$.
- 2: **Pre-calculate:** Label-similarity graph $\lambda^{(k)}$ for each category (k) (App. A.2).
- 3: **Initialize:** Sparse components $\{A^{(k)}\}_{k \in \text{Categories}}$ and traces $\{\Phi^{(m)}\}_{m=1}^M$ ▷ App. A.1
- 4: **while** not converged **do**
- 5: **for** each category (k) **do**
- 6: **for** each label value k_i **do**
- 7: Compute residuals for trials with label k_i
- 8: Solve for $A_{::i}^{(k)}$ with cross-label consistency and sparsity via LASSO ▷ equation 2
- 9: Normalize each component to sum to 1 ($A_{:ri}^{(k)} \leftarrow \frac{A_{:ri}^{(k)}}{\|A_{:ri}^{(k)}\|_1}$) ▷ to prevent scaling ambiguity
- 10: with Φ
- 11: **for** each trial m with label ℓ **do**
- 12: Build the stacked component matrix $\tilde{A}^{(\ell)}$ by selecting a variant from each $A^{(k)}$.
- 13: Update traces $\Phi^{(m)}$ to minimize data fidelity, smoothness and de-correlation ▷ equation 3

Figure 7: Voting Data: $\{Y^{(m)}\}_{m=1}^M$ Show Diverse Data Structures

842 Figure 8: Components and Traces Identified by SliceTCA on synthetic data. **A** Results for configuration 1 (Sec. H.2), where **A.1** represents the components and **A.2** represents the corresponding traces from sliceTCA’s \mathbf{A} matrix. **B** Results for sliceTCA’s configuration 2. **B.1** Identified components for 3 example trials; each subplot represents all components of one trial. **B.2** Shows how identified components vary over trials. **B.1** & **B.2** together show that sliceTCA identifies components that are very close to each other, with cross-component variability similar to the variability of the same component over trials. This suggests that components are not necessarily matched over trials in terms of identity, as seen in panel **C** which shows the correlation distribution between same components and different components. **B.3** The temporal traces obtained by sliceTCA for configuration 2, shared across all trials.

	Tucker	PARAFAC	SVD	MILCCI
logL	-4905.71	-4871.06	-19050.70	22093.51
AIC	15043.41	14974.12	43333.40	-42817.04
BIC	34800.04	34730.75	63090.02	-37643.81
HQC	21618.86	21549.56	49908.84	-41095.27

Figure 9: **Voting Experiment.** comparison to baselines in reconstruction and information criteria. Comparison to Tucker, PARAFAC, and SVD in terms of reconstruction and information criteria, including 1) log-likelihood of the observations given the identified components, and 2) information criteria that balance reconstruction and model complexity: AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), and HQC (Hannan-Quinn Criterion). Lower values indicate better performance.

D ADDITIONAL INFORMATION—SYNTHETIC EXPERIMENT

We generated synthetic datasets with **80 channels, 4 components** (2 categories, \times 2 components adjusting per category), **500 time points per trial**, and **250 trials**. Each trial received one label per axis: category (a) (difficulty)’s labels were sampled from the set $\{I, II, III, VI, V\}$ (5 levels) and category (b) (choice) labels from $\{I, II\}$ (2 levels), yielding up to **10 unique label combinations**. Component-to-neuron maps were initialized for the reference trial with values in $[0.5, 1.0]$, then updated across label variants according to a trial-similarity graph calculated based on trial labels and thresholded at the **60th percentile** to enforce sparsity on the component compositions.

Temporal activity for each label pair was drawn from a Gaussian-process prior with an RBF kernel scaled by a per-sample amplitude: the amplitude was drawn per sample in $\approx [0.2, 1.533]$, and the kernel length scale was drawn per sample in $[0.05, 0.2]$ in normalized time units (0–1), which corresponds roughly to **25–100 time points** given 500 samples per trial. A white-noise term of 1×10^{-8} was included in the kernel. For each label we drew one GP sample and then generated multiple similar trial traces by adding multivariate-normal perturbations with covariance scaled by σ^2 , where $\sigma = 0.15$ ($\sigma^2 = 0.0225$), so trials that share a label exhibit correlated dynamics.

One component was designated as a random (trial-varying) component. Component activations were shifted to be nonnegative and rescaled so their 98th percentile matched the 98th percentile of the component maps. The observed data were produced by multiplying each trial’s component-to-neuron map by that trial’s temporal activations, yielding data of shape (**neurons \times time \times trials**) = $(80 \times 500 \times 250)$.

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Figure 10: Identified Ensembles for Voting Experiment.

Figure 11: Comparison of components identified by MILCCI and SiBBIInGS for three example labels under the same parameters and seed. MILCCI components were duplicated to match the x-tick labels of SiBBIInGS. SiBBIInGS shows uninterpretable changes across every label, even when parts are shared, whereas MILCCI disentangles them.

Figure 12: **Voting Experiment Baseline Comparison.** Components identified by the following baselines:
1) Tucker Decomposition (HOSVD), 2) PARAFAC, 3) SiBBIInGS (for a single random label entry: (Democrat, President)), 4) SVD (on all concatenated trials).

Figure 13: **Voting Experiment.** Traces Identified by MILCCI compared to the other baselines for example random trial.

Figure 14: **Voting Traces.** Top: Colored by Party. Bottom: Colored by Office.

Figure 15: Top ‘Other’ parties instance counts for Montana and Pennsylvania

1100
1101 **Figure 16: Voting experiment: SliceTCA comparison.** **A.1** Components from the fixed component
1102 case (i.e., from u). **A.2** Traces from the fixed component case (i.e., from A). **B.1** Components from the
1103 varying component case (i.e., B). Each subplot represents a trial and columns show its different components.
1104 **B.2** Components from the varying component case (i.e., v). **B.3** Components from the varying component
1105 case. Each subplot represents one component and columns represent trials. We can observe that there is no
1106 consistency within the same component (B.3) across trials compared to across components.
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

1143 Figure 17: **Wikipedia Page View Experiment.** Traces colored by Language (Arabic, English, Espagnole,
1144 French, Hebrew, Hindi, Chinese) Across All Ensembles.

Figure 18: Wikipedia Page View Data, example Trials

1192 **Figure 19: Wikipedia Page View Experiment.** Traces colored by Platform (desktop, mobile web, mobile
1193 All Ensembles

1215 **Figure 20: Wikipedia Page View Experiment.** Traces colored by agent (Spider vs. User) Across All
1216 Ensembles

Figure 21: Components identified for Wikipedia Page-view Experiment.

1400 Figure 25: **Wikipedia Components, MILCCI vs. SiBBIInGS.** SiBBIInGS components display compositional
1401 changes scattered across labels, rather than the category-specific adjustments captured by MILCCI.
1402 Note: MILCCI components are shown here with duplicate columns to align with SiBBIInGS components
1403 for visualization.

1410	Abbreviation	State	Abbreviation	State
1411	AL	ALABAMA	AK	ALASKA
1412	AZ	ARIZONA	AR	ARKANSAS
1413	CA	CALIFORNIA	CO	COLORADO
1414	CT	CONNECTICUT	DE	DELAWARE
1415	DC	DISTRICT OF COLUMBIA	FL	FLORIDA
1416	GA	GEORGIA	HI	HAWAII
1417	ID	IDAHO	IL	ILLINOIS
1418	IN	INDIANA	IA	IOWA
1419	KS	KANSAS	KY	KENTUCKY
1420	LA	LOUISIANA	ME	MAINE
1421	MD	MARYLAND	MA	MASSACHUSETTS
1422	MI	MICHIGAN	MN	MINNESOTA
1423	MS	MISSISSIPPI	MO	MISSOURI
1424	MT	MONTANA	NE	NEBRASKA
1425	NV	NEVADA	NH	NEW HAMPSHIRE
1426	NJ	NEW JERSEY	NM	NEW MEXICO
1427	NY	NEW YORK	NC	NORTH CAROLINA
1428	ND	NORTH DAKOTA	OH	OHIO
1429	OK	OKLAHOMA	OR	OREGON
1430	PA	PENNSYLVANIA	RI	RHODE ISLAND
1431	SC	SOUTH CAROLINA	SD	SOUTH DAKOTA
1432	TN	TENNESSEE	TX	TEXAS
1433	UT	UTAH	VT	VERMONT
1434	VA	VIRGINIA	WA	WASHINGTON
1435	WV	WEST VIRGINIA	WI	WISCONSIN
1436	WY	WYOMING		

Table 2: List of US States and Their Abbreviations

Figure 26: Correlation analysis of Wikipedia dataset reveals moderate correlations that do not explain baseline convergence failures. (A) Channel (term-term) correlation matrix shows moderate correlations with maximum of 0.711 and good condition number (6.2e+01). (B) Distribution of all pairwise correlations demonstrates that most correlations are moderate, with no high correlations (>0.8). (C) Trial-trial correlation matrix shows similar moderate correlation patterns (max 0.807). The data has full rank (48/48) and reasonable correlation structure, indicating that baseline convergence failures (Tucker, PARAFAC) stem from algorithmic limitations rather than problematic data characteristics.

1457
1458
1459
1460
1461
1462
1463
1464

Table 3: Parties Detailed vs. Simplified Versions. ‘Other’ includes only parties with at least 10 instances over all years & states.

Democrat	Republican	Other	Libertarian
Democrat; Democratic-Farmer-Labor; Democratic-Nonpartisan League; Democratic-Npl; Democrat (Not Identified On Ballot)	Republican	Prohibition; Independent; American Independent; U.S. Labor; Socialist Workers; American; Conservative; Socialist Labor; Independent American; Constitution; Socialist; Liberty Union; Statesman; Citizens; New Alliance; Workers World; Workers League; Independence; Populist; Nominated By Petition; Grassroots; No Party Affiliation; Green; Natural Law; Unaffiliated; Other; Working Families; Alliance; Non-Affiliated; Constitution Party; American Independent Party; Communist Party Use; Peace & Freedom; Taxpayers Party; Reform Party; U.S. Taxpayers Party; Socialism And Liberation Party; American Delta Party; American Solidarity Party; Party For Socialism And Liberation; Becoming One Nation	Libertarian

1499
1500
1501
1502
1503

1538 **Figure 27: Wikipedia experiment: SliceTCA comparison.** Components equivalent to MILCCI's were
1539 extracted from SliceTCA's configuration 1 (see Sec. H.2), i.e., components extracted from sliceTCA's u
1540 vector (**A.1**) and temporal traces from sliceTCA's A matrix (**A.2**). For the second configuration (**B** panels),
1541 components (MILCCI's A) were extracted from SliceTCA's C (**B.1**) and traces from SliceTCA's v (**B.2**).
1542 See details in Section H.2.

1590 Figure 28: **IBL experiment: SliceTCA components.** **A:** sliceTCA’s configuration 1 (see Sec. H.2). **A.1:**
1591 Components from the fixed component case (i.e., from sliceTCA’s u). **A.2:** Traces from the fixed component
1592 case (i.e., from sliceTCA’s A).
B: sliceTCA’s configuration 2: **B.1:** Components from the varying component case. **B.2:** Components
1593 showing how they vary over labels (example: component 2). **B.3:** Traces from the sliceTCA’s v vector. See
1594 details in Section H.2.

Figure 29: **Distribution of distances between component pairs.** Comparison of distances between same components (black) versus different component pairs across three datasets and two methods, presented for sliceTCA configuration 2 that allow components change (Sec. H.2). **A** Wiki dataset, **B** Voting dataset, **C** IBL dataset. Left column shows MILCCI results, right column shows sliceTCA results. Black bars represent distances between the same component across different conditions ($m \neq m'; j = j'$), orange bars represent distances between different components in the same condition ($m = m'; j \neq j'$), and green bars represent distances between different components in different conditions ($m \neq m'; j \neq j'$).

Figure 30: IBL data following our pre-processing steps.

Figure 31: Traces of $\Phi_{:\mathcal{G}_2^{(b)}:}$ across trials, separated by decision correctness. Solid pink: stimulus on. Dashed pink: stimulus off. The stimulus appears for a median duration of 1.45 s across trials.Figure 32: $\Phi_1^{(c)}$ presents an increasing temporal drift over trials.

Figure 33: **Components identified by MILCCI in the IBL experiment.** **A:** Example ensemble (with its trace discussed in the main text) and its adjustments across trials. **B:** Example ensemble matrices reconstructed for three random trials. Each subplot shows all ensembles present in that trial under the unique set of labels indicated.

Figure 34: **IBL Neuronal Ensembles Components Identified by Baselines.**

1786 E ADDITIONAL INFORMATION—VOTING EXPERIMENT
17871788 E.1 VOTING DATA PRE-PROCESSING
1789

1790 Data were acquired from Data & Lab (2017a;b;c), which included vote information for presidential, senate,
1791 and house elections in 51 states, including Washington, DC. The datasets cover the years 1976 to 2020 for
1792 presidential and senate elections, and 1976 to 2022 for house elections. For our analysis, we used the range
1793 1976 to 2020 to ensure that all office types were included, resulting in 23 time points for house and senate,
1794 and 12 time points for presidential elections. For each year and each state, we took the total number of
1795 votes received by each party category (democrat, libertarian, republican, other) and divided each by the total
1796 number of votes cast in that state for that year's election. We excluded special elections. We designed the
1797 model to capture two following categories: 1) party (4 options), and 2) office (3 options). We ran MILCCI
1798 with $p^{(k)} = 4$ components for each category, that can structurally adjust per class, resulting in $p = 8$ total
1799 components. Due to the positive-only nature of the data, we applied a non-negativity constraint on both the
1800 unit-to-component memberships and the temporal traces.

1801 E.2 ADDITIONAL FINDINGS—VOTING DATA
1802

1803 Some more interesting voting patterns, beyond those discussed in the main text, can be found in Figs. 14
1804 and 10.

1805 In component $A_4^{(\text{party})}$, Washington DC appears as its own distinct cluster. This likely reflects its highly
1806 unique political profile as the nation's capital, overwhelmingly Democratic, with very high voter turnout,
1807 which differs significantly from other states. In $A_2^{(\text{office})}$ (i.e., the 6-th component overall), which unlike
1808 previous components changes its composition depending on the office, West Virginia (WV) is included for
1809 House and Senate voting but excluded for the Presidency. This component reflects strong Democratic dom-
1810 inance in those legislative elections. The distinction for WV may align with its historical voting pattern of
1811 supporting Democrats more in local and state-level offices (House and Senate), while trending more Repub-
1812 licans in presidential elections, reflecting a split in voter behavior based on the office. When exploring all
1813 traces colored by party (Fig. 14 top), Democrat vs. Republican is the dominant axis, consistently driving
1814 the most prominent distinctions over time. In some traces ($\Phi_{:\mathcal{G}_1^{(\text{party})}}$, $\Phi_{:\mathcal{G}_2^{(\text{party})}}$, $\Phi_{:\mathcal{G}_3^{(\text{party})}}$), a noticeable diver-
1815 gence emerges around the year 2000, suggesting that the two parties began to separate more sharply around
1816 that period. This trend may correspond to the aftermath of the 2000 presidential election dispute (Bush vs
1817 Gore), which catalyzed a lasting partisan split, possibly further intensified by the ideological polarization
1818 following 9/11. Other traces, such as $\Phi_{:\mathcal{G}_2^{(\text{office})}}$ and $\Phi_{:\mathcal{G}_4^{(\text{office})}}$, show broader fluctuations over time in
1819 opposite directions, which may reflect deeper, long-standing historical or structural differences between the
1820 parties. Trace $\Phi_{:\mathcal{G}_3^{(\text{office})}}$ appears to capture short-term variation or noise, including year-to-year peaks in
1821 party voting behavior. In contrast, the projections based on the office (Fig. 14) exhibit far fewer separations.
1822 The traces overlap substantially and show wide confidence intervals, suggesting that electoral behavior is
1823 less differentiated by office type than by party affiliation.

1824 E.3 POST-HOC VALIDATION ANALYSIS ON VOTING DATA
1825

1826
1827 To validate that MILCCI discovers genuine voting structure rather than spurious correlations, we perform
1828 comprehensive statistical analyses that examine individual state contributions and test against multiple null
1829 hypotheses (Fig. 38).

1830
1831 We remove each state from the component matrix by zeroing out that state's contribution and measure re-
1832 construction degradation. For each of the N states, we calculate reconstruction MSE with the modified

components where the target state is excluded. Fig. 38A shows the reconstruction MSE when each state is removed, with the baseline MSE (dashed line) that represents performance with all states included. Fig. 38B displays each state’s contribution calculated as the percentage change in MSE relative to baseline performance.

We calculate each state’s fair contribution with game-theoretic Shapley values, which consider all possible combinations of states. Due to computational constraints with $N=52$ states (which require 2^{52} calculations), we use approximation with 500 random combinations. For each combination, we include only combination members in the components matrix while we zero non-combination states, then calculate each state’s marginal contribution as the difference in reconstruction quality when that state is added to the combination. Fig. 38C shows the Shapley values, which quantify each state’s individual contribution to overall reconstruction quality.

We test three null hypotheses by comparison of original reconstruction performance against randomized versions:

Shuffle Rows (Fig. 38D, left):

We randomly reassign complete state voting profiles to different state positions. This tests whether the specific correspondence between geographic states and their voting behavioral patterns is meaningful.

Random Control (Fig. 38D, middle):

We replace the entire components matrix with random values drawn from a normal distribution with the same global mean and standard deviation as the original data. This tests against pure statistical noise baseline.

Shuffle Each Component (Fig. 38D, right):

For each component dimension, we randomly permute the assignment of states within that component while we preserve component-wise statistics. This tests whether the specific coordination between components within each state matters.

Each permutation test runs 1000 iterations, with p-values calculated as the fraction of permuted reconstructions that achieve equal or better performance than the original.

Component-specific permutation results (Fig. 38E) demonstrate that discovered patterns are robust across individual voting components. We store intermediate reconstruction results for each component, which allows examination of component-specific robustness to randomization. Fig. 38F provides the state abbreviation key for reference.

All statistical tests yield $p < 0.001$, which provides evidence that MILCCI’s discovered voting patterns represent genuine structure.

F ADDITIONAL INFORMATION—WIKIPEDIA EXPERIMENT

F.1 WIKIPEDIA PAGEVIEW DATA PRE-PROCESSING

We extracted daily Wikipedia pageview data from October 9, 2020, to October 29, 2024 ($T = 1482$ time points) for 48 diverse pages (“terms”) related to college, computer science, machine learning, and psychology majors (Meta (2022)). Notably, we intentionally chose topics with both corollaries and co-variates. For each term, we collected data separately for three access platforms: (1) desktop, (2) mobile web, and (3) mobile app. We also distinguished the agent accessing the data: 1) a user or 2) a spider (for spider data was extracted only for web and desktop platform due to extreme sparsity of app + spider combination).

We focused on seven languages representing diverse world regions: English (en), Chinese (zh), Spanish (es), Hindi (hi), Arabic (ar), French (fr), and Hebrew (he). To ensure comparability, data for each language

were range-normalized across all terms and time points using the 99th percentile to reduce outlier influence: $Y_{:, :, l} \leftarrow (Y_{:, :, l} - \min(Y_{:, :, l})) / \text{perc}(Y_{:, :, l}, 99)$, where $Y_{:, :, l}$ is the full dataset for language l .

Each term was then normalized across all languages and time points using the same 99th percentile procedure: $Y_{k, :, :} \leftarrow (Y_{k, :, :} - \min(Y_{k, :, :})) / \text{perc}(Y_{k, :, :}, 99)$, where $Y_{k, :, :}$ denotes the full time-course of term k across languages. This concludes to overall three categories candidate for compositional adjustments in the data: (1) agent (user or spider), (2) platform (desktop / mobile web / mobile app), and (3) language (one of the seven listed).

1888 F.2 CLARIFICATION ON FINDINGS—WIKIPEDIA DATA

1890 Lists of terms of components mentioned in main text (Sec. 4):

- 1892 • $A_1^{(\text{agent})}$ (**Psychology**): Classical conditioning; Bobo doll experiment; Operant conditioning; Self-
1893 concept; Little Albert experiment; Unsupervised learning; Embedding;
- 1894 • $A_2^{(\text{agent})}$: (**Social Media**): The Social Network (movie); Social media; Ivan Pavlov; Mark Zucker-
1895 berg.
- 1896 • $A_4^{(\text{platform})}$: (**Computer Science**): Data mining; Computer science; Supervised learning; Unsuper-
1897 vised learning; Computer scientist; Social media;

1900 G ADDITIONAL INFORMATION ABOUT NEURONAL ENSEMBLES EXPERIMENT

1902 The IBL dataset is part of the International Brain Laboratory (IBL) effort to map neural activity underlying
1903 decision-making in mice across the whole brain. We accessed the IBL’s data via the Dandi archive, in an
1904 NWB Rübel et al. (2022); Laboratory et al. (2025) format.

1906 The randomly selected session was recorded on February 11, 2020 in the Churchland Lab at CSHL (currently
1907 at UCLA). In the IBL task, mice view a grating stimulus on the left or right side of a screen (or no stimulus)
1908 and report its location by turning a wheel. The task includes block-wise priors, where one side is more
1909 likely than the other, requiring mice to combine sensory evidence with prior expectations. Stimulus contrast
1910 varies across trials to manipulate difficulty, enabling precise measurement of perceptual decision-making
1911 and neural correlates during electrophysiology recordings. Electrophysiological recordings were collected
1912 using Neuropixels probes from diverse brain areas. These recordings provide single-spike resolution activity
1913 during a decision-making task and include additional data such as sensory stimuli presented to the mouse,
1914 behavioral responses and response times. The subject (ID: CSHL052) was a female C57BL/6 mouse (*Mus*
1915 *musculus*), 6 months old and 22g at the time of recording. The full description of the session and task
1916 protocol is provided in (Angelaki et al., 2025).

1917 H INFORMATION ABOUT BASELINE CALCULATION AND EXECUTION

1919 We compared MILCCI to matrix (SVD), tensor (PARAFAC, HOSVD, [sliceTCA \(Pellegrino et al., 2024\)](#)),
1920 and multi-array (SiBBLInGS (Mudrik et al., 2024)) decompositions.

1922 H.1 COMPARISON TO SVD, TUCKER, PARAFAC

1924 We compared these methods to MILCCI both quantitatively and qualitatively. For the qualitative compari-
1925 son, we provide example figures in the main text and appendix that emphasize MILCCI’s superior perfor-
1926 mance. Notably, in all these methods the component matrix is fixed, as defined by the first mode; therefore,

1927 unlike MILCCI, they cannot (1) reveal structural adjustments over trials or disentangle category effects via
 1928 the components, and (2) capture free trial-to-trial variability without tensor constraints (except for SVD).
 1929 Consequently, their ability to capture such effects is inherently limited, though they represent the closest
 1930 methods to MILCCI that we can reasonably compare to (in the sense that they provide comparable com-
 1931 ponents and traces). Thus, the comparison is also limited in that we cannot show structural variability that
 1932 these methods fundamentally do not support. Quantitatively, we calculated information criteria (AIC, BIC,
 1933 HQC; lower values indicate better fit) using the degrees of freedom of each method. As seen in the appendix
 1934 figures, these methods struggle to capture the data when constrained to the same dimensionality as MILCCI,
 1935 which we attribute to (1) the need for small structural adjustments, and (2) their inability to capture free
 1936 trial-to-trial variability.

1937 **See below running details for these methods:**

1938

- 1939 • **SVD**: We used NumPy’s ‘linalg.svd’ package, using the same number of components as in MILCCI
 1940 for each experiment. The SVD was applied to the data from all trials concatenated horizontally.

1941 For experiments containing missing values (e.g., the voting experiment), NaNs were filled with
 1942 zeros. Components were extracted from the left singular vectors (U), and the corresponding traces
 1943 were obtained by multiplying the singular values matrix (Σ) with the right singular vectors (V^\top).

1944

- 1945 • **PARAFAC** (Harshman, 1970): We used the PyLops Ravasi & Vasconcelos (2020) PARAFAC
 1946 implementation, with the same rank and number of components as MILCCI. For experiments with
 1947 trials of varying durations (e.g., the IBL), we used the 90-th percentile trial length to prevent outliers
 1948 from dominating, stacking trials along a third dimension and zero-padding shorter trials.

1949 Components (A) were extracted from the first tensor mode (first factor), and traces were obtained
 1950 by multiplying the second mode and the third mode according to the trial and component count.

1951

- 1952 • **Tucker** (Tucker, 1966) (HOSVD): Also for Tucker, we used the PyLops Ravasi & Vasconcelos
 1953 (2020) PARAFAC implementation, with the same dimensions and number of components as MIL-
 1954 CCI. For the 3-rd mode, we used the minimum between the number of time points and the number
 1955 of trials. Again, for experiments with trials of varying durations (e.g., the IBL), we used the 90-th
 1956 percentile trial length to prevent outliers from dominating, stacking trials along a third dimension
 1957 and zero-padding shorter trials.

1958 Components (A) were extracted from the first tensor mode (first factor), and traces were obtained
 1959 by multiplying the second mode, the core matrix, and the trial and component count. Notably, the
 1960 component matrix in these methods is fixed, as defined by the core tensor, and therefore cannot
 1961 adjust over time or disentangle label variability via the components.

1962 For some datasets (e.g., Wikipedia), PARAFAC and Tucker (PyLops Ravasi & Vasconcelos (2020) imple-
 1963 mentation) could not converge at the same MILCCI dimensionality ($p = 12$), even with SVD initializa-
 1964 tion, various normalization schemes, high tolerance (1e-2), ℓ_2 regularization, and maximum iterations of
 1965 10,000, due to least-squares optimization instability. [These errors often occur due to \(1\) many missing](#)
 1966 [values \(though no NaNs exist in our data\), or \(2\) high-resolution \(daily\) measurements introducing highly](#)
 1967 [correlated \(Fig. 26\) or nearly linearly dependent structures in the data.](#) Hence, for the Wikipedia compari-
 1968 [son, in addition to comparisons to SVD, SiBBIInGS, and sliceTCA, we tested Tucker and PARAFAC under](#)
 1969 [lower ranks with increasing added noise.](#) We found that these models converge at rank 9 with added i.i.d.
 1970 Gaussian noise ($\sigma = 0.1$ for Tucker and $\sigma = 0.2$ for PARAFAC), and the results presented here are under
 1971 these conditions.

1972 H.2 COMPARISON TO SLICETCA

1973 We note that a direct comparison between our method and SliceTCA (Pellegrino et al., 2024) is limited
 1974 since SliceTCA is not tailored to find subtle label-driven supervised reorganization patterns in neural ensem-

bles. SliceTCA performs an unsupervised decomposition $\hat{\mathbf{X}}_{n,t,k} = \sum_{r=1}^{R_{\text{neuron}}} u_n^{(r)} A_{t,k}^{(r)} + \sum_{r=1}^{R_{\text{time}}} v_t^{(r)} B_{n,k}^{(r)} + \sum_{r=1}^{R_{\text{trial}}} w_k^{(r)} C_{n,t}^{(r)}$ that finds R components. In their notation, $\mathbf{u}^{(r)}$ (neural loading vector) is equivalent to one column of our \mathbf{A} (i.e., $\mathbf{A}_{:,j}$), while their slice $\mathbf{A}^{(r)}$ (time-by-trial matrix) would correspond to our Φ for all trials. Similarly, $\mathbf{v}^{(r)}$ (time loading vector) combined with $\mathbf{B}^{(r)}$ (neuron-by-trial slice) provides an alternative decomposition. SliceTCA's R_{neuron} corresponds to our P .

We compared MILCCI to SliceTCA (Pellegrino et al., 2024) with $R_{\text{neuron}} = P$ using their publicly available implementation at <https://github.com/arthur-pe/slicetca>. We followed the parameters outlined in their Google Colab notebook: `positive=True`, `learning_rate=5 × 10-3`, `min_std=10-5`, `max_iter=1,000` for Wiki and Synth, 5,000 for IBL, and `seed=0`.

We tested two separate configurations as baselines:

1. Configuration (1):

considers one neural component (e.g., one ensemble) that varies its traces over trials without additions, which is the closest to MILCCI in terms of formulation, but not enabling small changes in ensembles.

2. Configuration (2):

uses a matrix of neurons × trials (i.e., captures how neurons can change over trials) via the matrix \mathbf{B} , however each matrix of neurons by trial has one trace. This captures mainly the ensemble adjustment to trial in an unconstrained way (unlike MILCCI) and enables more flexibility in that, but on the other hand restricts the traces more. Any other combination of ranks would not be interpretable in terms of comparison to MILCCI.

We extracted MILCCI-equivalent $\{\mathbf{A}\}$ and Φ as follows:

1. Configuration (1):

The $\mathbf{u}^{(r)}$ vectors form the ensemble matrix (fixed across trials), while temporal traces are extracted from the $\mathbf{A}^{(r)}$ matrices by breaking to trials.

2. Configuration (2):

The ensembles are captured by the rows of $\mathbf{B}^{(r)}$ and their variation over trials by the columns. Traces are given by $\mathbf{v}^{(r)}$.

H.3 SiBBLINGS

:

MILCCI's main advantage over SiBBIInGS (Mudrik et al., 2024) is interpretability for multi-way, multi-label data. Particularly, SiBBIInGS cannot disentangle the effects of co- or separately-varying labels, making it difficult to understand their individual contributions. SiBBIInGS, by modeling each unique label tuple as a distinct label would further increase tensor size and computational complexity. This is especially pronounced in experiments where some label categories vary across many unique values (e.g., IBL trial number with over 1000 values). In contrast, MILCCI can handle all of these without requiring additional dimensions, and can also account for the ordinal nature of each category, whereas SiBBIInGS requires choosing a single sorting across all categories. While we acknowledge quantitative metrics would also be valuable against SiBBIInGS, SiBBIInGS' graph-driven sparsity makes standard model comparison metrics (AIC, BIC) irrelevant. Particularly, SiBBIInGS inference includes a graph-based reweighting sparsity mechanism that hinders accurate estimation of degrees-of-freedom needed for information criteria calculations, making information criteria comparison intractable. Hence, we limited quantitative comparisons against SiBBIInGS

2021 to synthetic data (Fig. 2) and, for the real-world experiments, we focused on qualitative comparisons that
 2022 emphasize MILCCI’s interpretability advantages.
 2023

2024

2025

2026

2027

I ALTERNATIVE INFERENCE OF TRACES VIA DYNAMIC PRIOR

2029

2030 In the main text, we regularize the temporal traces $\Phi^{(m)}$ using a smoothness penalty. Here, we present an
 2031 alternative formulation where the temporal traces evolve according to a Linear Dynamical System (LDS),
 2032 suitable for data with non-stationary dynamics.

2033

2034

I.1 LINEAR DYNAMICAL SYSTEM PRIOR

2035

We assume that for each trial m , the temporal traces follow:

2036

$$\phi_t^{(m)} = \mathbf{W}^{(m)} \phi_{t-1}^{(m)} + \eta_t, \quad t = 2, \dots, T^{(m)} \quad (4)$$

2039

where $\mathbf{W}^{(m)} \in \mathbb{R}^{P \times P}$ is a trial-specific transition matrix and $\eta_t \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

2040

2041

I.2 MODIFIED OBJECTIVE AND INFERENCE

2042

2043

We modify the optimization to jointly learn traces and dynamics. The algorithm alternates between:

2044

Step 1: Update $\mathbf{A}^{(k)}$ (for each category k)

2045

Same as main text, using Equation 2.

2046

Step 2: Update $\{\Phi^{(m)}, \mathbf{W}^{(m)}\}$ (for each trial m)

2047

Given fixed $\tilde{\mathbf{A}}$, we perform inner iterations (3-5 times):

2048

Step 2a: Update $\Phi^{(m)}$ given $\mathbf{W}^{(m)}$

2049

$$\hat{\Phi}^{(m)} = \arg \min_{\Phi^{(m)}} \left\| \mathbf{Y}^{(m)} - \tilde{\mathbf{A}}(\mathbf{L}^{(m)}) \Phi^{(m)} \right\|_F^2 + \gamma_3 \sum_{t=2}^{T^{(m)}} \left\| \phi_t^{(m)} - \mathbf{W}^{(m)} \phi_{t-1}^{(m)} \right\|_2^2 + \gamma_4 \|(\mathbf{C} \odot (\mathbf{1} - \mathbf{I}_P)) \odot \mathbf{D}\|_{1,1} \quad (5)$$

2050

Step 2b: Update $\mathbf{W}^{(m)}$ given $\Phi^{(m)}$

2051

With regularization $R(\mathbf{W}^{(m)}) = \|\mathbf{W}^{(m)} - \mathbf{I}\|_F^2$ to encourage stability:

2052

$$\hat{\mathbf{W}}^{(m)} = \left(\sum_{t=2}^{T^{(m)}} \phi_t^{(m)} (\phi_{t-1}^{(m)})^T + \gamma_5 \mathbf{I} \right) \left(\sum_{t=2}^{T^{(m)}} \phi_{t-1}^{(m)} (\phi_{t-1}^{(m)})^T + \gamma_5 \mathbf{I} \right)^{-1} \quad (6)$$

2053

The inner iterations stabilize both $\Phi^{(m)}$ and $\mathbf{W}^{(m)}$ before updating \mathbf{A} , preventing noise amplification.

2054

2055

I.3 INITIALIZATION

2056

1. Initialize $\Phi^{(m)}$ using the original smoothness-based objective (Equation 3)

2068
 2069 2. Initialize $\mathbf{W}^{(m)} = \left(\sum_t \phi_{t,\text{init}}^{(m)} (\phi_{t-1,\text{init}}^{(m)})^T \right) \left(\sum_t \phi_{t-1,\text{init}}^{(m)} (\phi_{t-1,\text{init}}^{(m)})^T \right)^{-1}$
 2070
 2071 This dynamic prior is suitable for cases that are assumed to be stationary and governed by a single LDS that
 2072 does not change over time. Notably, real-world data is often non-stationary, and hence this dynamic prior
 2073 would benefit from extensions in future work, such as learning dynamics like those exemplified in Chen
 2074 et al. (2024); Linderman et al. (2016); Mudrik et al. (2025)).

2075
 2076
 2077 Table 4: Timing results (in seconds) for different methods across three experiments. Dash (-): method did
 2078 not converge for the same dimension.

Experiment	SVD	Tucker	parafac	parafac_scaled	SliceTCA	SiBBIInGS	MILCCI
Voting	20.01	20.12	20.26	20.35	27.58	27.19	28.16
Wiki	20.37	-	-	-	34.05	29.48	31.12
IBL	24.03	268.94	1056.20	1256.74	1000	1004.32	1000.32

2084
 2085
 2086
 2087 **J MILCCI IDENTIFIES NEURAL ENSEMBLES THAT ADJUST TO AROUSAL LEVEL
 2088 AND STIMULATION FREQUENCY AND EVOLVE VIA DYNAMICAL RULES**
 2089
 2090
 2091
 2092
 2093

2094 J.1 DATA AND PRE-PROCESSING
 2095

2096 We used one experimental session from Papadopoulos et al. (2024) in NWB format from the DANDI
 2097 archive Rübel et al. (2022) (DANDI:000986), which the McCormick laboratory at the University of Oregon
 2098 collected. The dataset contains recordings from mouse auditory cortex during passive exposure to auditory
 2099 stimuli. The subject was a male mouse (*Mus musculus*), aged P79D from birth (see experimental illustration
 2100 taken from Papadopoulos et al. (2024) in Fig. 35A).

2101 We processed spike trains from the NWB file (raster plot in Figure 35E) to estimate firing rates (FR) using
 2102 Gaussian convolution with the following parameters: 5 ms time bins, 50 ms Gaussian window, and 5 ms
 2103 σ (Fig. 35F). For this demonstration, we used the first 500 trials. The processed dataset thus contain 235
 2104 neurons across 15 unique experimental conditions that varied throughout the first 500 trials.

2105 J.2 DEMONSTRATION OF EXTENDED MILCCI WITH NON-LINEAR TRANSFORMATION AND
 2106 DYNAMICS PRIOR OVER TRACES EVOLUTION

2107 This experiment provides a glimpse of MILCCI’s extensibility by showcasing two key advances: (1) dynamical
 2108 evolution of neural ensembles, and (2) nonlinear transformation of FR via tanh (normalizing to range [-1,
 2109 1]). This serves as a proof of concept for modeling dynamics alongside MILCCI, paving the way for future
 2110 extensions with more complex non-stationary dynamics (see App. I for details on dynamics inference).

2111 We defined the following categories: (a) arousal level (based on binarized pupil diameter, Fig. 35C); and (b)
 2112 stimulation frequency (distribution among the used trials in Fig. 35B).

2113 We ran extended MILCCI with $p_j = 3$ ensembles per category.

Figure 35: **Additional demonstration of MILCCI on data from (Papadopoulos et al., 2024).** **A:** Experiment illustration, adapted from (Papadopoulos et al., 2024). **B:** Trial counts per stimulation frequency among the first 500 trials analyzed. **C:** Distribution of normalized pupil size (a.u.) across the first 500 trials. Colored background represents the three arousal states considered. (cutoffs 0.3, 0.52) **D:** Average pupil size per trial. Each marker represents one trial; x-axis shows trial midpoint time from recording start. **E:** Raster plot of the first 180 ms of neural activity. **F:** Example firing rate estimation for the first 8 trials from spike train data.

We leverage this example to demonstrate MILCCI’s capacity for extensions, including: 1) pre-processing via non-linearity, and 2) modifying the inference of Φ to evolve via dynamical priors, rather than via Eq. 3 (see Sec. I for details).

J.3 HYPERPARAMETER SENSITIVITY ANALYSIS

To empirically demonstrate MILCCI’s robustness to hyperparameter choices, we conducted a comprehensive sensitivity analysis across a wide range of values. We tested 20 values for $\gamma_1 \in [0.002, 0.5]$ and 40 values for $\gamma_2 \in [0.002, 0.5]$, yielding 800 total hyperparameter combinations across multiple ensemble instances.

To quantify differences between learned component matrices \mathbf{A} , we employed the normalized Frobenius distance:

$$d_{\text{norm}}(\mathbf{A}_1, \mathbf{A}_2) = \frac{\|\mathbf{A}_1 - \mathbf{A}_2\|_F}{\sqrt{\|\mathbf{A}_1\|_F^2 + \|\mathbf{A}_2\|_F^2}} \quad (7)$$

We computed two types of distances to assess hyperparameter sensitivity relative to ensemble variability (Fig. 37B,C,F):

- **Within-ensemble distances:** For each ensemble, we computed pairwise distances between component matrices obtained with different hyperparameter settings. These distances quantify how much the learned components vary due to hyperparameter choices while holding the data fixed.
- **Cross-ensemble distances:** For each hyperparameter setting, we computed pairwise distances between component matrices from different ensemble instances. These distances quantify how much the learned components vary due to data sampling and stochastic initialization while holding hyperparameters fixed.

Figure 36: **Demonstrating MILCCI with nonlinear tanh data transformation** ($\tanh(\mathbf{y}^{(m)}) \approx \sum_{(k) \in C} A_{::L_k^{(m)}} \Phi_{G^{(k)}}^{(m)}$) **and dynamical constraints over the trace evolution** ($\Phi_t^{(m)} \approx \mathbf{W}^{(m)} \Phi_{t-1}^{(m)}$), via recent neural data from (Papadopoulos et al., 2024). (A) Transition networks $\mathbf{W}^{(m)}$ for five example trials from different arousal and stimulus frequency conditions, showing learned interactions between ensembles. (B) Heatmap of all learned transition matrices (each $\mathbf{W}^{(m)}$ flattened) across trials (rows). Scatters on the left indicate trial conditions: arousal level (left side) and stimulation frequency (right side). Weights are normalized by column maximum. (C) Temporal traces for two example ensembles (Φ^1 and Φ^3) across trials and time, organized by arousal level, demonstrating condition-dependent temporal dynamics. Scatters on the left are the same as in panel B. (D) Average temporal traces with std err grouped by arousal level: without frequency conditioning (left), or conditioned on specific stimulus frequencies (three rightmost panels: 4 kHz, 8 kHz, and 32 kHz). (E) Distribution of reconstruction error (relative MSE) across trials. Dashed lines indicate mean and median. (F) Example neuronal ensembles and how they subtly adjust to labels, showing condition-specific loadings across channels. Top panels show components varying with arousal level; bottom panels show components adjusting to stimulus frequency.

2209 If MILCCI is robust to hyperparameter choices, within-ensemble distances should be substantially smaller
2210 than cross-ensemble distances. This would indicate that the learned components are more sensitive to the
2211 underlying data structure than to hyperparameter tuning, demonstrating that the model reliably captures
2212 meaningful patterns across reasonable hyperparameter ranges.
2213
2214 Component matrices (Fig. 37A) show that higher γ_1 values produce sparser components as expected, while
2215 the overall structure remains stable. Within-ensemble distances are consistently lower than cross-ensemble
2216 distances, with a mean ratio of 0.17 (Fig. 37C), indicating that hyperparameter variation introduces less
2217 variability than ensemble stochasticity. The distribution of distances (Fig. 37D) reveals separation between
2218 the two types of variation. Per-ensemble analyses (Fig. 37B,E) show this pattern holds across all individual
2219 ensemble instances, with ratios below 1. These results demonstrate model robustness, as hyperparameter
2220 variation contributes minimally compared to stochastic ensemble variation.
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

Figure 37: **Hyperparameter sensitivity analysis across 800 parameter combinations (App. J.3).** **A:** Example component matrices from two ensembles across all hyperparameter settings, ordered by γ_1 and γ_2 (colorbars at the bottom). For example, higher γ_1 values yield sparser components. **B:** Per-ensemble comparison of within-ensemble (blue) versus cross-ensemble (red) distances. **C:** Overall mean distances showing within-ensemble variation is smaller than cross-ensemble variation. **D:** Distribution of normalized Frobenius distances reveals clear separation between within-ensemble and cross-ensemble variation. **E:** Robustness ratios for each ensemble, all below 1 (dashed line indicates equal variation). **F:** Overall boxplot comparison confirms systematic difference between within-ensemble and cross-ensemble distances across all 10 ensembles.

Figure 38: Post-hoc validation of MILCCI’s discovered voting components (App. E.3). **A:** Leave-one-out analysis showing reconstruction MSE when each state is individually removed, with baseline MSE (dashed line) indicating model performance without omissions. **B:** Individual state contributions to reconstruction, how much each state’s removal degrades performance ($100 * \frac{MSE_{\text{with omission}} - MSE}{MSE}$). **C:** Shapley values measuring each state’s contribution to overall reconstruction. **D:** Permutation tests comparing original reconstruction error (red line) against three null hypotheses: shuffling state assignments between rows (left), replacing data with random noise (middle), and shuffling states within each component dimension (right). All tests show $p < 0.001$. **E:** Per-component permutation results demonstrating that discovered components are individually robust. **F:** State abbreviation key.

2350 **K ETHICS STATEMENT AND LLM USAGE**

2351
2352 Our work does not raise any ethical concerns. Large language models were used only at the word or sentence
2353 level during manuscript writing to improve the language and catch grammar mistakes, with no influence on
2354 the scientific content or analysis.

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396