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ABSTRACT

Many fields collect large-scale temporal data through repeated measurements (‘trials’),
where each trial is labeled with a set of metadata variables spanning several categories.
For example, a trial in a neuroscience study may be linked to a value from category (a):
task difficulty, and category (b): animal choice. A critical challenge in time-series anal-
ysis is to understand how these labels are encoded within the multi-trial observations,
and disentangle the distinct effect of each label entry across categories. Here, we present
MILCCI, a novel data-driven method that i) identifies the interpretable components un-
derlying the data, ii) captures cross-trial variability, and iii) integrates label information
to understand each category’s representation within the data. MILCCI extends a sparse
per-trial decomposition that leverages label similarities within each category to enable
subtle, label-driven cross-trial adjustments in component compositions and to distinguish
the contribution of each category. MILCCI also learns each component’s corresponding
temporal trace, which evolves over time within each trial and varies flexibly across trials.
We demonstrate MILCCI’s performance through both synthetic and real-world examples,
including voting patterns, online page view trends, and neuronal recordings.

1 INTRODUCTION
A key approach to understanding high-dimensional, temporally evolving systems (e.g., the brain) is analyz-
ing time-series data from multiple repeated observations (hereafter ‘trials’). Each trial is typically labeled
with a set of experimental metadata variables. Often, such metadata spans multiple categories; for example,
each trial in neuronal recordings can be labeled with an attribute from category (a) task difficulty, and from
category (b) animal’s choice; each trial in weather measurements can be a time series of temperature over a
day, labeled with (a) city, (b) humidity level, and (c) precipitation. We therefore refer to a trial’s label as the
tuple of its category values, e.g., ‘(easy task, correct choice)’ or ‘(New York, 90% humidity, 1” snow)’. No-
tably, different trials can have similar or distinct labels. When one label entry (e.g., task difficulty) changes
between trials (e.g., easy vs. challenging task), other entries (e.g., correct vs. incorrect choice) may remain
the same or change as well. Given such multi-trial, multi-label (‘multi-way’) data, interpreting how the
observations vary across the label space is complicated by the data’s high dimensionality and trial-to-trial
variability.

A practical approach is to analyze the data in a lower-dimensional latent space (Ma & Zhu, 2013), where
label-related structures become easier to interpret. In this space, the activity can be described by a small
set of components—units that capture the dominant sources of variability across trials and labels. Existing
dimensionality reduction methods for analyzing multi-way data often factorize a single, large tensor into
such components (Harshman, 1970), but they typically overlook trial labels and require constraints on the
data structure (e.g., equal-length trials). An alternative is to apply factorizations separately to each trial,
which can accommodate varying trial structure but sacrifices information about cross-trial relationships.

Hence, there is a need for new flexible yet interpretable methods to (1) discover the underlying structure
within high-dimensional multi-way data, (2) reveal how it captures label information, and (3) disentangle
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the effect of each category. This, in turn, demands leveraging the trial-to-trial relationships captured by the
labels and understanding how these relationships govern the observations.

In this paper, we present MILCCI, a novel method to uncover the underlying structure of multi-way time-
series data and disentangle how multi-category labels are embedded within it, both structurally and tempo-
rally. Our contributions include:
• We introduce MILCCI, a flexible model that discovers interpretable sparse components underlying multi-

way data and reveals how they capture diverse label categories.
• We identify components that capture label-driven variability across trials and track how their activations

evolve within individual trials, thereby encompassing the full spectrum of trial-by-trial variability.
• We validate MILCCI on synthetic data, showing it better recovers true components than other methods.
• We demonstrate MILCCI’s ability to uncover interpretable, meaningful patterns in real data, including the

discovery of voting trends across US states that match actual events, patterns of online activity reflecting
language and device, and neural ensembles supporting decision-making in multi-regional recordings over
a thousand trials.

2 RELATED WORK

The naive approach for analyzing multi-way data is to apply dimensionality reduction individually per trial
or jointly across all trials (by stacking multiple trials into a single matrix). This can be done, e.g., via linear
matrix decomposition such as PCA, ICA (Hyvarinen et al., 2001), NMF (Lee & Seung, 1999)), sparse
factorization for improved interpretability (e.g., SPCA (Zou et al., 2006)), or via non-linear embeddings
(e.g., t-SNE (Maaten & Hinton, 2008)). However, per-trial analysis overlooks cross-trial relationships, while
analyzing all trials with a single mapping ignores trial-to-trial variability in internal structure.

Demixed PCA (dPCA) (Kobak et al., 2016) isolates task-related neural variance into low-dimensional com-
ponents, however it does not address missing data, different trial durations, and varying trial sampling rates,
which hinders alignment across heterogeneous trials. Mudrik et al. (2024) recently introduced a unified
cross-trial model that identifies building blocks encoding label information in multi-array data; however,
their method handles only a single dimension of label change and thus cannot disentangle effects of mul-
tiple categories that change jointly or separately across trials. TDR and its extensions (Mante et al., 2013;
Aoi & Pillow, 2018) capture multi-category labels via per-trial scalar reweighting of fixed matrices, but as-
sume cross-trial variance arises only from linear reweighting of fixed temporal signals and cannot capture
variability across trials sharing the same label.

Tensor Factorization (TF), e.g., PARAFAC (Harshman, 1970) and HOSVD (Lathauwer et al., 2000), goes
beyond individual trials by treating trials as an extra data dimension in a multi-dimensional array. How-
ever, existing TF methods, including those incorporating Gaussian processes (Tillinghast et al., 2020; Xu
et al., 2011; Zhe et al., 2016) or dynamic information (Wang & Zhe, 2022), are not designed to distinguish
label-driven variability from other sources of variability and often produce components that are difficult to
interpret. SliceTCA (Pellegrino et al., 2024) extends tensor factorization by simultaneously demixing neural,
trial, and temporal covariability classes within the same dataset, allowing components to capture structure
across different types of neural variability. However, sliceTCA does not incorporate explicit label informa-
tion, is limited to tensor structure of the data, and does not inherently promote sparse components that subtly
adjust compositions with corresponding freely varying traces (see Sec. H.2). Chen et al. (2015) enable
flexibility in cross-trial representations based on meta-data information, but their assumption of component
orthogonality prevents the model from capturing correlated or partially overlapping patterns, which limits
the representation’s expressive power.

Unlike the methods above, MILCCI addresses (1) identifying the core structure of multi-trial, multi-label
data that vary over sessions, (2) capturing trial-to-trial variability, including within repeated measures of the
same label, (3) disentangling how each category is encoded within the temporal observations.
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Figure 1: Illustration. I: Time-series (e.g., brain recordings) across M trials of varying duration
({T (m)}Mm=1). Each trial m is associated with a label L(m), which is a set of experimental variables span-
ning different categories (e.g., L(m) = (easy task, correct choice)). II: Each category (k)’s components are
represented by a tensor A(k), whose i-th variant (A(k)

::i ) refers to the i-th option of that category (e.g., if the
2-nd option of category (b): correct choice, then A(b)

::2 are correct-choice components). III: Each trial m is
modeled via a sparse factorization, with its sparse components defined by selecting a variant (layer) from
each category’s tensor, based on that trial’s label (green borders, II), and then concatenating all selected
variants horizontally (green borders, III). This forms the loading matrix of that trial. Importantly: 1) trials
with identical labels use identical loadings, 2) components can subtly adjust their composition under shifts
in the respective category values to maintain consistency (e.g., same component under task difficulty 1 vs.
2: ∥A(a)

::1 −A(a)
::2∥F < ϵ), and 3) component temporal traces ({Φ(m)}Mm=1) can vary flexibly across trials.

3 OUR COMPONENT-IDENTIFICATION APPROACH

PROBLEM:
Let Y = {Y (m)}Mm=1 be a set of M time-series (trials), where each Y (m) ∈ RN×T (m)

represents measure-
ments from N channels across T (m) time points (Fig. 1, I). We assume that the identities of the N channels
are fixed across trials, while trial durations, T (m), can vary. Each trial Y (m) is observed under trial-related
metadata variables belonging to categories C := {a, b, . . . , f} (e.g., (a) task difficulty, (b) animal’s choice,
etc.), such that |C| is the number of categories. We define the label of trial m as the tuple L(m) containing
its metadata variables (e.g., L(m) = (task difficulty: easy, choice: correct)), such that each label entry L

(m)
i

is the value of the i-th category in that trial. Notably, different trials may exhibit identical labels, partially
overlapping labels, or entirely distinct labels. We aim to understand how these labels are encoded within the
multi-way observations via their underlying components and their traces.

A parsimonious modeling strategy is to model observations in each trial m (Y (m)) as being linearly gener-
ated by a small set of P basis components that present temporally-evolving activations Φ(m) ∈ RP×T (m)

,
such that Y (m) = AΦ(m)+ ϵ, with ϵ representing e.g., i.i.d. Gaussian noise. Such an approach, common in
traditional matrix- or tensor-factorization, however, assumes that component compositions (A) either vary
freely across trials (if applied separately per trial) or remain fixed across all trials (if applied on a stacked
version of the data). Consequently, they cannot capture cases where components slightly adjust their com-
position under label changes. For example, consider a brain network (i.e., a neuronal ‘component’) that
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recruits a few more neurons during a hard task absent from the network during an easy task. Methods based
on linear scaling of fixed components, if applied independently to trials from each task difficulty, would fail
to recognize the network as identical across these conditions. Alternatively, if applied to all trials stacked,
they would force identical component structures for both easy and difficult tasks, which would misrepresent
the new recruited neurons (e.g., by averaging their membership across the two task difficulties). Moreover,
in such a case, as Y ≈ AΦ, inaccurate estimates of A would distort the estimation of Φ, which will com-
pensate to maintain good data representations. Hence, there is a need for methods that can identify how
labels are encoded, both structurally and temporally, within multi-way multi-label data.

Table 1: Key notation used throughout the paper.
Notation Description

m Trial #
(k)∈ |C| Category
L(m) = (L

(m)
1 , . . . , L

(m)

|C| ) Label of trial m

Y (m) ∈ RN×T (m)

Trial m observations
Φ(m) ∈ RP×T (m)

Trial m traces
G(k) Indices of category (k) traces for cat (k)
A(k) ∈ RN×p(k)×|k| Category (k) components
L(m) = (L

(m)
1 , . . . , L

(m)

|C| ) Label of trial m

Ã(L(m)) ∈ RN×P Trial m loading

OUR MODEL:
MILCCI assumes that each trial’s ob-
servations arise from the decompo-
sition of |C| ∈ Z>0 matrices of
components, {A(k)}(k)∈C , where each
matrix A(k) ∈ RN×p(k)

represents
the components for category (k) ∈ C.
Each entry A

(k)
nj captures channel n’s

membership degree in the j-th com-
ponent (e.g., the extent to which neu-
ron n participates in a neuronal en-
semble), where A

(k)
nj = 0 indicates non-membership (Fig 1, II). We assume that component memberships

are sparse, i.e., each channel n belongs to only a few components. Hence, we place a Laplace prior on each
entry: A(k)

nj ∼ Laplace(0, 1
γ1
), where γ1 is a sparsity-scaling parameter (see Sec. C for details).

Each of the P components also exhibits a time-varying trace within each trial, collectively represented by
the rows of the per-trial traces matrix Φ(m) ∈ RP×T ∼MNP×T (0, σ

2IP , IT ), where σ is a scalar that
controls the prior’s variance and IP and IT are identity matrices of dimensions P and T . In each trial
m = 1, . . . ,M with associated label L(m), we aim to model the observations Y (m) as a decomposition of
the label-driven components weighted by their corresponding traces: Y (m) ≈

∑
(k)∈C A(k)Φ

(m)

G(k):
, where Gk

are the row indices of the traces of category (k)’s components.

Here, however, we depart from the fixed-component assumption underlying the decomposition above, and
instead assume that components can exhibit compositional variants by subtly adjusting their memberships
under label changes. Formally, we posit that each A(k) comprises |k| variants (Fig. 1, II), where |k| equals
the number of unique label options for that category (e.g., A(choice) has |k| = 2 variants for binary choice
tasks). Hence, we generalize the above decomposition by extending each component matrix to a 3D tensor
A(k) ∈ RN×p(k)×|k|, such that A(k)

::i is the i-th variant of A(k). Importantly, different tensors in {A(k)}k∈C

can be associated with distinct numbers of variants (and thus have varying 3rd dimensions), depending on
how many unique values their corresponding category contains (Fig. 1, II: κ options for task difficulty vs. 2
options for choice).

While the variants of each component need not be structurally identical, our model assumes they remain
close to each other in a way that reflects the similarity between their label values (for distinct options ki ̸= ki′

within category k, ∥A(k)
::i − A(k)

::i′∥2F < δ(ki, ki′) for small, category-dependent δ(ki, ki′) ∈ R) to preserve
component identity. Importantly, as the number of components P is limited across trials, the {A(k)} tensors
must learn meaningful synergies between different label combinations rather than provide simple one-to-one
per-trial mappings. This constraint promotes alignment of components across trials and enables revealing
cross-label shared underlying patterns that would otherwise remain obscured.
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The decomposition model is thereby extended to the following label-specific formulation for each trial m:
Y (m) =

∑
(k)∈C

A(k)
::L

(m)
k

Φ
(m)

G(k):
+ ϵ, ϵij

i.i.d.∼ N (0, σ2) (1)

MODEL FITTING PROCEDURE:
Learning the component compositions and their traces directly from {Y (m)} is hindered by the mixing of
all labels’ effects across categories. We address this through a three-stage procedure:
• Stage 1: Pre-computing label similarity graphs. To accommodate both categorical and ordinal labels,

MILCCI includes a pre-computing step that calculates a label similarity graph λ(k) ∈ R|k|×|k| for each
category k (see graph calculation details in App. A.2). These graphs can be integrated into Stage 3 to
ensure that compositional adjustments reflect label-to-label distances for ordinal labels.

• Stage 2: Initialization. We initialize the components and traces following Appendix A.1.

• Stage 3: Iterative optimization. Updating {A(k)}k∈C, {Φ(m)}Mm=1 until convergence as detailed below.

Inferring {A(k)}k∈C: For each unique category (k)’s option ki (e.g., each task difficulty level), we infer the
variant A(k)

::i using all trials observed under ki (M̃ = {m ∈ {1, . . . ,M} | L(m)
k = ki}), regardless of those

trials’ values in other categories (e.g., all trials where difficulty: easy, regardless of choice).

Since each trial m is modeled via a decomposition of components from multiple categories (Eq. 1), to learn
this variant’s (A(k)

::i ) structure, we need to separate its per-trial effect from those of the other categories’
components. Hence, for each m ∈ M̃ , we first calculate the residual matrix Ỹ (m,k), which represents the
difference between Y (m) and its partial reconstruction based on all components excluding A(k)

::i , specifically:
Ỹ (m,k) := Y (m) −

∑
k’̸=k A

(k’)
::L

(m)
k’

Φ
(m)

G(k’):
. We then infer A(k)

::i via LASSO (Tibshirani, 1996):

Â(k)
::i = arg min

A(k)
::i≥0
∥Ỹ (m,k) −A(k)

::iΦ
(m)

G(k):
∥2F + γ1∥A(k)

::i∥1,1 + γ2
∑
i′ ̸=i

λ(k)
i′,i∥A

(k)
::i′ −A(k)

::i∥
2
F , (2)

where A(k)
::i ≥ 0 applies an optional non-negativity constraint on the components, λ(k)

i′,i promotes similarity
among same-category (k) variants (App. A.2), and γ2, γ1 are hyperparameters for cross-label smoothness
and sparsity. Collectively, Equation 2 balances data fidelity (1st term), consistency between correspond-
ing components proportional to their label similarity by λ(k) (2nd), and component sparsity (3rd). Each
component is then normalized to a fixed sum to avoid scaling ambiguity with Φ(m).

Updating {Φ(m)}Mm=1: Since traces vary independently of labels across trials (i.e., unsupervised), they
can be learned per trial m using the label-driven loading matrix of realized components in that trial. This
loading matrix Ã(m) := [A(a)

::L
(m)
1

,A(b)
::L

(m)
2

, . . .] ∈ RN×P is constructed by horizontal concatenation of the

appropriate variants from all categories as defined by the trial’s label L(m) (Fig. 1, III). For each trial
m = 1 . . .M , Φ(m) is then updated by:

Φ̂(m)=arg min
Φ(m)

∥Y (m)−Ã(L(m))Φ(m)∥2F︸ ︷︷ ︸
data fidelity

+γ3

T (m)∑
t=1

∥Φ(m)
:,t −Φ

(m)
:,t−1∥22︸ ︷︷ ︸

temporal smoothness

+γ4 ∥(C⊙ (1−IP ))⊙D∥1,1︸ ︷︷ ︸
within-trial trace decorrelation

, (3)

where γ3, γ4 are hyperparameters, ⊙ is element-wise multiplication, C:=Gram(Φ(m)), and D∈Rp×p is
for normalization (Dj,j′:=∥Φ(m)

:j ∥
−1
2 ∥Φ

(m)
:j′ ∥

−1
2 ). Eq. 3 overall promotes data fidelity (1st term), smoothness

(2nd), and trace decorrelations (3rd). See algorithm, notations, and illustration in Alg.1, Tab.1, and Fig. 1.

4 EXPERIMENTS

We validate MILCCI on synthetic data and demonstrate its components on four real-world datasets.

5
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Figure 2: MILCCI Recovers True Representations in Synthetic Data. A&B: Generated synthetic data
(full data in Fig. 6). Ground-truth components (examples in panel A) vary slightly across labels but re-
main fixed across same-label trials (rows). Ground-truth traces vary across trials (B, colored by difficulty).
C&D: Identified vs. ground-truth components (top) and time-traces (bottom) for random trials. E: His-
togram of correlations between identified components and traces vs. their true counterparts. F&G: Com-
parison of MILCCI to other methods (limited to the same 4-component dimension) based on traces (random
trial, F) and reconstruction performance (G, baselines details in Sec. H).

MILCCI Recovers True Components from Synthetic Data: We generated synthetic data arising from
P = 4 sparse components with time-varying traces (T = 500 time points; M = 250 trials). We defined two
categories: (a) ‘task difficulty’ (5 options), and (b) ‘choice’ (2 options), such that p(a) = p(b) = 2 ensembles
adjust with changes in (a) and (b) (Fig. 6B). Each trace was generated as a Gaussian process with parameters
varying across components and trials: some reflect task difficulty, some choice, and some vary each trial
(Fig. 2, B, Fig. 6, A, App. D). We ran MILCCI on this data, comparing to (1) Tucker (Tucker, 1966), (2)
PARAFAC (Harshman, 1970), (3) non-negative PARAFAC, (4) SVD, (5) SiBBlInGS (Mudrik et al., 2024),
and (6) sliceTCA (Pellegrino et al., 2024); all using the same P = 4 components (Fig. 2, F,G, Sec.H). Since
TF is invariant to component permutation, we used linear sum assignment to align the components of each
method with the ground truth.

MILCCI recovered the true components (Fig. 2, C) and traces (Fig. 2, D), with high correlations to the
ground truth for both (Fig. 2, E). Compared to other methods, the representation identified by MILCCI was
most similar to the ground truth (Fig. 2, F,G, green). SiBBlInGS also performs well (Fig. 2F) but produces
blurred traces compared to the ground truth. Correlation of the reconstructed components with the ground
truth (Fig. 2G) is higher for MILCCI than the baselines, while SiBBlInGS achieves a similar correlation,
MILCCI provides greater interpretability by distinguishing the contribution of each category.

MILCCI Reveals State-Level Voting Patterns by Party and Office: We next tested MILCCI on voting
data consist of 50 US states × 23 years (sampling every 2 or 4 years) × party (e.g., Democrat, Republican,
Libertarian; see Tab. 3)× office (Presidency, Senate, House) that we extracted from (Data & Lab, 2017a;b;c)
and normalized for each state (App. E). Some states lack data for certain years or office due to differing
election schedules (Fig. 7).

We applied MILCCI using P = 8 components, with categories (a) party, and (b) office (p(k) = 4 com-
ponents each). MILCCI discovers components capturing state-specific voting patterns that vary by office,
party, and time. For example, component A(party)

1 (Fig. 3, B.1) highlights Montana (MT) and Pennsylvania
(PA) having increased membership in the ‘Other’ category, primarily driven by the Independent Party (MT,
Fig. 15, right) and the Constitution Party (PA, Fig. 15, left). This aligns with MT’s historical emphasis
on individualism (Kitayama et al., 2010) and PA hosting the Constitution Party headquarters. The same
component identifies Oregon’s increased Libertarian membership, matching the 2001 law that eased ballot

6
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Figure 3: Voting Results: Identified exam-
ple components (A) and traces (B, Mean
and 80% confidence interval). See full in
Fig. 7.

access for minor parties (Oregon Elections Division, n.d.) and reflecting that the Libertarian Party of Oregon
was among the earliest state branches. Notably, its trace (Φ:G(party)

1
, Fig. 3, B.1, top-left) shows overlapping

Democrat–Republican activations diverging ∼2004, with Democrat activity rising and Republican activity
decreasing, reflecting long-term partisan realignment driven by national political shifts (e.g., Iraq War 2003).

In component A(party)
:3 (Fig. 3, B.1, right), MILCCI groups AK, OK, AL, AZ, MS, MT together. This group-

ing matches the legislative similarities between these states, e.g., strict voter ID laws (National Conference
of State Legislatures, 2025), demonstrating MILCCI’s effectiveness in recovering underlying trends directly
from observations. Temporally, its trace Φ:G(party)

3
(Fig. 3, B, bottom-left) shows opposing trends between

Democrat and Republican activations, with Republican activation rising, and Libertarian activity emerging
around 2016. This trend reflects a rise in Republican votes, a decline in Democratic votes, and a possible
shift of some Democratic support toward the Libertarian party in these states. These and other patterns iden-
tified by MILCCI (App. E.2) demonstrate its ability to uncover state–party–office–dependent patterns. No-
tably, components from other TF methods (Fig. 12,9) are dense (PARAFAC), include negative values (SVD,
PARAFAC, Tucker), or, in SiBBlInGS, fail to disentangle party from office, which hinder interpretability
(Fig. 11). Moreover, due to their restrictive tensor structure, PARAFAC and Tucker do not capture compo-
sitional adjustments and cannot flexibly vary their traces to capture trial-to-trial temporal variability.

MILCCI Finds Wikipedia Page Clusters Across Devices and Languages: Next, we extracted Wikipedia
Pageview counts (Meta, 2022) (Oct. 20’–24’, T =1482, daily) across three categories: (a) agent: user/spider
(i.e., web crawler), (b) platform: desktop/web/app, and (c) language: en/ar/es/fr/he/hi/zh. Each trial records
the number of Pageviews under a label (e.g., Y (m): Pageviews over time in English, via desktop, by a hu-
man); data pre-processing in App. F.1. We ran MILCCI on the data with pj = 4 components per category,
and identified components that cluster related Wiki-pages together and vary across categories (Fig. 4, A),
with some pages (e.g., unsupervised learning) appearing in more than one component, emphasizing MIL-
CCI’s ability to capture multi-meaning terms.

Particularly, we identified, e.g., A(agent)
1 grouping Learning Theory (in Psychology) pages (Fig. 4, A, red

arrows, list in App. F.2); A(agent)
2 grouping social-media pages (purple arrows); and component A(platform)

4
grouping computer science basics (blue arrows). Interesting patterns emerge when exploring how compo-
nents composition adjust to e.g., user↔spider and desktop↔web↔app.

For A(agent)
1 (Learning theory in Psychology), MILCCI finds small differences across agents (spider vs. user,

Fig. 4, A, left). For instance, the Bobo Doll Experiment’s Wiki-page (a psychological experiment on social
learning theory) appears under ‘spider’ but not ‘user’. This matches it being less familiar to the average
person than other psychology terms in the cluster, while spiders are linked to it through the actual Wikipedia

7
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Figure 4: Identified Wiki page-
view example components (A)
and traces averaged by differ-
ent categories (B).

links connecting this page to other related terms. Accordingly, other Wiki-pages, like classical and operant
conditioning, which are foundations in psychology, show higher membership magnitudes in user. ‘Unsu-
pervised learning’ and ‘embedding’ also show small membership in this component, higher in ‘user’ than
‘spider’. Interestingly, these pages refer to CS terms (not psychology), but since they also carry meaning in
psychological learning, the higher ‘user’ membership compared to ‘spider’ matches human behavior: users
enter the page but leave upon realizing the term refers to a different field, whereas spiders follow predictable
navigation. These findings highlight MILCCI’s ability to reveal distinct human vs. spider behaviors within
the same component, and also underscore the importance of allowing compositional adjustments to capture
nuanced trends, unlike other methods (Fig. 22). This component’s trace (Φ:G(agent)

1 :, Fig. 4, B top-left) captures
its fluctuations and higher activation in English compared to other languages. This aligns with professional
terms being more elaborate in English, often using jargon not fully defined/used in other languages, and
with non-English native speakers possibly preferring to read professional material in English (Miquel-Ribé
& Laniado, 2018).

The social-media component A(agent)
2 shows small structural adjustments user↔spider: ‘Mark Zuckerberg’

is higher in spider, while ’social media’ is higher in user, possibly reflecting reduced human interest in
figures versus common terms like social media. Its trace (Φ:G(agent)

2 :) rises until a peak in Mar. 2024 in both
English and non-English (Fig. 4 B, bottom-left), matching the general increase in social media and possibly
related to, e.g., Florida’s Social Media Ban in Mar. 2024, which was widely noted and is mentioned on the
corresponding ‘social media’ Wiki-page captured by this component.

A(platform)
4 (computer science basic terms) captures membership adjustments to platform, with, e.g., com-

puter scientist (a short Wikipedia page without math/graphs) showing higher membership under app/web
compared to under desktop. This contrasts with, e.g., unsupervised learning, whose page is more complex
(includes math and graphs) and shows lower membership in the app compared to the other platforms. This
may match users’ preference to read ‘easy’ terms on the app and more complex terms on desktop, and shows
MILCCI’s ability to reveal interpretable processing differences across platforms. This component’s temporal
trace (Φ:G(platform)

4
) shows higher activity in English (Fig. 17), with access dominated by desktop and mobile

web (Fig. 4, B, bottom-right). The temporal trace is mostly driven by users rather than spiders (Fig. 4, B,
top-right); the user trace decreases over time, aligning with these terms being basic (‘old’) in CS (compared
to newer trends, like LLMs). This highlights MILCCI’s power in discovering platform-specific engagements
and behavioral fingerprints. Some more interesting patterns include, e.g., A(platform)

:2 that captures terms re-
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lated to Cambridge Analytica; its trace peaks around 2020, mainly in English, and decreases since, aligning
with the timeline of this case. See Figs. 17, 20, 19, 21, 22 for comparisons and full traces.

Figure 5: MILCCI identi-
fies meaningful neuronal
ensembles in real-world
brain data. A: Experimental
setting (from Angelaki et al.
(2025)). B: Traces (all 1011
trials) sorted horizontally by
trial correctness (left panel)
and p(left) (right panel). C:
Average within-trial values
of exemplary traces reveal
varying degrees of temporal
drifts over trials. D: En-
sembles identified (example
trial). E: Differences in en-
semble composition across
trials. F: Trial-adjusted
ensemble compositions over
first 250 trials.

MILCCI Finds Neural Ensembles underlying Multi-Region Brain Data: Finally, we apply MILCCI
to neuronal activity patterns from multi-regional, single-cell-resolution recordings of mice in a decision-
making task (Laboratory et al. (2025); Angelaki et al. (2025), App. G). In this experiment mice reported
the location of a visual grating with varying contrast by turning a wheel left or right (Fig. 5, A). We used
data from a random session, extracted the available spike time data, and estimated firing rates by applying
a Gaussian convolution. We removed inactive neurons, and split trials into trial start and end, yielding
N = 270 neurons over 137 time points across M = 1011 trials (example processed trials in Fig. 30).
We defined p(k) = 2 components (‘neuronal ensembles’) per category: (a) trial number, (b) prior side,
(c) stimulus side, and (d) fixed components that are fixed across trials. This setup (1) enables distinguishing
representational drift (Rule et al., 2019; Driscoll et al., 2022) potentially related to learning or attention,
from task variables, and (2) demonstrates MILCCI’s ability to simultaneously support both non-adjusting
and adjusting components, across both categorical and ordinal categories.

We found neuronal ensembles selective for diverse task variables (Fig. 5). For example, Φ(m)

:G(a)
1

is tuned to
choice correctness, with activity surging during stimulus presentation (Fig. 5, B left) under correct choice
only. Interestingly, MILCCI also found an ensemble sensitive to incorrect decisions, activated just after
stimulus presentation (Φ:G(b)

2 :, Fig. 31). Notably, these components can provide insight as to how neuronal
ensembles integrate stimulus information to support correct decision-making, and to relate these traces to
the specific neurons involved (Fig. 33). In another example, Φ(m)

:G(b)
1 :

is mostly active during trials with a

random-prior (i.e., p(left) = 0.5), throughout before, during, and after the stimulus, and is largely inactive
in trials where the prior favors one side (Fig. 5, B right). This highlights MILCCI’s efficiency in suggesting
involvement of priors in decision-making, and its capability exposing similarities of similar-condition traces.

Moreover, MILCCI’s ability to isolate components with characteristics that track temporal drifts (Φ(m)

:G(c)
1 ,:

,
Fig. 5, C brown; 32) reveals how neuronal coding evolves over trials, which can be the result of learning,
attention, or adaptation. MILCCI reveals how ensemble compositions across regions (Fig. 5, D; colors on
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the left mark brain regions of neurons) capture distinct local structures. For example, A(c)
:2 captures many

neurons in the Ventral Medial nucleus of the thalamus (VM, orange arrow in Fig. 5D), suggesting it may
be involved in arousal regulation and motor coordination. We can also identify interesting patterns via the
ensemble compositions (Fig. 5, D), and how they change between trials (e.g., between two example trials
with differing stimulus sides; Fig. 5, E.1, zoom-in on changes in Fig. 5, E.2). These reveal patterns in
ensemble composition adjustments: the first ensemble of A(a) (Fig. 5, E.2, left column) adjusts minimally,
while the second ensemble exhibits distributed adjustments across areas. In stimulus-adjusting ensembles
(5-th and 6-th columns), adjustments occur with localization around VM (e.g., A(c)

:2 , Fig. 5), suggesting an
adaptive VM composition.

5 DISCUSSION, LIMITATIONS, AND FUTURE STEPS:
We presented MILCCI, a data-driven method for analyzing multi-trial, multi-label time series. MILCCI
identifies interpretable components underlying the data, captures cross-trial relationships, and integrates la-
bel information, while accounting for trial-to-trial variability beyond label effects. MILCCI allows compo-
nents to adjust their composition with label changes, which uncovers similarities that could remain hidden
under fixed-component factorizations. Unlike other approaches, MILCCI maintains interpretability while
modeling cross-trial variability, integrating labels, and disentangling label-driven from non-label-driven
sources of variation. Another strength of MILCCI is its ability to simultaneously handle multiple label
types within a single dataset, including categorical, non-continuous ordinal, continuous, and trial-varying
labels (e.g., as in the IBL experiment). We validated MILCCI on synthetic data, where it outperformed
alternatives, and demonstrated its effectiveness on real-world data: (1) exposing voting patterns aligned
with real events; (2) recovering interpretable Wikipedia view components with memberships varying across
languages, platforms, and agents; and (3) revealing neuronal ensembles adapting across trials and task vari-
ables. Notably, MILCCI’s architecture (low-rank, sparse components) is robust to noise by constraining the
model to learn patterns that are reused and generalize across trials under varying label combinations.Another
MILCCI advantage is its applicability to diverse tensor decompositions beyond temporal data, though we
focused on time series here for clarity.

One potential concern is the scaling ambiguity between components and traces, which MILCCI addresses
by normalizing components after each iteration while allowing traces to flexibly vary across trials to cap-
ture trial-specific amplitudes. Although component dimension per category is a hyperparameter, MILCCI
naturally handles this, as sparsity drives redundant components to zero, which mitigates hyperparameter
sensitivity. This first MILCCI version assumes a linear decomposition within each trial for interpretability
and consistency with other multi-way decompositions. Capturing nonlinear structures beyond preprocessing
transformations (e.g., tanh applied pre-fitting, Appendix J.1) is an exciting future direction. This could be
achieved through a kernelized version of MILCCI that operates in implicit feature spaces, or by directly
modeling nonlinear relationships using gradient-based optimization methods. For large datasets, MILCCI,
similarly to any iterative optimization method, may take longer, which can be addressed via parallel opti-
mization or batch processing. MILCCI’s modular design supports substitution of our current MSE metric
(reflecting normal distribution assumptions) with alternative distributions or cost metrics, broadening its ap-
plicability in future extensions . Another exciting direction for future work is to extend the non-directional
components into directional ones that capture interactions between member channels, for example, by intro-
ducing a dynamics prior during inference (via e.g.,Chen et al. (2024); Linderman et al. (2016); Mudrik et al.
(2025)).
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Appendix
A ADDITIONAL FITTING DETAILS:

A.1 INITIALIZATION:

We initialize the components and traces using dictionary learning Mairal et al. (2009) with sparsity on the
components, using Sklearn.decomposition (Pedregosa et al., 2011) DictionaryLearning. Within the model,
sparsity is applied through PyLops Ravasi & Vasconcelos (2020) SPGL1’s solver Van Den Berg & Friedlan-
der (2009).

A.2 DETAILS ABOUT STATE SIMILARITY GRAPH CALCULATION:

MILCCI allows disentangling of categorical, continuous, and non-continuous ordinal categories. It further
supports allowing the components to adjust across trials with label change in a way that captures the degree
of similarity between the corresponding labels for each category. For example, if we assume neuronal
ensembles gradually present compositional shifts over the course of learning, this requires capturing the
gradual / ordinal order of trials. Another example is when a certain category represents a continuous variable
(e.g., x-position of a stimulus), where again we would like to capture label relationships (i.e., distance
between labels).

Hence, MILCCI augments the model with a set of label-driven graphs that are pre-calculated before the be-
ginning of the iterative optimization process and are reused across iterations for smoother cross-component
regularization that maintains label similarity. For each category (k), we build the graph λ(k) ∈ R#k×#k,
where #k is the number of unique options observed under category (k) (e.g., if category “choice” can be
correct / incorrect, then #k=2). This graph captures the degree of similarity between its possible values.

For categorical labels, we use a constant value for the graph (e.g., λ(k)
i,i′ = 1 ∀i, i′).

For ordinal labels: We use a Gaussian kernel λ(k)
i,i′ = e

∥ki−k
i′ ∥

2
2

2σ2 ∀i, i′, where ki and ki′ are the i-th and i′-th
option of category (k) (e.g., task difficulty 1 vs. 5). Notably, MILCCI supports integration of diverse graph
calculation distance metrics, so one can easily use a different distance metric (not Gaussian) if they assume
similarities between labels are captured differently.

After the graph calculation, we recommend normalizing the graph by the per-row absolute sum of 1 to ensure
that different labels are regularized to the same degree:

λ(k)
i,: ←

λ(k)
i,:

∥λ(k)
i,:∥1

∀i, i′.

An i-th row of zeros in λ(k) means that the i-th option of category (k) is not regularized to be consistent with
the others. This can be used if there is some intention to create completely trial-varying components that
vary flexibly between trials, which is another feature MILCCI offers.

A.3 ABOUT SPARSITY AND CONSISTENCY HYPERPARAMETERS

Like most machine learning models, MILCCI includes hyperparameters that control model behavior, though
notably fewer than complex models such as deep networks. Two key hyperparameters in MILCCI control
component behavior: γ1 (sparsity) and γ2 (cross-label consistency).
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γ1 controls the ℓ1 regularization on component memberships (Eq. 2). Higher γ1 values produce sparser
components with fewer non-zero entries, which is crucial for interpretability but potentially missing weaker
relationships. Lower γ1 values allow denser components that capture more subtle patterns but may include
noise. γ2 promotes similarity between component variants within the same category via ℓ2 regularization
on their distances (Eq. 2). Higher γ2 values force variants to remain nearly identical, losing the ability to
capture label-driven adjustments. Lower γ2 values allow more flexibility but risk components diverging too
much across labels.

We recommend selecting γ1 by examining component sparsity and interpretability (e.g., inspecting the num-
ber of non-zero entries and their meaningfulness), and by testing information criteria (e.g., AIC, BIC) post
training. For γ2, we recommend analyzing the distribution of pairwise distances between same-category
component variants to ensure they remain similar yet allow meaningful adjustments. When domain knowl-
edge is available (e.g., in neuroscience, we may have an estimate of how many neurons form a group based
on the amount of data we recorded), this can further guide hyperparameter selection. In practice, we found
MILCCI’s performance relatively robust across reasonable hyperparameter ranges: we tested 20 values for
γ1 ∈ [0.002, 0.5] and 20 values for γ2 ∈ [0.0002, 0.5] (800 total combinations, see Sec. J.3 and Fig. 37).

B RUNNING DETAILS

B.1 DATA AND CODE AVAILABILITY

All real-world data used in this paper are publicly available online, with sources cited in the corresponding
sections. Code for the model implementation and synthetic data generation will be made available upon
publication.

B.2 VERSIONS

We trained the model using Python 3.10.4 (conda-forge) with matplotlib 3.8.2, scikit-learn 1.0.2, seaborn
0.11.2, numpy 1.23.5, pandas 1.5.0, PyLops 1.18.2, and SPGL1 0.0.2.

C ELASTIC NET PRIOR OF COMPONENTS

In Section 3, we specified that the components follow a Laplace distribution:

A(k)
nj ∼ Laplace(0,

1

γ1
) =

γ1
2

exp
(
−γ1|A(k)

nj |
)

When we later extended the model to multiple component variants for each category k with constrained
ℓ2 distances between them (i.e., ∥A(k)

n:i − A(k)
n:i′∥2 < ϵ), we essentially employ a hierarchical Bayesian

framework. The variant-specific components A(k)
n:i thus follow an elastic net prior:

p(A) ∝ exp

−γ1 ∑
k

∑
n,j

|A(k)
nj | − γ2

∑
i′ ̸=i

λ(k)
i′,i∥A

(k)
::i′ −A(k)

::i∥
2
2


The first term corresponds to the ℓ1 penalty inherited from the Laplace prior, promoting sparsity. The
second term introduces an ℓ2 penalty on variant differences, encouraging similarity within variant groups.
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Figure 6: Generated Synthetic Data. A: Generated traces, colored by difficulty (top) or choice (bottom).
B: Generated components. Each subplot shows one component and how it varies over the labels of each
category (changes across rows). In other words, each subplot corresponds to A(k)

:j: for some component j. C:
Random example generated synthetic trials {Y (m)}.

This combination yields elastic net regularization, emerging naturally from the hierarchical structure where
variants share statistical strength through their common base component.

Algorithm 1 MILCCI Algorithm

1: Input: Observed trial data {Y (m)}Mm=1, with associate multi-category labels {L(m)}Mm=1.
2: Pre-calculate: Label-similarity graph λ(k) for each category (k) (App. A.2).
3: Initialize: Sparse components {A(k)}k∈Categories and traces {Φ(m)}Mm=1 ▷ App. A.1
4: while not converged do
5: for each category (k) do
6: for each label value ki do
7: Compute residuals for trials with label ki
8: Solve for A(k)

::i with cross-label consistency and sparsity via LASSO ▷ equation 2

9: Normalize each component to sum to 1 (A(k)
:ri ←

A(k)
:ri

∥A(k)
:ri∥1

) ▷ to prevent scaling ambiguity
with Φ

10: for each trial m with label ℓ do
11: Build the stacked component matrix Ã(ℓ) by selecting a variant from each A(k).
12: Update traces Φ(m) to minimize data fidelity, smoothness and de-correlation ▷ equation 3
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Figure 7: Voting Data: ({Y (m)}Mm=1) Show Diverse Data Structures
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Figure 8: Components and Traces Identified by SliceTCA on synthetic data. A Results for configura-
tion 1 (Sec. H.2), where A.1 represents the components and A.2 represents the corresponding traces from
sliceTCA’s A matrix. B Results for sliceTCA’s configuration 2. B.1 Identified components for 3 example
trials; each subplot represents all components of one trial. B.2 Shows how identified components vary over
trials. B.1 & B.2 together show that sliceTCA identifies components that are very close to each other, with
cross-component variability similar to the variability of the same component over trials. This suggests that
components are not necessarily matched over trials in terms of identity, as seen in panel C which shows
the correlation distribution between same components and different components. B.3 The temporal traces
obtained by sliceTCA for configuration 2, shared across all trials.
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Figure 9: Voting Experiment. com-
parison to baselines in reconstruction
and information criteria. Compari-
son to Tucker, PARAFAC, and SVD
in terms of reconstruction and in-
formation criteria, including 1) log-
likelihood of the observations given
the identified components, and 2)
information criteria that balance re-
construction and model complexity:
AIC (Akaike Information Criterion),
BIC (Bayesian Information Crite-
rion), and HQC (Hannan-Quinn Cri-
terion). Lower values indicate better
performance.

D ADDITIONAL INFORMATION—SYNTHETIC EXPERIMENT

We generated synthetic datasets with 80 channels, 4 components (2 categories, × 2 components adjusting
per category), 500 time points per trial, and 250 trials. Each trial received one label per axis: category (a)
(difficulty)’s labels were sampled from the set {I, II, III,VI,V} (5 levels) and category (b) (choice) labels
from {I, II} (2 levels), yielding up to 10 unique label combinations. Component-to-neuron maps were
initialized for the reference trial with values in [0.5, 1.0], then updated across label variants according to
a trial-similarity graph calculated based on trial labels and thresholded at the 60th percentile to enforce
sparsity on the component compositions.

Temporal activity for each label pair was drawn from a Gaussian-process prior with an RBF kernel scaled by
a per-sample amplitude: the amplitude was drawn per sample in ≈ [0.2, 1.533], and the kernel length scale
was drawn per sample in [0.05, 0.2] in normalized time units (0–1), which corresponds roughly to 25–100
time points given 500 samples per trial. A white-noise term of 1 × 10−8 was included in the kernel. For
each label we drew one GP sample and then generated multiple similar trial traces by adding multivariate-
normal perturbations with covariance scaled by σ2, where σ = 0.15 (σ2 = 0.0225), so trials that share a
label exhibit correlated dynamics.

One component was designated as a random (trial-varying) component. Component activations were shifted
to be nonnegative and rescaled so their 98th percentile matched the 98th percentile of the component maps.
The observed data were produced by multiplying each trial’s component-to-neuron map by that trial’s tem-
poral activations, yielding data of shape (neurons × time × trials) = (80 × 500 × 250).
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Figure 10: Identified Ensembles for Voting Experiment.
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Figure 11: Comparison of components identified by MILCCI and SiBBlInGS for three example labels un-
der the same parameters and seed. MILCCI components were duplicated to match the x-tick labels of SiB-
BlInGS. SiBBlInGS shows uninterpretable changes across every label, even when parts are shared, whereas
MILCCI disentangles them.

21



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Figure 12: Voting Experiment Baseline Comparison. Components identified by the following baselines:
1) Tucker Decomposition (HOSVD), 2) PARAFAC, 3) SiBBlInGS (for a single random label entry: (Demo-
crat, President)), 4) SVD (on all concatenated trials).

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Figure 13: Voting Experiment. Traces Identified by MILCCI compared to the other baselines for example
random trial.

Figure 14: Voting Traces. Top: Colored by Party. Bottom: Colored by Office.

Figure 15: Top “Other” parties instance counts for Montana and Pennsylvania
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Figure 16: Voting experiment: SliceTCA comparison. A.1 Components from the fixed component
case (i.e., from u). A.2 Traces from the fixed component case (i.e., from A). B.1 Components from the
varying component case (i.e., B). Each subplot represents a trial and columns show its different components.
B.2 Components from the varying component case (i.e., v). B.3 Components from the varying component
case. Each subplot represents one component and columns represent trials. We can observe that there is no
consistency within the same component (B.3) across trials compared to across components.
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Figure 17: Wikipedia Page View Experiment. Traces colored by Language (Arabic, English, Espagnole,
French, Hebrew, Hindi, Chinese) Across All Ensembles.

Figure 18: Wikipedia Page View Data, example Trials
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Figure 19: Wikipedia Page View Experiment. Traces colored by Platform (desktop, mobile web, mobile
app) Across All Ensembles

Figure 20: Wikipedia Page View Experiment. Traces colored by agent (Spider vs. User) Across All
Ensembles

26



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Figure 21: Components identified for Wikipedia Page-view Experiment.
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Figure 22: Wikipedia Experiment Compared to SVD. Components identified by SVD (compositions on
the left, example trial traces on the right).
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Figure 23: Components Identified by Tucker (A.1, A,2) and PARAFAC (2.1, B.2) for the Wikipedia Exper-
iment, see App. H

Figure 24: Information Criteria for Wikipedia Experiment, MILCCI vs. baselines. Notably, PARAFAC
and Tucker did not converge of 12 components due to SVD instability. Notably, PARAFAC and Tucker
encountered instability issues, and hence the results presented for Tucker and PARAFAC here are for rank 9
and added noise with σ = 0.1 (Tucker) and σ = 0.2 (PARAFAC).
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Figure 25: Wikipedia Components, MILCCI vs. SiBBlInGS. SiBBlInGS components display composi-
tional changes scattered across labels, rather than the category-specific adjustments captured by MILCCI.
Note: MILCCI components are shown here with duplicate columns to align with SiBBlInGS components
for visualization.
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Abbreviation State Abbreviation State
AL ALABAMA AK ALASKA
AZ ARIZONA AR ARKANSAS
CA CALIFORNIA CO COLORADO
CT CONNECTICUT DE DELAWARE
DC DISTRICT OF COLUMBIA FL FLORIDA
GA GEORGIA HI HAWAII
ID IDAHO IL ILLINOIS
IN INDIANA IA IOWA
KS KANSAS KY KENTUCKY
LA LOUISIANA ME MAINE
MD MARYLAND MA MASSACHUSETTS
MI MICHIGAN MN MINNESOTA
MS MISSISSIPPI MO MISSOURI
MT MONTANA NE NEBRASKA
NV NEVADA NH NEW HAMPSHIRE
NJ NEW JERSEY NM NEW MEXICO
NY NEW YORK NC NORTH CAROLINA
ND NORTH DAKOTA OH OHIO
OK OKLAHOMA OR OREGON
PA PENNSYLVANIA RI RHODE ISLAND
SC SOUTH CAROLINA SD SOUTH DAKOTA
TN TENNESSEE TX TEXAS
UT UTAH VT VERMONT
VA VIRGINIA WA WASHINGTON
WV WEST VIRGINIA WI WISCONSIN
WY WYOMING

Table 2: List of US States and Their Abbreviations

Figure 26: Correlation analysis of Wikipedia dataset reveals moderate correlations that do not explain base-
line convergence failures. (A) Channel (term-term) correlation matrix shows moderate correlations with
maximum of 0.711 and good condition number (6.2e+01). (B) Distribution of all pairwise correlations
demonstrates that most correlations are moderate, with no high correlations (>0.8). (C) Trial-trial corre-
lation matrix shows similar moderate correlation patterns (max 0.807). The data has full rank (48/48) and
reasonable correlation structure, indicating that baseline convergence failures (Tucker, PARAFAC) stem
from algorithmic limitations rather than problematic data characteristics.
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Table 3: Parties Detailed vs. Simplified Versions. ‘Other’ includes only parties with at least 10 instances
over all years & states.

Democrat Republican Other Libertarian
Democrat; Democratic-
Farmer-Labor;
Democratic-
Nonpartisan League;
Democratic-Npl;
Democrat (Not Identi-
fied On Ballot)

Republican Prohibition; Inde-
pendent; American
Independent; U.S. La-
bor; Socialist Workers;
American; Conserva-
tive; Socialist Labor;
Independent Amer-
ican; Constitution;
Socialist; Liberty
Union; Statesman;
Citizens; New Al-
liance; Workers World;
Workers League;
Independence; Pop-
ulist; Nominated By
Petition; Grassroots;
No Party Affiliation;
Green; Natural Law;
Unaffiliated; Other;
Working Families; Al-
liance; Non-Affiliated;
Constitution Party;
American Independent
Party; Communist
Party Use; Peace &
Freedom; Taxpayers
Party; Reform Party;
U.S. Taxpayers Party;
Socialism And Liber-
ation Party; American
Delta Party; American
Solidarity Party; Party
For Socialism And
Liberation; Becoming
One Nation

Libertarian
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Figure 27: Wikipedia experiment: SliceTCA comparison. Components equivalent to MILCCI’s were
extracted from SliceTCA’s configuration 1 (see Sec. H.2), i.e., components extracted from sliceTCA’s u
vector (A.1) and temporal traces from sliceTCA’s A matrix (A.2). For the second configuration (B panels),
components (MILCCI’s A) were extracted from SliceTCA’s C (B.1) and traces from SliceTCA’s v (B.2).
See details in Section H.2.
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Figure 28: IBL experiment: SliceTCA components. A: sliceTCA’s configuration 1 (see Sec. H.2). A.1:
Components from the fixed component case (i.e., from sliceTCA’s u). A.2: Traces from the fixed component
case (i.e., from sliceTCA’s A).
B: sliceTCA’s configuration 2: B.1: Components from the varying component case. B.2: Components
showing how they vary over labels (example: component 2). B.3: Traces from the sliceTCA’s v vector. See
details in Section H.2.
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Figure 29: Distribution of distances between component pairs. Comparison of distances between same
components (black) versus different component pairs across three datasets and two methods, presented for
sliceTCA configuration 2 that allow components change (Sec. H.2). A Wiki dataset, B Voting dataset, C
IBL dataset. Left column shows MILCCI results, right column shows sliceTCA results. Black bars represent
distances between the same component across different conditions (m ̸= m′; j = j′), orange bars represent
distances between different components in the same condition (m = m′; j ̸= j′), and green bars represent
distances between different components in different conditions (m ̸= m′; j ̸= j′).
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Figure 30: IBL data following our pre-processing steps.

Figure 31: Traces of Φ:G(b)
2 : across trials, separated by decision correctness. Solid pink: stimulus on. Dashed

pink: stimulus off. The stimulus appears for a median duration of 1.45 s across trials.

Figure 32: Φ(c)
1 presents an increasing temporal drift over trials.
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Figure 33: Components identified by MILCCI in the IBL experiment. A: Example ensemble (with its
trace discussed in the main text) and its adjustments across trials. B: Example ensemble matrices recon-
structed for three random trials. Each subplot shows all ensembles present in that trial under the unique set
of labels indicated.
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Figure 34: IBL Neuronal Ensembles
Components Identified by Base-
lines.
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E ADDITIONAL INFORMATION—VOTING EXPERIMENT

E.1 VOTING DATA PRE-PROCESSING

Data were acquired from Data & Lab (2017a;b;c), which included vote information for presidential, senate,
and house elections in 51 states, including Washington, DC. The datasets cover the years 1976 to 2020 for
presidential and senate elections, and 1976 to 2022 for house elections. For our analysis, we used the range
1976 to 2020 to ensure that all office types were included, resulting in 23 time points for house and senate,
and 12 time points for presidential elections. For each year and each state, we took the total number of
votes received by each party category (democrat, libertarian, republican, other) and divided each by the total
number of votes cast in that state for that year’s election. We excluded special elections. We designed the
model to capture two following categories: 1) party (4 options), and 2) office (3 options). We ran MILCCI
with p(k) = 4 components for each category, that can structurally adjust per class, resulting in p = 8 total
components. Due to the positive-only nature of the data, we applied a non-negativity constraint on both the
unit-to-component memberships and the temporal traces.

E.2 ADDITIONAL FINDINGS—VOTING DATA

Some more interesting voting patterns, beyond these discussed in the main text, can be found in Figs. 14
and 10.

In component A(party)
4 , Washington DC appears as its own distinct cluster. This likely reflects its highly

unique political profile as the nation’s capital, overwhelmingly Democratic, with very high voter turnout,
which differs significantly from other states. In A(office)

2 (i.e., the 6-th component overall), which unlike
previous components changes its composition depending on the office, West Virginia (WV) is included for
House and Senate voting but excluded for the Presidency. This component reflects strong Democratic dom-
inance in those legislative elections. The distinction for WV may align with its historical voting pattern of
supporting Democrats more in local and state-level offices (House and Senate), while trending more Repub-
lican in presidential elections, reflecting a split in voter behavior based on the office. When exploring all
traces colored by party (Fig. 14 top), Democrat vs. Republican is the dominant axis, consistently driving
the most prominent distinctions over time. In some traces (Φ:G(party)

1
, Φ:G(party)

2
, Φ:G(party)

3
), a noticeable diver-

gence emerges around the year 2000, suggesting that the two parties began to separate more sharply around
that period. This trend may correspond to the aftermath of the 2000 presidential election dispute (Bush vs
Gore), which catalyzed a lasting partisan split, possibly further intensified by the ideological polarization
following 9/11. Other traces, such as Φ

:G(office)
2 :

and Φ
:G(office)

4
, show broader fluctuations over time in

opposite directions, which may reflect deeper, long-standing historical or structural differences between the
parties. Trace Φ

:G(office)
3

appears to capture short-term variation or noise, including year-to-year peaks in
party voting behavior. In contrast, the projections based on the office (Fig. 14) exhibit far fewer separations.
The traces overlap substantially and show wide confidence intervals, suggesting that electoral behavior is
less differentiated by office type than by party affiliation.

E.3 POST-HOC VALIDATION ANALYSIS ON VOTING DATA

To validate that MILCCI discovers genuine voting structure rather than spurious correlations, we perform
comprehensive statistical analyses that examine individual state contributions and test against multiple null
hypotheses (Fig. 38).

We remove each state from the component matrix by zeroing out that state’s contribution and measure re-
construction degradation. For each of the N states, we calculate reconstruction MSE with the modified
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components where the target state is excluded. Fig. 38A shows the reconstruction MSE when each state is
removed, with the baseline MSE (dashed line) that represents performance with all states included. Fig. 38B
displays each state’s contribution calculated as the percentage change in MSE relative to baseline perfor-
mance.

We calculate each state’s fair contribution with game-theoretic Shapley values, which consider all possible
combinations of states. Due to computational constraints with N=52 states (which require 252 calculations),
we use approximation with 500 random combinations. For each combination, we include only combina-
tion members in the components matrix while we zero non-combination states, then calculate each state’s
marginal contribution as the difference in reconstruction quality when that state is added to the combination.
Fig. 38C shows the Shapley values, which quantify each state’s individual contribution to overall reconstruc-
tion quality.

We test three null hypotheses by comparison of original reconstruction performance against randomized
versions:

Shuffle Rows (Fig. 38D, left):
We randomly reassign complete state voting profiles to different state positions. This tests whether the
specific correspondence between geographic states and their voting behavioral patterns is meaningful.

Random Control (Fig. 38D, middle):
We replace the entire components matrix with random values drawn from a normal distribution with the same
global mean and standard deviation as the original data. This tests against pure statistical noise baseline.

Shuffle Each Component (Fig. 38D, right):
For each component dimension, we randomly permute the assignment of states within that component while
we preserve component-wise statistics. This tests whether the specific coordination between components
within each state matters.

Each permutation test runs 1000 iterations, with p-values calculated as the fraction of permuted reconstruc-
tions that achieve equal or better performance than the original.

Component-specific permutation results (Fig. 38E) demonstrate that discovered patterns are robust across in-
dividual voting components. We store intermediate reconstruction results for each component, which allows
examination of component-specific robustness to randomization. Fig. 38F provides the state abbreviation
key for reference.

All statistical tests yield p < 0.001, which provides evidence that MILCCI’s discovered voting patterns
represent genuine structure.

F ADDITIONAL INFORMATION–WIKIPEDIA EXPERIMENT

F.1 WIKIPEDIA PAGEVIEW DATA PRE-PROCESSING

We extracted daily Wikipedia pageview data from October 9, 2020, to October 29, 2024 (T = 1482 time
points) for 48 diverse pages (“terms”) related to college, computer science, machine learning, and psychol-
ogy majors ( Meta (2022)). Notably, we intentionally chose topics with both corollaries and co-variates.
For each term, we collected data separately for three access platforms: (1) desktop, (2) mobile web, and (3)
mobile app. We also distinguished the agent accessing the data: 1) a user or 2) a spider (for spider data was
extracted only for web and desktop platform due to extreme sparsity of app + spider combination).

We focused on seven languages representing diverse world regions: English (en), Chinese (zh), Spanish
(es), Hindi (hi), Arabic (ar), French (fr), and Hebrew (he). To ensure comparability, data for each language
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were range-normalized across all terms and time points using the 99th percentile to reduce outlier influence:
Y:,:,l ← (Y:,:,l −min(Y:,:,l))/perc(Y:,:,l, 99), where Y:,:,l is the full dataset for language l.

Each term was then normalized across all languages and time points using the same 99th percentile pro-
cedure: Yk,:,: ← (Yk,:,: − min(Yk,:,:))/perc(Yk,:,:, 99), where Yk,:,: denotes the full time-course of term k
across languages. This concludes to overall three categories candidate for compositional adjustments in the
data: (1) agent (user or spider), (2) platform (desktop / mobile web / mobile app), and (3) language (one of
the seven listed).

F.2 CLARIFICATION ON FINDINGS—WIKIPEDIA DATA

Lists of terms of components mentioned in main text (Sec. 4):

• A(agent)
1 (Psychology): Classical conditioning; Bobo doll experiment; Operant conditioning; Self-

concept; Little Albert experiment; Unsupervised learning; Embedding;

• A(agent)
2 : (Social Media): The Social Network (movie); Social media; Ivan Pavlov;Mark Zucker-

berg.

• A(platform)
4 : (Computer Science): Data mining; Computer science; Supervised learning; Unsuper-

vised learning; Computer scientist; Social media;

G ADDITIONAL INFORMATION ABOUT NEURONAL ENSEMBLES EXPERIMENT

The IBL dataset is part of the International Brain Laboratory (IBL) effort to map neural activity underlying
decision-making in mice across the whole brain. We accessed the IBL’s data via the Dandi archive, in an
NWB Rübel et al. (2022); Laboratory et al. (2025) format.

The randomly selected session was recorded on February 11, 2020 in the Churchland Lab at CSHL (currently
at UCLA). In the IBL task, mice view a grating stimulus on the left or right side of a screen (or no stimulus)
and report its location by turning a wheel. The task includes block-wise priors, where one side is more
likely than the other, requiring mice to combine sensory evidence with prior expectations. Stimulus contrast
varies across trials to manipulate difficulty, enabling precise measurement of perceptual decision-making
and neural correlates during electrophysiology recordings. Electrophysiological recordings were collected
using Neuropixels probes from diverse brain areas. These recordings provide single-spike resolution activity
during a decision-making task and include additional data such as sensory stimuli presented to the mouse,
behavioral responses and response times. The subject (ID: CSHL052) was a female C57BL/6 mouse (Mus
musculus), 6 months old and 22g at the time of recording. The full description of the session and task
protocol is provided in (Angelaki et al., 2025).

H INFORMATION ABOUT BASELINE CALCULATION AND EXECUTION

We compared MILCCI to matrix (SVD), tensor (PARAFAC, HOSVD, sliceTCA (Pellegrino et al., 2024)),
and multi-array (SiBBlInGS (Mudrik et al., 2024)) decompositions.

H.1 COMPARISON TO SVD, TUCKER, PARAFAC

We compared these methods to MILCCI both quantitatively and qualitatively. For the qualitative compari-
son, we provide example figures in the main text and appendix that emphasize MILCCI’s superior perfor-
mance. Notably, in all these methods the component matrix is fixed, as defined by the first mode; therefore,
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unlike MILCCI, they cannot (1) reveal structural adjustments over trials or disentangle category effects via
the components, and (2) capture free trial-to-trial variability without tensor constraints (except for SVD).
Consequently, their ability to capture such effects is inherently limited, though they represent the closest
methods to MILCCI that we can reasonably compare to (in the sense that they provide comparable com-
ponents and traces). Thus, the comparison is also limited in that we cannot show structural variability that
these methods fundamentally do not support. Quantitatively, we calculated information criteria (AIC, BIC,
HQC; lower values indicate better fit) using the degrees of freedom of each method. As seen in the appendix
figures, these methods struggle to capture the data when constrained to the same dimensionality as MILCCI,
which we attribute to (1) the need for small structural adjustments, and (2) their inability to capture free
trial-to-trial variability.

See below running details for these methods:

• SVD: We used NumPy’s ‘linalg.svd’ package, using the same number of components as in MILCCI
for each experiment. The SVD was applied to the data from all trials concatenated horizontally.
For experiments containing missing values (e.g., the voting experiment), NaNs were filled with
zeros. Components were extracted from the left singular vectors (U ), and the corresponding traces
were obtained by multiplying the singular values matrix (Σ) with the right singular vectors (V ⊤).

• PARAFAC (Harshman, 1970): We used the PyLops Ravasi & Vasconcelos (2020) PARAFAC
implementation, with the same rank and number of components as MILCCI. For experiments with
trials of varying durations (e.g., the IBL), we used the 90-th percentile trial length to prevent outliers
from dominating, stacking trials along a third dimension and zero-padding shorter trials.
Components (A) were extracted from the first tensor mode (first factor), and traces were obtained
by multiplying the second mode and the third mode according to the trial and component count.

• Tucker (Tucker, 1966) (HOSVD): Also for Tucker, we used the PyLops Ravasi & Vasconcelos
(2020) PARAFAC implementation, with the same dimensions and number of components as MIL-
CCI. For the 3-rd mode, we used the minimum between the number of time points and the number
of trials. Again, for experiments with trials of varying durations (e.g., the IBL), we used the 90-th
percentile trial length to prevent outliers from dominating, stacking trials along a third dimension
and zero-padding shorter trials.
Components (A) were extracted from the first tensor mode (first factor), and traces were obtained
by multiplying the second mode, the core matrix, and the trial and component count. Notably, the
component matrix in these methods is fixed, as defined by the core tensor, and therefore cannot
adjust over time or disentangle label variability via the components.

For some datasets (e.g., Wikipedia), PARAFAC and Tucker (PyLops Ravasi & Vasconcelos (2020) imple-
mentation) could not converge at the same MILCCI dimensionality (p = 12), even with SVD initializa-
tion, various normalization schemes, high tolerance (1e-2), ℓ22 regularization, and maximum iterations of
10,000, due to least-squares optimization instability. These errors often occur due to (1) many missing
values (though no NaNs exist in our data), or (2) high-resolution (daily) measurements introducing highly
correlated (Fig. 26) or nearly linearly dependent structures in the data. Hence, for the Wikipedia compari-
son, in addition to comparisons to SVD, SiBBlInGS, and sliceTCA, we tested Tucker and PARAFAC under
lower ranks with increasing added noise. We found that these models converge at rank 9 with added i.i.d.
Gaussian noise (σ = 0.1 for Tucker and σ = 0.2 for PARAFAC), and the results presented here are under
these conditions.

H.2 COMPARISON TO SLICETCA

We note that a direct comparison between our method and SliceTCA (Pellegrino et al., 2024) is limited
since SliceTCA is not tailored to find subtle label-driven supervised reorganization patterns in neural ensem-
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bles. SliceTCA performs an unsupervised decomposition X̂n,t,k =
∑Rneuron

r=1 u
(r)
n A

(r)
t,k +

∑Rtime
r=1 v

(r)
t B

(r)
n,k +∑Rtrial

r=1 w
(r)
k C

(r)
n,t that finds R components. In their notation, u(r) (neural loading vector) is equivalent to

one column of our A (i.e., A:,j), while their slice A(r) (time-by-trial matrix) would correspond to our Φ
for all trials. Similarly, v(r) (time loading vector) combined with B(r) (neuron-by-trial slice) provides an
alternative decomposition. SliceTCA’s Rneuron corresponds to our P .

We compared MILCCI to SliceTCA (Pellegrino et al., 2024) with Rneuron = P using their publicly avail-
able implementation at https://github.com/arthur-pe/slicetca. We followed the param-
eters outlined in their Google Colab notebook: positive=True, learning rate=5 × 10−3, min std=10−5,
max iter=1,000 for Wiki and Synth, 5,000 for IBL, and seed=0.

We tested two separate configurations as baselines:

1. Configuration (1):
considers one neural component (e.g., one ensemble) that varies its traces over trials without addi-
tions, which is the closest to MILCCI in terms of formulation, but not enabling small changes in
ensembles.

2. Configuration (2):
uses a matrix of neurons × trials (i.e., captures how neurons can change over trials) via the matrix
B, however each matrix of neurons by trial has one trace. This captures mainly the ensemble
adjustment to trial in an unconstrained way (unlike MILCCI) and enables more flexibility in that,
but on the other hand restricts the traces more. Any other combination of ranks would not be
interpretable in terms of comparison to MILCCI.

We extracted MILCCI-equivalent {A} and Φ as follows:

1. Configuration (1):
The u(r) vectors form the ensemble matrix (fixed across trials), while temporal traces are extracted
from the A(r) matrices by breaking to trials.

2. Configuration (2):
The ensembles are captured by the rows of B(r) and their variation over trials by the columns.
Traces are given by v(r).

H.3 SIBBLINGS

:
MILCCI’s main advantage over SiBBlInGS (Mudrik et al., 2024) is interpretability for multi-way, multi-
label data. Particularly, SiBBlInGS cannot disentangle the effects of co- or separately-varying labels, mak-
ing it difficult to understand their individual contributions. SiBBlInGS, by modeling each unique label tuple
as a distinct label would further increase tensor size and computational complexity. This is especially pro-
nounced in experiments where some label categories vary across many unique values (e.g., IBL trial number
with over 1000 values). In contrast, MILCCI can handle all of these without requiring additional dimen-
sions, and can also account for the ordinal nature of each category, whereas SiBBlInGS requires choosing
a single sorting across all categories. While we acknowledge quantitative metrics would also be valuable
against SiBBlInGS, SiBBlInGS’ graph-driven sparsity makes standard model comparison metrics (AIC,
BIC) irrelevant. Particularly, SiBBlInGS inference includes a graph-based reweighting sparsity mechanism
that hinders accurate estimation of degrees-of-freedom needed for information criteria calculations, making
information criteria comparison intractable. Hence, we limited quantitative comparisons against SiBBlInGS
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to synthetic data (Fig. 2) and, for the real-world experiments, we focused on qualitative comparisons that
emphasize MILCCI’s interpretability advantages.

I ALTERNATIVE INFERENCE OF TRACES VIA DYNAMIC PRIOR

In the main text, we regularize the temporal traces Φ(m) using a smoothness penalty. Here, we present an
alternative formulation where the temporal traces evolve according to a Linear Dynamical System (LDS),
suitable for data with non-stationary dynamics.

I.1 LINEAR DYNAMICAL SYSTEM PRIOR

We assume that for each trial m, the temporal traces follow:

ϕ
(m)
t = W (m)ϕ

(m)
t−1 + ηt, t = 2, . . . , T (m) (4)

where W (m) ∈ RP×P is a trial-specific transition matrix and ηt ∼ N (0, σ2I).

I.2 MODIFIED OBJECTIVE AND INFERENCE

We modify the optimization to jointly learn traces and dynamics. The algorithm alternates between:

Step 1: Update A(k) (for each category k)

Same as main text, using Equation 2.

Step 2: Update {Φ(m),W (m)} (for each trial m)

Given fixed Ã, we perform inner iterations (3-5 times):

Step 2a: Update Φ(m) given W (m)

Φ̂(m) = arg min
Φ(m)

∥∥∥Y (m) − Ã(L(m))Φ(m)
∥∥∥2
F
+γ3

T (m)∑
t=2

∥∥∥ϕ(m)
t −W (m)ϕ

(m)
t−1

∥∥∥2
2
+γ4 ∥(C ⊙ (1− IP ))⊙D∥1,1

(5)

Step 2b: Update W (m) given Φ(m)

With regularization R(W (m)) = ∥W (m) − I∥2F to encourage stability:

Ŵ (m) =

T (m)∑
t=2

ϕ
(m)
t (ϕ

(m)
t−1)

T + γ5I

T (m)∑
t=2

ϕ
(m)
t−1(ϕ

(m)
t−1)

T + γ5I

−1

(6)

The inner iterations stabilize both Φ(m) and W (m) before updating A, preventing noise amplification.

I.3 INITIALIZATION

1. Initialize Φ(m) using the original smoothness-based objective (Equation 3)
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2. Initialize W (m) =
(∑

t ϕ
(m)
t,init(ϕ

(m)
t−1,init)

T
)(∑

t ϕ
(m)
t−1,init(ϕ

(m)
t−1,init)

T
)−1

This dynamic prior is suitable for cases that are assumed to be stationary and governed by a single LDS that
does not change over time. Notably, real-world data is often non-stationary, and hence this dynamic prior
would benefit from extensions in future work, such as learning dynamics like those exemplified in Chen
et al. (2024); Linderman et al. (2016); Mudrik et al. (2025)).

Table 4: Timing results (in seconds) for different methods across three experiments. Dash (-): method did
not converge for the same dimension.

Experiment SVD Tucker parafac parafac scaled SliceTCA SiBBlInGS MILCCI
Voting 20.01 20.12 20.26 20.35 27.58 27.19 28.16
Wiki 20.37 - - - 34.05 29.48 31.12
IBL 24.03 268.94 1056.20 1256.74 1000 1004.32 1000.32

J MILCCI IDENTIFIES NEURAL ENSEMBLES THAT ADJUST TO AROUSAL LEVEL
AND STIMULATION FREQUENCY AND EVOLVE VIA DYNAMICAL RULES

J.1 DATA AND PRE-PROCESSING

We used one experimental session from Papadopoulos et al. (2024) in NWB format from the DANDI
archive Rübel et al. (2022) (DANDI:000986), which the McCormick laboratory at the University of Oregon
collected. The dataset contains recordings from mouse auditory cortex during passive exposure to auditory
stimuli. The subject was a male mouse (Mus musculus), aged P79D from birth (see experimental illustration
taken from Papadopoulos et al. (2024) in Fig. 35A).

We processed spike trains from the NWB file (raster plot in Figure 35E) to estimate firing rates (FR) using
Gaussian convolution with the following parameters: 5 ms time bins, 50 ms Gaussian window, and 5 ms
σ (Fig. 35F). For this demonstration, we used the first 500 trials. The processed dataset thus contain 235
neurons across 15 unique experimental conditions that varied throughout the first 500 trials.

J.2 DEMONSTRATION OF EXTENDED MILCCI WITH NON-LINEAR TRANSFORMATION AND
DYNAMICS PRIOR OVER TRACES EVOLUTION

This experiment provides a glimpse of MILCCI’s extensibility by showcasing two key advances: (1) dynam-
ical evolution of neural ensembles, and (2) nonlinear transformation of FR via tanh (normalizing to range [-1,
1]). This serves as a proof of concept for modeling dynamics alongside MILCCI, paving the way for future
extensions with more complex non-stationary dynamics (see App. I for details on dynamics inference).

We defined the following categories: (a) arousal level (based on binarized pupil diameter, Fig. 35C); and (b)
stimulation frequency (distribution among the used trials in Fig. 35B).

We ran extended MILCCI with pj = 3 ensembles per category.
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Figure 35: Additional demonstration of MILCCI on data from (Papadopoulos et al., 2024). A: Ex-
periment illustration, adapted from (Papadopoulos et al., 2024). B: Trial counts per stimulation frequency
among the first 500 trials analyzed. C: Distribution of normalized pupil size (a.u.) across the first 500 trials.
Colored background represents the three arousal states considered. (cutoffs 0.3, 0.52) D: Average pupil size
per trial. Each marker represents one trial; x-axis shows trial midpoint time from recording start. E: Raster
plot of the first 180 ms of neural activity. F: Example firing rate estimation for the first 8 trials from spike
train data.

We leverage this example to demonstrate MILCCI’s capacity for extensions, including: 1) pre-processing
via non-linearity, and 2) modifying the inference of Φ to evolve via dynamical priors, rather than via Eq. 3
(see Sec. I for details).

J.3 HYPERPARAMETER SENSITIVITY ANALYSIS

To empirically demonstrate MILCCI’s robustness to hyperparameter choices, we conducted a comprehensive
sensitivity analysis across a wide range of values. We tested 20 values for γ1 ∈ [0.002, 0.5] and 40 values
for γ2 ∈ [0.002, 0.5], yielding 800 total hyperparameter combinations across multiple ensemble instances.

To quantify differences between learned component matrices A, we employed the normalized Frobenius
distance:

dnorm(A1,A2) =
∥A1 −A2∥F√
∥A1∥2F + ∥A2∥2F

(7)

We computed two types of distances to assess hyperparameter sensitivity relative to ensemble variability
(Fig. 37B,C,F):

• Within-ensemble distances: For each ensemble, we computed pairwise distances between compo-
nent matrices obtained with different hyperparameter settings. These distances quantify how much
the learned components vary due to hyperparameter choices while holding the data fixed.

• Cross-ensemble distances: For each hyperparameter setting, we computed pairwise distances be-
tween component matrices from different ensemble instances. These distances quantify how much
the learned components vary due to data sampling and stochastic initialization while holding hy-
perparameters fixed.
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Figure 36: Demonstrating MILCCI with nonlinear tanh data transformation
(tanh (y(m)) ≈

∑
(k)∈C A(k)

::L
(m)
k

Φ
(m)

G(k):
) and dynamical constraints over the trace evolution

(Φ(m)
t ≈ W (m)Φ

(m)
t−1) , via recent neural data from (Papadopoulos et al., 2024). (A) Transition

networks W (m) for five example trials from different arousal and stimulus frequency conditions, showing
learned interactions between ensembles. (B) Heatmap of all learned transition matrices (each W (m)

flattened) across trials (rows). Scatters on the left indicate trial conditions: arousal level (left side) and
stimulation frequency (right side). Weights are normalized by column maximum. (C) Temporal traces
for two example ensembles (Φ1 and Φ3) across trials and time, organized by arousal level, demonstrating
condition-dependent temporal dynamics. Scatters on the left are the same as in panel B. (D) Average
temporal traces with stderr grouped by arousal level: without frequency conditioning (left), or conditioned
on specific stimulus frequencies (three rightmost panels: 4 kHz, 8 kHz, and 32 kHz). (E) Distribution of
reconstruction error (relative MSE) across trials. Dashed lines indicate mean and median. (F) Example
neuronal ensembles and how they subtly adjust to labels, showing condition-specific loadings across
channels. Top panels show components varying with arousal level; bottom panels show components
adjusting to stimulus frequency.
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If MILCCI is robust to hyperparameter choices, within-ensemble distances should be substantially smaller
than cross-ensemble distances. This would indicate that the learned components are more sensitive to the
underlying data structure than to hyperparameter tuning, demonstrating that the model reliably captures
meaningful patterns across reasonable hyperparameter ranges.

Component matrices (Fig. 37A) show that higher γ1 values produce sparser components as expected, while
the overall structure remains stable. Within-ensemble distances are consistently lower than cross-ensemble
distances, with a mean ratio of 0.17 (Fig. 37C), indicating that hyperparameter variation introduces less
variability than ensemble stochasticity. The distribution of distances (Fig. 37D) reveals separation between
the two types of variation. Per-ensemble analyses (Fig. 37B,E) show this pattern holds across all individual
ensemble instances, with ratios below 1. These results demonstrate model robustness, as hyperparameter
variation contributes minimally compared to stochastic ensemble variation.
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Figure 37: Hyperparameter sensitivity analysis across 800 parameter combinations (App. J.3). A:
Example component matrices from two ensembles across all hyperparameter settings, ordered by γ1 and
γ2 (colorbars at the bottom). For example, higher γ1 values yield sparser components. B: Per-ensemble
comparison of within-ensemble (blue) versus cross-ensemble (red) distances. C: Overall mean distances
showing within-ensemble variation is smaller than cross-ensemble variation. D: Distribution of normalized
Frobenius distances reveals clear separation between within-ensemble and cross-ensemble variation. E:
Robustness ratios for each ensemble, all below 1 (dashed line indicates equal variation). F: Overall boxplot
comparison confirms systematic difference between within-ensemble and cross-ensemble distances across
all 10 ensembles.
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Figure 38: Post-hoc validation of MILCCI’s discovered voting components (App. E.3). A: Leave-one-out
analysis showing reconstruction MSE when each state is individually removed, with baseline MSE (dashed
line) indicating model performance without omissions. B: Individual state contributions to reconstruction,
how much each state’s removal degrades performance (100∗MSEwith omission−MSE

MSE ). C: Shapley values measuring
each state’s contribution to overall reconstruction. D: Permutation tests comparing original reconstruction
error (red line) against three null hypotheses: shuffling state assignments between rows (left), replacing data
with random noise (middle), and shuffling states within each component dimension (right). All tests show p
< 0.001. E: Per-component permutation results demonstrating that discovered components are individually
robust. F: State abbreviation key.
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K ETHICS STATEMENT AND LLM USAGE

Our work does not raise any ethical concerns. Large language models were used only at the word or sentence
level during manuscript writing to improve the language and catch grammar mistakes, with no influence on
the scientific content or analysis.
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