
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dynamic Graph Unlearning: A General and Efficient
Post-Processing Method via Gradient Transformation

Anonymous Author(s)∗

ABSTRACT
Dynamic graph neural networks (DGNNs) have emerged and been
widely deployed in various web applications (e.g., Reddit) to serve
users (e.g., personalized content delivery) due to their remarkable
ability to learn from complex and dynamic user interaction data.
Despite benefiting from high-quality services, users have raised
privacy concerns, such as misuse of personal data (e.g., dynamic
user-user/item interaction) for model training, requiring DGNNs to
“forget” their data to meet AI governance laws (e.g., the “right to be
forgotten" in GDPR). However, current static graph unlearning stud-
ies cannot unlearn dynamic graph elements and exhibit limitations
such as the model-specific design or reliance on pre-processing,
which disenable their practicability in dynamic graph unlearning.
To this end, we study the dynamic graph unlearning for the first
time and propose an effective, efficient, general, and post-processing
method to implement DGNN unlearning. Specifically, we first for-
mulate dynamic graph unlearning in the context of continuous-time
dynamic graphs, and then propose a method called Gradient Trans-
formation that directly maps the unlearning request to the desired
parameter update. Comprehensive evaluations on six real-world
datasets and state-of-the-art DGNN backbones demonstrate its ef-
fectiveness (e.g., limited drop or obvious improvement in utility)
and efficiency (e.g., 7.23× speed-up) advantages. Additionally, our
method has the potential to handle future unlearning requests with
significant performance gains (e.g., 32.59× speed-up).

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Dynamic Graphs, Unlearning, Privacy, GNN, Trustworthiness.

ACM Reference Format:
Anonymous Author(s). 2018. Dynamic Graph Unlearning: A General and Ef-
ficient Post-Processing Method via Gradient Transformation. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion emai (Conference acronym ’XX). ACM, New York, NY, USA, 14 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Dynamic graphs represent entities as nodes and their temporal
interactions as dynamic links, making them suitable for modeling
data in various web applications such as social networks [1] and
trade networks [2]. Excelling in capturing temporal information in
dynamic graphs [3], dynamic graph neural networks (DGNNs) [4]
have recently emerged and proven to be effective in serving users
in real-world applications, which have substantially improved user
experiences in daily life. For example, in Reddit (i.e., a social news
platform) [5], considering users and items (e.g., Reddit posts) as
nodes and their temporal interactions as dynamic edges [6], the
well-trained models [7] can be used as recommender systems to
offer personalized content delivery services to users [8, 9].

Despite service benefits, users have raised concerns about the
potential privacy issues associated with their sensitive data in web
applications (e.g., interaction history with other users in Reddit
[10]). For example, web applications might collect user data—either
intentionally or occasionally—without user authorization to train
service models [11], as these models require vast and comprehen-
sive data for optimal functionality [12]. Therefore, when users issue
requests for deleting data from web applications, they expect that
corresponding DGNNs forget the knowledge acquired from their
data, which is also in compliance with laws for AI governance (e.g.,
the “right to be forgotten" in GDPR [13]).

To address the privacy concerns of users above, graph unlearning
[14, 15] is steadily attracting the attention of academic researchers
and industry professionals. However, existing approaches designed
for static graph unlearning and are less suitable for dynamic graph
unlearning. For example, these methods (e.g., SISA [16]) can only
unlearn static graph elements (e.g., static edges) and become ineffec-
tive when unlearning dynamic graph elements (e.g., dynamic
edge events), which are vital components in dynamic graphs. More-
over, these static graph unlearning methods have limitations such
as (1) reliance on pre-processing, (2)model-specific design, (3) imprac-
tical resource requirements, (4) changing model architecture, or (5)
overfitting unlearning samples. (Refer to Section 2 for more details).

To this end, we propose the design of an effective, efficient, gen-
eral, and post-processing dynamic graph unlearning method, called
Gradient Transformation, which is suitable for DGNN unlearning.
Specifically, we first define the dynamic graph unlearning request
as the unlearning of a set of unordered dynamic events, followed by
formulating the design goal of dynamic graph unlearning. In our
approach, we consider the target DGNNmodel as a tool at hand that
natively handles the dynamic graph and target model architecture
during the unlearning process. To overcome limitations (1) (2) (4)
of existing graph unlearning methods, we propose a gradient-based
post-processing model to obtain the desired parameter updates
w.r.t. unlearning of DGNNs, without changing the architecture of
target DGNN models. With specially designed architecture and loss

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

functions, our unlearning paradigm avoids the requiring impracti-
cal resource issue (i.e., limitation (3)) and obviously alleviates the
overfitting of fine-tuning methods (i.e., limitation (5)), respectively.
Table 1 shows the differences between our method and typical
graph unlearning methods, and our contributions in this paper are
summarized as follows:

• For the first time, we study the unlearning problem in the context
of dynamic graphs, and formally define the unlearning requests
and design goal of dynamic graph neural network unlearning.

• We propose a novel method “Gradient Transformation” with a
specialized loss function, which duly handles the intricacies of
unlearning requests, remaining data, and DGNNs in the dynamic
graph unlearning process.

• We empirically compare our approach with baseline methods on
six real-world datasets, evaluations demonstrate the outperfor-
mance of our method in terms of effectiveness and efficiency.

• In addition to the post-processing, architecture-invariant, and
general characteristics, our learning-based unlearning paradigm
potentially highlights a new avenue of graph unlearning study.

2 RELATEDWORK
For machine unlearning, a developer could ideally retrain a new
model on updated data excluding the unlearning data [15]. However,
retraining incurs significant resource costs, particularly with com-
plex architectures and large datasets. Therefore, several methods
have been proposed to efficiently unlearn graph data [17].

Current unlearning methods for graph data include the SISA
method, influence function-based methods, the fine-tuning method,
and other methods [17]. (1) The SISA method [16, 18] splits the
training data into subsets, training a submodel on each. These sub-
models are combined to serve users. In response to an unlearning
request, the developer identifies the subset with the data in the
request, removes it, and retrains the corresponding submodel. (2)
Influence function-based methods examine the impact of a training
sample on the model parameters [19, 20]. When there are unlearn-
ing requests, they compute the gradients of these samples and
the Hessian matrix of the target model to estimate the parameter
update needed for unlearning. (3) The fine-tuning method, like
GraphGuard [12], adjusts the model parameters by increasing the
loss on unlearning samples and decreasing it on others, which fa-
cilitates model unlearning by lowering the accuracy on unlearning
samples. (4) In addition to the methods mentioned above, alterna-
tive techniques (e.g., the Projector [21] for linear GNNs) are also
applicable for graph unlearning. Refer to Appx. B.2 for more details.

As shown in Table 1, due to the following limitations of the
static graph unlearning methods above, they are not suitable for
the unlearning of dynamic graph neural networks. (1) Reliance on
pre-processing. The SISA method can only be used in the initial
development stage. Considering that many DGNNs have been de-
ployed to serve users [27], SISA methods cannot be adapted for
post-processing unlearning of these DGNNs, limiting their prac-
ticability and applications. (2) Model-specific design. For influence
function-based methods, their parameter update estimations are
generally established for simple GNN models (e.g., linear GCN
model in CEU [25]), whose estimation accuracy is potentially lim-
ited due to the complexity and diversity of current state-of-the-art

Table 1: Comparison between ourmethod and typical studies.

Methods Graph
Type

Attributes

General Post-
Processing

Architecture
Invariant

GraphEraser [16] S
RecEraser [18] S
GUIDE [22] S
CGU [23] S
GIF [24] S
CEU [25] S

Projector [21] S
GNNDelete [26] S
GraphGuard [12] S

Ours D
* In this table, “S” and “D” denotes the static and dynamic graph, respectively.
indicates “Not covered", indicates “Partially covered", indicates “Fully covered".
“General" indicates if one method can be used in the unlearning of a wide range of
different model architectures. Refer to Appx. B.2 for more details on the principle and
limitations of existing graph unlearning methods.

DGNN architectures [28]. Furthermore, these methods are poten-
tially sensitive to the number of GNN layers (e.g., GIF [24]), which
further makes these methods dependent on the target model archi-
tecture. (3) Impractical resource requirements. Although influence
function-based methods can be used in a post-processing manner,
calculations about the Hessian matrix of parameters typically incur
high memory costs, particularly when the size of the model pa-
rameters is large. For instance, unlearning a state-of-the-art DGNN
model named DyGFomer (comprising 4.146 MB floating point pa-
rameters) demands a substantial 4.298 TB of storage space, far sur-
passing the capabilities of common computational (GPU) resources.
(4) Changing model architecture. Some methods (e.g., GNNDelete
[26]) introduce additional neural layers to target models, which
makes them impractical in scenarios where the device space for
model deployment is limited (e.g., edge computing devices [29]).
(5) Overfitting unlearning samples. The fine-tuning method (e.g.,
GraphGuard [12]) optimizes the parameter of the target model in a
post-processing manner. However, the fine-tuning method is prone
to overfitting unlearning samples, which potentially harms the
model performance on remaining data [30].

3 PRELIMINARIES
Given a time point 𝑡 , a static graph 𝐺 at time 𝑡 comprises a node
setV = {𝑣1, . . . , 𝑣 |V | } and an edge set E = {..., (𝑣𝑖 , 𝑣 𝑗), ...}, which
delineates the relational structure among nodes. Generally, this
static graph can be expressed as 𝐺 = (A,X), where X ∈ R |V |×𝑑

(𝑑 indicates the dimensionality of node features) and A𝑖, 𝑗 = 1 if
𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗) ∈ E, otherwise A𝑖, 𝑗 = 0. To investigate the change of
graph data over time in some practical scenarios, numerous studies
have emerged to explore dynamic graphs and capture their evolving
patterns during a time period [31]. Depending on the characteriza-
tion manner, dynamic graphs can be categorized into discrete-time
dynamic graphs and continuous-time dynamic graphs [27]. In this
paper, we focus on continuous-time dynamic graphs. The definition
of discrete-time dynamic graphs can be found in the Appx. A.
Continuous-time Dynamic Graphs (CTDG). Given an initial
static graph𝐺0 and a series of events O, a continuous-time dynamic
graph is defined as 𝑆 = {𝐺0,O}, where O = [𝑜1, ..., 𝑜𝑁] represents
a sequence of observations on graph update events. For example,

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

an event observation sequence with size 3 (i.e., 𝑁 = 3) could be
O = [(add edge, (𝑣1, 𝑣3), 24-Dec-2023), (add node, 𝑣6,25-Dec-2023),
(Feature update, (𝑣2, [1, 0, 1, 0]), 25-Dec-2023)], where each event 𝑜
indicates an observation of graph updates. For example, 𝑜1 indicates
that an edge between 𝑣1 and 𝑣3 is added to𝐺0 on 24-Dec-2023. Note
that the symbol [·] in O indicates that the event order is vital for 𝑆 ,
as the following dynamic graph neural networks are designed to
learn the temporal evolution patterns included in 𝑆 .
Dynamic Graph Neural Networks (DGNNs). For static graphs,
various methods (e.g., GCN [32]) have been proposed to capture
both node features and graph structures. In addition to these two
aspects of information, DGNNs are devised to learn the additional
and complex temporal changes in dynamic graphs. For example, in
DGNNs [27], the message function designed for an edge event (e.g.,
(add edge, (𝑣𝑖 , 𝑣 𝑗), 𝑡)) could be

m𝑖 =𝑚𝑠𝑔(s𝑖 (𝑡−), s𝑗 (𝑡−),Δ𝑡, e𝑖, 𝑗 (𝑡)),
m𝑗 =𝑚𝑠𝑔(s𝑗 (𝑡−), s𝑖 (𝑡−),Δ𝑡, e𝑖, 𝑗 (𝑡)),

(1)

where s𝑖 (𝑡−) represents the latest embedding of 𝑣𝑖 before time 𝑡 , Δ𝑡
indicates the time lag between current and last events on (𝑣𝑖 , 𝑣 𝑗), and
e𝑖, 𝑗 (𝑡) denotes possible edge features in this event. Following this
way, various dynamic graph neural networks have been proposed
to obtain node representations that capture spatial and temporal
information in dynamic graphs [33].
Tasks on Dynamic Graphs. Two common tasks on dynamic
graphs are node classification and link prediction. Generally, given
a dynamic graph 𝑆 , a DGNN serves as the encoder to obtain the
embedding of nodes, followed by a decoder (e.g., MLP) to complete
downstream tasks. Here, we use 𝑓 to denote the entire neural net-
work that maps a dynamic graph 𝑆 to the output space desired by
the task. In node classification tasks, the parameter 𝜃 of 𝑓 is trained
to predict the label of the nodes at time 𝑡 . In link prediction tasks, 𝑓
is trained to infer if there is an edge between any two nodes 𝑣𝑖 and
𝑣 𝑗 at time 𝑡 . Taking the link predictions as an example, the optimal
parameter 𝜃∗ is obtained by

𝜃∗ = A𝑓 (𝑆) = argmin𝜃 ℓ (A𝑡 | 𝑓𝜃 (𝑆)) , (2)

where A𝑓 is the algorithm (e.g., Gradient Descent Method) used to
obtain the optimal parameter 𝜃∗ of 𝑓 , A𝑡 denotes the true adjacency
matrix at time 𝑡 , and ℓ represents a loss function (e.g., cross entropy
loss). After training from scratch with A𝑓 and 𝑆 (𝑡 ≤ 𝑇𝑆), the 𝑓𝜃 ∗

could be used to make predictions in the future (i.e., 𝑡 > 𝑇𝑆), where
𝑇𝑆 indicates the maximum event time in 𝑆 .

4 PROBLEM FORMULATION
As shown in Figure 1, a DGNN 𝑓𝜃 ∗ is optimized to learn from its
training dataset 𝑆 (𝑇𝑆 = 8) and then serve users. When a small
amount of data 𝑆𝑢𝑙 (𝑆𝑢𝑙 ⊂ 𝑆) needs to be removed from the original
training dataset (e.g., privacy concerns [14]), unlearning requires
that the model 𝑓𝜃 ∗ optimized on 𝑆 must be updated to forget the
knowledge learned from 𝑆𝑢𝑙 . Specifically, an unlearning methodU
aims to update the parameter of 𝑓 to satisfy

dis(𝑃 (U(A𝑓 (𝑆), 𝑆, 𝑆𝑢𝑙)), 𝑃 (A𝑓 (𝑆𝑟𝑒))) = 0, (3)

where dis(·, ·) denotes a distance measurement, 𝑃 (·) indicates the
parameter distribution.A𝑓 (𝑆𝑟𝑒) represents retraining from scratch

with the remaining dataset 𝑆𝑟𝑒 , where 𝑆𝑟𝑒 = 𝑆 \ 𝑆𝑢𝑙 , 𝑆 = 𝑆𝑟𝑒 ∪ 𝑆𝑢𝑙 ,
and 𝑆𝑟𝑒 ∩ 𝑆𝑢𝑙 = ∅.
Unlearning Requests. To clarify the unlearning of DGNNs, here
we define the common unlearning requests. Note that the CTDG def-
inition in Section 3 demonstrates the conceptual capability to cap-
ture spatial-temporal changes in dynamic graphs [27], while real-
world datasets for dynamic link prediction are commonly only com-
posed by adding edge events such as (add edge, (𝑣1, 𝑣5), 26-Dec-2023)
[2]. Taking into account this fact, we propose the following defini-
tion of edge unlearning requests. An edge unlearning request 𝑆𝑢𝑙
is made up of edge-related events that come from the original train-
ing data 𝑆 . For example, 𝑆𝑢𝑙 = {(add edge, (𝑣1, 𝑣3), 24-Dec-2023),
(add edge, (𝑣1, 𝑣5), 26-Dec-2023), (add edge, (𝑣2, 𝑣5), 25-Dec-2023)}
requests to forget 3 different “add edge” events. {·} suggests that
𝑆𝑢𝑙 is not sensitive to the event order, as 𝑆𝑢𝑙 is only used to indicate
which events should be forgotten. Edge unlearning requests fre-
quently arise in practical scenarios. For instance, once their issues
are resolved, users may wish to retract negative product reviews
[3] that have influenced personalized recommendations.
Remark. Additional types of unlearning request may also occur
in DGNNs. For example, 𝑆𝑢𝑙 is called a node unlearning request if
all events in it are related to all activities of specific nodes in the
original training dataset 𝑆 . For example, node unlearning requests
potentially occur in cases where users arise de-registration ormigra-
tion requests in a platform (e.g., Reddit [34]), where their historical
interactions (i.e., edge events) are expected to be forgotten. Note
that, considering that current real-world datasets for dynamic link
prediction are commonly only composed of edge events, the above
node unlearning request can be transferred into the corresponding
unlearning edge events. Moreover, current practical datasets typi-
cally only include adding edge events [35]. Therefore, this study
addresses typical unlearning requests related to adding edge events.
Design Goal. Our objective is to design an unlearning method
U as follows. Given a dynamic graph 𝑆 , a DGNN 𝑓𝜃 ∗ trained on
it, and an unlearning request 𝑆𝑢𝑙 , the unlearning method U takes
them as input and outputs the desired parameter update of 𝑓 , i.e.,
Δ𝜃 = U𝜑

(
A𝑓 (𝑆), 𝑆, 𝑆𝑢𝑙

)
. The 𝜑 indicates the parameter ofU, and

it is expected to satisfy

min
𝜑

dis(𝑓(𝜃 ∗+Δ𝜃) , 𝑓𝜃 ∗
𝑢𝑙
), (4)

where 𝜃∗
𝑢𝑙

= A𝑓 (𝑆𝑟𝑒) indicates the ideal parameter and 𝜃∗ + Δ𝜃
represents the estimated parameter.

5 GRADIENT TRANSFORMATION FOR
UNLEARNING

By analyzing Δ𝜃 = U
(
A𝑓 (𝑆), 𝑆, 𝑆𝑢𝑙

)
, we find that the inputs of

U play different roles in the process of unlearning. Generally, 𝑆𝑢𝑙
issues unlearning requests, 𝑆𝑢𝑙 and A𝑓 determine the direction of
parameter update w.r.t. unlearning. However, directly applying the
parameter update derived only from 𝑆𝑢𝑙 to 𝑓𝜃 ∗ will generally lead
to overfitting on 𝑆𝑢𝑙 and huge performance drops on 𝑆𝑟𝑒 . Therefore,
𝑆𝑟𝑒 and A𝑓 work together to improve the direction of parameter
update, avoiding the adverse effects of using only 𝑆𝑢𝑙 . This role anal-
ysis suggests that there is a transformation which maps the initial
gradient to the ultimate parameter updates during the unlearning.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

c
Nodes Edge events (5 indicates the event time)5

5,7

4,64,6

0,2,3
2,7 6

6
5

0,3,45

𝑖𝑖
𝑎𝑎

𝑏𝑏

𝑗𝑗

𝑘𝑘

𝑑𝑑

𝑒𝑒

𝑓𝑓

𝑡𝑡 = 8 ?

Training data Predictions

𝑗𝑗𝑖𝑖

𝑡𝑡 = 6

𝑡𝑡 = 8

…

c

5,7

4,64,6

0,2,3
2,7 6

5

0,3,45

𝑖𝑖
𝑎𝑎

𝑏𝑏

𝑗𝑗

𝑘𝑘

𝑑𝑑

𝑒𝑒

𝑓𝑓

𝑡𝑡 = 8 ?

Remaining data

Predictions

𝑗𝑗𝑖𝑖

𝑑𝑑𝑗𝑗
𝑡𝑡 = 6

𝑡𝑡 = 8

…

𝑆𝑆𝑢𝑢𝑢𝑢 = {(𝑣𝑣𝑑𝑑 , 𝑣𝑣𝑗𝑗), 𝑡𝑡 = 6)}
Unlearning Requests

𝑆𝑆

𝑆𝑆𝑟𝑟𝑟𝑟

DGNN 𝑓𝑓𝜃𝜃∗

DGNN 𝑓𝑓𝜃𝜃𝑢𝑢𝑢𝑢∗

Unlearning Goal

𝑏𝑏𝑖𝑖
𝑡𝑡 = 9?

𝑏𝑏𝑖𝑖
𝑡𝑡 = 9?

𝑓𝑓𝜃𝜃∗+∆𝜃𝜃 ≈ 𝑓𝑓𝜃𝜃𝑢𝑢𝑢𝑢∗

𝜃𝜃∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝜃𝜃ℓ(𝚨𝚨𝑡𝑡|𝑓𝑓𝜃𝜃(𝑆𝑆))

𝜃𝜃𝑢𝑢𝑢𝑢∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝜃𝜃ℓ(𝚨𝚨𝑡𝑡|𝑓𝑓𝜃𝜃(𝑆𝑆𝑟𝑟𝑟𝑟))

Retraining from scratch

𝑑𝑑

Unlearning method 𝒰𝒰

𝒰𝒰(𝑓𝑓, 𝑆𝑆, 𝑆𝑆𝑢𝑢𝑢𝑢)

𝑗𝑗 𝑑𝑑

𝜃𝜃∗ + ∆𝜃𝜃𝜃𝜃∗

Figure 1: An overview of the unlearning of DGNNs. (1) In the upper half, given a dynamic graph 𝑆 and a DGNN 𝑓 , the model
developer obtains the optimal 𝑓𝜃 ∗ , which makes accurate predictions on both training (𝑡 ≤ 8) and test (𝑡 > 8) data. (2) The lower
half illustrates the ideal unlearning process. Upon receiving the unlearning request 𝑆𝑢𝑙 , the model developer removes 𝑆𝑢𝑙 from
𝑆 and retrains 𝑓 from scratch to obtain the ideal DGNN 𝑓𝜃 ∗

𝑢𝑙
. However, retraining from scratch requires huge source costs (e.g.,

time and computational source). (3) To this end, this paper aims to devise an effective and efficient unlearning methodU to
approximate the parameter obtained from retraining, as indicated by the green arrows.

Overview. Given the above intuition, we propose a method called
Gradient Transformation to implement dynamic graph unlearning.
(1) For the mapping process, we take the initial gradient ∇𝜃 w.r.t.
𝑆𝑢𝑙 as input and transform it with a two-layer MLP-Mixer model
to obtain the desired parameter update Δ𝜃 , i.e., U𝜑 : ∇𝜃 → Δ𝜃 .
(2) Note that the ideal parameter 𝜃∗

𝑢𝑙
is not known byU𝜑 in Eq. 4.

Thus, we propose a loss function to simulate the desired prediction
behaviors of an ideal model 𝑓𝜃 ∗

𝑢𝑙
.

Gradient Transformation model. Given a dynamic graph 𝑆 ,
the optimal parameter 𝜃∗ of a DGNN 𝑓 is obtained by solving
𝜃∗ = argmin𝜃 ℓ (𝑌 | 𝑓𝜃 (𝑆)). As shown in Figure 2, after receiving
unlearning requests 𝑆𝑢𝑙 , we first calculate the corresponding gradi-
ent ∇𝜃 w.r.t. the desired unlearning goal. Specifically,

∇𝜃 =
𝑑

𝑑𝜃
ℓ (𝑌𝑢𝑙 | 𝑓𝜃 ∗ , 𝑆𝑢𝑙), (5)

where 𝑌𝑢𝑙 indicates the desired prediction results on the unlearning
samples 𝑆𝑢𝑙 . For example, in the context of link prediction tasks and
given 𝑆𝑢𝑙 = {𝑜1, ..., 𝑜𝑛} consists of “add edge” events, the initial gra-
dient information is obtained by ∇𝜃 = 𝑑

𝑑𝜃

∑
𝑜∈𝑆𝑢𝑙 ℓ (A𝑡 ;𝑖, 𝑗 = 0 | 𝑓𝜃 ∗),

where 𝑖 , 𝑗 and 𝑡 represent the nodes and time involved in the event
𝑜 = (add edge, (𝑣𝑖 , 𝑣 𝑗), 𝑡). A𝑡 ;𝑖, 𝑗 = 0 indicates that 𝑓 , which predicts
A𝑡 ;𝑖, 𝑗 = 1, is expected to forget the existence of 𝑆𝑢𝑙 in its original
training data 𝑆 .

Given the initial gradient ∇𝜃 , our gradient transformation model
U takes it as input and outputs the desired parameter update Δ𝜃 of
the target model 𝑓 . Combined with the original parameter 𝜃∗, the
updated parameter is obtained by applying 𝜃∗ + Δ𝜃 = 𝜃∗ + U(Δ𝜃),

where 𝑓𝜃 ∗+Δ𝜃 is expected to behave the same as 𝑓𝜃 ∗
𝑢𝑙
. In this paper,

we use a two-layer MLP-Mixer to serve as the unlearning model
U. As shown in Figure 2, given the initial gradient as input (i.e.,
∇𝜃 → Hin), the operation ofU is presented as follows

H(1)
tok = Hin +W(2)

tokGeLU
(
W(1)

tokLN(Hin)
)
,

H(1)
cha = H(1)

tok + GeLU
(
LN(H(1)

tok)W
(1)
cha

)
W(2)

cha,

H(2)
tok = H(1)

cha +W(4)
tokGeLU

(
W(3)

tokLN(H
(1)
cha)

)
,

H(2)
cha = H(2)

tok + GeLU
(
LN(H(2)

tok)W
(3)
cha

)
W(4)

cha,

(6)

where GeLU indicates the active function and LN denotes the layer
normalization. With Δ𝜃 = U(Δ𝜃) (i.e., Δ𝜃 = H(2)

cha), we obtain the
unlearned model 𝑓𝜃 ∗+Δ𝜃 . In this paper, all parameters of Eq. (6) are
denoted as 𝜑 , andU𝜑 is optimized by the following loss function.
Unlearning Loss Function. Unlearning 𝑆𝑢𝑙 has the following po-
tential impacts on DGNN 𝑓𝜃 ∗ , and the corresponding loss functions
describe the desired behaviors of 𝑓𝜃 ∗

𝑢𝑙
.

(1) Changed predictions on invariant representations. An event 𝑜𝑖 in
𝑆𝑢𝑙 could have observed a series of events that remained in 𝑆𝑟𝑒 be-
fore its occurrence time, while the unlearning expects 𝑓 to predict
differently on the same representations. Therefore, the unlearning
loss is defined as

ℓ𝑢𝑙 = ℓ (𝑌𝑢𝑙 | 𝑓𝜃 ∗+Δ𝜃 , 𝑆𝑢𝑙), (7)

(2) Invariant predictions on changed representations. For an even
𝑜 ∈ 𝑆𝑟𝑒 , its involved nodes may have different representations

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝜃∗ + ∆𝜃

Original training data
𝑆 𝑆𝑟𝑒

𝑆𝑢𝑙 = {(𝑎𝑑𝑑 𝑒𝑑𝑔𝑒, (𝑣𝑑 , 𝑣𝑗), 𝑡 = 6)}Unlearning requests

DGNN

𝑓𝜃∗ Gradient

Transformation

𝑗𝑖
𝑡 = 8

𝑑𝑗
𝑡 = 6

Request loss

− 0 +

∆𝜃 𝑓𝜃∗+∆𝜃

Unlearning loss

𝒰𝜑

Update 𝜑

Remaining training data

DGNN

Gradient Transformation

LayerNorm

MLP 1

LayerNorm

MLP 2

Transpose

Transpose

LayerNorm

MLP 3

LayerNorm

MLP 4

Transpose

Transpose

ℓ(𝐀6;𝑗,𝑑 = 0|𝑓𝜃∗)

∇𝜃

ℓ = ℓ𝑢𝑙 + ℓ𝑟𝑒 + ℓ𝑢𝑙𝑔 + ℓ𝑟𝑒𝑔

Figure 2: The overview of our Gradient Transformation method.

because their neighbors are potentially different before and after
removing 𝑆𝑢𝑙 , while it requires 𝑓 to make unchanged predictions
(as shown by (𝑣𝑖 , 𝑣 𝑗) at 𝑡 = 8 in Figure 4). Thus, the performance
loss for 𝑆𝑟𝑒 is defined as

ℓ𝑟𝑒 = ℓ (𝑌𝑟𝑒 | 𝑓𝜃 ∗+Δ𝜃 , 𝑆𝑟𝑒), (8)

(3) Avoiding the performance drop caused by unlearning. Due to the
data-driven nature of current machine learning methods, the size
deduction of 𝑆 caused by the removal of unlearning data 𝑆𝑢𝑙 could
potentially harm the performance of 𝑓 on test data 𝑆𝑡𝑒 . Considering
that 𝑙𝑟𝑒 is focused on maintaining model performance in training
data 𝑆𝑟𝑒 , we propose another loss to improve generalization of 𝑓 in
test data 𝑆𝑡𝑒 as

ℓ𝑟𝑒𝑔 = 𝑑 (𝑌𝑟𝑒 , 𝑌𝑣𝑎𝑙) =| |E(𝑌𝑟𝑒) − E(𝑌𝑣𝑎𝑙) | |2+
𝑘∑︁
𝑖=2

| |E(𝑌𝑟𝑒 − E(𝑌𝑟𝑒))𝑖 − E(𝑌𝑣𝑎𝑙 − E(𝑌𝑣𝑎𝑙))𝑖 | |2

(9)
where 𝑌𝑟𝑒 and 𝑌𝑣𝑎𝑙 indicate the predictions of 𝑓𝜃 ∗+Δ𝜃 on 𝑆𝑟𝑒 and
validation dataset 𝑆𝑣𝑎𝑙 , respectively. 𝑑 indicates the central moment
discrepancy function [36] that measures the distribution difference.
(4) Avoiding the overfitting caused by unlearning. Due to the ResNet-
like design of Gradient Transformation, our method U𝜑 may be
prone to overfitting 𝑆𝑢𝑙 w.r.t. its desired label 𝑌𝑢𝑙 . Although this
behavior is desired by unlearning requests, it potentially harms the
generalization ability of 𝑓 on 𝑆𝑢𝑙 , i.e., the 𝑓 retrained on 𝑆𝑟𝑒 could
perform/generalize well on 𝑆𝑢𝑙 due to its knowledge learned from
𝑆𝑟𝑒 . Refer to Appx. D for examples. To avoid this potential adverse
effect, a generalization regularization w.r.t. unlearning is defined as

ℓ𝑢𝑙𝑔 = 𝑑 (𝑌𝑢𝑙 , 𝑌𝑐
𝑢𝑙
) (10)

where 𝑌𝑢𝑙 denotes the desired predictions on 𝑆𝑢𝑙 . 𝑌𝑐
𝑢𝑙

is the predic-
tion of 𝑓𝜃 ∗+Δ𝜃 on the counterpart of 𝑆𝑢𝑙 , which could be any event
related to nodes in 𝑆𝑢𝑙 (e.g., 𝑣𝑑 or 𝑣 𝑗) that does not occur at 𝑡 = 6
(e.g., 𝑆𝑐

𝑢𝑙
= {(add edge, (𝑣𝑑 , 𝑣𝑒), 𝑡 = 6), (add edge, (𝑣 𝑗 , 𝑣𝑒), 𝑡 = 6)}).

In this paper, our unlearning method Gradient Transformation
U𝜑 is trained by the following loss

ℓ = ℓ𝑟𝑒 + 𝛼ℓ𝑟𝑒𝑔 + 𝛽ℓ𝑢𝑙 + 𝛾ℓ𝑢𝑙𝑔 (11)

Distinction fromprevious studies. (1)Ourmethod can be used in
a general and post-processingmanner to implement DGNNunlearn-
ing. It is independent of one specific architecture (e.g., Transformer-
based model DyGFormer [35]) and maintains the invariant archi-
tecture of the target DGNNs, which overcomes the model-specific
and changing architecture limitations of current methods for (static)
graph unlearning. (2) For resource concerns, the influence function-
based methods ask for 𝑂 (𝑛2) space to store the Hessian matrix,
where 𝑛 denotes the parameter size of target models. In contrast,
the space requirement of our method is 𝑂 (𝑛𝑑𝑊), where 𝑑𝑊 indi-
cates the average embedding dimension in Eq. (6) and 𝑑𝑊 << 𝑛.
Although this design greatly reduces the resource requirement of
our method, it potentially faces a resource bottleneck when han-
dling larger DGNN models in the future, which will be the future
work of this paper. (3) With the aim of unlearning DGNNs, this
paper is motivated to address the limitations of exiting static graph
unlearning methods. Although the generality advantage enables its
potential in unlearning other models (e.g., models for static graphs
or images), this paper focuses on DGNNs for link predictions.

6 EXPERIMENTS
6.1 Experimental Setup
Datasets, DGNNs, and Unlearning Requests. We evaluated our
method on six commonly used datasets for dynamic link prediction
[2], including Wikipedia, Reddit, MOOC, LastFM [1], UCI [37], and
Enron [38]. We use two state-of-the-art DGNNs, i.e., DyGFormer
[35] and GraphMixer [39], as the backbone models in our evalua-
tions due to their outperformance (See Appx. E for more details).
For data partition and DGNN training, we followed previous work
DyGLib [35]. In this paper, we set 𝑘 = 2 in the moment discrepancy
function (see Eq. (9) and (10)). The channel/token dimension (i.e.,
Eq. (6)) is set to 32. For the loss function (11), we set 𝛼 = 1.0, 𝛽 = 0.1,
and 𝛾 = 0.1. For the unlearning data, we first sample a fixed number
of events as initial events and use their historically observed events
(e.g., 621445 events in (LastFM, DyGFormer)) as unlearning data
𝑆𝑢𝑙 . For each (dataset, DGNN) combination, we ran five times on
RTX 3090 GPUs to obtain the evaluation results.
Baselines. In this paper, we focus on evaluating post-processing
and general unlearning methods for DGNNs. Baseline methods in-
clude retraining, fine-tuning, and fine-tuning only with unlearning
requests. Also, we use retraining from scratch as the gold standard to

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: AUC(𝑆𝑡𝑒) comparison between our method and baseline methods (ΔAUC(𝑆𝑡𝑒) ↑).
Methods Retraining Fine-tuning-ul Fine-tuning Ours
Datasets DyGFormer
Wikipedia 0.9862 ± 0.0004 0.8491 ± 0.1855 0.9542 ± 0.0334 0.9859 ± 0.0004

UCI 0.9422 ± 0.0005 0.7855 ± 0.2867 0.7850 ± 0.2864 0.9396 ± 0.0020
Reddit 0.9885 ± 0.0006 0.6459 ± 0.1049 0.9479 ± 0.0068 0.9902 ± 0.0001
MOOC 0.7477 ± 0.0289 0.5342 ± 0.0986 0.7949 ± 0.0275 0.8509 ± 0.0032
LastFM 0.8675 ± 0.0154 0.4409 ± 0.0967 0.5846 ± 0.0679 0.7953 ± 0.0523
Enron 0.8709 ± 0.0312 0.3109 ± 0.1018 0.8240 ± 0.0568 0.8452 ± 0.0867
Datasets GraphMixer
Wikipedia 0.9632 ± 0.0017 0.9576 ± 0.0032 0.9578 ± 0.0031 0.9683 ± 0.0016

UCI 0.9089 ± 0.0052 0.9174 ± 0.0072 0.9182 ± 0.0068 0.9149 ± 0.0069
Reddit 0.9650 ± 0.0001 0.9434 ± 0.0093 0.9444 ± 0.0086 0.9717 ± 0.0004
MOOC 0.8257 ± 0.0060 0.8179 ± 0.0062 0.8179 ± 0.0062 0.8367 ± 0.0056
LastFM 0.7381 ± 0.0020 0.7304 ± 0.0011 0.7304 ± 0.0011 0.7358 ± 0.0014
Enron 0.8462 ± 0.0009 0.8495 ± 0.0035 0.8495 ± 0.0035 0.8490 ± 0.0036

* In this table, the values indicate the average and variance results of five runs, and the results with largest
ΔAUC(𝑆𝑡𝑒) among Fine-tuning-ul, Fine-tuning, and our method is highlighted in bold.

evaluate unlearning methods. As a typical post-processing method,
the fine-tuning method uses the loss ℓ𝑟𝑒 + ℓ𝑢𝑙 to update the DGNN
parameters. To evaluate how overfitting a model will be when only
using unlearning requests, we use a variant of fine-tuning that only
uses ℓ𝑢𝑙 . Note that current SISA and influence function-based meth-
ods are not suitable as baselines here. This is because the former is
designed as a pre-processing method, while the resource-intensive
issue of the latter invalidates its practicability in the unlearning of
DGNNs. Refer to Appx. B.2 for details.
Metrics. We use the retrained model as the criterion, and the un-
learned model 𝑓(𝜃 ∗+Δ𝜃) is expected to perform similarly to or better
than 𝑓𝜃 ∗

𝑢𝑙
. Specifically, the evaluation of an unlearning method in-

cludes three different aspects of metrics, i.e., model effectiveness,
unlearning effectiveness, and unlearning efficiency.
(1) Model Effectiveness. A DGNN 𝑓 is trained to serve its users in
downstream tasks, where its performance is vital during its infer-
ence period. In this paper, we useΔAUC(𝑆𝑡𝑒) = AUC(𝑌, 𝑓𝜃 ∗+Δ𝜃 (𝑆𝑡𝑒))−
AUC(𝑌, 𝑓𝜃 ∗

𝑢𝑙
(𝑆𝑡𝑒)) as themetric, where 𝑆𝑡𝑒 represents the test dataset

and AUC indicates the numeric value of the area under the ROC
curve (AUC). A higher ΔAUC(𝑆𝑡𝑒) indicates a better unlearning
method. Similarly, we also use ΔAcc(𝑆𝑟𝑒) to evaluate unlearning
methods w.r.t. model performance on the remaining data 𝑆𝑟𝑒 , where
Acc indicates the accuracy function.
(2) Unlearning Effectiveness. According to the data-driven nature
of DGNNs, a well-retrained model 𝑓𝜃 ∗

𝑢𝑙
could generalize well on

unseen samples (e.g. 𝑆𝑢𝑙) because it has learned knowledge from
𝑆𝑟𝑒 and the same data patterns potentially exist in both 𝑆𝑟𝑒 and 𝑆𝑢𝑙 .
Therefore, this paper uses |ΔAcc(𝑆𝑢𝑙) | to evaluate the effectiveness
of unlearning. A lower value indicates a better unlearning method.
(3) Unlearning Efficiency. We compare the average time cost t𝑎𝑣𝑒
and the speed-up of different methods to evaluate their efficiency.

6.2 Model Performance on test data 𝑆𝑡𝑒
As the prediction quality is vital for DGNNs in serving users, we first
evaluate their performance on 𝑆𝑡𝑒 . Table 2 confirms the outperfor-
mance of our method w.r.t. ΔAUC(𝑆𝑡𝑒) ↑. We also observed that: (1)
Due to the complex Transformer-based design, the retrained DyG-
Former outperforms other backbone models in most cases, which

is consistent with previous research [35]. (2) Among all unlearning
methods, the fine-tuning-ul only uses the unlearning loss ℓ𝑢𝑙 (see
Eq. (7)) to obtain the target DGNN parameters, which harms their
performance in test data 𝑆𝑡𝑒 . For example, with the DyGFormer,
the average AUC score on the Enron dataset is only 0.3109, which
is extremely below that of retraining, i.e., 0.8709. This observation
indicates that it is vital to take into account the remaining training
data 𝑆𝑟𝑒 to reduce the performance cost of unlearning methods. (3)
As an integrated version, the fine-tuning method performs better
than the fine-tuning-ul method due to the use ℓ𝑟𝑒 + ℓ𝑢𝑙 as the loss
in optimizing the model parameters. However, the performance
compromise still exists in most cases. (4) Note that even in the
cases where our method is not the best, it still has competitive
performance. This can be attributed to ℓ𝑟𝑒𝑔 = 𝑑 (𝑌𝑟𝑒 , 𝑌𝑣𝑎𝑙) in the
loss function, which helps 𝑓 generalize well on the test data 𝑆𝑡𝑒 .

6.3 Model Performance on remaining data 𝑆𝑟𝑒
and unlearning data 𝑆𝑢𝑙

Table 3 showcases the prediction accuracy comparison among un-
learning methods on 𝑆𝑟𝑒 and 𝑆𝑢𝑙 . Specifically, (1) although baselines
are potentially at the cost of the model performance, our method
still generally performs better in the remaining training dataset
𝑆𝑟𝑒 w.r.t. Acc(𝑆𝑟𝑒) ↑. For example, for DyGFormer on the Reddit
dataset, the ΔAcc of the fine-tuning method is −0.0868 while our
method still maintains the same level of prediction performance
(i.e., ΔAcc = +0.0017). (2) For the unlearning request 𝑆𝑢𝑙 , a retrained
model can still predict well on unseen samples 𝑆𝑢𝑙 due to its gen-
eralization ability. However, as indicated by the underline results,
when comparing with the retraining method, we observed that the
fine-tuning and fine-tuning-ul methods have extreme overfitting
to 𝑆𝑢𝑙 . In contrast, our method performs similarly to the retraining
method w.r.t. |ΔAcc(𝑆𝑢𝑙) | ↓, which highlights the outperformance
of our method in approximating unlearning.

6.4 Unlearning Efficiency
Figure 3 demonstrates the time cost of different methods to imple-
ment unlearning, which shows that our method is almost always
more efficient than all other baselines. Moreover, we observe that:

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Acc comparison between our method and baseline methods.

Datasets Methods DyGFormer GraphMixer
Acc(𝑆𝑟𝑒)/ΔAcc ↑ Acc(𝑆𝑢𝑙)/|ΔAcc| ↓ Acc(𝑆𝑟𝑒)/ΔAcc ↑ Acc(𝑆𝑢𝑙)/|ΔAcc| ↓

Wikipedia

Retraining 0.9507 ± 0.0004 0.1470 ± 0.0435 0.9105 ± 0.0028 0.2050 ± 0.0078
Fine-tuning-ul 0.7541 ± 0.1463 0.1574 ± 0.1005 0.9112 ± 0.0056 0.1666 ± 0.0146
Fine-tuning 0.9062 ± 0.0545 0.3962 ± 0.0797 0.9117 ± 0.0056 0.1640 ± 0.0111

Ours 0.9529 ± 0.0008 0.1773 ± 0.0330 0.9307 ± 0.0016 0.1339 ± 0.0145

UCI

Retraining 0.8458 ± 0.0008 0.2056 ± 0.0097 0.8685 ± 0.0003 0.1361 ± 0.0080
Fine-tuning-ul 0.7552 ± 0.1427 0.3850 ± 0.3515 0.8705 ± 0.0036 0.1246 ± 0.0066
Fine-tuning 0.7572 ± 0.1437 0.4006 ± 0.3408 0.8710 ± 0.0034 0.1235 ± 0.0080

Ours 0.8484 ± 0.0020 0.2057 ± 0.0028 0.8737 ± 0.0019 0.1258 ± 0.0055

Reddit

Retraining 0.9460 ± 0.0012 0.0540 ± 0.0033 0.9009 ± 0.0003 0.0477 ± 0.0028
Fine-tuning-ul 0.6665 ± 0.0817 0.3116 ± 0.2221 0.8874 ± 0.0058 0.3361 ± 0.0512
Fine-tuning 0.8592 ± 0.0104 0.2433 ± 0.0727 0.8879 ± 0.0060 0.3342 ± 0.0516

Ours 0.9487 ± 0.0006 0.0476 ± 0.0014 0.9326 ± 0.0005 0.0212 ± 0.0021

MOOC

Retraining 0.8176 ± 0.0124 0.0452 ± 0.0389 0.8171 ± 0.0033 0.1240 ± 0.0068
Fine-tuning-ul 0.6090 ± 0.1116 0.4962 ± 0.3865 0.8161 ± 0.0053 0.0552 ± 0.0110
Fine-tuning 0.7510 ± 0.0252 0.4804 ± 0.0595 0.8161 ± 0.0053 0.0552 ± 0.0110

Ours 0.7950 ± 0.0036 0.0472 ± 0.0164 0.8222 ± 0.0026 0.0630 ± 0.0130

LastFM

Retraining 0.8738 ± 0.0049 0.3110 ± 0.1099 0.6583 ± 0.0006 0.2918 ± 0.0075
Fine-tuning-ul 0.5578 ± 0.0660 0.5322 ± 0.2697 0.6593 ± 0.0024 0.3059 ± 0.0071
Fine-tuning 0.7590 ± 0.0163 0.9103 ± 0.0232 0.6597 ± 0.0024 0.2980 ± 0.0030

Ours 0.8198 ± 0.0224 0.2834 ± 0.1714 0.6632 ± 0.0015 0.3009 ± 0.0080

Enron

Retraining 0.9321 ± 0.0119 0.2101 ± 0.0399 0.8007 ± 0.0009 0.2866 ± 0.0215
Fine-tuning-ul 0.5012 ± 0.0007 0.9953 ± 0.0059 0.8109 ± 0.0015 0.2938 ± 0.0569
Fine-tuning 0.9015 ± 0.0329 0.2759 ± 0.1047 0.8110 ± 0.0015 0.2771 ± 0.0498

Ours 0.8226 ± 0.1652 0.2324 ± 0.2934 0.8100 ± 0.0012 0.2944 ± 0.0341
* Acc(𝑆𝑟𝑒) results represent the model performance on remaining training data, and the results (excluding the retraining method) with largest
ΔAcc is highlighted in bold. Acc(𝑆𝑢𝑙) results indicate the model performance on unlearning data, and the results with the smallest |ΔAcc |
are highlighted in bold. Underline points out the result where there is an extreme overfitting on 𝑆𝑢𝑙 .

Wikipedia

MOOC

UCI

LastFM

Reddit

Enron

Figure 3: The time cost comparison between our Gradient Transformation method and baseline methods. The numerical values
on the bars (e.g., 6.20×) indicate the degree of acceleration relative to the retraining approach.

(1) Due to the use of additional 𝑆𝑟𝑒 in the unlearning process, the
fine-tuning method is generally slower than the fine-tuning-ul
method. (2) Although the baselines can make the unlearning pro-
cess efficient, the overfitting on 𝑆𝑢𝑙 limits their speed to obtain their
optimal solutions, where it is not trivial to navigate between the
unlearning effectiveness and model performance.

Remark. For most (dataset, DGNN) combinations cases, our method
obtained obvious efficiency advantages such as 6.36× speeding up
in the case (Reddit, GraphMixer). However, in the (LastFM, DyG-
Former) case, the slight slowness can be attributed to the large scale
(i.e., 621445 events) of 𝑆𝑢𝑙 and the trade-off between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 on
model performance. Refer to Appx. F.3 for more details.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Comparison between our method and baseline methods on the CAWNmodel
Datasets Methods Acc(𝑆𝑟𝑒)/ΔAcc ↑ Acc(𝑆𝑢𝑙)/|ΔAcc| ↓ AUC(𝑆𝑡𝑒)/ΔAUC ↑ t𝑎𝑣𝑒 (𝑠) Speed-up

Wikipedia

Re-training 0.9491 ± 0.0006 0.1159 ± 0.0048 0.9841 ± 0.0002 1903.3736 1 ×
Fine-tuning-ul 0.9485 ± 0.0015 0.1191 ± 0.0091 0.9820 ± 0.0014 526.8222 3.61×
Fine-tuning 0.9485 ± 0.0015 0.1133 ± 0.0074 0.9814 ± 0.0021 568.0133 3.35×

Ours 0.9486 ± 0.0007 0.1086 ± 0.0046 0.9829 ± 0.0001 263.2861 7.23×

Reddit

Re-training 0.9429 ± 0.0009 0.0411 ± 0.0029 0.9890 ± 0.0002 7449.4465 1×
Fine-tuning-ul 0.6599 ± 0.0971 0.4201 ± 0.2954 0.6759 ± 0.1405 2500.3047 2.98×
Fine-tuning 0.9041 ± 0.0034 0.4559 ± 0.0402 0.9640 ± 0.0013 3623.2015 2.06×

Ours 0.9481 ± 0.0012 0.0303 ± 0.0022 0.9897 ± 0.0001 1329.4738 5.60×

Enron

Re-training 0.9094 ± 0.0018 0.1192 ± 0.0061 0.8758 ± 0.0094 1334.3856 1×
Fine-tuning-ul 0.5399 ± 0.0744 0.6818 ± 0.3898 0.5970 ± 0.0591 537.0440 2.48×
Fine-tuning 0.8600 ± 0.0190 0.2534 ± 0.0708 0.8403 ± 0.0221 612.8398 2.18×

Ours 0.9162 ± 0.0007 0.1120 ± 0.0026 0.9024 ± 0.0007 291.0586 4.58×
* Acc(𝑆𝑟𝑒) results represent the model performance on remaining training data, and the results (excluding the retraining method) with largest ΔAcc
is highlighted in bold. Acc(𝑆𝑢𝑙) results indicates the model performance on unlearning data, and the results with smallest |ΔAcc | are highlighted
in bold. Underline points out the result where there is extremely overfitting on unlearning requests. AUC(𝑆𝑡𝑒) results show the model performance
on test data, and the the results (excluding the retraining method) with largest ΔAUC is highlighted in bold.

Table 5: Comparison between our method and the retraining on theWikipedia dataset when dealing future unlearning requests
Acc(𝑆𝑟𝑒) Acc(𝑆𝑢𝑙) AUC(𝑆𝑡𝑒) t𝑎𝑣𝑒 (s) Speed-up

Retraining 0.9525 ± 0.0009 0.0514 ± 0.0035 0.9869 ± 0.0005 506.4784 1 ×DyGFormer Ours 0.9569 ± 0.0065 0.0722 ± 0.0099 0.9853 ± 0.0004 16.2926 31.09 ×
Retraining 0.9077 ± 0.0056 0.0977 ± 0.0079 0.9610 ± 0.0031 500.6417 1 ×GraphMixer Ours 0.9278 ± 0.0119 0.0803 ± 0.0296 0.9600 ± 0.0137 19.9474 25.10 ×
Retraining 0.9495 ± 0.0007 0.0749 ± 0.0013 0.9837 ± 0.0002 1594.1584 1 ×CAWN Ours 0.9570 ± 0.0047 0.0803 ± 0.0199 0.9830 ± 0.0002 48.9181 32.59 ×

Table 6: Ablation study on loss with (DyGFormer, LastFM).
Methods Acc(𝑆𝑟𝑒) Acc(𝑆𝑢𝑙) AUC(𝑆𝑡𝑒)
Re-training 0.8738 0.3110 0.8675
Fine-tuning-ul 0.5578 0.5322 0.4409
Fine-tuning 0.7590 0.9103 0.5846
Ours-re-ul 0.8239 0.2758 0.7988
Ours-re-ul-reg 0.8241 0.2790 0.8006
Ours-re-ul-ulg 0.8170 0.2759 0.7931
Ours-full 0.8198 0.2834 0.7953
* This table shows the average evaluation results. Following the
metric in Tables 2 and 3, the best method is highlighted in bold.

6.5 Other Evaluations
Method Generality. We further verify that our method is inde-
pendent of the DGNN architecture by evaluating it on the CAWN
model [40], whose random walking-based architecture is different
from that of DyGFormer and GraphMixer. Consistent with Tables
2 and 3, the results in Table 4 confirm that our method is effective,
efficient, and general for the unlearning of DGNNs.
Prediction Similarity Comparison. Note that one of the unlearn-
ing goals is to eliminate the influence of 𝑆𝑢𝑙 when applying the
target model to the test data 𝑆𝑡𝑒 [41]. Thus, we compared predic-
tion similarity to evaluate the extent of unlearning of our method.
Evaluation results indicate that our method achieves an average
unlearning rate 81.33% on the test data (See Appx. F.1 for details).
Ablation study on loss function. We evaluated the contribution
of different loss items in Eq. (11). Compared with the basic version
(i.e., Ours-re-ul), additionally introducing the utility generalization

loss ℓ𝑟𝑒𝑔 (i.e., Ours-re-ul-reg) improves the model performance on
𝑆𝑟𝑒 and 𝑆𝑡𝑒 , while using ℓ𝑢𝑙𝑔 (i.e., Ours-re-ul-ulg) decreases the
model utility on them. In contrast, the comprehensive version (i.e.,
Ours-full) obtains the best unlearning results on 𝑆𝑢𝑙 .
Unlearning without training. The learning nature of our method
brings potential benefits when handling future unlearning requests.
Using the gradient of new unlearning requests as input, our method
could directly output the desired parameter update. In this paper,
we use the sampled initial events (refer to Section 6.1) as future
unlearning requests to evaluate our method. Table 5 shows that
our method obtains almost the same unlearning results as the re-
training method. For example, besides performance increments, the
largest |ΔAcc(𝑆𝑢𝑙) | is only 0.0208 while the speed-up is at least 25×.
However, this benefit of our method could be limited due to the
complex relationships between 𝑆𝑟𝑒 and 𝑆𝑢𝑙 and the lack of ground
truth Δ𝜃 in the training of our method. In cases where the benefit
is limited, model developers can re-run our method in Figure 2 to
conduct future unlearning.

7 CONCLUSION
In this paper, we study dynamic graph unlearning and propose a
method called Gradient Transformation, which is effective, efficient,
general, and can be used in a post-processing manner. Empirical
evaluations on real-world datasets confirm the effectiveness and
efficiency outperformance of our method, and we also demonstrate
its potential advantages in handling future unlearning requests. In
the future, we will study the causal relationships between events
from the unlearning view, while also delving into the intricate
interplay between the remaining data and the unlearning data.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding

trajectory in temporal interaction networks. In KDD, pages 1269–1278. ACM,
2019.

[2] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany.
Towards better evaluation for dynamic link prediction. In NeurIPS, 2022.

[3] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua
Hu, Emanuele Rossi, Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau,
and Reihaneh Rabbany. Temporal graph benchmark for machine learning on
temporal graphs. In NeurIPS, 2023.

[4] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, and Yong Li. A survey of graph
neural networks for recommender systems: Challenges, methods, and directions.
Trans. Recomm. Syst., 1(1):1–51, 2023.

[5] Ernesto Colacrai, Federico Cinus, Gianmarco De Francisci Morales, and Michele
Starnini. Navigating multidimensional ideologies with reddit’s political compass:
Economic conflict and social affinity. In WWW, pages 2582–2593. ACM, 2024.

[6] Wenzhuo Song, Shoujin Wang, Yan Wang, Kunpeng Liu, Xueyan Liu, and Ming-
hao Yin. A counterfactual collaborative session-based recommender system. In
WWW, pages 971–982. ACM, 2023.

[7] Haoran Tang, Shiqing Wu, Guandong Xu, and Qing Li. Dynamic graph evolution
learning for recommendation. In SIGIR, pages 1589–1598. ACM, 2023.

[8] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun,
and Defu Lian. A survey on session-based recommender systems. ACM Comput.
Surv., 54(7):154:1–154:38, 2022.

[9] Karan Vombatkere, Sepehr Mousavi, Savvas Zannettou, Franziska Roesner, and
Krishna P. Gummadi. Tiktok and the art of personalization: Investigating explo-
ration and exploitation on social media feeds. InWWW, pages 3789–3797. ACM,
2024.

[10] Reddit privacy policy. https://shorturl.at/eYQxG, August 16, 2024. Accessed Oct
7, 2024.

[11] Linkedin secretly training its ais on user data. https://www.inc-aus.com/kit-
eaton/linkedin-secretlytraining-its-ais-on-user-data.html, September 20, 2024.
Accessed Oct 7, 2024.

[12] Bang Wu, He Zhang, Xiangwen Yang, Shuo Wang, Minhui Xue, Shirui Pan, and
Xingliang Yuan. Graphguard: Detecting and counteracting training data misuse
in graph neural networks. In NDSS, 2024.

[13] European Union. Right to be Forgotten, General Data Protection Regulation.
https://gdpr-info.eu/issues/right-to-be-forgotten/, 2021.

[14] Thanh TamNguyen, Thanh TrungHuynh, Phi Le Nguyen, AlanWee-Chung Liew,
Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning.
CoRR, abs/2209.02299, 2022.

[15] Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine
unlearning: A survey. ACM Comput. Surv., 56(1):9:1–9:36, 2024.

[16] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. Graph unlearning. In CCS, pages 499–513. ACM, 2022.

[17] Anwar Said, Tyler Derr, Mudassir Shabbir, Waseem Abbas, and Xenofon D.
Koutsoukos. A survey of graph unlearning. CoRR, abs/2310.02164, 2023.

[18] Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Recommendation unlearning.
InWWW, pages 2768–2777. ACM, 2022.

[19] Zizhang Chen, Peizhao Li, Hongfu Liu, and Pengyu Hong. Characterizing the
influence of graph elements. In ICLR. OpenReview.net, 2023.

[20] Yang Zhang, Zhiyu Hu, Yimeng Bai, Fuli Feng, Jiancan Wu, Qifan Wang, and
Xiangnan He. Recommendation unlearning via influence function. CoRR,
abs/2307.02147, 2023.

[21] Weilin Cong and Mehrdad Mahdavi. Efficiently forgetting what you have learned
in graph representation learning via projection. In AISTATS, volume 206 of
Proceedings of Machine Learning Research, pages 6674–6703. PMLR, 2023.

[22] Cheng-Long Wang, Mengdi Huai, and Di Wang. Inductive graph unlearning. In
USENIX Security Symposium, pages 3205–3222. USENIX Association, 2023.

[23] Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning. In
NeurIPS 2022 Workshop: New Frontiers in Graph Learning, 2022.

[24] Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan
He. GIF: A general graph unlearning strategy via influence function. In WWW,
pages 651–661. ACM, 2023.

[25] Kun Wu, Jie Shen, Yue Ning, Ting Wang, and Wendy Hui Wang. Certified edge
unlearning for graph neural networks. In KDD, pages 2606–2617. ACM, 2023.

[26] Jiali Cheng, George Dasoulas, Huan He, Chirag Agarwal, and Marinka Zitnik.
Gnndelete: A general strategy for unlearning in graph neural networks. In ICLR.
OpenReview.net, 2023.

[27] M. Seyed Kazemi. Dynamic graph neural networks. In Lingfei Wu, Peng Cui,
Jian Pei, and Liang Zhao, editors, Graph Neural Networks: Foundations, Frontiers,
and Applications, pages 323–349. Springer Singapore, Singapore, 2022.

[28] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J.
Kim. Graph transformer networks. In NeurIPS, pages 11960–11970, 2019.

[29] Ao Zhou, Jianlei Yang, Yeqi Gao, Tong Qiao, Yingjie Qi, Xiaoyi Wang, Yunli
Chen, Pengcheng Dai, Weisheng Zhao, and Chunming Hu. Brief industry paper:

optimizing memory efficiency of graph neural networks on edge computing
platforms. In RTAS, pages 445–448. IEEE, 2021.

[30] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in
language models. In EMNLP (1), pages 6491–6506. Association for Computational
Linguistics, 2021.

[31] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. Representation learning for dynamic graphs:
A survey. J. Mach. Learn. Res., 21:70:1–70:73, 2020.

[32] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR (Poster). OpenReview.net, 2017.

[33] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and
modeling of dynamic networks using dynamic graph neural networks: A survey.
IEEE Access, 9:79143–79168, 2021.

[34] Edward Newell, David Jurgens, Haji Mohammad Saleem, Hardik Vala, Jad Sassine,
Caitrin Armstrong, and Derek Ruths. User migration in online social networks:
A case study on reddit during a period of community unrest. In ICWSM, pages
279–288. AAAI Press, 2016.

[35] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph
learning: New architecture and unified library. In NeurIPS, 2023.

[36] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger,
and Susanne Saminger-Platz. Central moment discrepancy (CMD) for domain-
invariant representation learning. In ICLR (Poster). OpenReview.net, 2017.

[37] Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online community. J.
Assoc. Inf. Sci. Technol., 60(5):911–932, 2009.

[38] Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and
brief statistical report. Information sciences institute technical report, University
of Southern California, 4(1):120–128, 2004.

[39] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, HaoWu, Xin Zhou, Hanghang
Tong, and Mehrdad Mahdavi. Do we really need complicated model architectures
for temporal networks? In ICLR. OpenReview.net, 2023.

[40] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive
representation learning in temporal networks via causal anonymous walks. In
ICLR. OpenReview.net, 2021.

[41] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck.
Machine unlearning of features and labels. In NDSS. The Internet Society, 2023.

[42] Hao Peng, Bowen Du, Mingsheng Liu, Mingzhe Liu, Shumei Ji, Senzhang Wang,
Xu Zhang, and Lifang He. Dynamic graph convolutional network for long-term
traffic flow prediction with reinforcement learning. Inf. Sci., 578:401–416, 2021.

[43] Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen
Kong. Dynamic network embedding survey. Neurocomputing, 472:212–223, 2022.

[44] Joshua Fan, Junwen Bai, Zhiyun Li, Ariel Ortiz-Bobea, and Carla P. Gomes.
A GNN-RNN approach for harnessing geospatial and temporal information:
Application to crop yield prediction. In AAAI, pages 11873–11881. AAAI Press,
2022.

[45] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
Inductive representation learning on temporal graphs. In ICLR. OpenReview.net,
2020.

[46] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
Dyrep: Learning representations over dynamic graphs. In ICLR (Poster). Open-
Review.net, 2019.

[47] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael M. Bronstein. Temporal graph networks for deep learning
on dynamic graphs. CoRR, abs/2006.10637, 2020.

[48] Chao Pan, Eli Chien, and Olgica Milenkovic. Unlearning graph classifiers with
limited data resources. InWWW, pages 716–726. ACM, 2023.

9

https://shorturl.at/eYQxG
https://www.inc-aus.com/kit-eaton/linkedin-secretlytraining-its-ais-on-user-data.html
https://www.inc-aus.com/kit-eaton/linkedin-secretlytraining-its-ais-on-user-data.html
https://gdpr-info.eu/issues/right-to-be-forgotten/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A CONCEPTS
Discrete-time Dynamic Graphs (DTDG). Given a benign se-
quence of static graphs with time length 𝑇 = 𝑡 − 1, a discrete-time
dynamic graph is denoted as 𝑆 = {𝐺1,𝐺2, . . . ,𝐺𝑡−1}, where 𝐺𝑘 =

{V𝑘 , E𝑘 } denotes the 𝑘-th snapshot of a dynamic graph. In the
form of𝐺𝑘 = (A𝑘 ,X𝑘), A𝑘 ;𝑖, 𝑗 = 1 if there is a link from 𝑣𝑖 pointing
to 𝑣 𝑗 in the 𝑘-th snapshot, otherwise A𝑘 ;𝑖, 𝑗 = 0; X𝑘 ;𝑖 represents
the node feature of 𝑣𝑖 in 𝐺𝑘 , and X𝑘 ;𝑖, 𝑗 indicates its 𝑗-th feature
value. Thus, a discrete-time dynamic graph can also be depicted as
𝑆 = {(A1,X1), (A2,X2), . . . , (A𝑡−1,X𝑡−1)}.

B RELATEDWORK
B.1 Dynamic Graph Neural Networks
The dynamic graph is a powerful data structure that depicts both
spatial interactions and temporal changes in practical data from var-
ious real-world applications (e.g., traffic prediction [42]). Dynamic
graph neural networks (DGNNs) are proposed to learn the complex
spatial-temporal patterns in these data [31, 33, 43]. Next, we will
present some representative methods to introduce how dynamic
graph neural networks learn from dynamic graphs. Depending on
the type of dynamic graph (as shown in Section 3), current methods
can be categorized into DGNNs for discrete-time and continuous-
time dynamic graphs [35].
(1) For discrete-time methods, they generally employ a GNN model
for static graphs to learn spatial representations and an additional
module (e.g., RNN [44]) to capture the temporal changes of the same
node in different static snapshot graphs. In this paper, we focus
on DGNNs designed for continuous-time dynamic graphs. Unlike
discrete-time dynamic graphs, this type of data naturally records dy-
namic changes (i.e., fine-grained order of different changes) without
determining the time interval among the snapshots in discrete-time
dynamic graphs [45]
(2) Some typical continuous-time methods are RNN-based models
(e.g., JODIE [1]), temporal point process models (e.g., DyRep [46]),
time embedding-based models (e.g., TGAT [45], TGN [47]), and
temporal random walk methods [33, 40].

In this paper, our evaluations focus on the DyGFormer and
GraphMixer models for two reasons. (1) According to a recent
study [35], these two methods have obvious outperformance over
previous methods (e.g., JODIE [1], DyRep [46], TGAT [45], TGN
[47]), allowing them to be preferentially deployed in real-world
applications. (2) These methods have different architectures, which
helps in comprehensively evaluating our methods. The DyGFormer
[35] is designed using the famous Transformer module, and the
GraphMixer [39] is an MLP-based framework. Moreover, we also
evaluated our method on the CAWN model [40], which is an ap-
proach based on the temporal random walk.

B.2 Unlearning Methods
Retraining. Intuitively, for the target model to be unlearned, delet-
ing the unlearning data from the original training data and re-
training from scratch will directly meet the requirement from the
perspective of unlearning. However, retraining from scratch comes
at the cost of huge time and computational resources, given large-
scale training data or complex model architectures. To this end,

various methods have been proposed to satisfy the efficiency re-
quirement of unlearning. Current methods designed for GNNs focus
on static graph unlearning, including SISA methods, influence func-
tion methods, and other approaches.
SISA Methods. Referring to “Sharded, Isolated, Sliced, and Aggre-
gated”, the SISA method represents a type of ensemble learning
method and is not sensitive to the architecture of target models
(i.e., model-agnostic). Specifically, SISA first divides the original
training data D𝑜 into 𝑘 different and disjoint shard datasets, i.e.,
D1

𝑜 , ...,D𝑘
𝑜 , which are used to train 𝑘 different submodels 𝑓 1, ..., 𝑓 𝑘

separately. To obtain the final prediction on a sample 𝑣𝑖 , SISA ag-
gregates 𝑓 1 (𝑣𝑖), ..., 𝑓 𝑘 (𝑣𝑖) together to obtain a global prediction.
Upon receiving the unlearning request for a sample 𝑣 𝑗 , SISA first
removes 𝑣 𝑗 from the shard D 𝑗

𝑜 that includes it and only retrains 𝑓 𝑗
to obtain the updated model, which significantly reduces the time
cost compared with retraining the whole model from scratch on
D𝑜 \ 𝑣 𝑗 (i.e., the dataset with removing 𝑣 𝑗).
Typical methods. The SISA method divides the training dataset
into several subsets and trains submodels on them, followed by
assembling these submodels to serve users. In the context of graph
unlearning, it is not trivial to directly split a whole graph into sev-
eral subgraphs, as imbalanced partition (e.g., imbalance of node
class) potentially leads to decreased model performance. To this end,
GraphEraser [16] and RecEraser [18] propose balanced graph parti-
tion frameworks and learning-based aggregation methods. Unlike
the transductive setting of GraphEraser, Wang et al. [22] propose
a method called GUIDE in the inductive learning setting, which
takes the fair and balanced graph partitioning into consideration.
Limitations. The weakness of SISA methods mainly includes the
following two aspects.
(1) Efficacy Issue on A Group of Unlearning Requests. The SISA
method faces the efficiency issue when dealing with a group/batch
of unlearning requests. Note that the efficiency of SISA methods in
facilitating unlearning stems from the fact that retraining a single
submodel is more efficient than retraining the entire model that was
trained on the whole dataset, which is suitable for implementing
unlearning of a single sample. However, the SISA method will have
to retrain all submodels when a group of unlearning requests binds
to all shards, limiting its unlearning efficiency capacity.
(2) Reliance on Pre-processing. Note that SISA methods can only
be used in the initial phase of model development. Once the ma-
chine learning models are deployed, the current SISA methodology
cannot implement unlearning on them in a post-processing manner.
Influence Function based Methods. Current research on the in-
fluence function studies how a training sample impacts the learning
of a machine learning model [19, 20]. Generally, given a model 𝑓 , its
optimal parameter is obtained by 𝜃∗ = argmin𝜃

∑
𝑣∈D𝑜

ℓ (𝑓𝜃 | D𝑜),
where ℓ indicates a convex and twice-differential loss function. For
the unlearning request on a training sample 𝑣 𝑗 , the desiredmodel pa-
rameter 𝜃∗

𝑢𝑙
is defined as 𝜃∗

𝑢𝑙
= argmin𝜃

∑
𝑣∈D𝑜\𝑣𝑗 ℓ

(
𝑓𝜃 | D𝑜 \ 𝑣 𝑗

)
.

Without retraining 𝑓 , current influence function-based methods are
designed to estimate the parameter change Δ𝜃 and use it to approx-
imate 𝜃∗

𝑢𝑙
(i.e., 𝜃∗

𝑢𝑙
≈ 𝜃∗ + Δ𝜃). The estimation can be obtained by

Δ𝜃 = H𝜃 ∗∇𝜃 ∗ ℓ
(
𝑓𝜃 | 𝑣 𝑗

)
, whereH−1

𝜃 ∗ =
∑

𝑣∈D𝑜
∇2
𝜃 ∗ ℓ (𝑓𝜃 | D𝑜) denotes

the Hessian matrix H.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Typical methods. Current research on the influence function studies
how a training sample affects the learning of a machine learning
model [19, 20]. In the context of graph unlearning, the influence
function is more complex since the edges between nodes break the
independent and identically distributed assumption of training sam-
ples in the above formulations. Therefore, the multi-hop neighbors
of an unlearning node or nodes involved in an unlearning edge have
been considered to correct the above estimation of Δ𝜃 , and more
details can be found in recent works called Certified Graph Un-
learning (CGU) [23], GIF [24], CEU [25], and an unlearning method
based on Graph Scattering Transform (GST) [48]. Note that these
methods generally rely on the static graph structure to determine
the scope of nodes that need to be involved in the final influence
function, which cannot be directly adapted to dynamic graphs.
Limitations. The weakness of influence function-based methods
mainly includes the following two aspects.
(1) Model-specific design. Current estimations of Δ𝜃 in graph un-
learning are generally established on simple GNN models (e.g.,
linear GCN model in CEU [25]), whose estimation accuracy is po-
tentially limited due to the complexity and diversity of current state-
of-the-art GNN architectures (e.g., Graph Transformer Networks
[28]). Furthermore, these methods are not strictly model-agnostic,
since they need access to the architecture of target models (e.g.,
layer information) to determine the final influence function (e.g.,
GIF [24]), that is, they are sensitive to GNN layers.
(2) Resource intensive. Although influence function-based methods
can be used in a post-processing manner, the calculation of the
inverse of a Hessian matrix (i.e., H−1

𝜃 ∗) generally has a high time
complexity and memory cost when the model parameter size is
large. For example, for a DyGFormer model [35] with single preci-
sion floating point format parameters, it requires 4.298 TB space
to store the Hessian matrix when the parameter size is 4.146 MB
(i.e., the model on Wikipedia dataset). This resource issue severely
limits the practicability of influence function-based methods in the
unlearning of dynamic graph neural networks.
Others. Recently, the PROJECTOR method proposes mapping the
parameter of linear GNNs to a subspace that is irrelevant to the
nodes to be forgotten [21]. However, it is a model-specific method
and cannot be applied to the unlearning of other non-linear GNNs.
Unlike existingmodel-specific methods, GNNDelete [26] introduces
an architecture modification strategy, where an additional train-
able layer is added to each layer of the target GNN. Although this
method is model-agnostic, the requirement of additional architec-
ture space reduces its practicability in scenarios where the deploy-
ment space is limited (e.g., edge computing devices [29]). Another
model-agnostic method called GraphGuard [12] uses fine-tuning
to make the target GNN forget the unlearning samples, where both
the remaining and unlearning data are involved in the loss function
to fine-tune the model parameter. However, the fine-tuning method
is prone to overfitting unlearning samples [30], which potentially
harms the model performance.

C UNLEARNING REQUESTS OF DGNNS
Any data change needs in the training data 𝑆 could potentially raise
unlearning requests. Besides the unlearning requests in Section
4, other unlearning needs also exist in real-world applications for

various reasons. For example, users may expect to unlearn some
specific features (e.g., forgetting the gender and age information
for system fairness) or labels (e.g., out-of-date tags of interest) [41].
Interaction between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 . In AI systems for general data
(e.g., image or tabular data), 𝑆𝑢𝑙 and 𝑆𝑟𝑒 are independent of each
other, since the samples in the training dataset are independent
and identically distributed (IID). However, for (static) graph data,
𝑆𝑢𝑙 and 𝑆𝑟𝑒 can potentially interact with each other [17]. For ex-
ample, given an unlearning node 𝑣𝑖 ∈ 𝑆𝑢𝑙 , its connected neighbor
nodes may belong to the remaining dataset 𝑆𝑟𝑒 . Due to the message
passing mechanism and stacking layer operation in most GNNs,
existing studies have proposed to consider multi-hop neighbors
when unlearning is performed for GNNs [25].

As shown in Figure 4, DGNNs are designed to learn both spatial
and temporal information in dynamic graphs, making the interac-
tion between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 in dynamic graphsmore complex than that
in static graphs. For example, in a dynamic graph neural network
𝑓 for CTDG data, the embedding of a node at time 𝑡 is obtained by
taking into account its spatial and historical neighbor nodes. In the
context of unlearning a DGNN 𝑓𝜃 ∗ , i.e., obtaining the desired pa-
rameter 𝜃∗

𝑢𝑙
with an unlearning methodU, the complex interaction

between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 includes:

• Changed predictions on invariant representations. Before and after
removing 𝑆𝑢𝑙 from 𝑆 , an event 𝑜𝑖 in 𝑆𝑢𝑙 may have observed the
same series of events that remained in 𝑆𝑟𝑒 before its occurrence
time, where spatial-temporal subgraphs are prone to generat-
ing almost invariant node embedding. However, the unlearning
method U expects 𝑓 to make different predictions (e.g., (𝑣𝑑 , 𝑣 𝑗)
at 𝑡 = 6).

• Invariant predictions on changed representations. Due to the re-
moval of 𝑆𝑢𝑙 , the spatial-temporal neighbors of an event 𝑜 𝑗 ∈ 𝑆𝑟𝑒
are potentially different (e.g., 𝑣 𝑗 at 𝑡 = 8), while the unlearning
method U expects 𝑓 to make invariant predictions (e.g., there is
an edge (𝑣𝑖 , 𝑣 𝑗) at 𝑡 = 8). Note that it is also not trivial to identify
exactly the events in 𝑆𝑟𝑒 that are influenced by the unlearning
request 𝑆𝑢𝑙 .

D EXAMPLES OF AVOIDING OVERFITTING
UNLEARNING DATA

As shown in Figure 5, in the remaining training data 𝑆𝑟𝑒 , there is
an edge event between 𝑣𝑎 and 𝑣𝑖 at time 𝑡 = 5/7 because they share
a common neighbor node at the last time point (i.e., there are edges
(𝑣𝑎, 𝑣𝑐) and (𝑣𝑖 , 𝑣𝑐) at 𝑡 = 4/6). Although samples with the same
pattern have been included in 𝑆𝑢𝑙 (e.g., the edge (𝑣 𝑗 , 𝑣𝑑) at 𝑡 = 6
because they share the same neighbor 𝑣 𝑓 in 𝑡 = 5), a well-retrained
model 𝑓 can generalize well on 𝑆𝑢𝑙 when a lot of samples with the
same patterns have been kept in the remaining data 𝑆𝑟𝑒 . Therefore,
focusing on 100% unlearning of 𝑆𝑢𝑙 (e.g., there is no edge prediction
in 𝑆𝑢𝑙 with 100% accuracy) potentially harms the performance of
DGNNs on 𝑆𝑟𝑒 .

The example in Figure 5 and the practical evaluation results on
𝑆𝑢𝑙 by retraining (i.e., Tables 3 and 4) support us in using the results
from the retraining method as the only gold standard to evaluate
other unlearning methods. Our efforts to alleviate overfitting 𝑆𝑢𝑙
also include setting 𝛽 = 0.1 in the loss function (11).

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

c

7

6
6

7 6

𝑖
𝑎

𝑗

𝑘
6

6

5

5

𝑗

𝑘

𝑑

𝑓

45

𝑗 𝑒

𝑓 5

4

𝑑

𝑒

𝑓

c

Spatial-temporal neighborsNodes Edge events5

Spatial-temporal

subgraphs of

related nodes

5,7

4,6
4,6

0,2,3
2,7 6

6

5

0,3,45

𝑖
𝑎

𝑏

𝑗

𝑘

𝑑

𝑒

𝑓

𝑡 = 8 ?

A continuous-time dynamic

graph at 𝑡 = 7
𝑣𝑖
𝑣𝑗

𝑣𝑑
𝑣𝑗

𝑡 = 8

𝑡 = 6

DGNNTraining data Predictions

𝑗𝑖

𝑑𝑗
𝑡 = 6

𝑡 = 8

…
…

c

7

6
6

7 6

𝑖
𝑎

𝑗

𝑘

45

𝑗 𝑒

𝑓 5

4

𝑑

𝑒

𝑓

c

Training data will be updated upon receiving unlearning requests

Spatial-temporal

subgraphs of

related nodes

5,7

4,6
4,6

0,2,3
2,7 6

5

0,3,45

𝑖
𝑎

𝑏

𝑗

𝑘

𝑑

𝑒

𝑓

𝑡 = 8 ?

Remaining continuous-time

dynamic graph at 𝑡 = 7
𝑣𝑖
𝑣𝑗

𝑣𝑑
𝑣𝑗

𝑡 = 8

𝑡 = 6

DGNNTraining data Predictions

𝑗𝑖

𝑑𝑗
𝑡 = 6

𝑡 = 8

…
…

𝑆𝑢𝑙 = {(𝑎𝑑𝑑 𝑒𝑑𝑔𝑒, (𝑣𝑑 , 𝑣𝑗), 𝑡 = 6)}

Unlearning Requests

6 5

𝑗

𝑘 𝑓

Update

𝑆

𝑆𝑟𝑒

𝑓𝜃∗

𝑓𝜃𝑢𝑙
∗

Potential

changes

𝑇𝑆 = 8

𝑏𝑖
𝑡 = 9?

𝑏𝑖
𝑡 = 9?

𝑇𝑆 = 8

Node embedding

Node embedding

Events in 𝑆𝑢𝑙

Remove 𝑆𝑢𝑙
from 𝑆

Unlearning method 𝒰

Figure 4: An overview of the complex interaction between 𝑆𝑟𝑒 and 𝑆𝑢𝑙 . (1) In the upper half, given a dynamic graph 𝑆 (maximum
event time 𝑇𝑆 = 8) and a DGNN 𝑓 , we use an algorithm A𝑓 to obtain the optimal 𝑓𝜃 ∗ , which can make accurate predictions on
both training (𝑡 ≤ 𝑇𝑆) and test (𝑡 > 𝑇𝑆) data. (2) Green/blue/brown arrows indicate the spatial and temporal neighbors of node
𝑣𝑖 /𝑣 𝑗 /𝑣𝑑 in the last 2 historical time points. As shown in the middle column, DGNNs generally use the derived spatial-temporal
subgraphs to obtain the node embedding. By combining the embedding of two nodes, 𝑓 can predict whether there is an edge
between them at specific time points. (3) In the lower half, upon receiving the unlearning request 𝑆𝑢𝑙 , an unlearning method
aims to approximate the parameter obtained from retraining 𝑓 with 𝑆𝑢𝑙 . (4) The dashed box on the left indicates the change
in training data. The middle dashed box identifies the changed spatial-temporal subgraph of node 𝑣 𝑗 , potentially resulting
in changed embedding at time 𝑡 = 8. The right dashed box highlights the desired prediction change from the perspective of
unlearning.

Table 7: Statistics of the datasets in this paper.

Datasets Domains #Nodes #Links Bipartite Duration Unique Steps Time Granularity
Wikipedia Social 9,227 157,474 True 1 month 152,757 Unix timestamps

UCI Social 1,899 59,835 False 196 days 58,911 Unix timestamps
Reddit Social 10,984 672,447 True 1 month 669,065 Unix timestamps
Enron Social 184 125,235 False 3 years 22,632 Unix timestamps
MOOC Interaction 7,144 411,749 True 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1, 293, 103 True 1 month 1, 283, 614 Unix timestamps

E DATASETS AND BACKBONE DGNNS
Datasets. The six datasets in this paper are commonly used in the
current study of dynamic graph neural networks [2, 35], and these
datasets can be publicly accessed at the zenodo library. Table 7
presents the basic statistics of these datasets.
DGNNs. In this paper, we focus on the following DGNN meth-
ods, which have different types of architecture, to evaluate the
performance of unlearning methods.

• DyGFormer. Motivated by the fact that most existing methods
overlook inter-node correlations within interactions, a method

called DyGFormer [35] proposes a transformer-based architec-
ture, which achieves the SOTA performance on dynamic graph
tasks like link prediction and node classification.

• GraphMixer. In GraphMixer [39], a simple MLP-mixer archi-
tecture is used to achieve faster convergence and better gener-
alization performance, excluding complex modules such as re-
current neural networks and self-attention mechanisms, which
are employed as de facto techniques to learn spatial-temporal
information in dynamic graphs.

• CAWN. To obtain node embeddings, CAWN [40] samples ran-
dom walks for each node and uses the anonymous identity to

12

https://zenodo.org/records/7213796#.Y1cO6y8r30o

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

c

Training data will be changes upon receiving unlearning request

5,7

4,6
4,6

0,2,3
2,7 6

5

0,3,45

𝑖
𝑎

𝑏

𝑗

𝑘

𝑑

𝑒

𝑓

𝑡 = 8 ?

Remaining continuous-time

dynamic graph at 𝑡 = 7
DGNNTraining data Predictions

𝑑𝑗
𝑡 = 6

…

𝑆𝑟𝑒 𝑓𝜃𝑢𝑙
∗

𝑎𝑖
𝑡 = 5

𝑇𝑆 = 8

c
4

4

𝑖
𝑎 𝑡 = 5 ?

5

5

𝑗

𝑑

𝑓

Patterns in 𝑆𝑟𝑒 Data in 𝑆𝑢𝑙

Same patterns

exist in 𝑆𝑟𝑒 and 𝑆𝑢𝑙

𝑆𝑢𝑙 = {(𝑎𝑑𝑑 𝑒𝑑𝑔𝑒, (𝑣𝑑 , 𝑣𝑗), 𝑡 = 6)}

Unlearning Requests

𝑑𝑗
𝑡 = 6

Unlearning view

Generalisation view

Potential

Trade-off

𝑡 = 6 ?

Figure 5: An illustration of the potential trade-off between model generalization and unlearning requests on the training
dataset. See Appx. D for more details.

denote the nodes in these walks, which helps capture and extract
multiple causal relationships in dynamic graphs.

F ADDITIONAL EVALUATIONS
F.1 Original Model vs Unlearned Model

Classification
As far as we know, there are no inference methods designed for
dynamic graph neural networks, which can infer if an edge is in the
training data of the model for link prediction. To evaluate the degree
of unlearning, we compare the prediction similarity between the
models obtained by our method and the retrained/original model,
based on which we assign a class label to the prediction results
derived from our method.

According to the motivation of machine unlearning [15], un-
learningmethods aim to remove the influence of the unlearn-
ing data and make the target model forget the knowledge
learned from these data, which can be used to serve users
during the inference time of models. Therefore, we consider the
predictions from the test data 𝑌 (𝑜𝑢𝑟)

𝑡𝑒 , 𝑌 (𝑜𝑟𝑖)
𝑡𝑒 , 𝑌 (𝑟𝑒𝑡)

𝑡𝑒 as inputs of Eq.
(12) to evaluate the unlearning effectiveness from the perspective
of ultimate unlearning goal (i.e., 𝑓𝜃 ∗+Δ𝜃 (𝑆𝑡𝑒) = 𝑓𝜃 ∗

𝑢𝑙
(𝑆𝑡𝑒)). Here, we

compare the predictions with the test data, on which the unlearned
model will be employed to serve users.
Classification Method. Assume that the predictions obtained
from the original model, the re-trained model, and the model using
our method are denoted as 𝑌 (𝑜𝑟𝑖) , 𝑌 (𝑟𝑒𝑡) , and 𝑌 (𝑜𝑢𝑟) , respectively.
If 𝑌 (𝑜𝑢𝑟) is regarded as coming from the original model 𝑓𝜃 ∗ , the as-
signed class label C for 𝑌 (𝑜𝑢𝑟) will be C(𝑌 (𝑜𝑢𝑟)) = C(𝑌 (𝑜𝑟𝑖)) = C𝜃 ∗ ;
otherwise, C(𝑌 (𝑜𝑢𝑟)) = C(𝑌 (𝑟𝑒𝑡)) = C𝜃 ∗

𝑢𝑙
. Specifically, (1)we obtain

the prediction similarity by calculating the percentage of the same
predictions, that is, Acc(𝑌 (𝑜𝑢𝑟) , 𝑌 (𝑜𝑟𝑖)) and Acc(𝑌 (𝑜𝑢𝑟) , 𝑌 (𝑟𝑒𝑡)). (2)
We treat 𝑌 (𝑜𝑟𝑖) and 𝑌 (𝑟𝑒𝑡) as the class center, and use the 1-nearest

neighbor method to categorize𝑌 (𝑜𝑢𝑟) into the original or unlearned
model class. Therefore, the label of 𝑌 (𝑜𝑢𝑟) is obtained by

C(𝑌 (𝑜𝑢𝑟)) =
{
C𝜃 ∗

𝑢𝑙
, 𝑖 𝑓 Acc(𝑌 (𝑜𝑢𝑟) , 𝑌 (𝑟𝑒𝑡)) > Acc(𝑌 (𝑜𝑢𝑟) , 𝑌 (𝑜𝑟𝑖))

C𝜃 ∗ , 𝑖 𝑓 Acc(𝑌 (𝑜𝑢𝑟) , 𝑌 (𝑟𝑒𝑡)) ≤ Acc(𝑌 (𝑜𝑢𝑟) , 𝑌 (𝑜𝑟𝑖))
(12)

Classification Results. Our approach successfully generates an
unlearned model with an average likelihood of 81.33%, based on
predictions from test data across all (dataset, DGNN) combinations,
where each case is executed five times. These results further validate
the effectiveness of our method in conducting an approximate
unlearning of DGNNs.

F.2 Evaluations on future unlearning requests
As shown in Table 5, we compared our method with the retrain-
ing method in the Wikipedia dataset when implementing future
unlearning requests, which indicates the additional benefits of our
method. Due to the training of our method in the previous unlearn-
ing process, the evaluation results suggest that it can potentially
be used to directly infer the desired parameter update w.r.t. future
unlearning requests. Table 5 shows that, in response to future un-
learning requests, our approach can produce an unlearned model
with a prediction accuracy comparable to the retraining method
across the remaining, unlearning, and test data. Importantly, for
such unlearning requests, our method can achieve an impressive
speed increase, ranging from 25.10× to 32.50×.

F.3 Evaluations on unlearning efficiency
Figure 3 demonstrates the efficiency advantage of our method. For
most (dataset, DGNN) combination cases, our method obtained
obvious efficiency advantages such as 6.36× speeding up in the
case (Reddit, GraphMixer). However, in the (LastFM, DyGFormer)
case, the slight slowness can be attributed to the following reasons.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

• The time cost increases when the amount of unlearning samples
increases. Note that one typical advantage of our method is that
it can deal with a batch of unlearning requests at once. After
checking the code, we found that almost half of the training
events (48%, unlearn 621445 events, while the total event number
is 1293103) are used to compare the performance of different
unlearning methods in this case. Compared with only limited
unlearning samples (for example, one unlearning sample at a
time [16]), the retraining method has fewer training dataset (i.e.,
the remaining data) when the amount of unlearning sample is
larger.

• There is a potential trade-off between the unlearning samples
and the remaining samples (as shown in Figure 5). Compared to

the retraining method, which only focuses on improving model
performance in 52% of the remaining data, other unlearning
methods navigating the balance between remaining data and
unlearning data generally have a slower rate of convergence,
especially when the size difference between remaining and un-
learning data is small.

Note that this harsh case (i.e., almost half of the training samples
need to be unlearned) is not common in practical scenarios where
only a limited ratio of training samples need to be unlearned. As
shown in Figure 3, our method has an obvious efficiency advantage
in most cases when unlearning a group of requests.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

14

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Formulation
	5 Gradient Transformation for Unlearning
	6 Experiments
	6.1 Experimental Setup
	6.2 Model Performance on test data Ste
	6.3 Model Performance on remaining data Sre and unlearning data Sul
	6.4 Unlearning Efficiency
	6.5 Other Evaluations

	7 Conclusion
	References
	A Concepts
	B Related Work
	B.1 Dynamic Graph Neural Networks
	B.2 Unlearning Methods

	C Unlearning Requests of DGNNs
	D Examples of Avoiding Overfitting Unlearning Data
	E Datasets and Backbone DGNNs
	F Additional Evaluations
	F.1 Original Model vs Unlearned Model Classification
	F.2 Evaluations on future unlearning requests
	F.3 Evaluations on unlearning efficiency

