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Dynamic Graph Unlearning: A General and Efficient
Post-Processing Method via Gradient Transformation

Anonymous Author(s)∗

ABSTRACT
Dynamic graph neural networks (DGNNs) have emerged and been
widely deployed in various web applications (e.g., Reddit) to serve
users (e.g., personalized content delivery) due to their remarkable
ability to learn from complex and dynamic user interaction data.
Despite benefiting from high-quality services, users have raised
privacy concerns, such as misuse of personal data (e.g., dynamic
user-user/item interaction) for model training, requiring DGNNs to
“forget” their data to meet AI governance laws (e.g., the “right to be
forgotten" in GDPR). However, current static graph unlearning stud-
ies cannot unlearn dynamic graph elements and exhibit limitations
such as the model-specific design or reliance on pre-processing,
which disenable their practicability in dynamic graph unlearning.
To this end, we study the dynamic graph unlearning for the first
time and propose an effective, efficient, general, and post-processing
method to implement DGNN unlearning. Specifically, we first for-
mulate dynamic graph unlearning in the context of continuous-time
dynamic graphs, and then propose a method called Gradient Trans-
formation that directly maps the unlearning request to the desired
parameter update. Comprehensive evaluations on six real-world
datasets and state-of-the-art DGNN backbones demonstrate its ef-
fectiveness (e.g., limited drop or obvious improvement in utility)
and efficiency (e.g., 7.23× speed-up) advantages. Additionally, our
method has the potential to handle future unlearning requests with
significant performance gains (e.g., 32.59× speed-up).

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Neural networks.
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Dynamic Graphs, Unlearning, Privacy, GNN, Trustworthiness.
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1 INTRODUCTION
Dynamic graphs represent entities as nodes and their temporal
interactions as dynamic links, making them suitable for modeling
data in various web applications such as social networks [1] and
trade networks [2]. Excelling in capturing temporal information in
dynamic graphs [3], dynamic graph neural networks (DGNNs) [4]
have recently emerged and proven to be effective in serving users
in real-world applications, which have substantially improved user
experiences in daily life. For example, in Reddit (i.e., a social news
platform) [5], considering users and items (e.g., Reddit posts) as
nodes and their temporal interactions as dynamic edges [6], the
well-trained models [7] can be used as recommender systems to
offer personalized content delivery services to users [8, 9].

Despite service benefits, users have raised concerns about the
potential privacy issues associated with their sensitive data in web
applications (e.g., interaction history with other users in Reddit
[10]). For example, web applications might collect user data—either
intentionally or occasionally—without user authorization to train
service models [11], as these models require vast and comprehen-
sive data for optimal functionality [12]. Therefore, when users issue
requests for deleting data from web applications, they expect that
corresponding DGNNs forget the knowledge acquired from their
data, which is also in compliance with laws for AI governance (e.g.,
the “right to be forgotten" in GDPR [13]).

To address the privacy concerns of users above, graph unlearning
[14, 15] is steadily attracting the attention of academic researchers
and industry professionals. However, existing approaches designed
for static graph unlearning and are less suitable for dynamic graph
unlearning. For example, these methods (e.g., SISA [16]) can only
unlearn static graph elements (e.g., static edges) and become ineffec-
tive when unlearning dynamic graph elements (e.g., dynamic
edge events), which are vital components in dynamic graphs. More-
over, these static graph unlearning methods have limitations such
as (1) reliance on pre-processing, (2)model-specific design, (3) imprac-
tical resource requirements, (4) changing model architecture, or (5)
overfitting unlearning samples. (Refer to Section 2 for more details).

To this end, we propose the design of an effective, efficient, gen-
eral, and post-processing dynamic graph unlearning method, called
Gradient Transformation, which is suitable for DGNN unlearning.
Specifically, we first define the dynamic graph unlearning request
as the unlearning of a set of unordered dynamic events, followed by
formulating the design goal of dynamic graph unlearning. In our
approach, we consider the target DGNNmodel as a tool at hand that
natively handles the dynamic graph and target model architecture
during the unlearning process. To overcome limitations (1) (2) (4)
of existing graph unlearning methods, we propose a gradient-based
post-processing model to obtain the desired parameter updates
w.r.t. unlearning of DGNNs, without changing the architecture of
target DGNN models. With specially designed architecture and loss
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functions, our unlearning paradigm avoids the requiring impracti-
cal resource issue (i.e., limitation (3)) and obviously alleviates the
overfitting of fine-tuning methods (i.e., limitation (5)), respectively.
Table 1 shows the differences between our method and typical
graph unlearning methods, and our contributions in this paper are
summarized as follows:

• For the first time, we study the unlearning problem in the context
of dynamic graphs, and formally define the unlearning requests
and design goal of dynamic graph neural network unlearning.

• We propose a novel method “Gradient Transformation” with a
specialized loss function, which duly handles the intricacies of
unlearning requests, remaining data, and DGNNs in the dynamic
graph unlearning process.

• We empirically compare our approach with baseline methods on
six real-world datasets, evaluations demonstrate the outperfor-
mance of our method in terms of effectiveness and efficiency.

• In addition to the post-processing, architecture-invariant, and
general characteristics, our learning-based unlearning paradigm
potentially highlights a new avenue of graph unlearning study.

2 RELATEDWORK
For machine unlearning, a developer could ideally retrain a new
model on updated data excluding the unlearning data [15]. However,
retraining incurs significant resource costs, particularly with com-
plex architectures and large datasets. Therefore, several methods
have been proposed to efficiently unlearn graph data [17].

Current unlearning methods for graph data include the SISA
method, influence function-based methods, the fine-tuning method,
and other methods [17]. (1) The SISA method [16, 18] splits the
training data into subsets, training a submodel on each. These sub-
models are combined to serve users. In response to an unlearning
request, the developer identifies the subset with the data in the
request, removes it, and retrains the corresponding submodel. (2)
Influence function-based methods examine the impact of a training
sample on the model parameters [19, 20]. When there are unlearn-
ing requests, they compute the gradients of these samples and
the Hessian matrix of the target model to estimate the parameter
update needed for unlearning. (3) The fine-tuning method, like
GraphGuard [12], adjusts the model parameters by increasing the
loss on unlearning samples and decreasing it on others, which fa-
cilitates model unlearning by lowering the accuracy on unlearning
samples. (4) In addition to the methods mentioned above, alterna-
tive techniques (e.g., the Projector [21] for linear GNNs) are also
applicable for graph unlearning. Refer to Appx. B.2 for more details.

As shown in Table 1, due to the following limitations of the
static graph unlearning methods above, they are not suitable for
the unlearning of dynamic graph neural networks. (1) Reliance on
pre-processing. The SISA method can only be used in the initial
development stage. Considering that many DGNNs have been de-
ployed to serve users [27], SISA methods cannot be adapted for
post-processing unlearning of these DGNNs, limiting their prac-
ticability and applications. (2) Model-specific design. For influence
function-based methods, their parameter update estimations are
generally established for simple GNN models (e.g., linear GCN
model in CEU [25]), whose estimation accuracy is potentially lim-
ited due to the complexity and diversity of current state-of-the-art

Table 1: Comparison between ourmethod and typical studies.

Methods Graph
Type

Attributes

General Post-
Processing

Architecture
Invariant

GraphEraser [16] S
RecEraser [18] S
GUIDE [22] S
CGU [23] S
GIF [24] S
CEU [25] S

Projector [21] S
GNNDelete [26] S
GraphGuard [12] S

Ours D
* In this table, “S” and “D” denotes the static and dynamic graph, respectively.
indicates “Not covered", indicates “Partially covered", indicates “Fully covered".
“General" indicates if one method can be used in the unlearning of a wide range of
different model architectures. Refer to Appx. B.2 for more details on the principle and
limitations of existing graph unlearning methods.

DGNN architectures [28]. Furthermore, these methods are poten-
tially sensitive to the number of GNN layers (e.g., GIF [24]), which
further makes these methods dependent on the target model archi-
tecture. (3) Impractical resource requirements. Although influence
function-based methods can be used in a post-processing manner,
calculations about the Hessian matrix of parameters typically incur
high memory costs, particularly when the size of the model pa-
rameters is large. For instance, unlearning a state-of-the-art DGNN
model named DyGFomer (comprising 4.146 MB floating point pa-
rameters) demands a substantial 4.298 TB of storage space, far sur-
passing the capabilities of common computational (GPU) resources.
(4) Changing model architecture. Some methods (e.g., GNNDelete
[26]) introduce additional neural layers to target models, which
makes them impractical in scenarios where the device space for
model deployment is limited (e.g., edge computing devices [29]).
(5) Overfitting unlearning samples. The fine-tuning method (e.g.,
GraphGuard [12]) optimizes the parameter of the target model in a
post-processing manner. However, the fine-tuning method is prone
to overfitting unlearning samples, which potentially harms the
model performance on remaining data [30].

3 PRELIMINARIES
Given a time point 𝑡 , a static graph 𝐺 at time 𝑡 comprises a node
setV = {𝑣1, . . . , 𝑣 |V | } and an edge set E = {..., (𝑣𝑖 , 𝑣 𝑗 ), ...}, which
delineates the relational structure among nodes. Generally, this
static graph can be expressed as 𝐺 = (A,X), where X ∈ R |V |×𝑑

(𝑑 indicates the dimensionality of node features) and A𝑖, 𝑗 = 1 if
𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ E, otherwise A𝑖, 𝑗 = 0. To investigate the change of
graph data over time in some practical scenarios, numerous studies
have emerged to explore dynamic graphs and capture their evolving
patterns during a time period [31]. Depending on the characteriza-
tion manner, dynamic graphs can be categorized into discrete-time
dynamic graphs and continuous-time dynamic graphs [27]. In this
paper, we focus on continuous-time dynamic graphs. The definition
of discrete-time dynamic graphs can be found in the Appx. A.
Continuous-time Dynamic Graphs (CTDG). Given an initial
static graph𝐺0 and a series of events O, a continuous-time dynamic
graph is defined as 𝑆 = {𝐺0,O}, where O = [𝑜1, ..., 𝑜𝑁 ] represents
a sequence of observations on graph update events. For example,
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an event observation sequence with size 3 (i.e., 𝑁 = 3) could be
O = [(add edge, (𝑣1, 𝑣3), 24-Dec-2023), (add node, 𝑣6,25-Dec-2023),
(Feature update, (𝑣2, [1, 0, 1, 0]), 25-Dec-2023)], where each event 𝑜
indicates an observation of graph updates. For example, 𝑜1 indicates
that an edge between 𝑣1 and 𝑣3 is added to𝐺0 on 24-Dec-2023. Note
that the symbol [·] in O indicates that the event order is vital for 𝑆 ,
as the following dynamic graph neural networks are designed to
learn the temporal evolution patterns included in 𝑆 .
Dynamic Graph Neural Networks (DGNNs). For static graphs,
various methods (e.g., GCN [32]) have been proposed to capture
both node features and graph structures. In addition to these two
aspects of information, DGNNs are devised to learn the additional
and complex temporal changes in dynamic graphs. For example, in
DGNNs [27], the message function designed for an edge event (e.g.,
(add edge, (𝑣𝑖 , 𝑣 𝑗 ), 𝑡 )) could be

m𝑖 =𝑚𝑠𝑔(s𝑖 (𝑡−), s𝑗 (𝑡−),Δ𝑡, e𝑖, 𝑗 (𝑡)),
m𝑗 =𝑚𝑠𝑔(s𝑗 (𝑡−), s𝑖 (𝑡−),Δ𝑡, e𝑖, 𝑗 (𝑡)),

(1)

where s𝑖 (𝑡−) represents the latest embedding of 𝑣𝑖 before time 𝑡 , Δ𝑡
indicates the time lag between current and last events on (𝑣𝑖 , 𝑣 𝑗 ), and
e𝑖, 𝑗 (𝑡) denotes possible edge features in this event. Following this
way, various dynamic graph neural networks have been proposed
to obtain node representations that capture spatial and temporal
information in dynamic graphs [33].
Tasks on Dynamic Graphs. Two common tasks on dynamic
graphs are node classification and link prediction. Generally, given
a dynamic graph 𝑆 , a DGNN serves as the encoder to obtain the
embedding of nodes, followed by a decoder (e.g., MLP) to complete
downstream tasks. Here, we use 𝑓 to denote the entire neural net-
work that maps a dynamic graph 𝑆 to the output space desired by
the task. In node classification tasks, the parameter 𝜃 of 𝑓 is trained
to predict the label of the nodes at time 𝑡 . In link prediction tasks, 𝑓
is trained to infer if there is an edge between any two nodes 𝑣𝑖 and
𝑣 𝑗 at time 𝑡 . Taking the link predictions as an example, the optimal
parameter 𝜃∗ is obtained by

𝜃∗ = A𝑓 (𝑆) = argmin𝜃 ℓ (A𝑡 | 𝑓𝜃 (𝑆)) , (2)

where A𝑓 is the algorithm (e.g., Gradient Descent Method) used to
obtain the optimal parameter 𝜃∗ of 𝑓 , A𝑡 denotes the true adjacency
matrix at time 𝑡 , and ℓ represents a loss function (e.g., cross entropy
loss). After training from scratch with A𝑓 and 𝑆 (𝑡 ≤ 𝑇𝑆 ), the 𝑓𝜃 ∗

could be used to make predictions in the future (i.e., 𝑡 > 𝑇𝑆 ), where
𝑇𝑆 indicates the maximum event time in 𝑆 .

4 PROBLEM FORMULATION
As shown in Figure 1, a DGNN 𝑓𝜃 ∗ is optimized to learn from its
training dataset 𝑆 (𝑇𝑆 = 8) and then serve users. When a small
amount of data 𝑆𝑢𝑙 (𝑆𝑢𝑙 ⊂ 𝑆) needs to be removed from the original
training dataset (e.g., privacy concerns [14]), unlearning requires
that the model 𝑓𝜃 ∗ optimized on 𝑆 must be updated to forget the
knowledge learned from 𝑆𝑢𝑙 . Specifically, an unlearning methodU
aims to update the parameter of 𝑓 to satisfy

dis(𝑃 (U(A𝑓 (𝑆), 𝑆, 𝑆𝑢𝑙 )), 𝑃 (A𝑓 (𝑆𝑟𝑒 ))) = 0, (3)

where dis(·, ·) denotes a distance measurement, 𝑃 (·) indicates the
parameter distribution.A𝑓 (𝑆𝑟𝑒 ) represents retraining from scratch

with the remaining dataset 𝑆𝑟𝑒 , where 𝑆𝑟𝑒 = 𝑆 \ 𝑆𝑢𝑙 , 𝑆 = 𝑆𝑟𝑒 ∪ 𝑆𝑢𝑙 ,
and 𝑆𝑟𝑒 ∩ 𝑆𝑢𝑙 = ∅.
Unlearning Requests. To clarify the unlearning of DGNNs, here
we define the common unlearning requests. Note that the CTDG def-
inition in Section 3 demonstrates the conceptual capability to cap-
ture spatial-temporal changes in dynamic graphs [27], while real-
world datasets for dynamic link prediction are commonly only com-
posed by adding edge events such as (add edge, (𝑣1, 𝑣5), 26-Dec-2023)
[2]. Taking into account this fact, we propose the following defini-
tion of edge unlearning requests. An edge unlearning request 𝑆𝑢𝑙
is made up of edge-related events that come from the original train-
ing data 𝑆 . For example, 𝑆𝑢𝑙 = {(add edge, (𝑣1, 𝑣3), 24-Dec-2023),
(add edge, (𝑣1, 𝑣5), 26-Dec-2023), (add edge, (𝑣2, 𝑣5), 25-Dec-2023)}
requests to forget 3 different “add edge” events. {·} suggests that
𝑆𝑢𝑙 is not sensitive to the event order, as 𝑆𝑢𝑙 is only used to indicate
which events should be forgotten. Edge unlearning requests fre-
quently arise in practical scenarios. For instance, once their issues
are resolved, users may wish to retract negative product reviews
[3] that have influenced personalized recommendations.
Remark. Additional types of unlearning request may also occur
in DGNNs. For example, 𝑆𝑢𝑙 is called a node unlearning request if
all events in it are related to all activities of specific nodes in the
original training dataset 𝑆 . For example, node unlearning requests
potentially occur in cases where users arise de-registration ormigra-
tion requests in a platform (e.g., Reddit [34]), where their historical
interactions (i.e., edge events) are expected to be forgotten. Note
that, considering that current real-world datasets for dynamic link
prediction are commonly only composed of edge events, the above
node unlearning request can be transferred into the corresponding
unlearning edge events. Moreover, current practical datasets typi-
cally only include adding edge events [35]. Therefore, this study
addresses typical unlearning requests related to adding edge events.
Design Goal. Our objective is to design an unlearning method
U as follows. Given a dynamic graph 𝑆 , a DGNN 𝑓𝜃 ∗ trained on
it, and an unlearning request 𝑆𝑢𝑙 , the unlearning method U takes
them as input and outputs the desired parameter update of 𝑓 , i.e.,
Δ𝜃 = U𝜑

(
A𝑓 (𝑆), 𝑆, 𝑆𝑢𝑙

)
. The 𝜑 indicates the parameter ofU, and

it is expected to satisfy

min
𝜑

dis(𝑓(𝜃 ∗+Δ𝜃 ) , 𝑓𝜃 ∗
𝑢𝑙
), (4)

where 𝜃∗
𝑢𝑙

= A𝑓 (𝑆𝑟𝑒 ) indicates the ideal parameter and 𝜃∗ + Δ𝜃
represents the estimated parameter.

5 GRADIENT TRANSFORMATION FOR
UNLEARNING

By analyzing Δ𝜃 = U
(
A𝑓 (𝑆), 𝑆, 𝑆𝑢𝑙

)
, we find that the inputs of

U play different roles in the process of unlearning. Generally, 𝑆𝑢𝑙
issues unlearning requests, 𝑆𝑢𝑙 and A𝑓 determine the direction of
parameter update w.r.t. unlearning. However, directly applying the
parameter update derived only from 𝑆𝑢𝑙 to 𝑓𝜃 ∗ will generally lead
to overfitting on 𝑆𝑢𝑙 and huge performance drops on 𝑆𝑟𝑒 . Therefore,
𝑆𝑟𝑒 and A𝑓 work together to improve the direction of parameter
update, avoiding the adverse effects of using only 𝑆𝑢𝑙 . This role anal-
ysis suggests that there is a transformation which maps the initial
gradient to the ultimate parameter updates during the unlearning.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

c
Nodes Edge events (5 indicates the event time)5

5,7

4,64,6

0,2,3
2,7 6

6
5

0,3,45

𝑖𝑖
𝑎𝑎

𝑏𝑏

𝑗𝑗

𝑘𝑘

𝑑𝑑

𝑒𝑒

𝑓𝑓

𝑡𝑡 = 8 ?

Training data Predictions

𝑗𝑗𝑖𝑖

𝑡𝑡 = 6

𝑡𝑡 = 8

…

c

5,7

4,64,6

0,2,3
2,7 6

5

0,3,45

𝑖𝑖
𝑎𝑎

𝑏𝑏

𝑗𝑗

𝑘𝑘

𝑑𝑑

𝑒𝑒

𝑓𝑓

𝑡𝑡 = 8 ?

Remaining data

Predictions

𝑗𝑗𝑖𝑖

𝑑𝑑𝑗𝑗
𝑡𝑡 = 6

𝑡𝑡 = 8

…

𝑆𝑆𝑢𝑢𝑢𝑢 = {(𝑣𝑣𝑑𝑑 , 𝑣𝑣𝑗𝑗), 𝑡𝑡 = 6)}
Unlearning Requests

𝑆𝑆

𝑆𝑆𝑟𝑟𝑟𝑟

DGNN 𝑓𝑓𝜃𝜃∗

DGNN 𝑓𝑓𝜃𝜃𝑢𝑢𝑢𝑢∗

Unlearning Goal

𝑏𝑏𝑖𝑖
𝑡𝑡 = 9?

𝑏𝑏𝑖𝑖
𝑡𝑡 = 9?
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Figure 1: An overview of the unlearning of DGNNs. (1) In the upper half, given a dynamic graph 𝑆 and a DGNN 𝑓 , the model
developer obtains the optimal 𝑓𝜃 ∗ , which makes accurate predictions on both training (𝑡 ≤ 8) and test (𝑡 > 8) data. (2) The lower
half illustrates the ideal unlearning process. Upon receiving the unlearning request 𝑆𝑢𝑙 , the model developer removes 𝑆𝑢𝑙 from
𝑆 and retrains 𝑓 from scratch to obtain the ideal DGNN 𝑓𝜃 ∗

𝑢𝑙
. However, retraining from scratch requires huge source costs (e.g.,

time and computational source). (3) To this end, this paper aims to devise an effective and efficient unlearning methodU to
approximate the parameter obtained from retraining, as indicated by the green arrows.

Overview. Given the above intuition, we propose a method called
Gradient Transformation to implement dynamic graph unlearning.
(1) For the mapping process, we take the initial gradient ∇𝜃 w.r.t.
𝑆𝑢𝑙 as input and transform it with a two-layer MLP-Mixer model
to obtain the desired parameter update Δ𝜃 , i.e., U𝜑 : ∇𝜃 → Δ𝜃 .
(2) Note that the ideal parameter 𝜃∗

𝑢𝑙
is not known byU𝜑 in Eq. 4.

Thus, we propose a loss function to simulate the desired prediction
behaviors of an ideal model 𝑓𝜃 ∗

𝑢𝑙
.

Gradient Transformation model. Given a dynamic graph 𝑆 ,
the optimal parameter 𝜃∗ of a DGNN 𝑓 is obtained by solving
𝜃∗ = argmin𝜃 ℓ (𝑌 | 𝑓𝜃 (𝑆)). As shown in Figure 2, after receiving
unlearning requests 𝑆𝑢𝑙 , we first calculate the corresponding gradi-
ent ∇𝜃 w.r.t. the desired unlearning goal. Specifically,

∇𝜃 =
𝑑

𝑑𝜃
ℓ (𝑌𝑢𝑙 | 𝑓𝜃 ∗ , 𝑆𝑢𝑙 ), (5)

where 𝑌𝑢𝑙 indicates the desired prediction results on the unlearning
samples 𝑆𝑢𝑙 . For example, in the context of link prediction tasks and
given 𝑆𝑢𝑙 = {𝑜1, ..., 𝑜𝑛} consists of “add edge” events, the initial gra-
dient information is obtained by ∇𝜃 = 𝑑

𝑑𝜃

∑
𝑜∈𝑆𝑢𝑙 ℓ (A𝑡 ;𝑖, 𝑗 = 0 | 𝑓𝜃 ∗ ),

where 𝑖 , 𝑗 and 𝑡 represent the nodes and time involved in the event
𝑜 = (add edge, (𝑣𝑖 , 𝑣 𝑗 ), 𝑡). A𝑡 ;𝑖, 𝑗 = 0 indicates that 𝑓 , which predicts
A𝑡 ;𝑖, 𝑗 = 1, is expected to forget the existence of 𝑆𝑢𝑙 in its original
training data 𝑆 .

Given the initial gradient ∇𝜃 , our gradient transformation model
U takes it as input and outputs the desired parameter update Δ𝜃 of
the target model 𝑓 . Combined with the original parameter 𝜃∗, the
updated parameter is obtained by applying 𝜃∗ + Δ𝜃 = 𝜃∗ + U(Δ𝜃 ),

where 𝑓𝜃 ∗+Δ𝜃 is expected to behave the same as 𝑓𝜃 ∗
𝑢𝑙
. In this paper,

we use a two-layer MLP-Mixer to serve as the unlearning model
U. As shown in Figure 2, given the initial gradient as input (i.e.,
∇𝜃 → Hin), the operation ofU is presented as follows

H(1)
tok = Hin +W(2)

tokGeLU
(
W(1)

tokLN(Hin)
)
,

H(1)
cha = H(1)

tok + GeLU
(
LN(H(1)

tok)W
(1)
cha

)
W(2)

cha,

H(2)
tok = H(1)

cha +W(4)
tokGeLU

(
W(3)

tokLN(H
(1)
cha)

)
,

H(2)
cha = H(2)

tok + GeLU
(
LN(H(2)

tok)W
(3)
cha

)
W(4)

cha,

(6)

where GeLU indicates the active function and LN denotes the layer
normalization. With Δ𝜃 = U(Δ𝜃 ) (i.e., Δ𝜃 = H(2)

cha), we obtain the
unlearned model 𝑓𝜃 ∗+Δ𝜃 . In this paper, all parameters of Eq. (6) are
denoted as 𝜑 , andU𝜑 is optimized by the following loss function.
Unlearning Loss Function. Unlearning 𝑆𝑢𝑙 has the following po-
tential impacts on DGNN 𝑓𝜃 ∗ , and the corresponding loss functions
describe the desired behaviors of 𝑓𝜃 ∗

𝑢𝑙
.

(1) Changed predictions on invariant representations. An event 𝑜𝑖 in
𝑆𝑢𝑙 could have observed a series of events that remained in 𝑆𝑟𝑒 be-
fore its occurrence time, while the unlearning expects 𝑓 to predict
differently on the same representations. Therefore, the unlearning
loss is defined as

ℓ𝑢𝑙 = ℓ (𝑌𝑢𝑙 | 𝑓𝜃 ∗+Δ𝜃 , 𝑆𝑢𝑙 ), (7)

(2) Invariant predictions on changed representations. For an even
𝑜 ∈ 𝑆𝑟𝑒 , its involved nodes may have different representations
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𝜃∗ + ∆𝜃

Original training data
𝑆 𝑆𝑟𝑒

𝑆𝑢𝑙 = {(𝑎𝑑𝑑 𝑒𝑑𝑔𝑒, (𝑣𝑑 , 𝑣𝑗), 𝑡 = 6)}Unlearning requests

DGNN

𝑓𝜃∗ Gradient 

Transformation

𝑗𝑖
𝑡 = 8

𝑑𝑗
𝑡 = 6

Request loss

− 0 +

∆𝜃 𝑓𝜃∗+∆𝜃

Unlearning loss

𝒰𝜑

Update 𝜑

Remaining training data

DGNN

Gradient Transformation

LayerNorm

MLP 1

LayerNorm

MLP 2

Transpose

Transpose

LayerNorm

MLP 3

LayerNorm

MLP 4

Transpose

Transpose

ℓ(𝐀6;𝑗,𝑑 = 0|𝑓𝜃∗)

∇𝜃

ℓ = ℓ𝑢𝑙 + ℓ𝑟𝑒 + ℓ𝑢𝑙𝑔 + ℓ𝑟𝑒𝑔

Figure 2: The overview of our Gradient Transformation method.

because their neighbors are potentially different before and after
removing 𝑆𝑢𝑙 , while it requires 𝑓 to make unchanged predictions
(as shown by (𝑣𝑖 , 𝑣 𝑗 ) at 𝑡 = 8 in Figure 4). Thus, the performance
loss for 𝑆𝑟𝑒 is defined as

ℓ𝑟𝑒 = ℓ (𝑌𝑟𝑒 | 𝑓𝜃 ∗+Δ𝜃 , 𝑆𝑟𝑒 ), (8)

(3) Avoiding the performance drop caused by unlearning. Due to the
data-driven nature of current machine learning methods, the size
deduction of 𝑆 caused by the removal of unlearning data 𝑆𝑢𝑙 could
potentially harm the performance of 𝑓 on test data 𝑆𝑡𝑒 . Considering
that 𝑙𝑟𝑒 is focused on maintaining model performance in training
data 𝑆𝑟𝑒 , we propose another loss to improve generalization of 𝑓 in
test data 𝑆𝑡𝑒 as

ℓ𝑟𝑒𝑔 = 𝑑 (𝑌𝑟𝑒 , 𝑌𝑣𝑎𝑙 ) =| |E(𝑌𝑟𝑒 ) − E(𝑌𝑣𝑎𝑙 ) | |2+
𝑘∑︁
𝑖=2

| |E(𝑌𝑟𝑒 − E(𝑌𝑟𝑒 ))𝑖 − E(𝑌𝑣𝑎𝑙 − E(𝑌𝑣𝑎𝑙 ))𝑖 | |2

(9)
where 𝑌𝑟𝑒 and 𝑌𝑣𝑎𝑙 indicate the predictions of 𝑓𝜃 ∗+Δ𝜃 on 𝑆𝑟𝑒 and
validation dataset 𝑆𝑣𝑎𝑙 , respectively. 𝑑 indicates the central moment
discrepancy function [36] that measures the distribution difference.
(4) Avoiding the overfitting caused by unlearning. Due to the ResNet-
like design of Gradient Transformation, our method U𝜑 may be
prone to overfitting 𝑆𝑢𝑙 w.r.t. its desired label 𝑌𝑢𝑙 . Although this
behavior is desired by unlearning requests, it potentially harms the
generalization ability of 𝑓 on 𝑆𝑢𝑙 , i.e., the 𝑓 retrained on 𝑆𝑟𝑒 could
perform/generalize well on 𝑆𝑢𝑙 due to its knowledge learned from
𝑆𝑟𝑒 . Refer to Appx. D for examples. To avoid this potential adverse
effect, a generalization regularization w.r.t. unlearning is defined as

ℓ𝑢𝑙𝑔 = 𝑑 (𝑌𝑢𝑙 , 𝑌𝑐
𝑢𝑙
) (10)

where 𝑌𝑢𝑙 denotes the desired predictions on 𝑆𝑢𝑙 . 𝑌𝑐
𝑢𝑙

is the predic-
tion of 𝑓𝜃 ∗+Δ𝜃 on the counterpart of 𝑆𝑢𝑙 , which could be any event
related to nodes in 𝑆𝑢𝑙 (e.g., 𝑣𝑑 or 𝑣 𝑗 ) that does not occur at 𝑡 = 6
(e.g., 𝑆𝑐

𝑢𝑙
= {(add edge, (𝑣𝑑 , 𝑣𝑒 ), 𝑡 = 6), (add edge, (𝑣 𝑗 , 𝑣𝑒 ), 𝑡 = 6)}).

In this paper, our unlearning method Gradient Transformation
U𝜑 is trained by the following loss

ℓ = ℓ𝑟𝑒 + 𝛼ℓ𝑟𝑒𝑔 + 𝛽ℓ𝑢𝑙 + 𝛾ℓ𝑢𝑙𝑔 (11)

Distinction fromprevious studies. (1)Ourmethod can be used in
a general and post-processingmanner to implement DGNNunlearn-
ing. It is independent of one specific architecture (e.g., Transformer-
based model DyGFormer [35]) and maintains the invariant archi-
tecture of the target DGNNs, which overcomes the model-specific
and changing architecture limitations of current methods for (static)
graph unlearning. (2) For resource concerns, the influence function-
based methods ask for 𝑂 (𝑛2) space to store the Hessian matrix,
where 𝑛 denotes the parameter size of target models. In contrast,
the space requirement of our method is 𝑂 (𝑛𝑑𝑊 ), where 𝑑𝑊 indi-
cates the average embedding dimension in Eq. (6) and 𝑑𝑊 << 𝑛.
Although this design greatly reduces the resource requirement of
our method, it potentially faces a resource bottleneck when han-
dling larger DGNN models in the future, which will be the future
work of this paper. (3) With the aim of unlearning DGNNs, this
paper is motivated to address the limitations of exiting static graph
unlearning methods. Although the generality advantage enables its
potential in unlearning other models (e.g., models for static graphs
or images), this paper focuses on DGNNs for link predictions.

6 EXPERIMENTS
6.1 Experimental Setup
Datasets, DGNNs, and Unlearning Requests. We evaluated our
method on six commonly used datasets for dynamic link prediction
[2], including Wikipedia, Reddit, MOOC, LastFM [1], UCI [37], and
Enron [38]. We use two state-of-the-art DGNNs, i.e., DyGFormer
[35] and GraphMixer [39], as the backbone models in our evalua-
tions due to their outperformance (See Appx. E for more details).
For data partition and DGNN training, we followed previous work
DyGLib [35]. In this paper, we set 𝑘 = 2 in the moment discrepancy
function (see Eq. (9) and (10)). The channel/token dimension (i.e.,
Eq. (6)) is set to 32. For the loss function (11), we set 𝛼 = 1.0, 𝛽 = 0.1,
and 𝛾 = 0.1. For the unlearning data, we first sample a fixed number
of events as initial events and use their historically observed events
(e.g., 621445 events in (LastFM, DyGFormer)) as unlearning data
𝑆𝑢𝑙 . For each (dataset, DGNN) combination, we ran five times on
RTX 3090 GPUs to obtain the evaluation results.
Baselines. In this paper, we focus on evaluating post-processing
and general unlearning methods for DGNNs. Baseline methods in-
clude retraining, fine-tuning, and fine-tuning only with unlearning
requests. Also, we use retraining from scratch as the gold standard to
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Table 2: AUC(𝑆𝑡𝑒 ) comparison between our method and baseline methods (ΔAUC(𝑆𝑡𝑒 ) ↑).
Methods Retraining Fine-tuning-ul Fine-tuning Ours
Datasets DyGFormer
Wikipedia 0.9862 ± 0.0004 0.8491 ± 0.1855 0.9542 ± 0.0334 0.9859 ± 0.0004

UCI 0.9422 ± 0.0005 0.7855 ± 0.2867 0.7850 ± 0.2864 0.9396 ± 0.0020
Reddit 0.9885 ± 0.0006 0.6459 ± 0.1049 0.9479 ± 0.0068 0.9902 ± 0.0001
MOOC 0.7477 ± 0.0289 0.5342 ± 0.0986 0.7949 ± 0.0275 0.8509 ± 0.0032
LastFM 0.8675 ± 0.0154 0.4409 ± 0.0967 0.5846 ± 0.0679 0.7953 ± 0.0523
Enron 0.8709 ± 0.0312 0.3109 ± 0.1018 0.8240 ± 0.0568 0.8452 ± 0.0867
Datasets GraphMixer
Wikipedia 0.9632 ± 0.0017 0.9576 ± 0.0032 0.9578 ± 0.0031 0.9683 ± 0.0016

UCI 0.9089 ± 0.0052 0.9174 ± 0.0072 0.9182 ± 0.0068 0.9149 ± 0.0069
Reddit 0.9650 ± 0.0001 0.9434 ± 0.0093 0.9444 ± 0.0086 0.9717 ± 0.0004
MOOC 0.8257 ± 0.0060 0.8179 ± 0.0062 0.8179 ± 0.0062 0.8367 ± 0.0056
LastFM 0.7381 ± 0.0020 0.7304 ± 0.0011 0.7304 ± 0.0011 0.7358 ± 0.0014
Enron 0.8462 ± 0.0009 0.8495 ± 0.0035 0.8495 ± 0.0035 0.8490 ± 0.0036

* In this table, the values indicate the average and variance results of five runs, and the results with largest
ΔAUC(𝑆𝑡𝑒 ) among Fine-tuning-ul, Fine-tuning, and our method is highlighted in bold.

evaluate unlearning methods. As a typical post-processing method,
the fine-tuning method uses the loss ℓ𝑟𝑒 + ℓ𝑢𝑙 to update the DGNN
parameters. To evaluate how overfitting a model will be when only
using unlearning requests, we use a variant of fine-tuning that only
uses ℓ𝑢𝑙 . Note that current SISA and influence function-based meth-
ods are not suitable as baselines here. This is because the former is
designed as a pre-processing method, while the resource-intensive
issue of the latter invalidates its practicability in the unlearning of
DGNNs. Refer to Appx. B.2 for details.
Metrics. We use the retrained model as the criterion, and the un-
learned model 𝑓(𝜃 ∗+Δ𝜃 ) is expected to perform similarly to or better
than 𝑓𝜃 ∗

𝑢𝑙
. Specifically, the evaluation of an unlearning method in-

cludes three different aspects of metrics, i.e., model effectiveness,
unlearning effectiveness, and unlearning efficiency.
(1) Model Effectiveness. A DGNN 𝑓 is trained to serve its users in
downstream tasks, where its performance is vital during its infer-
ence period. In this paper, we useΔAUC(𝑆𝑡𝑒 ) = AUC(𝑌, 𝑓𝜃 ∗+Δ𝜃 (𝑆𝑡𝑒 ))−
AUC(𝑌, 𝑓𝜃 ∗

𝑢𝑙
(𝑆𝑡𝑒 )) as themetric, where 𝑆𝑡𝑒 represents the test dataset

and AUC indicates the numeric value of the area under the ROC
curve (AUC). A higher ΔAUC(𝑆𝑡𝑒 ) indicates a better unlearning
method. Similarly, we also use ΔAcc(𝑆𝑟𝑒 ) to evaluate unlearning
methods w.r.t. model performance on the remaining data 𝑆𝑟𝑒 , where
Acc indicates the accuracy function.
(2) Unlearning Effectiveness. According to the data-driven nature
of DGNNs, a well-retrained model 𝑓𝜃 ∗

𝑢𝑙
could generalize well on

unseen samples (e.g. 𝑆𝑢𝑙 ) because it has learned knowledge from
𝑆𝑟𝑒 and the same data patterns potentially exist in both 𝑆𝑟𝑒 and 𝑆𝑢𝑙 .
Therefore, this paper uses |ΔAcc(𝑆𝑢𝑙 ) | to evaluate the effectiveness
of unlearning. A lower value indicates a better unlearning method.
(3) Unlearning Efficiency. We compare the average time cost t𝑎𝑣𝑒
and the speed-up of different methods to evaluate their efficiency.

6.2 Model Performance on test data 𝑆𝑡𝑒
As the prediction quality is vital for DGNNs in serving users, we first
evaluate their performance on 𝑆𝑡𝑒 . Table 2 confirms the outperfor-
mance of our method w.r.t. ΔAUC(𝑆𝑡𝑒 ) ↑. We also observed that: (1)
Due to the complex Transformer-based design, the retrained DyG-
Former outperforms other backbone models in most cases, which

is consistent with previous research [35]. (2) Among all unlearning
methods, the fine-tuning-ul only uses the unlearning loss ℓ𝑢𝑙 (see
Eq. (7)) to obtain the target DGNN parameters, which harms their
performance in test data 𝑆𝑡𝑒 . For example, with the DyGFormer,
the average AUC score on the Enron dataset is only 0.3109, which
is extremely below that of retraining, i.e., 0.8709. This observation
indicates that it is vital to take into account the remaining training
data 𝑆𝑟𝑒 to reduce the performance cost of unlearning methods. (3)
As an integrated version, the fine-tuning method performs better
than the fine-tuning-ul method due to the use ℓ𝑟𝑒 + ℓ𝑢𝑙 as the loss
in optimizing the model parameters. However, the performance
compromise still exists in most cases. (4) Note that even in the
cases where our method is not the best, it still has competitive
performance. This can be attributed to ℓ𝑟𝑒𝑔 = 𝑑 (𝑌𝑟𝑒 , 𝑌𝑣𝑎𝑙 ) in the
loss function, which helps 𝑓 generalize well on the test data 𝑆𝑡𝑒 .

6.3 Model Performance on remaining data 𝑆𝑟𝑒
and unlearning data 𝑆𝑢𝑙

Table 3 showcases the prediction accuracy comparison among un-
learning methods on 𝑆𝑟𝑒 and 𝑆𝑢𝑙 . Specifically, (1) although baselines
are potentially at the cost of the model performance, our method
still generally performs better in the remaining training dataset
𝑆𝑟𝑒 w.r.t. Acc(𝑆𝑟𝑒 ) ↑. For example, for DyGFormer on the Reddit
dataset, the ΔAcc of the fine-tuning method is −0.0868 while our
method still maintains the same level of prediction performance
(i.e., ΔAcc = +0.0017). (2) For the unlearning request 𝑆𝑢𝑙 , a retrained
model can still predict well on unseen samples 𝑆𝑢𝑙 due to its gen-
eralization ability. However, as indicated by the underline results,
when comparing with the retraining method, we observed that the
fine-tuning and fine-tuning-ul methods have extreme overfitting
to 𝑆𝑢𝑙 . In contrast, our method performs similarly to the retraining
method w.r.t. |ΔAcc(𝑆𝑢𝑙 ) | ↓, which highlights the outperformance
of our method in approximating unlearning.

6.4 Unlearning Efficiency
Figure 3 demonstrates the time cost of different methods to imple-
ment unlearning, which shows that our method is almost always
more efficient than all other baselines. Moreover, we observe that:
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Table 3: Acc comparison between our method and baseline methods.

Datasets Methods DyGFormer GraphMixer
Acc(𝑆𝑟𝑒 )/ΔAcc ↑ Acc(𝑆𝑢𝑙 )/|ΔAcc| ↓ Acc(𝑆𝑟𝑒 )/ΔAcc ↑ Acc(𝑆𝑢𝑙 )/|ΔAcc| ↓

Wikipedia

Retraining 0.9507 ± 0.0004 0.1470 ± 0.0435 0.9105 ± 0.0028 0.2050 ± 0.0078
Fine-tuning-ul 0.7541 ± 0.1463 0.1574 ± 0.1005 0.9112 ± 0.0056 0.1666 ± 0.0146
Fine-tuning 0.9062 ± 0.0545 0.3962 ± 0.0797 0.9117 ± 0.0056 0.1640 ± 0.0111

Ours 0.9529 ± 0.0008 0.1773 ± 0.0330 0.9307 ± 0.0016 0.1339 ± 0.0145

UCI

Retraining 0.8458 ± 0.0008 0.2056 ± 0.0097 0.8685 ± 0.0003 0.1361 ± 0.0080
Fine-tuning-ul 0.7552 ± 0.1427 0.3850 ± 0.3515 0.8705 ± 0.0036 0.1246 ± 0.0066
Fine-tuning 0.7572 ± 0.1437 0.4006 ± 0.3408 0.8710 ± 0.0034 0.1235 ± 0.0080

Ours 0.8484 ± 0.0020 0.2057 ± 0.0028 0.8737 ± 0.0019 0.1258 ± 0.0055

Reddit

Retraining 0.9460 ± 0.0012 0.0540 ± 0.0033 0.9009 ± 0.0003 0.0477 ± 0.0028
Fine-tuning-ul 0.6665 ± 0.0817 0.3116 ± 0.2221 0.8874 ± 0.0058 0.3361 ± 0.0512
Fine-tuning 0.8592 ± 0.0104 0.2433 ± 0.0727 0.8879 ± 0.0060 0.3342 ± 0.0516

Ours 0.9487 ± 0.0006 0.0476 ± 0.0014 0.9326 ± 0.0005 0.0212 ± 0.0021

MOOC

Retraining 0.8176 ± 0.0124 0.0452 ± 0.0389 0.8171 ± 0.0033 0.1240 ± 0.0068
Fine-tuning-ul 0.6090 ± 0.1116 0.4962 ± 0.3865 0.8161 ± 0.0053 0.0552 ± 0.0110
Fine-tuning 0.7510 ± 0.0252 0.4804 ± 0.0595 0.8161 ± 0.0053 0.0552 ± 0.0110

Ours 0.7950 ± 0.0036 0.0472 ± 0.0164 0.8222 ± 0.0026 0.0630 ± 0.0130

LastFM

Retraining 0.8738 ± 0.0049 0.3110 ± 0.1099 0.6583 ± 0.0006 0.2918 ± 0.0075
Fine-tuning-ul 0.5578 ± 0.0660 0.5322 ± 0.2697 0.6593 ± 0.0024 0.3059 ± 0.0071
Fine-tuning 0.7590 ± 0.0163 0.9103 ± 0.0232 0.6597 ± 0.0024 0.2980 ± 0.0030

Ours 0.8198 ± 0.0224 0.2834 ± 0.1714 0.6632 ± 0.0015 0.3009 ± 0.0080

Enron

Retraining 0.9321 ± 0.0119 0.2101 ± 0.0399 0.8007 ± 0.0009 0.2866 ± 0.0215
Fine-tuning-ul 0.5012 ± 0.0007 0.9953 ± 0.0059 0.8109 ± 0.0015 0.2938 ± 0.0569
Fine-tuning 0.9015 ± 0.0329 0.2759 ± 0.1047 0.8110 ± 0.0015 0.2771 ± 0.0498

Ours 0.8226 ± 0.1652 0.2324 ± 0.2934 0.8100 ± 0.0012 0.2944 ± 0.0341
* Acc(𝑆𝑟𝑒 ) results represent the model performance on remaining training data, and the results (excluding the retraining method) with largest
ΔAcc is highlighted in bold. Acc(𝑆𝑢𝑙 ) results indicate the model performance on unlearning data, and the results with the smallest |ΔAcc |
are highlighted in bold. Underline points out the result where there is an extreme overfitting on 𝑆𝑢𝑙 .

Wikipedia

MOOC

UCI

LastFM

Reddit

Enron

Figure 3: The time cost comparison between our Gradient Transformation method and baseline methods. The numerical values
on the bars (e.g., 6.20×) indicate the degree of acceleration relative to the retraining approach.

(1) Due to the use of additional 𝑆𝑟𝑒 in the unlearning process, the
fine-tuning method is generally slower than the fine-tuning-ul
method. (2) Although the baselines can make the unlearning pro-
cess efficient, the overfitting on 𝑆𝑢𝑙 limits their speed to obtain their
optimal solutions, where it is not trivial to navigate between the
unlearning effectiveness and model performance.

Remark. For most (dataset, DGNN) combinations cases, our method
obtained obvious efficiency advantages such as 6.36× speeding up
in the case (Reddit, GraphMixer). However, in the (LastFM, DyG-
Former) case, the slight slowness can be attributed to the large scale
(i.e., 621445 events) of 𝑆𝑢𝑙 and the trade-off between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 on
model performance. Refer to Appx. F.3 for more details.
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Table 4: Comparison between our method and baseline methods on the CAWNmodel
Datasets Methods Acc(𝑆𝑟𝑒 )/ΔAcc ↑ Acc(𝑆𝑢𝑙 )/|ΔAcc| ↓ AUC(𝑆𝑡𝑒 )/ΔAUC ↑ t𝑎𝑣𝑒 (𝑠) Speed-up

Wikipedia

Re-training 0.9491 ± 0.0006 0.1159 ± 0.0048 0.9841 ± 0.0002 1903.3736 1 ×
Fine-tuning-ul 0.9485 ± 0.0015 0.1191 ± 0.0091 0.9820 ± 0.0014 526.8222 3.61×
Fine-tuning 0.9485 ± 0.0015 0.1133 ± 0.0074 0.9814 ± 0.0021 568.0133 3.35×

Ours 0.9486 ± 0.0007 0.1086 ± 0.0046 0.9829 ± 0.0001 263.2861 7.23×

Reddit

Re-training 0.9429 ± 0.0009 0.0411 ± 0.0029 0.9890 ± 0.0002 7449.4465 1×
Fine-tuning-ul 0.6599 ± 0.0971 0.4201 ± 0.2954 0.6759 ± 0.1405 2500.3047 2.98×
Fine-tuning 0.9041 ± 0.0034 0.4559 ± 0.0402 0.9640 ± 0.0013 3623.2015 2.06×

Ours 0.9481 ± 0.0012 0.0303 ± 0.0022 0.9897 ± 0.0001 1329.4738 5.60×

Enron

Re-training 0.9094 ± 0.0018 0.1192 ± 0.0061 0.8758 ± 0.0094 1334.3856 1×
Fine-tuning-ul 0.5399 ± 0.0744 0.6818 ± 0.3898 0.5970 ± 0.0591 537.0440 2.48×
Fine-tuning 0.8600 ± 0.0190 0.2534 ± 0.0708 0.8403 ± 0.0221 612.8398 2.18×

Ours 0.9162 ± 0.0007 0.1120 ± 0.0026 0.9024 ± 0.0007 291.0586 4.58×
* Acc(𝑆𝑟𝑒 ) results represent the model performance on remaining training data, and the results (excluding the retraining method) with largest ΔAcc
is highlighted in bold. Acc(𝑆𝑢𝑙 ) results indicates the model performance on unlearning data, and the results with smallest |ΔAcc | are highlighted
in bold. Underline points out the result where there is extremely overfitting on unlearning requests. AUC(𝑆𝑡𝑒 ) results show the model performance
on test data, and the the results (excluding the retraining method) with largest ΔAUC is highlighted in bold.

Table 5: Comparison between our method and the retraining on theWikipedia dataset when dealing future unlearning requests
Acc(𝑆𝑟𝑒 ) Acc(𝑆𝑢𝑙 ) AUC(𝑆𝑡𝑒 ) t𝑎𝑣𝑒 (s) Speed-up

Retraining 0.9525 ± 0.0009 0.0514 ± 0.0035 0.9869 ± 0.0005 506.4784 1 ×DyGFormer Ours 0.9569 ± 0.0065 0.0722 ± 0.0099 0.9853 ± 0.0004 16.2926 31.09 ×
Retraining 0.9077 ± 0.0056 0.0977 ± 0.0079 0.9610 ± 0.0031 500.6417 1 ×GraphMixer Ours 0.9278 ± 0.0119 0.0803 ± 0.0296 0.9600 ± 0.0137 19.9474 25.10 ×
Retraining 0.9495 ± 0.0007 0.0749 ± 0.0013 0.9837 ± 0.0002 1594.1584 1 ×CAWN Ours 0.9570 ± 0.0047 0.0803 ± 0.0199 0.9830 ± 0.0002 48.9181 32.59 ×

Table 6: Ablation study on loss with (DyGFormer, LastFM).
Methods Acc(𝑆𝑟𝑒 ) Acc(𝑆𝑢𝑙 ) AUC(𝑆𝑡𝑒 )
Re-training 0.8738 0.3110 0.8675
Fine-tuning-ul 0.5578 0.5322 0.4409
Fine-tuning 0.7590 0.9103 0.5846
Ours-re-ul 0.8239 0.2758 0.7988
Ours-re-ul-reg 0.8241 0.2790 0.8006
Ours-re-ul-ulg 0.8170 0.2759 0.7931
Ours-full 0.8198 0.2834 0.7953
* This table shows the average evaluation results. Following the
metric in Tables 2 and 3, the best method is highlighted in bold.

6.5 Other Evaluations
Method Generality. We further verify that our method is inde-
pendent of the DGNN architecture by evaluating it on the CAWN
model [40], whose random walking-based architecture is different
from that of DyGFormer and GraphMixer. Consistent with Tables
2 and 3, the results in Table 4 confirm that our method is effective,
efficient, and general for the unlearning of DGNNs.
Prediction Similarity Comparison. Note that one of the unlearn-
ing goals is to eliminate the influence of 𝑆𝑢𝑙 when applying the
target model to the test data 𝑆𝑡𝑒 [41]. Thus, we compared predic-
tion similarity to evaluate the extent of unlearning of our method.
Evaluation results indicate that our method achieves an average
unlearning rate 81.33% on the test data (See Appx. F.1 for details).
Ablation study on loss function. We evaluated the contribution
of different loss items in Eq. (11). Compared with the basic version
(i.e., Ours-re-ul), additionally introducing the utility generalization

loss ℓ𝑟𝑒𝑔 (i.e., Ours-re-ul-reg) improves the model performance on
𝑆𝑟𝑒 and 𝑆𝑡𝑒 , while using ℓ𝑢𝑙𝑔 (i.e., Ours-re-ul-ulg) decreases the
model utility on them. In contrast, the comprehensive version (i.e.,
Ours-full) obtains the best unlearning results on 𝑆𝑢𝑙 .
Unlearning without training. The learning nature of our method
brings potential benefits when handling future unlearning requests.
Using the gradient of new unlearning requests as input, our method
could directly output the desired parameter update. In this paper,
we use the sampled initial events (refer to Section 6.1) as future
unlearning requests to evaluate our method. Table 5 shows that
our method obtains almost the same unlearning results as the re-
training method. For example, besides performance increments, the
largest |ΔAcc(𝑆𝑢𝑙 ) | is only 0.0208 while the speed-up is at least 25×.
However, this benefit of our method could be limited due to the
complex relationships between 𝑆𝑟𝑒 and 𝑆𝑢𝑙 and the lack of ground
truth Δ𝜃 in the training of our method. In cases where the benefit
is limited, model developers can re-run our method in Figure 2 to
conduct future unlearning.

7 CONCLUSION
In this paper, we study dynamic graph unlearning and propose a
method called Gradient Transformation, which is effective, efficient,
general, and can be used in a post-processing manner. Empirical
evaluations on real-world datasets confirm the effectiveness and
efficiency outperformance of our method, and we also demonstrate
its potential advantages in handling future unlearning requests. In
the future, we will study the causal relationships between events
from the unlearning view, while also delving into the intricate
interplay between the remaining data and the unlearning data.
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A CONCEPTS
Discrete-time Dynamic Graphs (DTDG). Given a benign se-
quence of static graphs with time length 𝑇 = 𝑡 − 1, a discrete-time
dynamic graph is denoted as 𝑆 = {𝐺1,𝐺2, . . . ,𝐺𝑡−1}, where 𝐺𝑘 =

{V𝑘 , E𝑘 } denotes the 𝑘-th snapshot of a dynamic graph. In the
form of𝐺𝑘 = (A𝑘 ,X𝑘 ), A𝑘 ;𝑖, 𝑗 = 1 if there is a link from 𝑣𝑖 pointing
to 𝑣 𝑗 in the 𝑘-th snapshot, otherwise A𝑘 ;𝑖, 𝑗 = 0; X𝑘 ;𝑖 represents
the node feature of 𝑣𝑖 in 𝐺𝑘 , and X𝑘 ;𝑖, 𝑗 indicates its 𝑗-th feature
value. Thus, a discrete-time dynamic graph can also be depicted as
𝑆 = {(A1,X1), (A2,X2), . . . , (A𝑡−1,X𝑡−1)}.

B RELATEDWORK
B.1 Dynamic Graph Neural Networks
The dynamic graph is a powerful data structure that depicts both
spatial interactions and temporal changes in practical data from var-
ious real-world applications (e.g., traffic prediction [42]). Dynamic
graph neural networks (DGNNs) are proposed to learn the complex
spatial-temporal patterns in these data [31, 33, 43]. Next, we will
present some representative methods to introduce how dynamic
graph neural networks learn from dynamic graphs. Depending on
the type of dynamic graph (as shown in Section 3), current methods
can be categorized into DGNNs for discrete-time and continuous-
time dynamic graphs [35].
(1) For discrete-time methods, they generally employ a GNN model
for static graphs to learn spatial representations and an additional
module (e.g., RNN [44]) to capture the temporal changes of the same
node in different static snapshot graphs. In this paper, we focus
on DGNNs designed for continuous-time dynamic graphs. Unlike
discrete-time dynamic graphs, this type of data naturally records dy-
namic changes (i.e., fine-grained order of different changes) without
determining the time interval among the snapshots in discrete-time
dynamic graphs [45]
(2) Some typical continuous-time methods are RNN-based models
(e.g., JODIE [1]), temporal point process models (e.g., DyRep [46]),
time embedding-based models (e.g., TGAT [45], TGN [47]), and
temporal random walk methods [33, 40].

In this paper, our evaluations focus on the DyGFormer and
GraphMixer models for two reasons. (1) According to a recent
study [35], these two methods have obvious outperformance over
previous methods (e.g., JODIE [1], DyRep [46], TGAT [45], TGN
[47]), allowing them to be preferentially deployed in real-world
applications. (2) These methods have different architectures, which
helps in comprehensively evaluating our methods. The DyGFormer
[35] is designed using the famous Transformer module, and the
GraphMixer [39] is an MLP-based framework. Moreover, we also
evaluated our method on the CAWN model [40], which is an ap-
proach based on the temporal random walk.

B.2 Unlearning Methods
Retraining. Intuitively, for the target model to be unlearned, delet-
ing the unlearning data from the original training data and re-
training from scratch will directly meet the requirement from the
perspective of unlearning. However, retraining from scratch comes
at the cost of huge time and computational resources, given large-
scale training data or complex model architectures. To this end,

various methods have been proposed to satisfy the efficiency re-
quirement of unlearning. Current methods designed for GNNs focus
on static graph unlearning, including SISA methods, influence func-
tion methods, and other approaches.
SISA Methods. Referring to “Sharded, Isolated, Sliced, and Aggre-
gated”, the SISA method represents a type of ensemble learning
method and is not sensitive to the architecture of target models
(i.e., model-agnostic). Specifically, SISA first divides the original
training data D𝑜 into 𝑘 different and disjoint shard datasets, i.e.,
D1

𝑜 , ...,D𝑘
𝑜 , which are used to train 𝑘 different submodels 𝑓 1, ..., 𝑓 𝑘

separately. To obtain the final prediction on a sample 𝑣𝑖 , SISA ag-
gregates 𝑓 1 (𝑣𝑖 ), ..., 𝑓 𝑘 (𝑣𝑖 ) together to obtain a global prediction.
Upon receiving the unlearning request for a sample 𝑣 𝑗 , SISA first
removes 𝑣 𝑗 from the shard D 𝑗

𝑜 that includes it and only retrains 𝑓 𝑗
to obtain the updated model, which significantly reduces the time
cost compared with retraining the whole model from scratch on
D𝑜 \ 𝑣 𝑗 (i.e., the dataset with removing 𝑣 𝑗 ).
Typical methods. The SISA method divides the training dataset
into several subsets and trains submodels on them, followed by
assembling these submodels to serve users. In the context of graph
unlearning, it is not trivial to directly split a whole graph into sev-
eral subgraphs, as imbalanced partition (e.g., imbalance of node
class) potentially leads to decreased model performance. To this end,
GraphEraser [16] and RecEraser [18] propose balanced graph parti-
tion frameworks and learning-based aggregation methods. Unlike
the transductive setting of GraphEraser, Wang et al. [22] propose
a method called GUIDE in the inductive learning setting, which
takes the fair and balanced graph partitioning into consideration.
Limitations. The weakness of SISA methods mainly includes the
following two aspects.
(1) Efficacy Issue on A Group of Unlearning Requests. The SISA
method faces the efficiency issue when dealing with a group/batch
of unlearning requests. Note that the efficiency of SISA methods in
facilitating unlearning stems from the fact that retraining a single
submodel is more efficient than retraining the entire model that was
trained on the whole dataset, which is suitable for implementing
unlearning of a single sample. However, the SISA method will have
to retrain all submodels when a group of unlearning requests binds
to all shards, limiting its unlearning efficiency capacity.
(2) Reliance on Pre-processing. Note that SISA methods can only
be used in the initial phase of model development. Once the ma-
chine learning models are deployed, the current SISA methodology
cannot implement unlearning on them in a post-processing manner.
Influence Function based Methods. Current research on the in-
fluence function studies how a training sample impacts the learning
of a machine learning model [19, 20]. Generally, given a model 𝑓 , its
optimal parameter is obtained by 𝜃∗ = argmin𝜃

∑
𝑣∈D𝑜

ℓ (𝑓𝜃 | D𝑜 ),
where ℓ indicates a convex and twice-differential loss function. For
the unlearning request on a training sample 𝑣 𝑗 , the desiredmodel pa-
rameter 𝜃∗

𝑢𝑙
is defined as 𝜃∗

𝑢𝑙
= argmin𝜃

∑
𝑣∈D𝑜\𝑣𝑗 ℓ

(
𝑓𝜃 | D𝑜 \ 𝑣 𝑗

)
.

Without retraining 𝑓 , current influence function-based methods are
designed to estimate the parameter change Δ𝜃 and use it to approx-
imate 𝜃∗

𝑢𝑙
(i.e., 𝜃∗

𝑢𝑙
≈ 𝜃∗ + Δ𝜃 ). The estimation can be obtained by

Δ𝜃 = H𝜃 ∗∇𝜃 ∗ ℓ
(
𝑓𝜃 | 𝑣 𝑗

)
, whereH−1

𝜃 ∗ =
∑

𝑣∈D𝑜
∇2
𝜃 ∗ ℓ (𝑓𝜃 | D𝑜 ) denotes

the Hessian matrix H.
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Typical methods. Current research on the influence function studies
how a training sample affects the learning of a machine learning
model [19, 20]. In the context of graph unlearning, the influence
function is more complex since the edges between nodes break the
independent and identically distributed assumption of training sam-
ples in the above formulations. Therefore, the multi-hop neighbors
of an unlearning node or nodes involved in an unlearning edge have
been considered to correct the above estimation of Δ𝜃 , and more
details can be found in recent works called Certified Graph Un-
learning (CGU) [23], GIF [24], CEU [25], and an unlearning method
based on Graph Scattering Transform (GST) [48]. Note that these
methods generally rely on the static graph structure to determine
the scope of nodes that need to be involved in the final influence
function, which cannot be directly adapted to dynamic graphs.
Limitations. The weakness of influence function-based methods
mainly includes the following two aspects.
(1) Model-specific design. Current estimations of Δ𝜃 in graph un-
learning are generally established on simple GNN models (e.g.,
linear GCN model in CEU [25]), whose estimation accuracy is po-
tentially limited due to the complexity and diversity of current state-
of-the-art GNN architectures (e.g., Graph Transformer Networks
[28]). Furthermore, these methods are not strictly model-agnostic,
since they need access to the architecture of target models (e.g.,
layer information) to determine the final influence function (e.g.,
GIF [24]), that is, they are sensitive to GNN layers.
(2) Resource intensive. Although influence function-based methods
can be used in a post-processing manner, the calculation of the
inverse of a Hessian matrix (i.e., H−1

𝜃 ∗ ) generally has a high time
complexity and memory cost when the model parameter size is
large. For example, for a DyGFormer model [35] with single preci-
sion floating point format parameters, it requires 4.298 TB space
to store the Hessian matrix when the parameter size is 4.146 MB
(i.e., the model on Wikipedia dataset). This resource issue severely
limits the practicability of influence function-based methods in the
unlearning of dynamic graph neural networks.
Others. Recently, the PROJECTOR method proposes mapping the
parameter of linear GNNs to a subspace that is irrelevant to the
nodes to be forgotten [21]. However, it is a model-specific method
and cannot be applied to the unlearning of other non-linear GNNs.
Unlike existingmodel-specific methods, GNNDelete [26] introduces
an architecture modification strategy, where an additional train-
able layer is added to each layer of the target GNN. Although this
method is model-agnostic, the requirement of additional architec-
ture space reduces its practicability in scenarios where the deploy-
ment space is limited (e.g., edge computing devices [29]). Another
model-agnostic method called GraphGuard [12] uses fine-tuning
to make the target GNN forget the unlearning samples, where both
the remaining and unlearning data are involved in the loss function
to fine-tune the model parameter. However, the fine-tuning method
is prone to overfitting unlearning samples [30], which potentially
harms the model performance.

C UNLEARNING REQUESTS OF DGNNS
Any data change needs in the training data 𝑆 could potentially raise
unlearning requests. Besides the unlearning requests in Section
4, other unlearning needs also exist in real-world applications for

various reasons. For example, users may expect to unlearn some
specific features (e.g., forgetting the gender and age information
for system fairness) or labels (e.g., out-of-date tags of interest) [41].
Interaction between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 . In AI systems for general data
(e.g., image or tabular data), 𝑆𝑢𝑙 and 𝑆𝑟𝑒 are independent of each
other, since the samples in the training dataset are independent
and identically distributed (IID). However, for (static) graph data,
𝑆𝑢𝑙 and 𝑆𝑟𝑒 can potentially interact with each other [17]. For ex-
ample, given an unlearning node 𝑣𝑖 ∈ 𝑆𝑢𝑙 , its connected neighbor
nodes may belong to the remaining dataset 𝑆𝑟𝑒 . Due to the message
passing mechanism and stacking layer operation in most GNNs,
existing studies have proposed to consider multi-hop neighbors
when unlearning is performed for GNNs [25].

As shown in Figure 4, DGNNs are designed to learn both spatial
and temporal information in dynamic graphs, making the interac-
tion between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 in dynamic graphsmore complex than that
in static graphs. For example, in a dynamic graph neural network
𝑓 for CTDG data, the embedding of a node at time 𝑡 is obtained by
taking into account its spatial and historical neighbor nodes. In the
context of unlearning a DGNN 𝑓𝜃 ∗ , i.e., obtaining the desired pa-
rameter 𝜃∗

𝑢𝑙
with an unlearning methodU, the complex interaction

between 𝑆𝑢𝑙 and 𝑆𝑟𝑒 includes:

• Changed predictions on invariant representations. Before and after
removing 𝑆𝑢𝑙 from 𝑆 , an event 𝑜𝑖 in 𝑆𝑢𝑙 may have observed the
same series of events that remained in 𝑆𝑟𝑒 before its occurrence
time, where spatial-temporal subgraphs are prone to generat-
ing almost invariant node embedding. However, the unlearning
method U expects 𝑓 to make different predictions (e.g., (𝑣𝑑 , 𝑣 𝑗 )
at 𝑡 = 6).

• Invariant predictions on changed representations. Due to the re-
moval of 𝑆𝑢𝑙 , the spatial-temporal neighbors of an event 𝑜 𝑗 ∈ 𝑆𝑟𝑒
are potentially different (e.g., 𝑣 𝑗 at 𝑡 = 8), while the unlearning
method U expects 𝑓 to make invariant predictions (e.g., there is
an edge (𝑣𝑖 , 𝑣 𝑗 ) at 𝑡 = 8). Note that it is also not trivial to identify
exactly the events in 𝑆𝑟𝑒 that are influenced by the unlearning
request 𝑆𝑢𝑙 .

D EXAMPLES OF AVOIDING OVERFITTING
UNLEARNING DATA

As shown in Figure 5, in the remaining training data 𝑆𝑟𝑒 , there is
an edge event between 𝑣𝑎 and 𝑣𝑖 at time 𝑡 = 5/7 because they share
a common neighbor node at the last time point (i.e., there are edges
(𝑣𝑎, 𝑣𝑐 ) and (𝑣𝑖 , 𝑣𝑐 ) at 𝑡 = 4/6). Although samples with the same
pattern have been included in 𝑆𝑢𝑙 (e.g., the edge (𝑣 𝑗 , 𝑣𝑑 ) at 𝑡 = 6
because they share the same neighbor 𝑣 𝑓 in 𝑡 = 5), a well-retrained
model 𝑓 can generalize well on 𝑆𝑢𝑙 when a lot of samples with the
same patterns have been kept in the remaining data 𝑆𝑟𝑒 . Therefore,
focusing on 100% unlearning of 𝑆𝑢𝑙 (e.g., there is no edge prediction
in 𝑆𝑢𝑙 with 100% accuracy) potentially harms the performance of
DGNNs on 𝑆𝑟𝑒 .

The example in Figure 5 and the practical evaluation results on
𝑆𝑢𝑙 by retraining (i.e., Tables 3 and 4) support us in using the results
from the retraining method as the only gold standard to evaluate
other unlearning methods. Our efforts to alleviate overfitting 𝑆𝑢𝑙
also include setting 𝛽 = 0.1 in the loss function (11).
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Figure 4: An overview of the complex interaction between 𝑆𝑟𝑒 and 𝑆𝑢𝑙 . (1) In the upper half, given a dynamic graph 𝑆 (maximum
event time 𝑇𝑆 = 8) and a DGNN 𝑓 , we use an algorithm A𝑓 to obtain the optimal 𝑓𝜃 ∗ , which can make accurate predictions on
both training (𝑡 ≤ 𝑇𝑆 ) and test (𝑡 > 𝑇𝑆 ) data. (2) Green/blue/brown arrows indicate the spatial and temporal neighbors of node
𝑣𝑖 /𝑣 𝑗 /𝑣𝑑 in the last 2 historical time points. As shown in the middle column, DGNNs generally use the derived spatial-temporal
subgraphs to obtain the node embedding. By combining the embedding of two nodes, 𝑓 can predict whether there is an edge
between them at specific time points. (3) In the lower half, upon receiving the unlearning request 𝑆𝑢𝑙 , an unlearning method
aims to approximate the parameter obtained from retraining 𝑓 with 𝑆𝑢𝑙 . (4) The dashed box on the left indicates the change
in training data. The middle dashed box identifies the changed spatial-temporal subgraph of node 𝑣 𝑗 , potentially resulting
in changed embedding at time 𝑡 = 8. The right dashed box highlights the desired prediction change from the perspective of
unlearning.

Table 7: Statistics of the datasets in this paper.

Datasets Domains #Nodes #Links Bipartite Duration Unique Steps Time Granularity
Wikipedia Social 9,227 157,474 True 1 month 152,757 Unix timestamps

UCI Social 1,899 59,835 False 196 days 58,911 Unix timestamps
Reddit Social 10,984 672,447 True 1 month 669,065 Unix timestamps
Enron Social 184 125,235 False 3 years 22,632 Unix timestamps
MOOC Interaction 7,144 411,749 True 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1, 293, 103 True 1 month 1, 283, 614 Unix timestamps

E DATASETS AND BACKBONE DGNNS
Datasets. The six datasets in this paper are commonly used in the
current study of dynamic graph neural networks [2, 35], and these
datasets can be publicly accessed at the zenodo library. Table 7
presents the basic statistics of these datasets.
DGNNs. In this paper, we focus on the following DGNN meth-
ods, which have different types of architecture, to evaluate the
performance of unlearning methods.

• DyGFormer. Motivated by the fact that most existing methods
overlook inter-node correlations within interactions, a method

called DyGFormer [35] proposes a transformer-based architec-
ture, which achieves the SOTA performance on dynamic graph
tasks like link prediction and node classification.

• GraphMixer. In GraphMixer [39], a simple MLP-mixer archi-
tecture is used to achieve faster convergence and better gener-
alization performance, excluding complex modules such as re-
current neural networks and self-attention mechanisms, which
are employed as de facto techniques to learn spatial-temporal
information in dynamic graphs.

• CAWN. To obtain node embeddings, CAWN [40] samples ran-
dom walks for each node and uses the anonymous identity to
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Figure 5: An illustration of the potential trade-off between model generalization and unlearning requests on the training
dataset. See Appx. D for more details.

denote the nodes in these walks, which helps capture and extract
multiple causal relationships in dynamic graphs.

F ADDITIONAL EVALUATIONS
F.1 Original Model vs Unlearned Model

Classification
As far as we know, there are no inference methods designed for
dynamic graph neural networks, which can infer if an edge is in the
training data of the model for link prediction. To evaluate the degree
of unlearning, we compare the prediction similarity between the
models obtained by our method and the retrained/original model,
based on which we assign a class label to the prediction results
derived from our method.

According to the motivation of machine unlearning [15], un-
learningmethods aim to remove the influence of the unlearn-
ing data and make the target model forget the knowledge
learned from these data, which can be used to serve users
during the inference time of models. Therefore, we consider the
predictions from the test data 𝑌 (𝑜𝑢𝑟 )

𝑡𝑒 , 𝑌 (𝑜𝑟𝑖 )
𝑡𝑒 , 𝑌 (𝑟𝑒𝑡 )

𝑡𝑒 as inputs of Eq.
(12) to evaluate the unlearning effectiveness from the perspective
of ultimate unlearning goal (i.e., 𝑓𝜃 ∗+Δ𝜃 (𝑆𝑡𝑒 ) = 𝑓𝜃 ∗

𝑢𝑙
(𝑆𝑡𝑒 )). Here, we

compare the predictions with the test data, on which the unlearned
model will be employed to serve users.
Classification Method. Assume that the predictions obtained
from the original model, the re-trained model, and the model using
our method are denoted as 𝑌 (𝑜𝑟𝑖 ) , 𝑌 (𝑟𝑒𝑡 ) , and 𝑌 (𝑜𝑢𝑟 ) , respectively.
If 𝑌 (𝑜𝑢𝑟 ) is regarded as coming from the original model 𝑓𝜃 ∗ , the as-
signed class label C for 𝑌 (𝑜𝑢𝑟 ) will be C(𝑌 (𝑜𝑢𝑟 ) ) = C(𝑌 (𝑜𝑟𝑖 ) ) = C𝜃 ∗ ;
otherwise, C(𝑌 (𝑜𝑢𝑟 ) ) = C(𝑌 (𝑟𝑒𝑡 ) ) = C𝜃 ∗

𝑢𝑙
. Specifically, (1)we obtain

the prediction similarity by calculating the percentage of the same
predictions, that is, Acc(𝑌 (𝑜𝑢𝑟 ) , 𝑌 (𝑜𝑟𝑖 ) ) and Acc(𝑌 (𝑜𝑢𝑟 ) , 𝑌 (𝑟𝑒𝑡 ) ). (2)
We treat 𝑌 (𝑜𝑟𝑖 ) and 𝑌 (𝑟𝑒𝑡 ) as the class center, and use the 1-nearest

neighbor method to categorize𝑌 (𝑜𝑢𝑟 ) into the original or unlearned
model class. Therefore, the label of 𝑌 (𝑜𝑢𝑟 ) is obtained by

C(𝑌 (𝑜𝑢𝑟 ) ) =
{
C𝜃 ∗

𝑢𝑙
, 𝑖 𝑓 Acc(𝑌 (𝑜𝑢𝑟 ) , 𝑌 (𝑟𝑒𝑡 ) ) > Acc(𝑌 (𝑜𝑢𝑟 ) , 𝑌 (𝑜𝑟𝑖 ) )

C𝜃 ∗ , 𝑖 𝑓 Acc(𝑌 (𝑜𝑢𝑟 ) , 𝑌 (𝑟𝑒𝑡 ) ) ≤ Acc(𝑌 (𝑜𝑢𝑟 ) , 𝑌 (𝑜𝑟𝑖 ) )
(12)

Classification Results. Our approach successfully generates an
unlearned model with an average likelihood of 81.33%, based on
predictions from test data across all (dataset, DGNN) combinations,
where each case is executed five times. These results further validate
the effectiveness of our method in conducting an approximate
unlearning of DGNNs.

F.2 Evaluations on future unlearning requests
As shown in Table 5, we compared our method with the retrain-
ing method in the Wikipedia dataset when implementing future
unlearning requests, which indicates the additional benefits of our
method. Due to the training of our method in the previous unlearn-
ing process, the evaluation results suggest that it can potentially
be used to directly infer the desired parameter update w.r.t. future
unlearning requests. Table 5 shows that, in response to future un-
learning requests, our approach can produce an unlearned model
with a prediction accuracy comparable to the retraining method
across the remaining, unlearning, and test data. Importantly, for
such unlearning requests, our method can achieve an impressive
speed increase, ranging from 25.10× to 32.50×.

F.3 Evaluations on unlearning efficiency
Figure 3 demonstrates the efficiency advantage of our method. For
most (dataset, DGNN) combination cases, our method obtained
obvious efficiency advantages such as 6.36× speeding up in the
case (Reddit, GraphMixer). However, in the (LastFM, DyGFormer)
case, the slight slowness can be attributed to the following reasons.
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• The time cost increases when the amount of unlearning samples
increases. Note that one typical advantage of our method is that
it can deal with a batch of unlearning requests at once. After
checking the code, we found that almost half of the training
events (48%, unlearn 621445 events, while the total event number
is 1293103) are used to compare the performance of different
unlearning methods in this case. Compared with only limited
unlearning samples (for example, one unlearning sample at a
time [16]), the retraining method has fewer training dataset (i.e.,
the remaining data) when the amount of unlearning sample is
larger.

• There is a potential trade-off between the unlearning samples
and the remaining samples (as shown in Figure 5). Compared to

the retraining method, which only focuses on improving model
performance in 52% of the remaining data, other unlearning
methods navigating the balance between remaining data and
unlearning data generally have a slower rate of convergence,
especially when the size difference between remaining and un-
learning data is small.

Note that this harsh case (i.e., almost half of the training samples
need to be unlearned) is not common in practical scenarios where
only a limited ratio of training samples need to be unlearned. As
shown in Figure 3, our method has an obvious efficiency advantage
in most cases when unlearning a group of requests.
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