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ABSTRACT

Optical pooled screens (OPS) enable comprehensive and cost-effective interroga-
tion of gene function by measuring microscopy images of millions of cells across
thousands of perturbations. However, the analysis of OPS data still mainly relies
on hand-crafted features, even though these are difficult to deploy across complex
data sets. This is because most unsupervised feature extraction methods based on
neural networks (such as auto-encoders) have difficulty isolating the effect of per-
turbations from the natural variations across cells and experimental batches. Here,
we propose a contrastive analysis framework that can more effectively disentangle
the phenotypes caused by perturbation from natural cell-cell heterogeneity present
in an unperturbed cell population. We demonstrate this approach by analyzing a
large data set of over 30 million cells imaged across more than 5, 000 genetic
perturbations, showing that our method significantly outperforms traditional ap-
proaches in generating biologically-informative embeddings and mitigating tech-
nical artifacts. Furthermore, the interpretable part of our model distinguishes per-
turbations that generate novel phenotypes from the ones that only shift the distri-
bution of existing phenotypes. Our approach can be readily applied to other small-
molecule and genetic perturbation data sets with highly multiplexed images, en-
hancing the efficiency and precision in identifying and interpreting perturbation-
specific phenotypic patterns, paving the way for deeper insights and discoveries
in OPS analysis.

1 INTRODUCTION

Large-scale, pooled genetic perturbation cell screens with high content readout enable systematic
interrogation of gene function Bock et al. (2022). Among these, optical pooled screens (OPS) that
employ cell imaging as phenotypic read-out for characterizing perturbation effects are particularly
compelling, because they offer high-throughput, complex readout at low-cost Feldman et al. (2019).

Traditional phenotype analysis in OPS and other image-based screens requires extracting from each
image a set of hand-crafted morphological features Caicedo et al. (2017); Stirling et al. (2021).
Based on these, established tools like CellProfiler (CP) usually apply a set of pre-defined filters to
images of individual cells in order to summarize the data from each single cell into a data point using
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thousands of features. There are several limitations to these approaches. First, because the filters
have been engineered on previous data sets, with different cell types and experimental conditions,
hand-crafted features may be inflexible to capture novel morphological phenotypes. Indeed, because
cellular morphology drastically changes across contexts and biological systems, the set of optimal
features may be different for each experiment. Second, those extracted feature are limited in their
ability to capture interactions between channels. For example, CP accomplishes this by applying
filters to pairs of channels (usually for images with two to five channels). However, this will be
difficult to scale in order to capture more complex patterns in images with tens to hundreds of
channels which are becoming increasingly common Stirling et al. (2021).

Advances in deep learning could overcome the limitations of hand-crafted features by learning rep-
resentations directly from data Caicedo et al. (2017); Moen et al. (2019). In particular, the Varia-
tional Auto-Encoder (VAE) is a powerful deep generative framework to capture latent structure in
complex data distributions in an unsupervised manner Kingma & Welling (2014); Rezende et al.
(2014). However, in the context of learning perturbation effects from images of cells, standard VAE
implementations suffer from the difficulty of isolating perturbation effects from natural cell-cell het-
erogeneity (e.g., due to stages of the cell cycle), which can exhibit much greater variation compared
to the phenotypic effect of perturbations.

Contrastive analysis (CA) offers a potential solution to identify and isolate patterns induced by per-
turbations using a background data set to remove those natural variations Zou et al. (2013). In our
setting, the background data set is composed of images of control cells that have not been perturbed.
For example, contrastive principal components analysis (cPCA) seeks to identify salient principal
components in a target data set by identifying linear combinations of features that are enriched in
that data set relative to a background data set, rather than those that simply have the most variance
Abid et al. (2018). Recently, CA methods based on neural networks have proven effective in dis-
covering nonlinear latent features that are enriched in one dataset compared to another Abid & Zou
(2019); Ruiz et al. (2019); Severson et al. (2019); Weinberger et al. (2022a;b). These approaches
often assume that only two datasets are being processed, both stemming from identically and inde-
pendently distributed data distributions: the background distribution and the target distribution. This
approach is limited in that it does not explicitly model each perturbation as a unique distribution for
comparison with the background distribution.

Here, we propose Multi-ContrastiveVAE, a CA framework for the setting of comparing multiple
data sets to a reference data set, with a specific architecture tailored for cell imaging data sets from
OPS. We applied Multi-ContrastiveVAE to a large-scale imaging dataset with over 30 million cell
images across more than 5, 000 genetic perturbations, as detailed in Funk et al. (2022). Our approach
more accurately identifies perturbation-specific phenotypes compared to non-contrastive methods,
effectively distinguishing them from cell-to-cell variations that persist across perturbations. Multi-
ContrastiveVAE effectively separates multiple sources of technical artifacts from single-cell images,
including non-biological variations due to batch effects, uneven plating, and uneven field of view
(FOV) illumination. Furthermore, Multi-ContrastiveVAE disentangles perturbation effects into sep-
arate latent spaces depending on whether the perturbation induces novel phenotypes unseen in the
control cell population. Multi-ContrastiveVAE is readily applicable to other perturbation data sets
with highly multiplexed images, including both drug and genetic perturbation.

2 METHODS

We developed the Multi-Contrastive Variational Autoencoder (mcVAE) to disentangle perturbation
effects in large-scale perturbation data sets from natural and technical cell-to-cell variations. This
model extends the CA framework, by allowing for the comparison of multiple groups against a single
reference group (the background data set composed of control, unperturbed cells). Our framework
is based on the generative model illustrated in Figure 1A, and builds on recent work on CA Abid &
Zou (2019); Weinberger et al. (2022b).

Generative Model For each cell n, we observe the perturbation label Mn ∈ {∅, 1, . . . ,K}, where
∅ denotes a non-targeting control (NTC) perturbation (i.e., no effect) and K denotes the number of
distinct perturbations. Let n be for now a perturbed cell, that is Mn ̸= ∅. Let latent variable

zn ∼ Normal
(
µz
Mn

, Ip
)
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Figure 1: A contrastive analysis framework for analyzing single cell images from optical pooled
screens. (A) Generative model for perturbed and control cells. The table shows the prior distribu-
tions used for the background and salient variables of the perturbed and control populations. (B)
Schematic of the Multi-Contrastive variational autoencoder (mcVAE) framework. (C) Neural net-
work architectures of the encoder and the decoder.

be a low-dimensional random vector encoding cellular variations that naturally exist in the control
cells (the background data set). The mean of the prior p(zn | Mn) varies with the perturbation
label Mn to account for the fact that perturbations may shift the density of cells towards certain
preexisting cell states from the control population. We refer to z as the background latent space, or
embedding. Then, let latent variable

sn ∼ Normal
(
µs
Mn

, Iq
)

be a low-dimensional vector encoding variations due to perturbations. The mean of the prior p(sn |
Mn) is shifted by µs

Mn
to account for the fact that different perturbations may incur different changes

in the data distribution. We refer to s as the salient latent space, or embedding. All the images
xn ∈ Rd have the same number of pixels d. We assume that each pixel j in each image xnj is
generated as:

xn ∼ Normal
(
fθ(zn, sn), σ

2Id
)
,

where fθ is a neural network taking value in the hypercube [−1, 1]d.

In order to break symmetry between latent variables s and z, we exploit the control cells. The data
distribution for the images of the control cells (i.e., Mn = ∅) is the result of an intervention

p (xn | Mn = ∅) = p
(
xn | do(sn = 0), do(µz

Mn
= µz

∅)
)
,

where µz
∅ denotes the mean of the prior embedding for the embedding of the control cells (it could

be set to zero without loss of generality). This assumption is classical in CA, and helps enforce the
semantic that only z (the remaining latent variable) may be used to describe data from the control
cells.

Interpretation and Significance Departing from established CA models, mcVAE includes addi-
tional parameters µs and µz that capture the heterogeneity of perturbations. The former captures the
fact that perturbations could induce novel phenotypes (to be captured by the salient variables). The
latter biases cell states after perturbation towards phenotypes that already existed in the natural pop-
ulation. This represents a significant conceptual departure from the original framework where the
background space was interpreted as containing only uninteresting variation, while the perturbation
effect resided solely within the salient space.

Variational Inference The marginal probability of the data p(x | M) is intractable. We therefore
proceed to posterior approximation with variational inference to learn the model’s parameters. In
particular, we use a mean-field variational distribution:

q̄ =
∏

Mn=∅

qϕz
(zn | xn)δ0(sn)

∏
Mn′ ̸=∅

qϕz
(zn′ | xn′)qϕs

(sn′ | xn′).
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As in the VAE framework Kingma & Welling (2014), each qϕz
(z | x) and qϕs

(s | x) follows a
Gaussian distribution with a diagonal covariance matrix. We optimize a composite objective func-
tion, corresponding to the sum of the evidence lower bound (ELBO) for perturbed cells, and for
control cells.

Adapting the work of Abid & Zou (2019), the ELBO for a perturbed cell n is derived as:

log p(xn | Mn) ≥ Eqϕz (zn|xn)qϕs (sn|xn) log pθ (xn | zn, sn) (1)

−KL (qϕs
(sn | xn) ∥p (sn | Mn)) (2)

−KL (qϕz (zn | xn) ∥p (zn | Mn)) . (3)

Similarly, the ELBO for a unperturbed cell n is derived as:

log p(xn | Mn = ∅) ≥Eqϕz (zn|xn) log pθ (xn | zn, 0)−KL (qϕz (zn | xn) ∥p (zn | ∅)) . (4)

We summarized those computations in the schematic from Figure 1B.

Architecture and Training Details For the neural networks used in the generative model, and
the amortization of the approximate posterior, we use a simple convolutional architecture with five
convolutional layers for the approximate posterior, and five transpose-convolutional layers for the
generative model (Figure 1C). We used the Adam optimizer Kingma & Ba (2015) with a learning
rate of 10−4. Each mini-batch was constructed to contain an equal number of perturbed and control
cells. We applied the inverse hyperbolic sine transformation as well as normalization to the training
images during pre-processing. All models presented in this paper were trained for 2 epochs with
early stopping based on the validation loss, and the dimensions of z and s were set to 32. We
regularized the model using the Wasserstein regularization Weinberger et al. (2022b) to encourage
independence between salient and background latent features.

3 RESULTS

We apply mcVAE to a public imaging data set from a large-scale CRISPR-knockout OPS that pro-
filed 31 million HeLa cells affected by 5, 000 distinct genetic perturbations Funk et al. (2022). Four
single guide RNA (sgRNAs) were used for each gene target, together with 250 non-targeting control
(NTC) sgRNAs that do not target any gene. For 31 million cells, there is a median of around 6, 000
cells imaged per gene target across each set of four guides. To obtain single-cell images, we ex-
tracted 100× 100 pixel crops without segmenting cells and perturbation label assignments for each
cell (Appendix A.1). We then assessed how well the mcVAE embedding reflected known biology,
how well it isolated technical artifacts from biological variation, and how the salient and background
space differ in terms of the perturbation effects they capture.

3.1 ASSESSMENT OF EMBEDDINGS QUALITY BASED ON PROTEIN COMPLEXES

We evaluated the effectiveness of our learned embeddings in capturing known biological functions
by employing them to predict established protein complexes Celik et al. (2022). It is well established
that genetic perturbations of genes encoding different subunits of the same protein complex are
more likely to yield similar cellular phenotypes. Thus, we expect the images of cells perturbed for
such genes to be closer in embedding space compared with those from cells perturbed for genes
genes that do not belong to the same complex. To this end, we used as ground truth the CORUM
database Tsitsiridis et al. (2023), the most extensive publicly available collection of manually curated
mammalian protein complexes. We set all aggregated gene embeddings up to a given cut-off as
true relationships, used those to predict which gene pairs co-occur in a CORUM complex, and then
evaluated the classification performance by comparing the precision-recall curve of various methods,
generated by setting different distance thresholds for determining whether two genes are part of the
same complex.

We compare the performance of mcVAE to three baseline models: standard VAE, contrastive VAE
(cVAE), and CellProfiler (CP). Both the standard VAE and cVAE consist of the same encoder and
decoder architecture (Figure 1C). The standard VAE has a single encoder and decoder, and the cVAE
consists of two encoder and a shared decoder but does not use the perturbation label to adjust the
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Figure 2: Multi-Contrastive VAE outperforms contrastiveVAE in protein complex identifica-
tion. (A) Precision-recall curve of CORUM identification task for vanilla VAE, contrastiveVAE
(cVAE), multi-contrastiveVAE (mcVAE) and using CP features; all four embedding spaces have 64
dimensions. (B) Precision-recall curve when using background alone, salient alone, or a concate-
nation of both sets of latent variable. (C) Precision-recall curve for cVAE, cVAE with perturbation
label fed into just the salient prior, cVAE with perturbation label fed into just the background prior,
and our mcVAE where perturbation labels are fed into both the salient and background prior

priors of its latent variables. To keep the dimension of the latent space consistent across all models,
instead of using all CP features, and instead we first perform PCA at the cell-level and then take the
first 64 PCs (77% variance explained).

The standard VAE trailed in performance, being markedly surpassed by the cVAE (Figure 2A). Im-
portantly, mcVAE not only exceeded the performance of the cVAE but did so to a degree comparable
to the improvement seen previously going from the standard VAE to the cVAE, thereby matching
the performance of CP.

We further evaluated how the background and salient embedding of mcVAE performs separately in
identifying members of the same protein complexes (Figure 2B). Interestingly, the best performance
for CORUM identifiability was not achieved by discarding the background information; instead, it
was attained by concatenating the salient features with the background. Thus it is not surprising that
we obtain sub-optimal performance when we remove either the label information from the salient
prior or the background prior (Figure 2C). These findings emphasize the critical role that both the
salient and background latent variables play in identifying gene functions (defined here by protein
complex membership), and highlights the strength of mcVAE in elucidating complex biological
relationships.

3.2 PERFORMANCE AT DISENTANGLING MULTIPLE SOURCES OF TECHNICAL ARTIFACTS

Multi-Contrastive VAE automatically isolates multiple, intricate technical artifacts found in cell im-
ages without any prior information. First, well-to-well batch variations can emerge from multiple
factors, such as subtle differences in culture (e.g. cell density) or staining conditions (Figure 3A,
top). As a result, the background embeddings of cells show grouping by well in the UMAP projec-
tion, but cells from different wells are well-mixed in the salient space, indicating the salient space
is nearly free of batch effect. Next, uneven illumination of a field of view can cause cells near the
center to appear brighter than those near the edge. Background embedding of cells capture this
variation, while the salient space appears well-mixed, indicating removal of this technical variation
(Figure 3A, middle). Lastly, background cell embeddings are separated based on their position in a
well, influenced by uneven cell density affecting cell shape and size, while this source of variation is
again not discernible in the salient space (Figure 3A, bottom). Note that for both the position in FOV
and well, the corresponding UMAPs are only showing cells from a single well to better illustrate
these additional variations beyond batch effect.

To quantify the presence of technical variation in different embedding spaces, we trained logistic
regression models to predict various technical covariates from the cell embeddings (Figure 3B).
The salient embeddings are mostly free of technical artifacts, as evident from having the poorest
prediction performance, measured by the F1 score and area under receiver operating characteristic
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Figure 3: Multiple experimental technical artifacts are found in both the background space,
and CellProfiler features, while the salient space is nearly free of these artifact patterns. (A)
UMAP projections of background and salient embedding for individual cells colored by their batch
(well), position in an image’s FOV (edge/center), and position in a well (edge/cell). The embeddings
showing FOV and well position are for cells from one particular batch, which is also demarcated
by dashed black line in the top left UMAP. (B) Performance metrics for a logistic regression model
trained to predict the technical covariates from panel (A) using the cell embeddings from salient
space, background space, salient-background concatenated, and batch-corrected CP features.

curve (AUROC). In contrast, both the background and CP embeddings contain significant technical
variations in terms of FOV position and well position. The CP embedding we used was batch-
corrected by standardizing against the NTC in the corresponding batch. While effective at removing
batch effects, such correction was unable to address the other more intricate sources of technical
artifacts.

3.3 BACKGROUND AND SALIENT EMBEDDINGS EXCEL AT PREDICTING DISTINCT GENE
FUNCTIONS

Though both salient and background embeddings can accurately classify gene functions, their per-
formance varies significantly based on the functional group. A UMAP projection of guide embed-
dings (cells aggregated to the level of CRISPR guides) (Figure 4A), shows that genes of the same
functional groups (as assigned in Funk et al. (2022)) tend to cluster together, suggesting that the
embedding space is rich in biological information.

Salient and background spaces each excel at predicting different gene functions. The confusion
matrices (Figure 4B) obtained by training logistic regression models to classify the perturbed gene
into one of the functional groups from different guide-level representations, show that using the
combined embedding performs best compared to using only the salient or background embedding
alone.Furthermore, the difference in performance between the salient and background space vary
significantly between functional groups (Figure 4B, C). The background embedding excels for pre-
dicting functional groups such as actin cytoskeleton/adhesion, spindle bipolarity, and chromosome
alignment, while the salient embedding is better at predicting genes with tubulin and spliceosome
annotations. The misclassifications as shown on the off-diagonal of the confusion matrices seem
to associate closely related functional groups. In the salient space, for example, genes associated
with ribosome biogenesis are often misclassified as part of the 60S ribosome, and similarly between
genes for chromosome alignment and spindle bipolarity.

We posit that certain gene functions, such as adhesion and mitosis, were predicted better by the
background embedding because perturbing these genes likely affects phenotypes, like cell size and
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Figure 4: The salient space better delineates perturbations that induce novel phenotypes, while
the background space highlights perturbations that shift the distribution of cells within exist-
ing phenotypes. (A) UMAP projection of salient and background cell embeddings aggregated to
the perturbation level, colored by the functional group of the perturbed gene. (B) Confusion matri-
ces for separate logistic regression models trained to classify gene function from guide embeddings
in different spaces, normalized row-wise. (C) Difference in recall between model trained on salient
vs background embedding. (D) Percent of variations in the first PC of NTCs explained by different
number of top differentially altered features, identified by multiple hypothesis testing with Bonfer-
roni adjustment and ranked by robust z-score against NTCs. (E) Name and description of the top
five differentially altered CP features.

cell cycle stage, which naturally vary within unperturbed cells (with NTC guides). As a result, the
altered features are predominantly captured by the background space. Conversely, perturbing genes
in the tubulin group, which is only well-predicted by the salient space, produces novel features do
not appear in unperturbed cells. Indeed, using the top five altered CP features from the actin &
adhesion perturbations, we can explain 70% of the variation in the first principle component (PC)
of cells with NTC guides, whereas only 20% can be explained by the top five altered CP features
from the tubulin perturbations (Figure 4D). Comparing the actual CP features significantly altered
by perturbations to either groups, we found that perturbing the actin & adhesion group primarily
affects spatial heterogeneity of a molecule, while perturbing the tubulin group mainly affects cross-
correlation between different molecular species (Figure 4E). This result suggests that spatial cross-
correlation between molecular structures are fairly preserved, and perturbing only tubulin disrupts
these cross-correlations to generate a novel phenotype rarely seen in natural cell populations.

In summary, the differences in classification performance between the salient and background em-
beddings stem from the nature of the gene perturbations, specifically whether they generate new
phenotypes or merely shift the distribution of existing phenotypes, shedding light on the complex
interaction between gene functions and cell biological phenotypes.

4 DISCUSSION

In this work, we present Multi-Contrastive VAE (mcVAE), a method for disentangling perturbation
effects by comparing multiple treatment groups to a single reference/control group. We applied
mcVAE to a recent large-scale optical pooled screen dataset Funk et al. (2022) consisting of over 30
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millions cells spanning more than 5, 000 genetic perturbations to show that it can effectively remove
technical imaging artifacts to identify perturbations that generate novel phenotypes.

Although mcVAE effectively isolated novel phenotypes in the salient space, additional disentan-
glement in the background will benefit from further work, since it is comprised of both technical
artifacts and biological variations. This can be addressed in future work by extending our model to
include three encoders corresponding to three latent spaces that separately captures technical noise,
natural (biological) phenotypic variations, and novel perturbation-induced phenotypes. We can in-
corporate kernel-based independence measures Lopez et al. (2018) to facilitate the enforcement of
independence statements between the technical noise latent variables and the perturbation label.

Exploring deeper neural network architectures is another important extension of this work. In this
current work, we used a relatively simple encoder/decoder architecture with only five convolu-
tional/deconvolutional layers. A deeper architecture might foster a finer granularity in the detection
of subtle phenotypic patterns that are otherwise overshadowed in shallow architectures. Further-
more, we used a small number of dimensions for the salient and background space (32 dimensions
each). Increasing the number of latent dimensions in our mcVAE model can potentially enhance the
representation of complex, high-dimensional data, allowing for a more nuanced understanding of
genetic perturbations.
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A APPENDIX

A.1 DATA ACQUISITION AND PREPROCESSING

CellProfiler features with corresponding metadata, including cell cycle stage and perturbation label
(gene targeted by CRISPR), for each cell were obtained directly from the online repository Harvard
Dataverse Funk (2022b). These features were already batch-corrected by standardizing against the
NTCs in the corresponding batch.

Raw microscopy images each covering a large field of view with many cells were downloaded
from BioImage Archive Funk (2022a), followed by imaging channel alignment using phase cross-
correlation. For each raw image, pixels with intensity values in the top and bottom 0.1% were
clipped. Finally, individual cell patches were obtained by using the cell positional values from
CellProfiler data to obtain a 100 pixel by 100 pixel bounding box around each cell, which was used
to represent individual cells for model training. We removed cells within 50 pixel of the tile edge.
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