
Mobile OS Task Procedure Extraction from YouTube

Yunseok Jang⇤†, Yeda Song⇤†, Sungryull Sohn‡, Lajanugen Logeswaran‡,
Tiange Luo†, Honglak Lee†‡

†{yunseokj, yedasong, tiangel, honglak}@umich.edu
‡{srsohn, llajan, honglak}@lgresearch.ai

GPT-4o

  -2         -1          0          +1       +2

GPT-4o

(Higher
resolution)

GPT-4o Action type: Touch
Action box id: 10 
Action detail: Profile icon 
on the bottom-right corner

3. Action refinement
Fine-grained action 
localization

1. Scene summary
Summarize the frame content 
including visible UI elements

2. Action description
Predicting the action type and 
potential interaction area

Detect
transitions

Isolate
phone 

screens

⋯  ⋯  

⋯  

⋯  
⋯  

⋯  

Sc
en

e 
Tr

an
si

tio
n 

D
et

ec
tio

n

A
ct

io
n 

Pr
ed

ic
tio

n

Action type: Touch
Action box ID: 40 [476, 1079]
Action detail: Profile icon on 
the bottom-right corner

Scene description:
…, "-1": Second home screen …
"0": Instagram home feed …
"+1": Instagram profile page …, …

Figure 1: MOTIFY pipeline for mobile OS task inference from YouTube videos.

1 Introduction

Recent advancements in Large Language Models (LLMs) [1, 2, 3, 4] and Vision-Language Models
(VLMs) [5, 6] have sparked significant interest in developing agents capable of mobile operating
systems (mobile OS) [7, 8]. However, those mobile OS agents largely depend on datasets composed
of a sequence of frames and corresponding actions, typically collected through manual processes
or simulated environments [9, 10], which pose several challenges: time-consuming and costly data
annotation, rapid OS updates rendering datasets quickly outdated, and limited diversity in user
configurations and real-world scenarios.

Automatically extracting the actions and corresponding frames from online video could alleviate
mobile OS agent data collection challenges, however recent efforts in this direction face limitations.
While Android in the Wild (AitW) [9] supports mobile OS agent development, it is constrained by
Pixel device emulators with system log messages. Video2Action [11] extracts scene transitions and
actions from Android screencasts, but its single-OS focus and reliance on pixel-level differences
make it unreliable in diverse real-world settings. Chen et al. [12] developed a method for predicting
actions in mobile interfaces, but it still requires pre-training on a human-labeled Android dataset [13].

To address these limitations, we introduce Mobile OS Task Inference from YouTube, MOTIFY, a
scalable approach for predicting actions and corresponding frames from mobile OS task videos with
pre-trained VLMs. MOTIFY leverages publicly available YouTube content to capture real-world
usage across diverse mobile OS platforms, eliminating the need for manual data annotation. Given
any mobile OS task video, Mobile OS Task Inference from YouTube first detects scene transitions
using GroundingDINO [14] and Paddle OCR [15], followed by action prediction with GPT-4o
[16]. Leveraging these pre-trained VLMs eliminates the need for manual data-annotation process.
Our experiments on both iOS and Android platforms show that our proposed pipeline outperforms
SceneDetect [17] and YUV-diff [11] in scene detection accuracy, while also achieving the highest
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action prediction performance among all tested variants. Ultimately, MOTIFY provides a scalable and
generalizable solution for mobile OS task data preparation, advancing mobile OS task understanding.

2 Method

Our goal is to automatically extract an agent’s trajectory (i.e., actions and corresponding frames
similar to datasets like AitW [9]) for mobile OS tasks from instructional YouTube videos, without
manual annotation or OS-specific simulators. Given a video, MOTIFY first identifies the frame where
the agent took an action and then predicts the action performed on the identified frame. Note that,
unlike AitW which uses system logs, our approach operates on real-world videos without system
access. Since actions are not always directly visible in real-world videos, we detect transitions such
as screen changes, button highlight, app launches, or menu shifts by comparing consecutive frames.
These transitions serve as proxies for user input, allowing us to infer the action and its corresponding
frame. Thus, our approach focuses on implementing two modules: scene transition detection (Section
2.1) and action prediction (Section 2.2). These components work together to transform raw video
input into a structured, actionable format for mobile OS agent learning.

2.1 Scene Transition Detection

Unlike previous work that rely on vision-based features (e.g., luminance difference in YUV) [11], we
employ a novel Optical Character Recognition (OCR)-based approach for scene transition detection.
This method proves more robust to varying interface configurations in real-world videos, as text
rendering remains relatively consistent across different OS versions and user settings (e.g., light/dark
mode, recording conditions).

Our process begins with isolating the phone screen from the video using GroundingDINO [14] to
handle distracting backgrounds in real-world videos. We then apply OCR using Paddle OCR [15]
to extract text from consecutive frames. We detect scene transitions by computing the Levenshtein
distance [18] between the detected text of adjacent frames and mark a transition if the distance
exceeds a threshold. We construct a frame sequence for action prediction by selecting the middle
frame between adjacent scene transitions.

2.2 Action Prediction

For action prediction, we first preprocess the frame to identify UI components. Given the lack of
open-source models for icon detection in mobile interfaces [19, 20], we utilize GroundingDINO
[14] to predict UI component areas, which are then used to generate a Set-of-Marks (SoM) style
representation [21]. This approach allows us to precisely locate potential interaction areas without
relying on platform-specific information. Please visit Supplementary Section D for visualization.

Given the preprocessed frame, we introduce a novel three-step approach for action prediction using
GPT-4o [16]. First, we summarize the frames (without SoM representation) including visible UI
components into a language description, providing a general understanding of the screen layout
and available interactions without UI component occlusion. Next, we predict actions based on the
summaries of current and adjacent (i.e., two previous and two next) frames and the SoM representation
of UI components, considering both temporal context and potential interaction areas. Finally, we
refine the action prediction by feeding the zoomed image with SoM representation to precisely
localize touch and long-press actions.

This multi-step process mitigates temporal misalignment issues and improves grounding accuracy,
resulting in more precise and reliable action predictions across diverse mobile OS interfaces and
tasks. By considering the current frame, adjacent frames, and potential interaction areas, our method
can better understand and localize each action. Figure 1 illustrates our complete pipeline, showcasing
how these components work together to extract mobile OS tasks from YouTube videos.

3 Experiments

To evaluate MOTIFY, we created a diverse test set from YouTube videos covering both iOS and
Android platforms. We manually annotated these videos to create a ground truth dataset, identifying
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scene transitions, actions, and bounding boxes for UI components. Our test set comprises 714 frames
with 460 actions and 15,225 bounding boxes, reflecting the complexity of real-world mobile OS
interactions (see Supplementary Section A.a for the search keywords to download the videos).

We first compared our OCR-based scene transition detection approach with an open-source scene
cut algorithm [17] and the YUV-diff method used in Video2Action [11]. Table 1 shows that our
method significantly outperforms these baselines, achieving an F1-score of 95.42%. This performance
demonstrates the robustness of our approach across diverse mobile interfaces and video qualities.

Table 1: Scene transition detection per-
formance

Method F1-score (%)

OCR-based (Ours) 95.42
SceneDetect [17] 81.00
YUV-diff [11] 71.00

Table 2: Action prediction accuracy (%)

Method All Touch

Multi-image 3-step (Ours) 83.40 91.57
Number of steps:

2-step 79.31 86.83
1-step 70.15 73.69

First-step input:
Multi-image w/o action 81.66 88.74
Single-image 76.96 87.86

Multi-image 3-step (Ours): 
Touch, ‘Back arrow icon’, box 2
 

2-step: Touch, ‘Back arrow on 
the top left corner’, box 3

1-step: Scroll, Down

Multi-image w/o action: 
Touch, ‘Pencil icon’, box 0

Single-image: Touch, ‘Three 
dots menu icon’, box 1

Figure 2: Qualitative comparison of ac-
tion predictions. Green: correct, Red:
incorrect.

Given the lack of code access for previous video-based mo-
bile OS task extraction methods [11, 12], we conducted a
comprehensive ablation study to evaluate our multi-step ac-
tion prediction approach and the impact of action-focused
summaries. Table 2 summarizes these results, demonstrat-
ing the superiority of our full method.

Our multi-image, 3-step approach consistently outper-
forms simpler variants, highlighting the importance of
both temporal context and action-focused reasoning. The
2-step ablation omits step 3, while the 1-step ablation di-
rectly predicts the precise action from multi-image input,
bypassing all intermediate steps. The performance drop
from 3-step to 2-step (83.40% to 79.31%) demonstrates
the value of our final refinement stage in precisely local-
izing actions. The more substantial decrease to 1-step
(70.15%) underscores the complexity of mobile OS tasks
and the necessity of multi-stage reasoning.

Notably, the “Multi-image w/o action” condition, which
summarizes frames without emphasizing actions, shows
a performance drop (81.66% vs. 83.40%). This suggests
that action-oriented summaries provide crucial cues for
accurate prediction. The single-image approach performs
worst among first-step variants (76.96%), highlighting the
importance of temporal context in mobile OS interactions.

Figure 2 provides a qualitative comparison of action pre-
dictions from different configurations. This example illus-
trates how our 3-step approach with action-focused sum-
maries can lead to more accurate and precisely localized
predictions in a mobile OS scenario.

4 Conclusion

MOTIFY demonstrates the potential for mobile OS task inference from real-world videos. Our
method efficiently handles diverse mobile interfaces and user configurations, outperforming existing
techniques in both scene transition detection and action prediction.

While effective, our current approach has some limitations. The reliance on GPT-4o [16] for action
prediction, though powerful, could be addressed by exploring open-source alternatives tailored for
mobile OS tasks. Additionally, while promising, the accuracy of our VLM-based extraction could be
further improved through open-sourced specialized icon prediction models or fine-tuned VLMs.

Future work will focus on expanding our approach to a larger scale, aiming towards fully automatic
data generation for mobile agent training. We are currently collecting a more extensive dataset
using the method described in the supplementary material. This expanded dataset will enable further
research into mobile OS navigation agents and video understanding tasks.

In conclusion, MOTIFY opens up new possibilities for mobile agent development and video un-
derstanding research, offering a scalable and adaptable approach to extract mobile OS tasks from
real-world videos. We encourage the research community to build upon this work, leveraging its
potential to advance the field of mobile OS task understanding and automation.
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