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ABSTRACT

Recently, it has been shown that for offline deep reinforcement learning (DRL),
pre-training Decision Transformer with a large language corpus can improve
downstream performance (Reid et al., 2022). A natural question to ask is whether
this performance gain can only be achieved with language pre-training, or can be
achieved with simpler pre-training schemes which do not involve language. In
this paper, we first show that language is not essential for improved performance,
and indeed pre-training with synthetic IID data for a small number of updates
can match the performance gains from pre-training with a large language corpus;
moreover, pre-training with data generated by a one-step Markov chain can further
improve the performance. Inspired by these experimental results, we then consider
pre-training Conservative Q-Learning (CQL), a popular offline DRL algorithm,
which is Q-learning-based and typically employs a Multi-Layer Perceptron (MLP)
backbone. Surprisingly, pre-training with simple synthetic data for a small number
of updates can also improve CQL, providing consistent performance improvement
on D4RL Gym locomotion datasets. The results of this paper not only illustrate the
importance of pre-training for offline DRL but also show that the pre-training data
can be synthetic and generated with remarkably simple mechanisms.

1 INTRODUCTION

It is well-known that pre-training can provide significant boosts in performance and robustness for
downstream tasks, both for Natural Language Processing (NLP) and Computer Vision (CV). Recently,
in the field of Deep Reinforcement Learning (DRL), research on pre-training is also becoming
increasingly popular. An important step in the direction of pre-training DRL models is the recent
paper by Reid et al. (2022), which showed that for Decision Transformer (DT) (Chen et al., 2021),
pre-training with the Wikipedia corpus can significantly improve the performance of the downstream
offline RL task. Reid et al. (2022) further showed that pre-training on predicting pixel sequences hurts
performance. The authors state that their results indicate “a foreseeable future where everyone should
use a pre-trained language model for offline RL”. In a more recent paper, Takagi (2022) explores
more deeply why pre-training with a language corpus can improve DT. However, it remains unclear
whether language data is special in providing such a benefit, or whether more naive pre-training
approaches can achieve the same effect. Understanding this important question can help us develop
better pre-training schemes for DRL algorithms that are more performant, robust and efficient.

We first explore pre-training Decision Transformer (DT) with synthetic data generated from a simple
and seemingly naive approach. Specifically, we create a finite-state Markov Chain with a small
number of states (100 states by default). The transition matrix of the Markov chain is obtained
randomly and is not related to the environments or the offline datasets. Using the one-step MC,
we generate a sequence of synthetic MC states. During pre-training, we treat each MC state in the
sequence as a token, feed the sequence into the transformer, and employ autoregressive next-state
(token) prediction, as is often done in transformer-based LLMs (Brown et al., 2020). We pre-train
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with the synthetic data for a relatively small number of updates compared with that of language
pre-training updates in (Reid et al., 2022). After pre-training with the synthetic data, we then fine-
tune with a specific offline dataset using the DT offline-DRL algorithm. Surprisingly, this simple
approach significantly outperforms standard DT (i.e., with no pre-training) and also outperforms
pre-training with a large Wiki corpus. Additionally, we show that even pre-training with Independent
and Identically Distributed (IID) data can still match the performance of Wiki pre-training.

Inspired by these results, we then consider pre-training Conservative Q-Learning (CQL) (Kumar
et al., 2020) which employs a Multi-Layer Perceptron (MLP) backbone. Here, we randomly generate
a policy and transition probabilities, from which we generate a sequence of Markov Decision Process
(MDP) state-action pairs. We then feed the state-action pairs into the Q-network MLPs and pre-train
them by predicting the subsequent state. After this, we fine-tune them with a specific offline dataset
using CQL. Surprisingly, pre-training with IID and MDP data both can give a boost to CQL.

Our experiments and extensive ablations show that pre-training offline DRL models with simple
synthetic datasets can significantly improve performance compared with those with no pre-training,
both for transformer- and MLP-based backbones, with a low computation overhead. The results also
show that large language datasets are not necessary for obtaining performance boosts, which sheds
light on what kind of pre-training strategies are critical to improving RL performance and argues for
increased usage of pre-training with synthetic data for an easy and consistent performance boost.

2 RELATED WORK

Many practical applications of RL constrain agents to learn from an offline dataset that has already
been gathered, without further interactions with the environment (Fujimoto et al., 2019; Levine et al.,
2020). The early offline DRL papers often employ Multi-Layer Perceptron (MLP) architectures
(Fujimoto et al., 2019; Chen et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021). More recently,
there has been significant interest in transformer-based architectures for offline DRL, including DT
(Chen et al., 2021), Trajectory Transformer (Janner et al., 2021) and others (Furuta et al., 2021; Li
et al., 2023). In this paper, we study both transformer-based and the more conventional Q-learning-
based methods to understand how different pre-training schemes can affect their performance.

It is well-known that pre-training can provide significant improvements in performance and robustness
for downstream tasks, both for Natural Language Processing (NLP) (Devlin et al., 2018; Radford
et al., 2018; Brown et al., 2020) and Computer Vision (CV) (Donahue et al., 2014; Huh et al., 2016;
Kornblith et al., 2019). In offline DRL, pre-training is becoming an increasingly popular research
topic. An important step in the direction of pre-training offline DRL models is Reid et al. (2022),
which shows that for DT, pre-training on Wikipedia can significantly improve the performance of the
downstream RL task. Takagi (2022) further explores why such pre-training improves DT. Inspired by
these recent findings, we aim for a more comprehensive understanding of pre-training in DRL.

There are also works that pretrain on generic image data or use offline DRL data itself to learn
representations and then use them to learn offline or online DRL tasks (Yang & Nachum, 2021; Zhan
et al., 2021; Wang et al., 2022; Shah & Kumar, 2021; Hansen et al., 2022; Nair et al., 2022; Parisi et al.,
2022; Radosavovic et al., 2023; Karamcheti et al., 2023). Xie et al. (2023) shows future-conditioned
unsupervised pretraining leads to superior performance in the offline-online setting. Different from
these works, we focus on understanding whether language pre-training is special in providing a
performance boost and investigate whether synthetic pre-training can help DRL.

Pre-training with synthetic data has been shown to benefit a wide range of downstream NLP tasks
(Papadimitriou & Jurafsky, 2020; Krishna et al., 2021; Ri & Tsuruoka, 2022; Wu et al., 2022; Chiang
& Lee, 2022), CV tasks (Kataoka et al., 2020; Anderson & Farrell, 2022), and mathematical reasoning
tasks (Wu et al., 2021). There are also works that study the effect of different properties of synthetic
NLP data Ri & Tsuruoka (2022); Chiang & Lee (2022); He et al. (2022b). In particular, we provide
results that show the Identity and Case-Mapping synthetic data schemes from He et al. (2022b) can
also improve offline RL performance in Appendix F. While these works focus on CV and NLP
applications, we study the effect of pre-training from synthetic data with large domain gaps in DRL.

To the best of our knowledge, this is the first paper that shows pre-training on simple synthetic data can
be a surprisingly effective approach to improve offline DRL performance for both transformer-based
and Q-learning-based approaches.
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3 PRE-TRAINING DECISION TRANSFORMER WITH SYNTHETIC DATA

3.1 OVERVIEW OF DECISION TRANSFORMER

Chen et al. (2021) introduced Decision Transformer (DT), a transformer-based algorithm for offline
RL. An offline dataset consists of trajectories s1, a1, r1, . . . , sN , aN , where sn, an, and rn is the
state, action, and reward at timestep n. DT models trajectories by representing them as

σ = (R̂1, s1, a1, . . . , R̂N , sN , aN ),

where R̂n = ΣN
t=nrt is the return-to-go at timestep n. The sequence σ is modeled with a transformer

in an autoregressive manner similar to autoregressive language modeling except that R̂n, sn, an
at the same timestep n are first projected into separate embeddings while receiving the same po-
sitional embedding. In Chen et al. (2021), the model is optimized to predict each action an from
(R̂1, s1, a1, . . . , R̂n−1, sn−1, an−1, R̂n, sn). After the model is trained with the offline trajectories, at
test time, the action at timestep t is selected by feeding into the trained transformer the test trajectory
(R̂1, s1, a1, . . . , R̂t, st), where R̂t is now an estimate of the optimal return-to-go.

In the original DT paper (Chen et al., 2021), there is no pre-training, i.e., training starts with random
initial weights. Reid et al. (2022) consider first pre-training the transformer using the Wikipedia
corpus, then fine-tuning with the DT algorithm to create a policy for the downstream offline RL task.

3.2 GENERATING SYNTHETIC MARKOV CHAIN DATA

We explore pre-training DT with synthetic data generated from a Markov Chain. For the synthetic
data, we simply generate a sequence of states (tokens) using a finite-state Markov Chain with a
small number of states. The transition probabilities of the Markov chain are obtained randomly (as
described below) and are not related to the environment or the offline dataset. After creating the
synthetic sequence data, during pre-training, we feed the sequence into the transformer and employ
next state (token) prediction, as is often done in transformer-based LLMs (Brown et al., 2020). After
pre-training with the synthetic data, we then fine-tune with the target offline dataset using DT.

We generate the MC transition probabilities as follows. Let S = 1, 2, . . . ,M denote the MC’s finite
state space, with M = 100 being the default value. For each state in S, we draw M independently
and uniformly distributed values, and then create a distribution over the state space S by applying
softmax to the vector of M values. In this manner, we generate M probability distributions, one for
each state, where each distribution is over S. Using these fixed transition probabilities, we generate
the pre-training sequence x0, x1, . . . , xT as follows: we randomly sample from S to get the initial
state x0 in the sequence; after obtaining xt, we generate xt+1 using the MC transition probabilities.

During pre-training, we train with autoregressive next-state prediction (Brown et al., 2020):

L(x0, x1, . . . , xT ; θ) = − logPθ(x0, x1, . . . , xT ) = −ΣT
t=1 logPθ(xt|x0, x1, . . . , xt−1).

As the states are discrete and analogous to the tokens in language modeling tasks, the embeddings for
the states are learned during pre-training as is typically done in the NLP literature.

3.3 RESULTS FOR PRE-TRAINING DT WITH SYNTHETIC DATA

We first compare the performance of the DT baseline (DT), DT with Wikipedia pre-training
(DT+Wiki), and DT with pre-training on synthetic data generated from a 1-step MC with 100
states (DT+Synthetic). We consider the same three MuJoCo environments and D4RL datasets (Fu
et al., 2020) considered in Reid et al. (2022) plus the high-dimensional Ant environment, giving a
total of 12 datasets. For a fair comparison, we use the authors’ code from Reid et al. (2022) when
running the downstream experiments for DT, and we keep the hyperparameters identical to those
used in (Chen et al., 2021; Reid et al., 2022) whenever possible (Details in Appendix A.1). For
each dataset, we fine-tune for 100,000 updates. For DT+Wiki, we perform 80K updates during
pre-training following the authors. For DT+Synthetic, however, we found that we can achieve good
performance with much fewer pre-training updates, namely, 20K updates. After every 5K updates
during fine-tuning, we run 10 evaluation trajectories and record the normalized test performance1.

1This evaluation metric follows D4RL (Fu et al., 2020). We provide a review in Appendix A.3
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We report both final performance and, in Appendix B, best performance. For best performance,
we use the best test performance seen over the entire fine-tuning period. Best performance is also
employed in (Chen et al., 2021; Reid et al., 2022). In practice, to determine when the best performance
occurs (and thus the best model parameters), interaction with the environment is required, which is
inconsistent with the offline problem formulation. The final performance can be a better metric since
it does not assume we can interact with the environment. For the final performance, we average over
the last four sets of evaluations (after 85K, 90K, 95K, and 100K updates for DT). When comparing
the algorithms, the two measures (final and best) lead to very similar qualitative conclusions. For all
DT variants, we report the mean and standard deviation of performance over 20 random seeds.

Table 1: Final performance for DT, DT pre-trained with Wikipedia data, and DT pre-trained with
synthetic data. Synthetic data is generated from a one-step MC with a state space size of 100.

Average Last Four DT DT+Wiki DT+Synthetic
halfcheetah-medium-expert 44.9 ± 3.4 43.9 ± 2.7 49.5 ± 9.9
hopper-medium-expert 81.0 ± 11.8 94.0 ± 8.9 99.6 ± 6.5
walker2d-medium-expert 105.0 ± 3.5 102.7 ± 6.4 107.4 ± 0.8
ant-medium-expert 107.0 ± 8.7 113.9 ± 10.5 117.9 ± 8.7
halfcheetah-medium-replay 37.5 ± 1.3 39.1 ± 1.6 39.3 ± 1.1
hopper-medium-replay 46.7 ± 10.6 51.4 ± 13.6 61.8 ± 13.9
walker2d-medium-replay 49.2 ± 10.1 55.2 ± 7.7 56.8 ± 5.1
ant-medium-replay 80.9 ± 3.9 78.1 ± 5.3 88.4 ± 2.7
halfcheetah-medium 42.4 ± 0.5 42.6 ± 0.2 42.5 ± 0.2
hopper-medium 58.2 ± 3.2 58.4 ± 3.3 60.2 ± 2.1
walker2d-medium 70.4 ± 2.9 70.8 ± 3.0 71.5 ± 4.1
ant-medium 89.0 ± 4.7 88.5 ± 4.2 87.8 ± 4.2
Average over datasets 67.7 ± 5.4 69.9 ± 5.6 73.6 ± 4.9

Table 1 shows the final performance for DT, DT pre-trained with Wiki, and DT pre-trained with
synthetic MC data. We see that, for every dataset, synthetic pre-training does as well or better than
the DT baseline, and provides an overall average improvement of nearly 10%. Moreover, synthetic
pre-training also outperforms Wiki pre-training by 5% when averaged over all datasets, and this is
done with significantly fewer pre-training updates. Compared to DT+Wiki, DT+Synthetic is much
more computationally efficient, using only 3% of computation during pre-training and 67% during
fine-tuning (Details in Appendix A). Figure 1 shows the normalized score and training loss for DT,
DT with Wiki pre-training, and DT with MC pre-training. The curves are aggregated over all 12
datasets, each with 20 different seeds (per-environment curves in Appendix B.2). To account for the
pre-training updates, we also offset the curve for DT+Synthetic to the right by 20K updates. Note
that in practice, the pre-training only needs to be done once, but the offset here helps to show that
even with this disadvantage, DT+Synthetic still quickly outperforms the other two variants.

(a) Fine-tuning learning curve. (b) Fine-tuning training loss curve.

Figure 1: Performance and loss curves, averaged over 12 datasets for DT, DT+Wiki, DT+Synthetic.

Our synthetic data uses a small state space (vocabulary) and carries no long-term contextual or
semantic information. From Table 1 and Figure 1 we can conclude that the performance gains
obtained by pre-training with the Wikipedia corpus are not due to special properties of language, such
as the large vocabulary or the rich long-term contextual and semantic information in the dataset, as
conjectured in Reid et al. (2022) and Takagi (2022). In the next subsection, we study how different
properties of the synthetic data affect the downstream RL performance.
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3.4 ABLATIONS FOR PRE-TRAINING DT WITH SYNTHETIC DATA

In the above results, we employed a one-step MC to generate the synthetic data. In natural language,
token dependencies are not simply one-step dependencies. We now consider whether increasing the
state dependencies beyond one step can improve downstream performance. Specifically, we consider
using a multi-step Markov Chain for generating the synthetic data x0, x1, . . . , xT . In an n-step
Markov chain, xt depends on xt−1, xt−2, . . . , xt−n. For an n-step MC, we randomly construct the
fixed n-step transition probabilities, from which we generate the synthetic data. Table 2 shows the
final performance averaged over the final four evaluation periods for the DT baseline and for MC
pre-training with different numbers of MC steps. We see that synthetic data with different step
values all provide better performance than the DT baseline; however, increasing the amount of past
dependence in the MC synthetic data does not improve performance over a one-step MC.

Table 2: Pre-training with different numbers of MC steps. For example, 2-MC means the MC data is
generated from a 2-step Markov Chain. Other hyper-parameters remain the default values.

Average Last Four DT 1-MC 2-MC 5-MC
halfcheetah-medium-expert 44.9 ± 3.4 49.5 ± 9.9 44.3 ± 4.0 43.8 ± 3.0
hopper-medium-expert 81.0 ± 11.8 99.6 ± 6.5 99.1 ± 6.5 98.2 ± 5.7
walker2d-medium-expert 105.0 ± 3.5 107.4 ± 0.8 105.7 ± 3.1 105.9 ± 3.1
ant-medium-expert 107.0 ± 8.7 117.9 ± 8.7 122.2 ± 5.3 108.9 ± 11.7
halfcheetah-medium-replay 37.5 ± 1.3 39.3 ± 1.1 39.5 ± 1.3 39.4 ± 0.9
hopper-medium-replay 46.7 ± 10.6 61.8 ± 13.9 59.8 ± 11.0 60.1 ± 11.4
walker2d-medium-replay 49.2 ± 10.1 56.8 ± 5.1 59.3 ± 3.9 58.8 ± 5.8
ant-medium-replay 80.9 ± 3.9 88.4 ± 2.7 86.9 ± 4.0 86.1 ± 4.4
halfcheetah-medium 42.4 ± 0.5 42.5 ± 0.2 42.6 ± 0.3 42.5 ± 0.3
hopper-medium 58.2 ± 3.2 60.2 ± 2.1 59.3 ± 3.3 59.6 ± 2.8
walker2d-medium 70.4 ± 2.9 71.5 ± 4.1 70.7 ± 4.2 70.1 ± 4.0
ant-medium 89.0 ± 4.7 87.8 ± 4.2 87.0 ± 3.7 88.6 ± 4.1
Average over datasets 67.7 ± 5.4 73.6 ± 4.9 73.0 ± 4.2 71.8 ± 4.8

We now investigate whether increasing the size of the MC state space (analogous to increasing the
vocabulary size in NLP) improves performance. Table 3 shows the final performance for DT baseline
and DT pre-trained with MC data with different state space sizes. The results show that all state space
sizes improve the performance over the baseline, with 100 and 1000 giving the best results.

Table 3: Pre-training with synthetic MC data with different state space sizes. For example, S=10
means the MC data is generated from a 10-state MC. Other hyper-parameters remain default.

Average Last Four DT S10 S100 S1000 S10000 S100000
halfcheetah-medium-expert 44.9 ± 3.4 43.4 ± 2.6 49.5 ± 9.9 45.4 ± 4.5 44.0 ± 2.2 43.6 ± 2.7
hopper-medium-expert 81.0 ± 11.8 98.8 ± 8.4 99.6 ± 6.5 102.2 ± 5.7 99.8 ± 6.2 99.4 ± 6.7
walker2d-medium-expert 105.0 ± 3.5 105.4 ± 4.1 107.4 ± 0.8 107.1 ± 1.9 105.9 ± 3.1 103.9 ± 5.0
ant-medium-expert 107.0 ± 8.7 114.6 ± 9.7 117.9 ± 8.7 118.7 ± 6.7 116.0 ± 10.5 123.2 ± 6.3
halfcheetah-medium-replay 37.5 ± 1.3 40.0 ± 0.9 39.3 ± 1.1 40.0 ± 0.8 39.6 ± 1.2 39.9 ± 0.9
hopper-medium-replay 46.7 ± 10.6 58.6 ± 13.2 61.8 ± 13.9 65.0 ± 10.8 62.0 ± 9.6 53.3 ± 12.6
walker2d-medium-replay 49.2 ± 10.1 52.6 ± 10.1 56.8 ± 5.1 59.5 ± 6.2 60.1 ± 5.6 58.8 ± 8.5
ant-medium-replay 80.9 ± 3.9 87.1 ± 4.4 88.4 ± 2.7 87.8 ± 3.3 84.5 ± 4.8 86.8 ± 3.6
halfcheetah-medium 42.4 ± 0.5 42.5 ± 0.4 42.5 ± 0.2 42.4 ± 0.3 42.5 ± 0.3 42.4 ± 0.4
hopper-medium 58.2 ± 3.2 59.6 ± 3.0 60.2 ± 2.1 60.4 ± 2.7 58.7 ± 3.8 57.3 ± 3.3
walker2d-medium 70.4 ± 2.9 71.5 ± 3.8 71.5 ± 4.1 72.8 ± 2.2 72.4 ± 3.6 72.4 ± 2.7
ant-medium 89.0 ± 4.7 88.9 ± 3.7 87.8 ± 4.2 87.1 ± 2.8 88.8 ± 4.2 88.3 ± 3.2
Average over datasets 67.7 ± 5.4 71.9 ± 5.3 73.6 ± 4.9 74.0 ± 4.0 72.9 ± 4.6 72.4 ± 4.7

We now consider how changing the temperature parameter in the softmax formula affects the results.
(Default temperature is 1.0.) A lower temperature leads to more deterministic state transitions, while
a higher temperature leads to more uniform state transitions. Table 4 shows the final performance for
DT with MC pre-training with different temperature values. The results show that all temperatures
provide a performance gain, with a temperature of 1 being the best. In this table, we also consider
generating synthetic data with Independent and Identically Distributed (IID) states with uniform
distributions over a state space of size 100. Surprisingly, even this scheme performs significantly
better than both the baseline and the Wiki pre-training. This provides further evidence that the
complex token dependencies in the Wiki corpus are not likely the cause of the performance boost.

Table 5 shows the final performance for DT with MC pre-training with different numbers of pre-
training updates. Our results show that with even just 1k updates, MC pre-training matches the
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Table 4: Pre-training with different temperature values. Other parameters remain the default values.

Average Last Four DT τ=0.01 τ=0.1 τ=1 τ=10 τ=100 IID uniform
halfcheetah-medium-expert 44.9 ± 3.4 46.6 ± 5.4 52.6 ± 11.9 49.5 ± 9.9 43.3 ± 3.2 44.2 ± 3.3 44.5 ± 4.0
hopper-medium-expert 81.0 ± 11.8 95.4 ± 8.1 95.2 ± 9.2 99.6 ± 6.5 99.9 ± 6.3 98.7 ± 5.5 98.7 ± 7.1
walker2d-medium-expert 105.0 ± 3.5 106.4 ± 2.6 106.6 ± 2.9 107.4 ± 0.8 106.3 ± 3.6 105.1 ± 4.3 103.2 ± 4.2
ant-medium-expert 107.0 ± 8.7 114.9 ± 6.9 121.7 ± 5.5 117.9 ± 8.7 118.6 ± 10.1 108.2 ± 9.6 105.8 ± 11.1
halfcheetah-medium-replay 37.5 ± 1.3 39.5 ± 1.1 40.2 ± 0.9 39.3 ± 1.1 39.7 ± 0.8 40.1 ± 0.5 39.3 ± 0.9
hopper-medium-replay 46.7 ± 10.6 52.5 ± 12.0 52.8 ± 14.4 61.8 ± 13.9 60.2 ± 9.4 60.8 ± 9.3 61.6 ± 10.8
walker2d-medium-replay 49.2 ± 10.1 57.3 ± 6.6 57.0 ± 6.6 56.8 ± 5.1 55.1 ± 8.6 56.7 ± 6.3 57.2 ± 5.2
ant-medium-replay 80.9 ± 3.9 86.7 ± 3.5 88.2 ± 3.7 88.4 ± 2.7 85.8 ± 3.6 87.2 ± 4.6 86.1 ± 3.6
halfcheetah-medium 42.4 ± 0.5 42.4 ± 0.3 42.5 ± 0.2 42.5 ± 0.2 42.5 ± 0.3 42.6 ± 0.3 42.6 ± 0.2
hopper-medium 58.2 ± 3.2 59.1 ± 3.4 59.4 ± 3.5 60.2 ± 2.1 57.9 ± 3.1 59.4 ± 3.7 59.1 ± 3.2
walker2d-medium 70.4 ± 2.9 71.7 ± 2.8 71.5 ± 3.1 71.5 ± 4.1 70.7 ± 3.6 71.7 ± 4.1 69.1 ± 5.4
ant-medium 89.0 ± 4.7 88.0 ± 3.5 89.2 ± 3.0 87.8 ± 4.2 88.4 ± 4.0 88.4 ± 4.6 88.1 ± 4.9
Average over datasets 67.7 ± 5.4 71.7 ± 4.7 73.1 ± 5.4 73.6 ± 4.9 72.4 ± 4.7 71.9 ± 4.7 71.3 ± 5.1

performance of DT+Wiki pre-training. Using as few as 20k updates (one-fourth of DT+Wiki), our
method already obtains significantly better performance.

Table 5: Pre-training with synthetic MC data with different number of pre-training updates.

Average Last Four DT 1k updates 10k updates 20k updates 40k updates 60k updates 80k updates
halfcheetah-medium-expert 44.9 ± 3.4 45.5 ± 4.1 45.9 ± 5.4 49.5 ± 9.9 50.4 ± 11.5 50.4 ± 11.0 49.4 ± 8.8
hopper-medium-expert 81.0 ± 11.8 93.1 ± 9.8 94.8 ± 7.4 99.6 ± 6.5 102.5 ± 8.1 101.1 ± 7.8 100.7 ± 6.3
walker2d-medium-expert 105.0 ± 3.5 105.5 ± 2.9 106.3 ± 2.6 107.4 ± 0.8 107.5 ± 0.6 106.8 ± 1.9 107.3 ± 2.2
ant-medium-expert 107.0 ± 8.7 113.1 ± 11.8 112.4 ± 8.5 117.9 ± 8.7 122.4 ± 6.3 121.8 ± 5.7 120.4 ± 6.7
halfcheetah-medium-replay 37.5 ± 1.3 39.6 ± 0.8 39.8 ± 0.9 39.3 ± 1.1 39.1 ± 1.3 39.6 ± 1.2 39.2 ± 1.2
hopper-medium-replay 46.7 ± 10.6 53.9 ± 11.1 56.7 ± 12.1 61.8 ± 13.9 61.8 ± 15.1 61.8 ± 12.3 62.3 ± 9.7
walker2d-medium-replay 49.2 ± 10.1 52.2 ± 7.9 53.4 ± 9.3 56.8 ± 5.1 59.6 ± 5.8 58.0 ± 7.3 56.9 ± 6.6
ant-medium-replay 80.9 ± 3.9 83.1 ± 4.8 84.2 ± 4.7 88.4 ± 2.7 88.6 ± 3.7 89.1 ± 3.4 87.5 ± 3.5
halfcheetah-medium 42.4 ± 0.5 42.4 ± 0.4 42.4 ± 0.3 42.5 ± 0.2 42.5 ± 0.2 42.5 ± 0.4 42.5 ± 0.2
hopper-medium 58.2 ± 3.2 59.2 ± 3.6 59.3 ± 2.8 60.2 ± 2.1 59.3 ± 2.4 61.4 ± 2.5 60.3 ± 2.3
walker2d-medium 70.4 ± 2.9 70.8 ± 4.9 69.6 ± 4.1 71.5 ± 4.1 71.0 ± 3.9 71.3 ± 4.0 72.1 ± 3.5
ant-medium 89.0 ± 4.7 87.8 ± 4.4 89.4 ± 3.3 87.8 ± 4.2 88.0 ± 3.8 86.1 ± 3.9 87.0 ± 4.3
Average over datasets 67.7 ± 5.4 70.5 ± 5.5 71.2 ± 5.1 73.6 ± 4.9 74.4 ± 5.2 74.2 ± 5.1 73.8 ± 4.6

These ablation results show that synthetic pre-training is robust over different settings of the synthetic
data, including the degree of past dependence, MC state-space size, the degree of randomness in the
transitions, and the number of pre-training updates.

4 PRE-TRAINING CQL WITH SYNTHETIC DATA

Given that pre-training with synthetic data can significantly increase the performance of DT, we now
study whether synthetic data can also help other MLP-based offline DRL algorithms. Specifically, we
consider CQL, which is a popular offline DRL algorithm for the datasets considered in this paper.
For the pre-training objective, we use forward dynamics prediction, as it has been shown to be useful
in model-based methods (Janner et al., 2019) and auxiliary loss literature (He et al., 2022a). Since
forward dynamics prediction will require both a state and an action as input, we generate a new type
of synthetic data, which we call the synthetic Markov Decision Process (MDP) data. Different from
synthetic MC, when generating synthetic MDP data, we also take actions into consideration.

4.1 GENERATING SYNTHETIC MDP DATA

To generate the synthetic MDP data, we first define a discrete state space S, a discrete action space
A, a random policy distribution π, and a random transition distribution p. Similar to how we created
an MC for the decision transformer, the policy and transition distributions are obtained by applying a
softmax function on vectors of random values, and the shape of the distributions is controlled by a
temperature term τ . For each trajectory in the generated data, we start by choosing a state from the
state space, and then for each following step in the trajectory, we sample an action from the policy
distribution and then sample a state from the transition distribution. Since CQL uses MLP networks
and the state and action dimensions are different for each MuJoCo task, during pre-training we map
each discrete MDP state and MDP action to a vector that has the same dimension as the MuJoCo
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RL task. For each state and action vector, entries are randomly chosen from a uniform distribution
between −1 and 1, and then fixed.

We pre-train the MLP with the forward dynamics objective, i.e., we predict the next state ŝ′ and
minimize the MSE loss (ŝ′− s′)2, where s′ is the actual next state in the trajectory. After pre-training,
we then fine-tune the MLP with a specific dataset using the CQL algorithm.

4.2 RESULTS FOR CQL WITH SYNTHETIC DATA PRE-TRAINING

In the experimental results presented here, for the CQL baseline, we train for 1 million updates. For
CQL with synthetic MDP pre-training (CQL+MDP), we pre-train for only 100K updates and then
train (i.e., fine-tune) for 1 million updates. By default, we set the state and action space sizes to 100
and use a temperature τ = 1 for both the policy and transition distributions. All results are over 20
random seeds. We do not tune any hyperparameters for CQL or CQL with synthetic pre-training but
directly adopt the default ones in the codebase recommended by CQL authors2. More details on CQL
experiments can be found in Appendix A.2.

Table 6 compares the performance of CQL to CQL+MDP. The table includes a wide range of MDP
state/action space sizes and shows that synthetic pre-training gives a significant and consistent perfor-
mance boost. With 1,000 states/actions, synthetic pre-training provides a 10% average improvement
over all datasets and up to 84% and 49% for two of the medium-expert datasets.

Table 6: Final performance for CQL and CQL+MDP pre-training with different state/action space
sizes. The number after “S” indicates the size of the state/action space. Temperature is equal to 1.

Average Last Four CQL S=10 S=100 S=1,000 S=10,000 S=100,000
halfcheetah-medium-expert 35.9 ± 5.2 52.9 ± 5.8 63.1 ± 7.2 66.2 ± 7.3 65.6 ± 9.1 63.7 ± 6.8
hopper-medium-expert 59.3 ± 21.4 90.4 ± 15.5 90.2 ± 13.2 88.1 ± 10.6 89.8 ± 13.0 84.9 ± 20.2
walker2d-medium-expert 107.8 ± 3.8 109.8 ± 0.3 109.8 ± 0.3 110.1 ± 0.4 110.1 ± 0.4 110.1 ± 0.3
ant-medium-expert 118.8 ± 5.2 124.0 ± 5.1 126.0 ± 5.4 131.4 ± 4.1 128.4 ± 4.7 129.2 ± 4.3
halfcheetah-medium-replay 46.6 ± 0.3 46.5 ± 0.3 46.8 ± 0.4 46.5 ± 0.3 46.6 ± 0.2 46.5 ± 0.3
hopper-medium-replay 94.2 ± 2.2 96.3 ± 2.9 95.3 ± 3.2 96.9 ± 1.9 98.0 ± 1.4 97.1 ± 2.0
walker2d-medium-replay 80.0 ± 4.1 83.9 ± 3.0 83.9 ± 2.4 83.8 ± 1.6 81.3 ± 3.4 82.9 ± 1.9
ant-medium-replay 96.7 ± 3.8 101.7 ± 4.0 102.0 ± 3.5 102.3 ± 2.4 101.9 ± 2.6 100.6 ± 3.8
halfcheetah-medium 48.3 ± 0.2 48.6 ± 0.2 48.7 ± 0.2 48.7 ± 0.2 48.7 ± 0.2 48.6 ± 0.2
hopper-medium 68.2 ± 4.0 64.6 ± 2.6 66.9 ± 4.1 66.2 ± 2.8 65.5 ± 3.3 66.9 ± 3.3
walker2d-medium 82.1 ± 1.8 82.8 ± 2.3 83.4 ± 1.1 83.7 ± 0.6 83.2 ± 1.1 83.5 ± 1.3
ant-medium 98.7 ± 4.0 102.4 ± 3.6 103.2 ± 3.3 103.3 ± 3.8 103.4 ± 2.9 101.2 ± 3.4
Average over datasets 78.0 ± 4.7 83.7 ± 3.8 84.9 ± 3.7 85.6 ± 3.0 85.2 ± 3.5 84.6 ± 4.0

Table 7 shows the final performance for CQL+MDP with different temperature values using the
default state/action space size. The results show that either too small or too large of a temperature can
reduce the performance boost, while the default temperature (τ = 1) gives good final performance
averaged over all datasets. Table 7 also shows the results with uniformly distributed IID synthetic
data, equivalent to using an infinitely large temperature. Surprisingly, the IID data performs almost as
well as the MDP synthetic data, indicating the robustness of synthetic pre-training regardless of state
dependencies. We provide a partial theoretical explanation of this behavior in the next subsection.

Table 8 shows the final performance for CQL+MDP with different numbers of pre-training up-
dates. Even with only 1K updates, synthetic MDP pre-training outperforms the baseline. The best
performance boost is obtained with more pre-training updates of 100K and 500K.

Figure 2 shows the normalized score and training loss (Q loss plus CQL conservative loss) averaged
over all datasets during fine-tuning. Similar to Figure 1, our synthetic experiments (CQL+MDP
and CQL+IID) have been offseted by 100k updates. Both pre-training schemes start to surpass the
CQL baseline at around 400K updates and maintain a significant performance advantage onward. In
addition, performing a pre-training update is quite fast since the forward dynamics objective only
involves calculating the MSE loss of predicting the next state and backpropagation of the Q-network.
100K pre-train can be done in 5 minutes on a single GPU3.

2https://github.com/young-geng/CQL
3Detailed computation time discussion can be found in Appendix A.2
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Table 7: Final performance for CQL and CQL+MDP pre-training with different temperature values.

Average Last Four CQL τ=0.01 τ=0.1 τ=1 τ=10 τ=100 CQL+IID
halfcheetah-medium-expert 35.9 ± 5.2 47.1 ± 5.6 53.2 ± 6.5 63.1 ± 7.2 61.1 ± 8.1 59.0 ± 6.5 59.7 ± 6.4
hopper-medium-expert 59.3 ± 21.4 52.4 ± 26.0 89.2 ± 9.6 90.2 ± 13.2 83.0 ± 18.8 74.9 ± 23.2 83.4 ± 17.5
walker2d-medium-expert 107.8 ± 3.8 110.2 ± 1.8 109.9 ± 1.1 109.8 ± 0.3 109.9 ± 0.3 109.9 ± 0.8 109.9 ± 0.4
ant-medium-expert 118.8 ± 5.2 117.0 ± 6.2 125.1 ± 5.9 126.0 ± 5.4 125.7 ± 4.4 129.6 ± 5.1 125.0 ± 4.4
halfcheetah-medium-replay 46.6 ± 0.3 46.4 ± 0.3 46.5 ± 0.3 46.8 ± 0.4 46.7 ± 0.4 46.6 ± 0.4 46.7 ± 0.3
hopper-medium-replay 94.2 ± 2.2 95.8 ± 2.9 95.2 ± 2.8 95.3 ± 3.2 93.6 ± 4.3 93.8 ± 4.5 93.3 ± 3.0
walker2d-medium-replay 80.0 ± 4.1 82.8 ± 2.4 80.6 ± 3.5 83.9 ± 2.4 84.4 ± 2.0 82.7 ± 4.2 83.2 ± 2.2
ant-medium-replay 96.7 ± 3.8 101.0 ± 3.3 101.0 ± 3.2 102.0 ± 3.5 102.8 ± 3.5 102.2 ± 3.9 101.8 ± 5.0
halfcheetah-medium 48.3 ± 0.2 48.6 ± 0.2 48.6 ± 0.2 48.7 ± 0.2 48.6 ± 0.2 48.7 ± 0.2 48.6 ± 0.2
hopper-medium 68.2 ± 4.0 67.7 ± 3.4 65.1 ± 2.8 66.9 ± 4.1 66.3 ± 3.2 67.4 ± 3.1 66.3 ± 3.9
walker2d-medium 82.1 ± 1.8 83.0 ± 0.8 83.4 ± 0.7 83.4 ± 1.1 83.2 ± 0.8 83.1 ± 1.1 83.3 ± 0.8
ant-medium 98.7 ± 4.0 100.9 ± 3.3 103.1 ± 2.9 103.2 ± 3.3 102.7 ± 3.9 102.2 ± 3.9 103.7 ± 2.9
Average over datasets 78.0 ± 4.7 79.4 ± 4.7 83.4 ± 3.3 84.9 ± 3.7 84.0 ± 4.2 83.4 ± 4.7 83.7 ± 3.9

Table 8: Final performance for CQL and CQL+MDP with different number of pre-training updates.

Average Last Four CQL 1K updates 10K updates 40K updates 100K updates 500K updates 1M updates
halfcheetah-medium-expert 35.9 ± 5.2 41.2 ± 5.7 48.4 ± 7.3 56.1 ± 6.6 63.1 ± 7.2 66.4 ± 5.6 61.5 ± 6.1
hopper-medium-expert 59.3 ± 21.4 76.9 ± 18.6 87.3 ± 12.0 87.6 ± 18.9 90.2 ± 13.2 92.5 ± 14.0 82.2 ± 14.5
walker2d-medium-expert 107.8 ± 3.8 109.9 ± 1.0 109.9 ± 0.5 110.0 ± 0.4 109.8 ± 0.3 109.7 ± 0.3 110.2 ± 0.3
ant-medium-expert 118.8 ± 5.2 121.0 ± 4.7 119.0 ± 7.0 126.7 ± 4.9 126.0 ± 5.4 127.8 ± 5.4 126.9 ± 4.5
halfcheetah-medium-replay 46.6 ± 0.3 46.5 ± 0.4 46.7 ± 0.4 46.7 ± 0.3 46.8 ± 0.4 46.6 ± 0.3 46.6 ± 0.3
hopper-medium-replay 94.2 ± 2.2 95.7 ± 2.7 93.8 ± 4.6 93.2 ± 3.2 95.3 ± 3.2 96.9 ± 3.2 96.5 ± 3.3
walker2d-medium-replay 80.0 ± 4.1 80.6 ± 3.4 83.7 ± 2.5 84.0 ± 2.1 83.9 ± 2.4 83.7 ± 2.4 83.2 ± 1.7
ant-medium-replay 96.7 ± 3.8 99.9 ± 4.6 100.0 ± 4.6 100.5 ± 3.3 102.0 ± 3.5 101.6 ± 3.2 101.4 ± 3.5
halfcheetah-medium 48.3 ± 0.2 48.5 ± 0.2 48.6 ± 0.2 48.6 ± 0.2 48.7 ± 0.2 48.6 ± 0.2 48.5 ± 0.2
hopper-medium 68.2 ± 4.0 66.0 ± 3.7 66.2 ± 4.4 66.9 ± 3.6 66.9 ± 4.1 66.7 ± 2.9 65.9 ± 3.4
walker2d-medium 82.1 ± 1.8 83.2 ± 1.0 83.0 ± 1.4 83.2 ± 0.7 83.4 ± 1.1 83.2 ± 1.0 83.4 ± 1.2
ant-medium 98.7 ± 4.0 100.0 ± 4.2 101.8 ± 3.2 103.3 ± 4.8 103.2 ± 3.3 102.5 ± 3.9 100.9 ± 4.4
Average over datasets 78.0 ± 4.7 80.8 ± 4.2 82.4 ± 4.0 83.9 ± 4.1 84.9 ± 3.7 85.5 ± 3.5 83.9 ± 3.6

(a) Fine-tuning performance curve. (b) Fine-tuning loss curve.

Figure 2: Performance and loss curves, averaged over 12 datasets for CQL, CQL+MDP and CQL+IID.

To summarize, these results show that for a wide range of MDP data settings, pre-training with
synthetic data provides a consistent performance improvement over the CQL baseline. Due to limited
space, a number of additional experiments and analyses are presented in Appendix E, F, G, H, I, J, K.

4.3 ANALYSIS OF OPTIMIZATION OBJECTIVE

To gain some insight into why IID synthetic data does almost as well as MDP data, we now take a
closer look at the pre-training loss function. Let fθ(s, a) be an MLP that takes as input a state-action
pair (s, a) and outputs a vector state s′. Let σ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT ) denote the
pre-training data, where the states and actions come from finite state and action spaces S and A. For
the given pre-training data σ, we optimize θ to minimize the forward-dynamics objective:

J(θ) =

T−1∑
t=0

||fθ(st, at)− st+1||2
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Let ∆(s, a) be the set of states s′ that directly follow (s, a) in the pre-training dataset σ. If s′ directly
follows (s, a) multiple times, we list s′ repeatedly in ∆(s, a) for each occurrence. We can then
rewrite J(θ) as

J(θ) =
∑

(s,a)∈S×A

∑
s′∈∆(s,a)

||fθ(s, a)− s′||2

Now let’s assume that the MLP is very expressive so that we can choose θ so that fθ(s, a) can take
on any desired vector x. For fixed (s, a), let

x∗(s, a) = argmin
x

∑
s′∈∆(s,a)

||x− s′||2

Note that x∗(s, a) is simply the centroid for the data in ∆(s, a). Thus

min
θ

J(θ) =
∑

(s,a)∈S×A

∑
s′∈∆(s,a)

||x∗(s, a)− s′||2

In other words, the forward-dynamics objective is equivalent to finding the centroid of ∆(s, a) for
each (s, a) ∈ S ×A. For each (s, a) we want the MLP to predict the centroid in ∆(s, a), that is, we
want fθ(s, a) = x∗(s, a). This observation is true no matter how the pre-training data σ is generated,
for example, by an MDP or if each (s, a) pair is IID.

Now let’s compare the MDP and IID pre-training data approaches. For the two approaches, the
centroid values will be different. In particular, for the IID case, the centroids will be near each other
and collapse to a single point for an infinite-length sequence σ. For the MDP case, the centroids will
be farther apart and will be distinct for each (s, a) pair in the limiting case. From the results in Table
7, the performance after fine-tuning is largely insensitive to the distance among the various centroids.

5 CONCLUSION

In this paper, we considered offline DRL and studied the effects of several pre-training schemes with
synthetic data. The contributions of this paper are as follows:

1. We propose a simple yet effective synthetic pre-training scheme for DT. Data generated
from a one-step Markov Chain with a small state space provides better performance than
pre-training with the Wiki corpus, whose vocabulary is much larger and contains much
more complicated token dependencies. This novel finding challenges the previous view that
language pre-training can provide unique benefits for DRL.

2. We show that synthetic pre-training of CQL with an MLP backbone can also lead to signif-
icant performance improvement. This is the first paper that shows pre-training on simple
synthetic data is a surprisingly effective approach to improve offline DRL performance for
both transformer-based and Q-learning-based algorithms.

3. We provide ablations showing the surprising robustness of synthetic pre-training over
past dependence, state/action-space size, and the peakedness of the transition and policy
distributions, giving a consistent performance gain across different data generation settings.

4. Moreover, we show the proposed approach is efficient and easy to use. For DT, synthetic
data pre-training achieves superior performance with 4× less pre-train updates, taking only
3% computation time at pre-training and 67% at fine-tuning compared with DT+Wiki. For
CQL, the generated data have consistent state and action dimensions with the downstream
RL task, making it easy to use with MLPs, and the pre-training only takes 5 minutes.

5. Finally, we provide theoretical insights into why IID data can still achieve a good perfor-
mance. We show the forward dynamics objective is equivalent to finding the state centroids
underlying the synthetic dataset, and CQL is largely insensitive to their distribution.

The novel findings in this paper bring up a number of exciting future research directions. One is to
further understand why pre-training on data that is entirely unrelated to the RL task can improve
performance. Here, it is unlikely the improvement comes from a positive transfer of features, so we
suspect that such pre-training might have helped make the optimization process smoother during
fine-tuning. Other interesting directions include exploring different synthetic data generation schemes
and investigating the extent to which synthetic data can be helpful.
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A HYPERPARAMETERS & TRAINING DETAILS

A.1 DECISION TRANSFORMER

Table 9: Experiment settings during synthetic pre-training.

Hyperparameter Value

Number of layer 3
Number of attention heads 1
Embedding dimension 128
Sequence length 1024
Batch size 65536 tokens/64 sequences
Steps 80000
Dropout 0.1
Learning rate 3× 10−4

Weight decay 10−2

Learning rate decay Linear warmup for first 10000 training steps

Table 10: Hyperparameters of Decision Transformer for OpenAI Gym experiments.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Nonlinearity function ReLU
Batch size 64
Context length K 20 HalfCheetah, Hopper, Walker, Ant
Return-to-go conditioning 6000 HalfCheetah

3600 Hopper
5000 Walker, Ant

Dropout 0.2
Learning rate 10−4

Grad norm clip 0.25
Weight decay 0 for backbone, 10−4 elsewhere
Learning rate decay Linear warmup for first 5000 training steps

Implementation & Experiment details Pre-trained models are trained with the HuggingFace
Transformers library (Wolf et al., 2020). We used AdamW optimizer (Loshchilov & Hutter, 2017) for
both pre-training and finetuning. Unless mentioned, we followed the default hyperparameter settings
from Huggingface and PyTorch. Our model code is gpt2. Synthetic pre-training is done on synthetic
datasets generated to be about the size of Wikitext-103 (Merity et al., 2016). Our hyperparameter
choices follow those from Reid et al. (2022) for both pre-training and finetuning, which are shown in
detail in table 9 and 10. In Reid et al. (2022), it is shown that the additional kmeans auxiliary loss and
LM loss provide only marginal improvement (An average score of 0.3). Without using these losses,
our synthetic pre-training results outperform DT+Wiki by an average score of 3.7, as shown in Table
1.

DT Computation Time Discussion Table 11 shows the number of updates needed for each variant
to reach 90% final performance of the DT baseline for individual datasets. Our synthetic models are
about 27% faster compared to Wikipedia pre-training in reaching the goal returns averaging over all
datasets.

In terms of pre-training computation time, we run both Wikipedia and synthetic pre-training on 2
rtx8000 GPUs. Synthetic pre-training takes about 2 hours and 11 minutes to train for 80k updates
while Wikipedia pre-training takes about 16 hours and 45 minutes to train for the same number of
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Table 11: Number of updates for DT, DT with Wikipedia pre-training, and DT with synthetic pre-
training before reaching a desired target return. For each dataset, the target return is 90% of the final
performance by DT baseline.

Number of Updates DT DT+Wiki DT+Synthetic
halfcheetah-medium-expert 15.3k 11.3k 9.3k
hopper-medium-expert 23.8k 18.8k 13.3k
walker2d-medium-expert 18.8k 20k 14k
ant-medium-expert 15.5k 7.8k 7.8k
halfcheetah-medium 8.5k 6.8k 5.3k
hopper-medium 9.3k 10.5k 8.5k
walker2d-medium 9k 9.5k 7.3k
ant-medium 8.5k 7k 6.3k
halfcheetah-medium-replay 16.5k 11.8k 7.5k
hopper-medium-replay 23.3k 28.3k 17.3k
walker2d-medium-replay 13.3k 17.8k 12.3k
ant-medium-replay 7.8k 9.5k 6.8k
Average over datasets 14.1k 13.2k 9.6k

Table 12: Computation time for DT, DT with Wikipedia pre-training, and DT with synthetic pre-
training DT. We compare computation time over the medium-expert datasets only. All experiments
are run on a single rtx8000 GPU with the default settings for 100k updates.

Computation Time DT DT+Wiki DT+Synthetic
halfcheetah-medium-expert 2 hrs 27 mins 3 hrs 50 mins 2 hrs 32 mins
hopper-medium-expert 1 hrs 55 mins 3 hrs 25 mins 2hrs 11 mins
walker2d-medium-expert 2 hrs 17 mins 3 hrs 45 mins 2 hrs 18 mins
ant-medium-expert 2 hrs 8 mins 3 hrs 52 mins 2 hrs 46 mins
Average over datasets 2 hrs 12 mins 3 hrs 43 mins 2 hrs 27 mins

updates. The 87% reduction in training time is achieved largely due to the reduced number of token
embeddings. Furthermore, Table 5 has shown that synthetic pre-training reaches ideal performance
with as few as 20k pre-training updates (in about 33 minutes), which means that synthetic pre-training
obtains superior results with only about 3% of the computation resources needed for Wikipedia
pre-training.

Table 12 shows the computation time comparison of downstream RL tasks over the medium-expert
datasets only. Without using auxiliary losses in Reid et al. (2022), our pre-trained model runs at about
the same speed as DT baseline which is much faster than DT+Wiki (we only use 67% of the time
during fine-tuning).
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A.2 CQL EXPERIMENTS DETAILS

We develop our code based on the implementation recommended by CQL authors4. Most of the
hyperparameters used in the training process or the dataset follow the default setting, and we list
them in detail in Table 15 and Table 16. Also, we provide additional implementation and experiment
details below.

CQL Computation Time Table 13 first shows the number of updates required for each default
algorithm variant to reach 90% of the final performance of the CQL baseline for individual datasets.
Compared with the CQL baseline, CQL-MDP takes about 34% and CQL-IID takes about 32% fewer
fine-tuning updates in reaching the same target test returns when averaged over all datasets. In terms
of the real wall-clock computation time, Table 14 shows the time consumed on one single rtx8000
GPU to pre-train 100K updates with synthetic MDP data, and to fine-tune 1M updates with CQL
algorithm for each downstream medium-expert dataset. Surprisingly, a few minutes of synthetic
pre-training is enough to efficiently improve downstream performance.

Table 13: Number of updates for CQL baseline and CQL with synthetic pre-training required to reach
90% of the final performance by CQL baseline on each dataset.

Number of Updates CQL CQL+MDP CQL+IID
halfcheetah-medium-expert 575.0k 251.0k 250.2k
hopper-medium-expert 78.5k 79.8k 80.2k
walker2d-medium-expert 222.5k 130.2k 126.2k
ant-medium-expert 254.2k 232.5k 245.0k
halfcheetah-medium-replay 60.5k 42.2k 44.5k
hopper-medium-replay 161.5k 88.5k 109.5k
walker2d-medium-replay 114.5k 95.2k 106.0k
ant-medium-replay 73.8k 85.2k 69.2k
halfcheetah-medium 111.0k 65.0k 58.8k
hopper-medium 96.5k 71.5k 97.5k
walker2d-medium 161.2k 104.5k 105.0k
ant-medium 34.0k 38.8k 39.0k
Average over datasets 161.9k 107.0k 110.9k

Table 14: Computation time for 100K-update CQL synthetic pre-training, and 1M-update CQL
fine-tuning. We compare computation time over the medium-expert datasets only. All experiments
are run on a single rtx8000 GPU with the default settings.

CQL Computation Time Synthetic Pre-training Fine-tuning
halfcheetah-medium-expert 4.1 mins 4 hrs 52 mins
hopper-medium-expert 4.0 mins 4 hrs 25 mins
walker2d-medium-expert 4.0 mins 4 hrs 33 mins
ant-medium-expert 4.3 mins 5 hrs 5 mins
Average over datasets 4.1 mins 4 hrs 44 mins

Generate Synthetic MDP Data When generating the synthetic MDP data, we make use of
numpy.random.seed() to construct policy/transition distributions instead of storing those prob-
abilities in a huge table. For example, every time we retrieve a transition distribution specified by
(conditioned on) an integer pair (s, a), we first set numpy.random.seed(s× 888 + a× 777),
then generate a uniformly distributed (between 0 and 1) vector with the same length as the state space
size, and finally input this vector to the softmax function with temperature τ to get a probability
distribution. The next state transitioned from (s, a) can be sampled from this particular distribution.

4https://github.com/young-geng/CQL
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Synthetic Pre-training Following the common framework of pre-training and then fine-tuning
LLMs, we always pre-train our MLP by using only one seed of 42, while fine-tuning the MLP on
multiple seeds due to the algorithmic sensitivity to hyperparameter settings of CQL (Kostrikov et al.,
2021).

CQL Fine-tuning We adopt the Safe Q Target technique (Wang et al., 2022) to alleviate the
potential Q loss divergence due to RL training instability and distribution shift which has been proven
to exist through our early experiments. When computing the target Q value ytarget in each update of
the SAC algorithm, we simply set ytarget ← Qmax if ytarget > Qmax, where Qmax is the safe Q value
predefined for each dataset. Due to the robustness of this method (Wang et al., 2022), we choose
Qmax = 100 × rmax given the discount factor of 0.99, where rmax is the maximum reward in the
dataset. Note that we do not include a safe Q factor as proposed in the original work. For more
details, please refer to Wang et al. (2022).
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Table 15: Hyperparameters of synthetic pre-training for CQL experiments
.

Hyperparameter Value

Q nets hidden layers 2
Architecture Q nets hidden dim 256

Q nets activation function ReLU

Optimizer Adam (Kingma & Ba, 2014)
Criterion MSE

Training Q nets learning rate 3e-4
Hyperparameters Total updates 100K (default)

Batch size 256
Seed 42

Number of trajectories 1000
Max length of each trajectory 1000
Action space size 100 (default)

Synthetic Data State space size 100 (default)
Policy distribution temperature 1 (default)
Transition distribution temperature 1 (default)
Sampling distribution of action/state entries Uniform(-1, 1)

Table 16: Hyperparameters of fine-tuning CQL for D4RL Locomotion Datasets.

Hyperparameter Value

Q nets hidden layers 2
Q nets hidden dim 256

Architecture Q nets activation function ReLU
Policy net hidden layers 2
Policy net hidden dim 256
Policy net activation function ReLU

Optimizer Adam (Kingma & Ba, 2014)
Q nets learning rate 3e-4
Policy net learning rate 3e-4
Target Q nets update rate 5e-3

SAC Hyperparameters Batch size 256
Max target backup False
Target entropy -1 · Action Dim
Entropy in Q target False
Policy update α multiplier 1.0
Discount factor 0.99

Lagrange False
Q difference clip False

CQL Hyperparameters Importance sampling True
Number of sampled actions 3
Temperature 1.0
Min Q weight 5.0

Epochs 200
Updates per epoch 5000

Others Number of evaluation trajectories 10
Max length of evaluation trajectories 1000
Seeds 0∼14, 42, 666, 1042, 2048, 4069
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A.3 EVALUATION METRIC

For each experiment setting, we record the Normalized Test Score which is computed as
AVG_TEST_RETURN−MIN_SCORE

MAX_SCORE−MIN_SCORE × 100, where AVG_TEST_RETURN is the test return averaged over
10 undiscounted evaluation trajectories; MIN_SCORE and MAX_SCORE are environment-specific
constants predefined by the D4RL dataset (Fu et al., 2020). We summarize those constants of each
environment in Table 17.

Table 17: Values of MIN_SCORE and MAX_SCORE used in performance evaluation.

Environment (MIN_SCORE, MAX_SCORE))

halfcheetah-v2 (-280.178953, 12135.0)
walker2d-v2 (1.629008, 4592.3)
hopper-v2 (-20.272305, 3234.3)
ant-v2 (-325.6, 3879.7)
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B ADDITIONAL DT RESULTS

B.1 BEST SCORE RESULTS

Table 18: Best test score for DT, DT with Wikipedia pre-training, and DT with MC pre-training
(DT+Synthetic). The synthetic data is generated from a one-step MC with a state space size of 100,
and temperature value of 1 (default values).

Best Score DT DT+Wiki DT+Synthetic
halfcheetah-medium-expert 67.2 ± 9.1 64.2 ± 11.5 72.7 ± 16.8
hopper-medium-expert 106.1 ± 4.2 111.4 ± 1.5 111.5 ± 0.8
walker2d-medium-expert 108.6 ± 0.4 109.2 ± 0.5 109.1 ± 0.3
ant-medium-expert 127.6 ± 4.3 128.7 ± 7.0 131.5 ± 5.1
halfcheetah-medium-replay 39.9 ± 0.4 41.3 ± 0.5 41.5 ± 0.4
hopper-medium-replay 77.8 ± 7.0 80.5 ± 5.6 84.8 ± 7.6
walker2d-medium-replay 73.9 ± 3.7 72.9 ± 3.9 75.2 ± 4.0
ant-medium-replay 92.4 ± 2.5 92.0 ± 2.9 95.9 ± 1.0
halfcheetah-medium 43.3 ± 0.2 43.4 ± 0.2 43.3 ± 0.2
hopper-medium 68.3 ± 4.0 70.4 ± 5.1 70.9 ± 4.4
walker2d-medium 78.9 ± 1.5 79.3 ± 1.2 79.0 ± 1.2
ant-medium 100.4 ± 1.8 100.6 ± 1.2 100.5 ± 0.8
Average over datasets 82.0 ± 3.3 82.8 ± 3.4 84.7 ± 3.6

Table 18 shows the best performance for DT, DT pre-trained with Wiki, and DT pre-trained with
synthetic MC data. Similar to Table 1, synthetic pre-training does as well or better than the DT
baseline for every dataset. Synthetic pre-training also outperforms Wiki pre-training with significantly
fewer pre-training updates.

Table 19: Best score for pre-training with different number of MC steps.

Best Score DT 1-MC 2-MC 5-MC
halfcheetah-medium-expert 67.2 ± 9.1 72.7 ± 16.8 59.2 ± 12.8 59.8 ± 12.9
hopper-medium-expert 106.1 ± 4.2 111.5 ± 0.8 111.5 ± 0.8 111.5 ± 1.5
walker2d-medium-expert 108.6 ± 0.4 109.1 ± 0.3 109.1 ± 0.5 109.1 ± 0.4
ant-medium-expert 127.6 ± 4.3 131.5 ± 5.1 133.7 ± 1.6 127.8 ± 6.0
hopper-medium-replay 77.8 ± 7.0 84.8 ± 7.6 84.2 ± 5.0 84.7 ± 7.0
walker2d-medium-replay 73.9 ± 3.7 75.2 ± 4.0 75.6 ± 3.8 75.7 ± 3.1
ant-medium-replay 92.4 ± 2.5 95.9 ± 1.0 95.7 ± 1.1 95.1 ± 1.4
halfcheetah-medium 43.3 ± 0.2 43.3 ± 0.2 43.4 ± 0.2 43.4 ± 0.2
hopper-medium 68.3 ± 4.0 70.9 ± 4.4 69.4 ± 3.4 69.1 ± 3.5
walker2d-medium 78.9 ± 1.5 79.0 ± 1.2 79.4 ± 1.5 79.3 ± 1.7
ant-medium 100.4 ± 1.8 100.5 ± 0.8 100.7 ± 1.5 99.9 ± 1.7
halfcheetah-medium-replay 39.9 ± 0.4 41.5 ± 0.4 41.5 ± 0.4 41.3 ± 0.3
Average over datasets 82.0 ± 3.3 84.7 ± 3.6 83.6 ± 2.7 83.1 ± 3.3

Table 19 shows best score comparison for DT and DT + MC pre-training with different MC steps.
1-step MC gives the best performance, while all settings provide a performance gain over the baseline.

Table 20 shows the best score comparison of DT baseline and DT + MC pre-training with different
state space sizes. All MC settings provide a performance boost, while state space sizes of 100 and
1000 give the best performance.

Table 21 shows the best score comparison of DT baseline and DT + MC pre-training with different
temperature values. All temperature settings provide some performance boost over the baseline.

Table 22 shows the best score comparison for DT and DT + MC pre-training for different gradient
steps. In this case, our synthetic pre-training experiments show a similar best score performance
boost over the baseline.
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Table 20: Best score for pre-training with different state space sizes.

Best Score DT S10 S100 S1000 S10000 S100000
halfcheetah-medium-expert 67.2 ± 9.1 58.6 ± 13.0 72.7 ± 16.8 64.1 ± 14.5 64.2 ± 14.3 56.7 ± 8.7
hopper-medium-expert 106.1 ± 4.2 111.8 ± 0.7 111.5 ± 0.8 111.5 ± 0.7 111.8 ± 0.4 111.5 ± 1.1
walker2d-medium-expert 108.6 ± 0.4 109.1 ± 0.5 109.1 ± 0.3 109.1 ± 0.5 109.3 ± 0.5 109.2 ± 0.5
ant-medium-expert 127.6 ± 4.3 131.6 ± 4.0 131.5 ± 5.1 133.9 ± 2.0 130.9 ± 5.9 133.7 ± 2.5
halfcheetah-medium-replay 39.9 ± 0.4 41.6 ± 0.3 41.5 ± 0.4 41.4 ± 0.3 41.4 ± 0.4 41.4 ± 0.3
hopper-medium-replay 77.8 ± 7.0 81.6 ± 5.5 84.8 ± 7.6 87.1 ± 3.8 86.3 ± 5.3 80.9 ± 6.8
walker2d-medium-replay 73.9 ± 3.7 74.3 ± 3.2 75.2 ± 4.0 77.4 ± 3.6 76.7 ± 4.0 78.0 ± 4.8
ant-medium-replay 92.4 ± 2.5 96.4 ± 1.3 95.9 ± 1.0 96.5 ± 1.2 95.3 ± 1.5 95.1 ± 1.8
halfcheetah-medium 43.3 ± 0.2 43.3 ± 0.2 43.3 ± 0.2 43.3 ± 0.1 43.3 ± 0.2 43.3 ± 0.2
hopper-medium 68.3 ± 4.0 68.9 ± 3.3 70.9 ± 4.4 70.8 ± 3.7 69.5 ± 4.3 65.9 ± 3.8
walker2d-medium 78.9 ± 1.5 79.3 ± 2.0 79.0 ± 1.2 79.7 ± 1.3 79.5 ± 1.7 80.0 ± 1.6
ant-medium 100.4 ± 1.8 99.7 ± 1.5 100.5 ± 0.8 100.1 ± 1.2 99.9 ± 2.5 100.5 ± 1.6
Average over datasets 82.0 ± 3.3 83.0 ± 3.0 84.7 ± 3.6 84.6 ± 2.7 84.0 ± 3.4 83.0 ± 2.8

Table 21: Best score for pre-training with different temperature values.

Best Score DT τ=0.01 τ=0.1 τ=1 τ=10 τ=100 IID uniform
halfcheetah-medium-expert 67.2 ± 9.1 70.8 ± 12.1 76.1 ± 15.3 72.7 ± 16.8 56.2 ± 12.5 61.6 ± 11.8 55.8 ± 11.6
hopper-medium-expert 106.1 ± 4.2 111.3 ± 1.4 111.2 ± 1.1 111.5 ± 0.8 110.9 ± 1.5 111.4 ± 1.0 111.7 ± 1.0
walker2d-medium-expert 108.6 ± 0.4 109.1 ± 0.4 109.3 ± 0.6 109.1 ± 0.3 109.1 ± 0.5 109.0 ± 0.4 1 09.3 ± 0.5
ant-medium-expert 127.6 ± 4.3 131.8 ± 3.0 134.2 ± 2.2 131.5 ± 5.1 133.5 ± 3.7 126.2 ± 6.1 125.3 ± 6.2
halfcheetah-medium-replay 39.9 ± 0.4 41.4 ± 0.5 41.6 ± 0.3 41.5 ± 0.4 41.3 ± 0.3 41.5 ± 0.4 41.4 ± 0 .3
hopper-medium-replay 77.8 ± 7.0 80.2 ± 9.0 82.1 ± 6.5 84.8 ± 7.6 82.8 ± 6.9 85.9 ± 4.3 85.4 ± 5.6
walker2d-medium-replay 73.9 ± 3.7 76.2 ± 4.3 76.2 ± 3.7 75.2 ± 4.0 77.4 ± 3.2 74.1 ± 3.7 75.4 ± 3.1
ant-medium-replay 92.4 ± 2.5 95.2 ± 1.5 95.8 ± 1.2 95.9 ± 1.0 95.5 ± 1.6 95.9 ± 1.0 94.9 ± 1.3
halfcheetah-medium 43.3 ± 0.2 43.4 ± 0.2 43.4 ± 0.2 43.3 ± 0.2 43.4 ± 0.2 43.4 ± 0.2 43.4 ± 0.2
hopper-medium 68.3 ± 4.0 70.0 ± 4.8 68.0 ± 3.5 70.9 ± 4.4 67.1 ± 4.9 69.3 ± 5.3 67.9 ± 4.2
walker2d-medium 78.9 ± 1.5 79.2 ± 1.4 79.5 ± 1.8 79.0 ± 1.2 79.6 ± 0.9 79.1 ± 1.0 79.5 ± 1. 6
ant-medium 100.4 ± 1.8 101.0 ± 1.7 100.2 ± 1.5 100.5 ± 0.8 100.0 ± 1.7 101.1 ± 1.3 100.6 ± 2.2
Average over datasets 82.0 ± 3.3 84.1 ± 3.4 84.8 ± 3.1 84.7 ± 3.6 83.1 ± 3.2 83.2 ± 3.0 82.5 ± 3.2

Table 22: Best score for pre-training for different gradient updates, e.g. 10K means pre-trained for
10K gradient steps.

Best Score DT 1k updates 10k updates 20k updates 40k updates 60k updates 80k updates
halfcheetah-medium-expert 67.2 ± 9.1 67.6 ± 12.8 66.5 ± 13.3 72.7 ± 16.8 67.8 ± 15.9 65.9 ± 14.8 65.5 ± 17.6
hopper-medium-expert 106.1 ± 4.2 111.1 ± 1.5 111.3 ± 1.5 111.5 ± 0.8 111.8 ± 0.6 111.7 ± 1.0 111.4 ± 1.4
walker2d-medium-expert 108.6 ± 0.4 109.3 ± 0.7 109.1 ± 0.6 109.1 ± 0.3 109.0 ± 0.4 109.2 ± 0.4 1 09.1 ± 0.3
ant-medium-expert 127.6 ± 4.3 127.0 ± 7.0 129.5 ± 5.3 131.5 ± 5.1 134.2 ± 1.4 133.9 ± 1.5 133.9 ± 2.5
halfcheetah-medium-replay 39.9 ± 0.4 41.3 ± 0.4 41.4 ± 0.3 41.5 ± 0.4 41.2 ± 0.3 41.4 ± 0.3 41.3 ± 0 .4
hopper-medium-replay 77.8 ± 7.0 83.4 ± 7.1 85.0 ± 5.2 84.8 ± 7.6 84.9 ± 5.7 84.6 ± 5.1 84.0 ± 7.9
walker2d-medium-replay 73.9 ± 3.7 75.0 ± 3.8 74.9 ± 3.0 75.2 ± 4.0 75.8 ± 3.8 75.3 ± 3.7 76.2 ± 3.5
ant-medium-replay 92.4 ± 2.5 94.3 ± 1.1 95.1 ± 1.1 95.9 ± 1.0 96.6 ± 1.2 96.2 ± 1.1 96.2 ± 1.4
halfcheetah-medium 43.3 ± 0.2 43.3 ± 0.2 43.3 ± 0.2 43.3 ± 0.2 43.3 ± 0.2 43.3 ± 0.2 43.4 ± 0.2
hopper-medium 68.3 ± 4.0 70.3 ± 4.9 69.5 ± 3.6 70.9 ± 4.4 69.4 ± 3.5 71.0 ± 4.2 69.5 ± 3.8
walker2d-medium 78.9 ± 1.5 80.0 ± 2.1 80.2 ± 1.2 79.0 ± 1.2 79.5 ± 1.3 78.9 ± 1.2 79.5 ± 1.2
ant-medium 100.4 ± 1.8 100.5 ± 1.4 100.2 ± 1.4 100.5 ± 0.8 99.9 ± 1.4 100.4 ± 1.4 99.5 ± 1.5
Average over datasets 82.0 ± 3.3 83.6 ± 3.6 83.8 ± 3.1 84.7 ± 3.6 84.4 ± 3.0 84.3 ± 2.9 84.1 ± 3.5
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B.2 DT TRAINING CURVES

Figure 3 and 4 shows the normalized score and training loss averaged over all datasets during fine-
tuning for DT, DT with Wiki pre-training, and DT with synthetic pre-training. Each curve is averaged
over 20 different seeds.

(a) Hopper-medium (b) Hopper-medium-replay (c) Hopper-medium-expert

(d) Walker-medium (e) Walker-medium-replay (f) Walker-medium-expert

(g) HalfCheetah-medium (h) HalfCheetah-medium-replay (i) HalfCheetah-medium-expert

(j) Ant-medium (k) Ant-medium-replay (l) Ant-medium-expert

Figure 3: Learning curves for DT, DT with Wikipedia pre-training, and DT with synthetic pre-training.
Our pre-training scheme (DT+Synthetic) has been offset for 20000 updates to represent the 20000
pre-training updates with synthetic data.
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(a) Hopper-medium (b) Hopper-medium-replay (c) Hopper-medium-expert

(d) Walker-medium (e) Walker-medium-replay (f) Walker-medium-expert

(g) HalfCheetah-medium (h) HalfCheetah-medium-replay (i) HalfCheetah-medium-expert

(j) Ant-medium (k) Ant-medium-replay (l) Ant-medium-expert

Figure 4: Training loss curves for DT, DT with Wikipedia pre-training, and DT with synthetic
pre-training. Our pre-training scheme (DT+Synthetic) has been offset for 20000 updates to represent
the 20000 pre-training updates with synthetic data.
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C ADDITIONAL CQL RESULTS

C.1 BEST SCORE RESULTS

In this section, we present the best score obtained along the fine-tuning process for individual
datasets and different algorithm variants. Table 23 shows the best performance of CQL baseline and
CQL+Synthetic with a range of different state space sizes, while setting the temperature to 1 and
pre-training for 100K updates. Table 24 shows the best performance of CQL baseline, CQL+Synthetic
with a range of temperatures, and CQL+IID, while keeping state and action space sizes to 100 and pre-
training for 100K updates. Table 8 shows the best performance of CQL baseline and CQL+Synthetic
pre-trained with a different number of updates while setting state and action space size to 100 and
the temperature to 1. Most of the synthetic pre-trained variants can outperform the CQL baseline in
terms of the best score averaged over all datasets, while in general, the best score is not as sensitive to
the hyperparameter settings of synthetic pre-training as the final score. In addition, it is worth noting
that synthetic pre-training usually leads to a smaller standard deviation of the acquired best scores
compared with the CQL baseline, which indicates a more consistent appearance of high performance
during fine-tuning.

Table 23: Best test score for CQL and CQL+MDP pre-training with different state/action space sizes.
The number after “S” indicates the size of the state/action space. Temperature is equal to 1.

Best Score CQL S=10 S=100 S=1,000 S=10,000 S=100,000
halfcheetah-medium-expert 48.2 ± 6.2 75.3 ± 6.6 85.3 ± 3.1 88.2 ± 2.9 87.9 ± 2.6 85.9 ± 3.9
hopper-medium-expert 110.8 ± 1.0 111.6 ± 0.4 111.3 ± 1.1 111.8 ± 0.3 111.6 ± 0.3 111.8 ± 0.3
walker2d-medium-expert 112.9 ± 1.4 112.8 ± 0.9 112.2 ± 0.8 112.3 ± 0.7 112.8 ± 1.3 112.5 ± 1.3
ant-medium-expert 127.8 ± 2.0 131.5 ± 0.9 132.1 ± 1.1 133.6 ± 0.8 132.9 ± 0.7 133.1 ± 0.7
halfcheetah-medium-replay 45.7 ± 0.4 45.7 ± 0.2 45.9 ± 0.3 45.5 ± 0.3 45.7 ± 0.2 45.6 ± 0.3
hopper-medium-replay 99.5 ± 1.3 100.9 ± 0.7 100.1 ± 1.5 100.7 ± 0.9 101.3 ± 0.7 101.2 ± 0.8
walker2d-medium-replay 87.6 ± 1.4 90.2 ± 1.1 89.2 ± 1.1 89.0 ± 1.2 89.1 ± 0.8 89.0 ± 1.1
ant-medium-replay 99.9 ± 1.1 102.4 ± 1.0 103.0 ± 1.0 102.6 ± 1.0 102.0 ± 0.9 102.3 ± 0.9
halfcheetah-medium 46.9 ± 0.2 47.4 ± 0.2 47.4 ± 0.2 47.5 ± 0.2 47.5 ± 0.2 47.4 ± 0.1
hopper-medium 87.3 ± 4.0 85.4 ± 2.5 84.3 ± 3.2 83.4 ± 2.4 84.6 ± 2.4 85.0 ± 1.9
walker2d-medium 85.7 ± 0.5 86.1 ± 0.4 86.2 ± 0.6 86.2 ± 0.4 86.2 ± 0.6 86.2 ± 0.4
ant-medium 104.2 ± 1.2 104.4 ± 0.6 104.7 ± 0.5 104.8 ± 0.6 104.7 ± 0.5 104.8 ± 0.7
Average over datasets 88.0 ± 1.7 91.1 ± 1.3 91.8 ± 1.2 92.1 ± 1.0 92.2 ± 0.9 92.1 ± 1.0

Table 24: Best test score for CQL and CQL+MDP pre-training with different temperature values.
The value after “τ” indicates the temperature value.

Best Score CQL τ=0.01 τ=0.1 τ=1 τ=10 τ=100 CQL+IID
halfcheetah-medium-expert 48.2 ± 6.2 66.4 ± 7.3 73.9 ± 6.4 85.3 ± 3.1 82.9 ± 5.7 82.7 ± 5.0 84.0 ± 3.8
hopper-medium-expert 110.8 ± 1.0 109.0 ± 5.4 111.7 ± 0.4 111.3 ± 1.1 110.7 ± 2.1 109.5 ± 4.0 111.0 ± 1.2
walker2d-medium-expert 112.9 ± 1.4 113.1 ± 0.6 112.6 ± 0.9 112.2 ± 0.8 112.9 ± 0.9 113.6 ± 2.3 113.4 ± 1.8
ant-medium-expert 127.8 ± 2.0 128.9 ± 1.6 131.0 ± 1.0 132.1 ± 1.1 132.2 ± 0.9 132.6 ± 0.9 131.4 ± 1.2
halfcheetah-medium-replay 45.7 ± 0.4 45.5 ± 0.3 45.7 ± 0.2 45.9 ± 0.3 45.7 ± 0.4 45.7 ± 0.3 45.9 ± 0.3
hopper-medium-replay 99.5 ± 1.3 100.7 ± 0.7 100.5 ± 0.9 100.1 ± 1.5 100.2 ± 1.2 100.0 ± 1.2 99.3 ± 1.2
walker2d-medium-replay 87.6 ± 1.4 88.8 ± 1.1 87.6 ± 0.8 89.2 ± 1.1 90.0 ± 1.0 89.7 ± 1.1 89.8 ± 0.9
ant-medium-replay 99.9 ± 1.1 101.9 ± 1.1 102.1 ± 0.9 103.0 ± 1.0 102.8 ± 0.8 102.4 ± 0.9 102.6 ± 1.1
halfcheetah-medium 46.9 ± 0.2 47.4 ± 0.2 47.3 ± 0.2 47.4 ± 0.2 47.4 ± 0.2 47.4 ± 0.2 47.3 ± 0.2
hopper-medium 87.3 ± 4.0 86.2 ± 2.2 84.4 ± 2.6 84.3 ± 3.2 83.5 ± 2.8 85.7 ± 3.6 84.5 ± 3.5
walker2d-medium 85.7 ± 0.5 86.1 ± 0.5 86.1 ± 0.5 86.2 ± 0.6 85.9 ± 0.4 86.0 ± 0.5 86.3 ± 0.8
ant-medium 104.2 ± 1.2 104.2 ± 0.5 104.8 ± 0.5 104.7 ± 0.5 104.8 ± 0.6 104.6 ± 0.5 104.4 ± 0.7
Average over datasets 88.0 ± 1.7 89.8 ± 1.8 90.7 ± 1.3 91.8 ± 1.2 91.6 ± 1.4 91.7 ± 1.7 91.7 ± 1.4
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Table 25: Best score for CQL and CQL+MDP pre-training with a different number of pre-training
updates.

Best Score CQL 1K updates 10K updates 40K updates 100K updates 500K updates 1M updates
halfcheetah-medium-expert 48.2 ± 6.2 58.5 ± 8.1 71.8 ± 7.2 81.4 ± 5.2 85.3 ± 3.1 85.6 ± 4.6 82.4 ± 5.8
hopper-medium-expert 110.8 ± 1.0 110.7 ± 1.6 111.1 ± 0.7 111.3 ± 0.5 111.3 ± 1.1 111.4 ± 0.8 111.5 ± 0.5
walker2d-medium-expert 112.9 ± 1.4 113.1 ± 1.0 112.4 ± 0.7 112.9 ± 0.8 112.2 ± 0.8 112.3 ± 1.3 112.2 ± 0.6
ant-medium-expert 127.8 ± 2.0 130.5 ± 1.0 129.7 ± 1.4 131.5 ± 0.8 132.1 ± 1.1 132.7 ± 0.8 132.1 ± 0.9
halfcheetah-medium-replay 45.7 ± 0.4 45.7 ± 0.4 45.9 ± 0.3 45.8 ± 0.2 45.9 ± 0.3 45.7 ± 0.3 45.7 ± 0.4
hopper-medium-replay 99.5 ± 1.3 100.3 ± 1.4 98.9 ± 1.6 99.6 ± 1.0 100.1 ± 1.5 101.2 ± 0.8 100.8 ± 1.1
walker2d-medium-replay 87.6 ± 1.4 88.4 ± 1.2 89.1 ± 1.4 89.7 ± 1.1 89.2 ± 1.1 89.4 ± 1.2 88.9 ± 1.3
ant-medium-replay 99.9 ± 1.1 102.0 ± 1.1 102.0 ± 0.8 102.5 ± 0.7 103.0 ± 1.0 102.3 ± 0.9 102.1 ± 0.9
halfcheetah-medium 46.9 ± 0.2 47.3 ± 0.2 47.3 ± 0.2 47.3 ± 0.2 47.4 ± 0.2 47.3 ± 0.1 47.2 ± 0.2
hopper-medium 87.3 ± 4.0 86.9 ± 2.6 85.3 ± 2.9 84.0 ± 4.3 84.3 ± 3.2 84.3 ± 2.6 84.3 ± 3.0
walker2d-medium 85.7 ± 0.5 86.2 ± 0.6 86.3 ± 0.5 86.0 ± 0.5 86.2 ± 0.6 86.3 ± 0.5 86.3 ± 0.5
ant-medium 104.2 ± 1.2 104.7 ± 0.7 104.4 ± 0.7 104.7 ± 0.7 104.7 ± 0.5 104.7 ± 0.6 105.0 ± 0.7
Average over datasets 88.0 ± 1.7 89.5 ± 1.7 90.3 ± 1.5 91.4 ± 1.3 91.8 ± 1.2 91.9 ± 1.2 91.6 ± 1.3
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C.2 CQL FINE-TUNING CURVES FOR INDIVIDUAL DATASET

Figure 5 and Figure 6 show the normalized test performance and the combined loss respectively
for each dataset during the fine-tuning process. Each curve is averaged over 20 seeds. We shift all
CQL+MDP and CQL+IID curves to the right to offset the synthetic pre-training for 100K updates.

(a) HalfCheetah medium-expert (b) HalfCheetah medium (c) HalfCheetah medium-replay

(d) Hopper medium-expert (e) Hopper medium (f) Hopper medium-replay

(g) Walker medium-expert (h) Walker medium (i) Walker medium-replay

(j) Ant medium-expert (k) Ant medium (l) Ant medium-replay

Figure 5: Fine-tuning performance curves for CQL baseline, CQL with synthetic MDP pre-training,
and CQL with synthetic IID pre-training, on each individual dataset.
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(a) HalfCheetah medium-expert (b) HalfCheetah medium (c) HalfCheetah medium-replay

(d) Hopper medium-expert (e) Hopper medium (f) Hopper medium-replay

(g) Walker medium-expert (h) Walker medium (i) Walker medium-replay

(j) Ant medium-expert (k) Ant medium (l) Ant medium-replay

Figure 6: Combined loss (Q loss and conservative loss) for CQL, CQL with synthetic MDP pre-
training, and CQL with synthetic IID pre-training, on each individual dataset.
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D ADDITIONAL FIGURES

Figure 7 illustrates how temperature values affect the transition distribution:

(a) τ = 0.001 (b) τ = 0.01 (c) τ = 0.1 (d) τ = 1 (e) τ = 10

Figure 7: How different temperature values affect the transition distributions for the synthetic
MC. The x-axis shows different states in the state space, and the y-axis shows the probability of
transitioning into that state when the current state is fixed. The states on the x-axis are sorted from
lowest probability to highest probability. Under a low temperature, the transition probabilities are
concentrated on just a few states. Under a higher temperature, the distribution is nearly uniform.
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E DT WITH MORE FINE-TUNING UPDATES

Table 26 shows what happens when the DT baseline is trained with more fine-tuning updates. The
results show that more updates can indeed further improve the DT baseline. The DT baseline with 80K
more updates (DT+80K more) is able to achieve a similar or even stronger performance than DT+Wiki.
However, the DT baseline with 80K additional updates is still significantly weaker than DT+Synthetic.
Note that DT+80K more updates uses a total of 180K updates, while our DT+Synthetic scheme uses
a total of 120K updates (20K pre-train and 100K finetune), and DT+Synthetic is still better. These
results further support our finding that (1) Wiki pretraining does not have a special benefit, and (2)
synthetic pre-training can significantly outperform the baseline, even with fewer total updates.

Figure 8 presents the learning curves where the x-axis indicates the total number of updates, pre-
training included. Here we train all three variants longer, to a total of 180K updates. Note that for the
two pre-training schemes, the curve is shifted to the right to account for the number of pre-training
updates. The curves are shown for the different datasets separately in Figure 9. Figure 9 shows that
when trained for more fine-tuning updates, all variants obtain slightly better performance, while
DT+Synthetic achieves the best performance quite consistently for different values of the total number
of updates.

Table 26: Performance for DT, DT pre-trained with Wikipedia data, and DT pre-trained with synthetic
data. We also show results for DT with 20K and with 80K more fine+tuning updates. DT+Synthetic
has the same number of total updates as DT+20K more. DT+Wiki has the same number of total
updates as DT+80K more. With the same number of total updates, DT+Synthetic provides the best
performance.

Average Last Four DT DT+20K more DT+80K more DT+Wiki DT+Synthetic
halfcheetah-medium-expert 44.1 ± 1.5 44.2 ± 2.6 47.1 ± 5.5 43.9 ± 2.7 49.5 ± 9.9
hopper-medium-expert 73.6 ± 15.5 87.6 ± 10.5 92.4 ± 7.4 94.0 ± 8.9 99.6 ± 6.5
walker2d-medium-expert 106.5 ± 1.4 104.9 ± 2.9 106.9 ± 2.0 102.7 ± 6.4 107.4 ± 0.8
ant-medium-expert 102.3 ± 5.1 110.9 ± 6.8 116.1 ± 5.7 113.9 ± 10.5 117.9 ± 8.7
halfcheetah-medium 42.5 ± 0.1 42.4 ± 0.4 42.4 ± 0.5 42.6 ± 0.2 42.5 ± 0.2
hopper-medium 56.4 ± 2.1 60.6 ± 3.4 60.3 ± 2.5 58.4 ± 3.3 60.2 ± 2.1
walker2d-medium 71.0 ± 1.7 70.1 ± 3.2 69.0 ± 4.6 70.8 ± 3.0 71.5 ± 4.1
ant-medium 90.3 ± 3.7 89.0 ± 3.6 89.7 ± 3.5 88.5 ± 4.2 87.8 ± 4.2
halfcheetah-medium-replay 37.6 ± 1.1 37.3 ± 1.4 38.1 ± 1.1 39.1 ± 1.6 39.3 ± 1.1
hopper-medium-replay 43.5 ± 3.3 47.5 ± 12.8 46.4 ± 10.2 51.4 ± 13.6 61.8 ± 13.9
walker2d-medium-replay 55.4 ± 8.9 50.6 ± 9.9 55.8 ± 9.1 55.2 ± 7.7 56.8 ± 5.1
ant-medium-replay 83.1 ± 3.2 84.0 ± 4.0 83.8 ± 3.4 78.1 ± 5.3 88.4 ± 2.7
Average (All Settings) 67.2 ± 4.0 69.1 ± 5.1 70.7 ± 4.6 69.9 ± 5.6 73.6 ± 4.9

(a) Learning curves for the fine-tuning stage. (b) Loss curves for the fine-tuning stage.

Figure 8: Performance and loss curves, averaged over 12 datasets for DT, DT+Wiki, DT+Synthetic.
The DT baseline is fine-tuned for 180K updates. To account for the pre-training updates, we offset
the curve for DT+Synthetic to the right by 20K updates and fine-tune for 160K updates, and we offest
the curve for DT+Wiki to the right by 80K updates and fine-tune for 100K updates. For the same
number of total updates, DT+Synthetic performs significantly better.
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(a) Hopper-medium (b) Hopper-medium-replay (c) Hopper-medium-expert

(d) Walker-medium (e) Walker-medium-replay (f) Walker-medium-expert

(g) HalfCheetah-medium (h) HalfCheetah-medium-replay (i) HalfCheetah-medium-expert

(j) Ant-medium (k) Ant-medium-replay (l) Ant-medium-expert

Figure 9: Performance curves for individual datasets for DT, DT+Wiki, and DT+Synthetic. The DT
baseline is fine-tuned for 180K updates. To account for the pre-training updates, we offset the curve
for DT+Synthetic to the right by 20K updates and fine-tune for 160K updates, and we offset the curve
for DT+Wiki to the right by 80K updates and fine-tune for 100K updates.
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F OTHER DT PRE-TRAINING STRATEGIES

In Table 27 we study two alternative synthetic data generation schemes inspired by He et al. (2023),
namely, Identity Operation and Token Mapping. For Identity Operation, the model is simply trained
to predict the current state. For Token Mapping, the model is trained to predict a fixed one-to-one
mapping from each state (token) in the state space (vocabulary) to a state (token) in the target state
space (vocabulary). We use a similar vocabulary size as in He et al. (2023). As before, the DT baseline
is fine-tuned for 100K updates, and DT+Wiki is pre-trained for 80K updates and fine-tuned for 100K
updates. DT+Synthetic, DT+Identity, and DT+Mapping are all pre-trained with 20K updates and
fine-tuned for 100K updates. The results show that these alternative schemes also lead to improved
performance over the DT baseline; however, our proposed synthetic scheme provides the strongest
performance boost.

Table 27: Final performance for DT, DT pre-trained with Wikipedia data, DT pre-trained with Markov
Chain synthetic data of default parameters, and DT pre-trained with two additional synthetic datasets:
Identity Operation and Token Mapping.

Average Last Four DT DT+Wiki DT+Synthetic DT+Identity DT+Mapping
halfcheetah-medium-expert 44.9 ± 3.4 43.9 ± 2.7 49.5 ± 9.9 44.2 ± 3.1 49.6 ± 7.2
hopper-medium-expert 81.0 ± 11.8 94.0 ± 8.9 99.6 ± 6.5 88.9 ± 11.0 86.9 ± 21.2
walker2d-medium-expert 105.0 ± 3.5 102.7 ± 6.4 107.4 ± 0.8 107.7 ± 0.1 99.3 ± 4.4
ant-medium-expert 107.0 ± 8.7 113.9 ± 10.5 117.9 ± 8.7 112.1 ± 11.7 120.4 ± 2.9
halfcheetah-medium 42.4 ± 0.5 42.6 ± 0.2 42.5 ± 0.2 42.7 ± 0.2 42.5 ± 0.1
hopper-medium 58.2 ± 3.2 58.4 ± 3.3 60.2 ± 2.1 59.2 ± 4.9 58.1 ± 2.4
walker2d-medium 70.4 ± 2.9 70.8 ± 3.0 71.5 ± 4.1 69.9 ± 5.9 71.8 ± 1.8
ant-medium 89.0 ± 4.7 88.5 ± 4.2 87.8 ± 4.2 91.2 ± 3.2 87.5 ± 2.6
halfcheetah-medium-replay 37.5 ± 1.3 39.1 ± 1.6 39.3 ± 1.1 38.8 ± 1.0 39.9 ± 0.6
hopper-medium-replay 46.7 ± 10.6 51.4 ± 13.6 61.8 ± 13.9 50.6 ± 11.6 49.1 ± 13.2
walker2d-medium-replay 49.2 ± 10.1 55.2 ± 7.7 56.8 ± 5.1 49.5 ± 9.4 51.9 ± 7.7
ant-medium-replay 80.9 ± 3.9 78.1 ± 5.3 88.4 ± 2.7 85.6 ± 3.7 87.4 ± 4.8
Average (All Settings) 67.7 ± 5.4 69.9 ± 5.6 73.6 ± 4.9 70.0 ± 5.5 70.4 ± 5.7
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G IMPACT OF MC PARAMETERS FOR DIFFERENT AMOUNTS OF FINE-TUNING
UPDATES

(a) State ablations. (b) MC step ablations. (c) Temperature Ablations.

Figure 10: Ablations for how the MC parameters (state, MC steps, and temperature) impact perfor-
mance for different amounts of fine-tuning updates, averaged over 12 datasets. In the temperature
ablations, "IID" stands for pre-training with synthetic IID data generated uniformly.

(a) State ablations. (b) MC step ablations. (c) Temperature Ablations.

Figure 11: Ablations for how the MC parameters (state, MC steps, and temperature) impact perfor-
mance for different amounts of fine-tuning data, averaged over 12 datasets. “Finetune Data Ratio”
means the portion of the data with respect to the original dataset. For example, a “Finetune Data
Ratio” of 0.1 means that the models are fine-tuned with 10% of the original datasets.
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H ANALYSIS OF HOW PRE-TRAINING EFFECTS DT WEIGHTS AND FEATURES

In this section, we provide an empirical analysis to shed light on how the different pre-training
schemes affect the weights and features in the Decision Transformer. We consider the weights and
features at three stages: (1) the randomly initialized weights; (2) the weights after pre-training; and
(3) the weights after fine-tuning.

Figure 12(a) shows in blue the weight cosine-similarities between the pre-trained and fine-tuned
weights (PT vs. FT), and shows in orange the weight cosine-similarities between the randomly
initialized (before training) and fine-tuned weights (RI vs. FT). Figure 12(b) is analogous but for
features instead of weights. To obtain the features, we pass a portion of each offline RL dataset
through a frozen model to extract the feature vectors before the prediction head. The comparison is
made across all datasets for the DT baseline, DT with Wiki pre-training, DT with default synthetic
pre-training, DT with random IID data pre-training, DT with Identity Operation pre-training, and DT
with Mapping pre-training. From Figure 12 we observe the following:

(a) Weight cosine similarity comparison (b) Feature cosine similarity comparison

Figure 12: Weight and Feature cosine similarity comparisons among the DT baseline and the various
pre-training schemes.

1. From Figure 12a, we see that the cosine-similarity between the initial weights and the
weights after fine-tuning (RI vs. FT) for all the pre-training schemes are lower compared
to that of the DT baseline (fine-tuning without pre-training at all). This suggests that pre-
training together with fine-tuning alters the angle of the weights more than when doing
fine-tuning alone. This phenomenon suggests that pre-training is able to move the weight
vector to a new region which is more beneficial for downstream RL tasks.

2. From Figure 12a, the cosine-similarities of the weights before and after fine-tuning (PT
vs. FT) for the pre-training schemes are all higher than that of the DT baseline. This
suggests that during the fine-tuning stage of a pre-training scheme, the weights are changed
less. However, we observe that the similarities in the pre-training schemes are inversely
proportional to their performance. (DT+Synthetic has the best performance while being the
least similar, while DT+Wiki has the worst performance while being the most similar). This
suggests that during the fine-tuning stage, encouraging a bigger movement in the weights is
beneficial, and that our synthetic pre-training scheme positions the weights to allow for such
a movement.

3. Similar to the weight comparison, from Figure 12b, we also find that the cosine-similarities
between the features from randomly initialized models and those after fine-tuning (RI vs.
FT) for all the pre-training schemes are much lower compared to that of the DT baseline
(by three orders of magnitude), suggesting that there is a bigger change in the features from
pre-trained and then fine-tuning than when doing fine-tuning alone. Such a movement of the
feature vectors might indicate better learning of the feature representations.

4. We see from Figure 12b that the features before and after fine-tuning (PT vs. FT) for the
synthetic pre-training schemes are more similar than those of DT+Wiki (0.33). This suggests
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that for the Wiki pre-training scheme, the features need to be altered more due to the domain
gap between language and RL, potentially hindering its performance.
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I CQL WITH MORE FINE-TUNING UPDATES

Recall that for our CQL pre-training experiments in the main body of the paper, we pre-trained for
100K updates. Table 28 shows the performance of the CQL baseline when it is trained with additional
100K fine-tuning updates, so that the total (pre-training plus fine-tuning) number of updates is the
same across all schemes. We see that the additional 100K fine-tuning updates (CQL+100K more)
does not improve the final performance of the CQL baseline. Consequently, CQL pre-trained with
synthetic data still significantly outperforms the baseline.

Figure 13 presents the learning curves where the x-axis indicates the total number of updates, pre-
training included. All three variants are trained with 1.1M updates in total. Note that for the two
pre-training schemes, the curve is shifted to the right to account for the number of pre-training
updates. The curves are shown for the different datasets separately in Figure 14.

Table 28: Performance for CQL, CQL pre-trained with MDP synthetic data, and CQL pre-trained
with IID data. We also show results for CQL with 100K more fine-tuning updates. CQL+MDP and
CQL+IID have the same number of total updates as CQL+100K more. With the same number of
total updates, CQL+MDP provides the best performance.

Average Last Four CQL CQL+100K more CQL+MDP CQL+IID
halfcheetah-medium-expert 37.3 ± 4.9 36.7 ± 6.9 65.3 ± 8.0 63.2 ± 7.7
hopper-medium-expert 71.4 ± 25.0 41.6 ± 21.0 94.7 ± 14.5 80.1 ± 20.9
walker2d-medium-expert 106.0 ± 5.0 110.2 ± 0.3 109.9 ± 0.4 109.8 ± 0.3
ant-medium-expert 114.6 ± 3.8 111.7 ± 7.3 128.5 ± 3.6 124.8 ± 2.9
halfcheetah-medium-replay 46.7 ± 0.2 46.4 ± 0.4 46.5 ± 0.2 46.7 ± 0.3
hopper-medium-replay 95.6 ± 1.1 95.3 ± 1.5 94.0 ± 2.5 92.4 ± 3.8
walker2d-medium-replay 79.3 ± 6.0 80.0 ± 1.8 81.3 ± 0.9 83.5 ± 2.4
ant-medium-replay 95.5 ± 2.7 99.4 ± 2.7 101.5 ± 4.2 101.5 ± 4.1
halfcheetah-medium 48.4 ± 0.1 48.3 ± 0.1 48.7 ± 0.2 48.6 ± 0.1
hopper-medium 68.0 ± 2.4 68.4 ± 2.9 67.7 ± 3.7 64.9 ± 2.6
walker2d-medium 80.8 ± 1.5 82.4 ± 0.8 83.8 ± 0.1 83.4 ± 0.7
ant-medium 99.9 ± 2.7 100.6 ± 3.1 101.5 ± 4.6 104.0 ± 1.4
Average over datasets 78.6 ± 4.6 76.7 ± 4.1 85.3 ± 3.6 83.6 ± 3.9

(a) Learning curves for the fine-tuning stage. (b) Loss curves for the fine-tuning stage.

Figure 13: Performance and loss curves, averaged over 12 datasets for CQL, CQL+MDP, and
CQL+IID. The CQL baseline is fine-tuned for 1.1M updates. To account for the pre-training updates,
we offset the curve for CQL+MDP and CQL+IID to the right by 100K updates and fine-tune them
for 1M updates. For the same number of total updates, CQL+Synthetic performs the best.
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(a) Hopper-medium (b) Hopper-medium-replay (c) Hopper-medium-expert

(d) Walker2d-medium (e) Walker2d-medium-replay (f) Walker2d-medium-expert

(g) Halfcheetah-medium (h) Halfcheetah-medium-replay (i) Halfcheetah-medium-expert

(j) Ant-medium (k) Ant-medium-replay (l) Ant-medium-expert

Figure 14: Performance curves of individual datasets for CQL, CQL+MDP, and CQL+IID. The CQL
baseline is fine-tuned for 1.1M updates. To account for the pre-training updates, we offset the curve
for CQL+MDP and CQL+IID to the right by 100K updates and fine-tune them for 1M updates.
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J OTHER CQL PRETRAINING STRATEGIES

In Table 29 we again study the two alternative synthetic data generation schemes inspired by He et al.
(2023), similar to what we did in Appendix F for DT. For Identity Operation, the model is simply
trained to predict the concatenated vector of the current state and current action. For Token Mapping,
the model is trained to predict a fixed one-to-one mapping from each state-action pair in the source
space to a state-action pair in the target space. As before, the CQL baseline is fine-tuned for 1M
updates. CQL+MDP, CQL pre-trained with Identity Operation (CQL+Identity), and CQL pre-trained
with Token Mapping (CQL+Mapping) are all pre-trained for 100K updates and fine-tuned for 1M
updates. The results show that these alternative schemes also lead to improved performance over the
CQL baseline; however, our proposed synthetic scheme provides a significantly higher performance
boost.

Figure 15 presents the learning curves where the x-axis indicates the total number of updates, pre-
training included. All variants are trained with 1M updates in total (pre-training and fine-tuning) and
for the three pre-training schemes, the curves are shifted to the right to account for the number of
pre-training updates. With fewer fine-tuning updates, the result shows that CQL pre-trained with
either of the two additional synthetic data does not surpass the performance of the CQL baseline,
while our MDP synthetic pre-training scheme still significantly boosts the performance.

Table 29: Final performance for CQL, CQL pre-trained with MDP synthetic data, and CQL pre-
trained with two additional synthetic datasets: Identity Operation (CQL+Identity) and Token Mapping
(CQL+Mapping).

Average Last Four CQL CQL+MDP CQL+Identity CQL+Mapping
halfcheetah-medium-expert 37.3 ± 4.9 65.3 ± 8.0 32.1 ± 4.7 53.5 ± 1.7
hopper-medium-expert 71.4 ± 25.0 94.7 ± 14.5 80.7 ± 14.4 64.4 ± 20.9
walker2d-medium-expert 106.0 ± 5.0 109.9 ± 0.4 109.1 ± 1.4 110.3 ± 1.0
ant-medium-expert 114.6 ± 3.8 128.5 ± 3.6 110.3 ± 6.5 117.8 ± 2.6
halfcheetah-medium-replay 46.7 ± 0.2 46.5 ± 0.2 46.3 ± 0.3 45.9 ± 0.3
hopper-medium-replay 95.6 ± 1.1 94.0 ± 2.5 94.8 ± 1.8 96.7 ± 2.4
walker2d-medium-replay 79.3 ± 6.0 81.3 ± 0.9 82.0 ± 2.7 79.6 ± 2.1
ant-medium-replay 95.5 ± 2.7 101.5 ± 4.2 97.6 ± 2.0 99.4 ± 4.1
halfcheetah-medium 48.4 ± 0.1 48.7 ± 0.2 48.1 ± 0.1 48.3 ± 0.2
hopper-medium 68.0 ± 2.4 67.7 ± 3.7 71.3 ± 3.0 68.8 ± 2.7
walker2d-medium 80.8 ± 1.5 83.8 ± 0.1 82.1 ± 1.8 83.2 ± 0.5
ant-medium 99.9 ± 2.7 101.5 ± 4.6 99.0 ± 4.1 102.4 ± 3.8
Average over datasets 78.6 ± 4.6 85.3 ± 3.6 79.4 ± 3.6 80.9 ± 3.5

Figure 15: Performance curves, averaged over 12 datasets for CQL, CQL pre-trained with default
MDP synthetic pre-training, and CQL pre-trained with two additional synthetic datasets. The CQL
baseline is fine-tuned for 1M updates. To account for the pre-training updates, we offset the curve
for all three synthetic pre-trained CQL to the right by 100K updates and fine-tune them for 900K
updates.
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K IMPACT OF MDP PARAMETERS FOR DIFFERENT AMOUNTS OF
FINE-TUNING UPDATES

(a) State ablations. (b) Temperature ablations. (c) Pre-training Updates Abla-
tions.

Figure 16: Ablations for how the MDP data parameters (state, temperature, and the number of
pre-training updates) affect the performance with different fine-tuning updates, averaged over 12
datasets. In the temperature ablations, "IID" stands for pre-training with synthetic IID data generated
uniformly.

(a) State ablations. (b) Temperature ablations. (c) Pre-training Updates Abla-
tions.

Figure 17: Ablations for how the MDP data parameters (state, temperature, and the number of
pre-training updates) affect the performance with different amounts of fine-tuning data, averaged
over 12 datasets. The x-axis ’Finetune Data Ratio’ means the portion of the data used to fine-tune the
model, with respect to the whole offline RL data.
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