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Abstract

Markov Decision Processes (MDPs), as a
general-purpose framework, often overlook the
benefits of incorporating the causal structure of
the transition and reward dynamics. For a subclass
of resource allocation problems, we introduce the
Structurally Decomposed MDP (SD-MDP), which
leverages causal disentanglement to partition an
MDP’s temporal causal graph into independent
components. By exploiting this disentanglement,
SD-MDP enables dimensionality reduction and
computational efficiency gains in optimal value
function estimation. We reduce the sequential
optimization problem to a fractional knapsack
problem with log-linear complexity O(T log T ),
outperforming traditional stochastic programming
methods that exhibit polynomial complexity
with respect to the time horizon T . Additionally,
SD-MDP computational advantages are indepen-
dent of state-action space size, making it viable
for high-dimensional spaces. Furthermore, our
approach integrates seamlessly with Monte Carlo
Tree Search (MCTS), achieving higher expected
rewards under constrained simulation budgets
while providing a vanishing simple regret bound.
Empirical results demonstrate superior policy
performance over benchmarks across various
logistics and finance domains.

1 INTRODUCTION
While Markov Decision Processes (MDPs) offer a compre-
hensive framework for many sequential decision-making
problems under uncertainty, certain problem structures and
assumptions allow for simplified approaches that avoid the
full complexity of an standard MDP formulation. For in-
stance, in linear quadratic Gaussian control problems, the
optimal control policy has a reduced form due to the equiv-
alence principle [AM07]. In finance, under log utility and
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geometric Brownian motion asset dynamics, the optimal
investment strategy has an explicit closed-form solution in
some instances of financial derivatives [ZY03]. Economic
models with rational expectations and additive components
can often leverage the certainty equivalence principle. This
means that separating deterministic and stochastic compo-
nents can simplify the model, and provide pathways to de-
rive error bounds for Monte Carlo (MC) estimation algo-
rithms. Sampling-based approaches that avoid modelling the
full probability distribution can be carefully adopted to pro-
vide tractable solutions in various stochastic control appli-
cations while retaining key problem characteristics [CF12].

Specifically, we focus on the problem of resource allocation
over a finite time horizon. Traditionally, resource allocation
problems were solved using multi-stage stochastic program-
ming or formulating the problem as an MDP and applying
some form of MDP solver, such as approximate dynamic
programming, for large-scale problems [WW11] [Pow+05]
[DV04] [BDG00]. Nevertheless, these traditional methods
are often very specific to the problem setting and do not gen-
eralize to a class of similar problems—they often require
a full reformulation [Kus90] [Pow+05]. Furthermore, they
do not take into account the causal structure of the MDP to
obtain computational simplifications [ZBD10]. Similar to
energy conservation principles in physics, we impose a con-
struct which we denote as a resource-utility exchange model
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(defined in Sec. 2.1) [Hau79]. In this model, resources can
be converted to utility and vice versa, subject to certain
environmental constraints.

Standard approaches to optimal planning include policy it-
eration, value iteration, approximate dynamic programming,
and deep reinforcement learning [Ber11] [Sil+17] [FSM10].
[Meu+98] decompose a large MDP into smaller, indepen-
dently solvable MDPs under resource constraints. These
sub-problems, guided by heuristic solutions, lack theoretical
convergence guarantees, potentially leaving an optimality
gap. [BL16] introduce a budgeted MDP that partitions a sin-
gle resource across tasks but does not consider converting
multiple resources for a single task. [Car+19] reformulate
constrained MDPs (CMDP) by transforming value and Q-
functions into two dimensions—reward outcomes and con-
straint values—solving the problem via expectation max-
imization. However, incorporating additional Q-functions
increases state-action space dimensionality, adding com-
plexity. Furthermore, we aim to design a framework which
specifically enables the ease-of-substitution of one resource
to another to accomplish a single task (i.e. hybrid vehicles
etc.) - where previous CMDP frameworks typically consider
the exchange of a single resource to multiple objectives
[Meu+98; BL16; Alt21].

Recent research has explored leveraging causal knowledge
as side information to uncover the causal structure of MDPs.
This involves analyzing how state space components, tran-
sitions, and rewards arise from the interaction between the
system and the agent over time. By applying causal disen-
tanglement to the MDP structure, we can simplify compu-
tations for MDP solvers [LMT22; BJS21; RB+22]. Disen-
tangling and simplifying the causal structure of an MDP
enhances computational efficiency by enabling separability
in the search space [LMT22].

In this paper, we introduce the framework for the rigorous
modelling of subclass of MDP’s through a structured decom-
position via side information corrsponding to the temporal
causal behaviour of the system. Contrasting with previous
works in CMDP’s, our MDP framework is designed to in-
tegrate seamlessly into Monte Carlo planning algorithms,
such as Monte Carlo tree search (MCTS), while ensuring
convergence to the optimal solution. To be specific, the
framework first disentangles the stochastic environmentally
induced state transitions and deterministic action-driven
reward functions, as illustrated in Fig. 1. This separation en-
ables independent optimization of components the agent can
model perfectly with lower complexity, while computing
expectations over stochastic outcomes separately, improving
efficiency and simplifying theoretical guarantees on value
approximations [Gen+20] [Tod09]. Moreover, it allows us to
provide theoretical guarantees on value function estimates
via Monte Carlo (MC) value iteration.

To provide a concise overview of the paper, in Sec. 2.1, we
explore how the action and transition dynamics of MDP’s

can inform us about the structure of the optimal solution,
motivating the formal definition of the SD-MDP. Next, in
Sec. 3, we describe the integration of this knowledge into
well-known MC planning algorithms, such as UCT [KS06]
and MENTS [Xia+19], and offer theoretical guarantees
on the upper bound of simple regret under mild assump-
tions. Lastly in Sec. 4, we present several empirical results
demonstrating the efficacy of our methodology. These re-
sults demonstrate that our methodology, achieves higher
expected rewards (or lower costs) under fixed simulation
budgets compared to vanilla MCTS, while outperforming
established instance-dependent baselines across various ap-
plied domains in engineering and economics.

We provide a new framework for a subclass of MDP’s to
reduce computational complexity and improve value approx-
imation results via causal disentanglement. We summarize
our contributions as follows:

[ colback=green!5!white, colframe=black, arc=4pt,
boxsep=0.3pt, ]Contribution 1: We leverage causal
disentanglement to partition a compliant MDP’s temporal
causal graph into independent components to enable
dimensionality reduction and computational efficiency
gain. [ colback=blue!5!white, colframe=black, arc=4pt,
boxsep=0.3pt, ] Contribution 2: We showcase a reduction
of sequential optimization under perfect information to a
fractional knapsack problem of complexity O(T log(T ))
outperforming traditional stochastic programming
methods with polynomial scaling with respect to T . [ col-
back=red!5!white, colframe=black, arc=4pt, boxsep=0.3pt,
] Contribution 3: We provide a seamless integration
with MCTS and theoretical guarantees on a vanishing
simple regret bound, supported by empirical benchmarks in
logistics, control, and finance problems.

2 PROBLEM DEFINITION
Classical MDP: Let a well-defined general discrete time
MDP be represented asM = (x1,X ,A, P, µ), where X is
the set of states, X = {x1,x2, ...}, A is the set of actions,
A = {a1,a2, ...}, x1 is the initial state of the system, P rep-
resents the state transition probabilities, P (xt+1 | xt,at),
the probability of transitioning to state xt+1 given action
a at state x, and µ(·) is the reward function, µ(x,a), the
immediate reward upon taking action a at state x at time
t. The objective of our optimization is to obtain a policy π,
which maps states to actions, that maximizes the expected
cumulative reward,

π∗ = argmax
π

E

[
T∑
t=1

µ(xt,at)
∣∣∣x1, π

]
. (2.1)

This objective aims to identify the policy that maximizes
the expected sum of rewards over a finite time horizon over
randomness induced by the MDP parameters θ, where the
expectation is taken over the randomness in the transition
dynamics and policy when it is stochastic. Here, xt repre-
sents the state at time t, at denotes the action taken at time
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t, and xt+1 denotes the next state at t+ 1. It is important to
note that negative rewards are also possible, especially in
problem settings where minimizing costs is the goal.

2.1 THE SD-MDP FRAMEWORK

We define a special class of MDP’s, termed structurally-
decomposed MDP (SD-MDP). This constitutes a stochastic
reduction on the classical MDP, partitioning it into various
components driven by the causal dynamics and Markovian
properties. From the perspective of causal reinforcement
learning [LMT22], the SD-MDP partitions the state tran-
sition dynamics via the causal relation of the intervening
action. This side information pertaining to the causal dy-
namics of the MDP allows us obtain more efficient MC
value estimates, suitable for stochastic planning problems.
To be specific, this allows the state transition to be modelled
separately and independent of the reward dynamics.

Causal Disentanglement: The process of identifying and
separating the underlying causal factors that generate ob-
served data enables a clearer understanding of the under-
lying causal structure [RB+22; Kom+23]. We apply this
concept of causal disentanglement to the SD-MDP to iso-
late the causal effect of actions at on the state transition
xtη → xt+1

η , as illustrated in Fig. 1.

Formal Definition: The SD-MDP is represented as
(X ,A,R, P,x1), where X denotes the state space; A de-
notes the action space, and is of dimension D ∈ N (where
N denotes the set of counting numbers); R ⊆ R denotes
the reward space; P is the transition function for x ∈ X ,
and x1 is the initial state. The SD-MDP integrates both de-
terministic (xd) and environmentally driven (xη) state com-
ponents, the combination of which defines an MDP state,
x = [xη,xd]

T . To standardize notation, x ∈ X is decom-
posed into xη ∈ Xη and xd ∈ Xd. At face value, this model
is similar to the restless bandit problem [Git79], aiming to
maximize cumulative expected rewards within a finite time
frame for environmentally changing state transitions. Un-
like a classical restless bandit, due to constraints on xd (we
later illustrate what such constraints are in Table 1), reward
outcomes must be planned over the complete time horizon
T , rather than maximizing at each given opportunity, under
perfect information or otherwise.

In particular, we partition the state vector representation into
a deterministic partition, xd, and an independent stochas-
tic partition, xη, both exhibiting different properties when
subject to an intervention (or action) at. The stochastic tran-
sitions governed by P are independent of the action taken.
The transition probabilities can be expressed as,

P (xt+1
d |a

t,xt) ∈ {0, 1}, (2.2)

P (xt+1
η |at,xt) = P (xt+1

η |xtη), (2.3)

P (xt+1|at,xt) = P (xt+1
d |a

t,xt)P (xt+1
η |xtη), (2.4)

where Eq. (2.2) represents if the future deterministic com-
ponent xt+1

d is reached by taking action at. Eq. (2.3) rep-

xd1

xd2

||xt+1
d − xtd||p

⟨ϕf(xtη), at⟩

Figure 2: Norm-Capacity Dynamics: As the capacity of xd

shrinks given the constraints of the norm-capacity, the consump-
tion of resource can be transformed into a reward ⟨ϕf(xt

η), a
t⟩.

The blue shading represents shrinkage of the the resource capacity,
and the orange shading represents the vector space of possible
outcomes, the magnitude of this vector (represented by the red
arrow) represents the reward.

resents the natural transition of the stochastic partition xtη
independent of at, and Eq. (2.4) represents the combined
probability of transition for the SD-MDP. The state dynam-
ics of the SD-MDP are composed of partitionable compo-
nents, which include both stochastic and deterministic ele-
ments. The stochastic components evolve independently of
the agent’s actions (for example such as the price of certain
financial assets). In contrast, the deterministic components
evolve causally driven by the agent’s actions (for example
incremental adjustments to inventory levels).

Resource Utility Exchange: To allow for a general model
of resource consumption and utility exchange, we use f(·)
and g(·) to denote coordinate-wise separable functions com-
posed of a series of smooth weakly monotone Lipschitz
functions governing the dimension-wise scaling of each di-
mension when an action is taken by the agent. To be specific
f : RD → RD and g : RD → RD are coordinate-wise
separable. For a D dimensional vector, both f and g are any
weakly monotonic functions which,

f(x) ≡ [f1(x1), f2(x2), . . . , fD(xD)]
T , (2.5)

g(x) ≡ [g1(x1), g2(x2), . . . , gD(xD)]
T . (2.6)

To motivate, f represents the rate of utility gain, while g
represents the rate of resource consumption, both depend-
ing on the context xη. A very basic example could be the
exchange of fuel to mileage (as illustrated in Sec. 4).

In Table 1, we provide a list of the underlying dynamics that
govern the behaviour of the SD-MDP. To begin, an agent
may have a particular resource that they are consuming
over time (money, fuel, battery etc.). This resource can be
converted to rewards for the agent. First, this motivates Dy-
namic (D1), which ensures a valid representation of multi-
dimensional resource capacity consumption over time, as
illustrated in Fig. 2. We impose the constraint of a strictly
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Definition Expression

(D1) Positive Action & Capacity Space: We assume strictly positive
action and capacity spaces. a > 0,xd ≥ 0 (2.7)

(D2) General Linear Reward Dynamics: The reward function
µ(at,xt) obeys a linear relationship w.r.t. action at and stochastic
state partition xt.

µ(at,xt) = ⟨ϕf(xt
η), a

t⟩ (2.8)

(D3) Incremental Action Dynamics: We define a linear transforma-
tion matrix ϕ′, which is anti-parallel to ϕ. To model the expansion and
contraction of the capacity xd, we impose constraints on the transition
function acting on xd in Eq. (2.9) and Eq. (2.10).

||xt+1
d − xt

d||p = ||⟨ϕ′g(xt
η), a

t⟩||p (2.9)

∆a(t) ≤ ||xt+1
d − xt

d||p ≤ ∆̄a(t), ∀a ∈ A (2.10)

(D4) Capacity Objective: The accumulation of resources, as mea-
sured by ||⟨ϕ′g(xt

η), a
t⟩||p, should meet a predetermined maximum

and minimum goals.
A ≤

T∑
t=1

∥∥⟨ϕ′g(xt
η), a

t⟩
∥∥
p
≤ Ā (2.11)

(D5) Recency Preference: Ordinal preference of equivalent states
w.r.t. to t. xt

η = xt+∆
η =⇒ xt

η ≻ xt+∆
η , ∆ ∈ Z (2.12)

Table 1: Summary of the system dynamics of the SD-MDP.

element-wise positive action space, a > 0. Additionally,
the capacity space is also subject to a similar constraint,
ensuring each component of the capacity vector xd is non-
negative, i.e., xd ≥ 0.

Dynamic (D2) stipulates that the SD-MDP obeys a re-
ward function of a general linear form. Action at, together
with the stochastic state partition xtη, invokes a determin-
istic reward outcome with a linear relation, µ(at,xt). Let
µ(·) : RD × RD 7→ R denote a standard map that yields a
scalar in R when provided with inputs a ∈ A and xtη ∈ Xη ,
subject to constraints on the system at time t. Next, we
employ a linear transformation on f(xtη), with a positive
semi-definite matrix ϕ. This homogeneous scaling map al-
lows for both enlargement and shrinking of the vector along
the positive dimensions. The reward function results from
an inner product between the transformed vector ϕ f(xtη)
and at, as expressed in Eq. (2.8). Furthermore, the dimen-
sion of A is dim(A) = D, which must also be equal to the
dimension of ϕf(xη) ∈ ϕX where dim(ϕX ) = D.

Dynamic (D3) governs resource consumption incrementally.
We define a linear transformation matrix ϕ′, which is anti-
parallel to ϕ. Similarly, we apply function g : RD → RD,
to model the expansion and contraction of the capacity xd.
We impose the transition function acting on xd in Eq. (2.9).
Where ∆d(t) : {1, ..., T} → R is a natural discrete change
on xtd as deterministically determined by the system, and
⟨ϕ′g(xtη), a

t⟩) is the contribution to the expansion or con-
traction of xtd based on the agent’s action taken at at taken at
time t. We impose a constraint on the magnitude of capacity
change per time interval via Eq. (2.10), where constraints
∆a(t) and ∆a(t) are given by the system.

Dynamic (D4) enforces a path constraint on the trajectory
of actions that the agent can take. We constrain this tra-
jectory by limiting the accumulation of actions measured
with p-norms. As defined, the accumulation of resources
⟨ϕ′g(xtη), a

t⟩) should meet some maximum and minimum
goals, as expressed in Eq. (2.11).

Dynamic (D5) posits that the value of receiving the exact
same reward sooner is more valuable to the agent than re-
ceiving it later without the need for an explicit discount
factor. To further expound, using a preference to break any
ties should any policy lead to the same reward outcome,
which is useful for tie-breaking under identical outcomes.

2.2 VALUE ESTIMATION PROPERTIES
We provide an intuitive analysis on the behivour of the
optimal policy. In the final state at T , the deterministic
property ensures from Dynamic (D2), at the value of the
final state T , can be computed via pure exploitation, by
taking the maximum allowable action at time T according
to the constraints from Dynamics (D3) and (D4). Thus, we
express the value function as,

V (xT ) = max
a∈A(T )

µ(xT ,a). (2.13)

We examine the problem through induction. Consider that
the agent is at time T − 1 and would like to obtain the
value estimate for time T . We express the conditional value
function V (xT |xT−1) as,

V (xT |xT−1) = ⟨ϕf(E[xTη |xT−1
η ]),a∗⟩. (2.14)

To obtain the optimal value of a∗, ideally the agent performs
the optimal action to yield the highest reward at time T . This
however, depends on the capacity constraints of the action
sequence, which must obey constraints Eq. (2.10) and (2.11).
We can thus express the value function at T − 1, subject to
the incremental dynamics, and goal constraints as,

V (xT−1) = max
a∈A(T−1)

{
⟨ϕf(xT−1

η ),a⟩

+

∫
xT

Pθ(x
T |a,xT−1)V (xT ) dx

}
. (2.15)

where A(T − 1) represents the set of actions available to
the agent at time T − 1, as governed by Dynamics (D3) and
(D4). Assuming capacity is available at time T , given special
properties of the problem, we can partition, assuming gη(a)
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is deterministic and consider introduction of ∆d(t),

V (xT−1) = max
a∈A(T−1)

{
⟨ϕf(xT−1

η ),a⟩ (2.16)

+ ⟨(xT−1
d + ⟨ϕ′g(xtη), a

t⟩), E[ϕf(xTη )|xT−1
η ]⟩

}
.

For non trivial solutions to Eq. (C.5), we adhere to the
incremental action dynamic (D3) property of the SD-MDP.
The binary structure of the optimal policy becomes apparent
at T − 1. (Please see derivation in Appendix C.1.)

2.3 STRUCTURE OF THE OPTIMAL POLICY

Let τa ≡ (ai=1,ai=2,ai=3, . . . ,ai=t) denote a sequence
of a from 1 to t. Further, let us denote the operators,

ℵt[τa] ≡ T̃∆a(t) +

t−1∑
i

||⟨ϕ′g(xiη), a
i⟩||p − Ā (2.17)

ℵt[τa] ≡ T̃ ∆̄a(t) +

t−1∑
i

||⟨ϕ′g(xiη), a
i⟩||p −A (2.18)

Where T̃ represents T −t+1. Intuitively, ℵt[τa] and ℵt[τa]
represent the maximum and minimum allowable consump-
tion under the path constraint in Eq. (2.11) at time t. Moving
forward let, A(t) denote the action set at time t, given the
constraints from equations Eq. (2.10) and (2.11), such that
the expression a ∈ A(t) encapsulates the constraints from
all action dynamics pertaining to the SD-MDP.

A(t) ≡
{
a : A(t) ≤ ||⟨ϕ′g(xtη), a

t⟩||p ≤ A(t)
}

(2.19)

A(t) = max
{
ℵt[τa], ∆a(t)

}
(2.20)

A(t) = min
{
ℵt[τa], ||xtd||p, ∆̄a(t)

}
(2.21)

Intuitively, ∆a(t) and ∆̄a(t) constitute the minimum and
maximum incremental capacity specified by the system. To
note in Eq. (2.19), as ||xtd||p lower bounded by 0, and we can
omit 0 from the set. The incremental action dynamic (D3)
forms a constraint on the capacity from the deterministic
component of the SD-MDP. Along with the goal constraint
of the system, ℵt[τa] and ℵt[τa] form a bound on the admis-
sible actions at time t, denoted as A(t).

{a+} = argmax
a∈A(t)

||a||p, {a−} = argmin
a∈A(t)

||a||p (2.22)

Given that ϕ and ϕ′ are antiparallel linear maps on a, the
solutions of {a+} and {a−} constitute a linear optimization
problem. {a+} corresponds to the solution which exploits
the maximum achievable reward at time t as expressed in
Eq. (2.8), and {a−} expresses the action conserves the min-
imizes the consumption of the capacity for the future. Given
A(t), at any time t, there exists two sets {a+}, and {a−}
which either maximizes allowable reward, or maximally
reduces consumption of resource xd. Let us denote a+[xη]
and a−[xη] as the following,

a+[xη] = argmax
a∈{a+}

⟨ϕf(xη), a⟩, (2.23)

a−[xη] = argmax
a∈{a−}

⟨ϕf(xη), a⟩. (2.24)

In Lem. 2.1, we show that the optimal policy consists of an
action, represented as a vector, corresponding to one of two
sets {a+} or {a−}, each with dimension D. A continuous
action space MDP thereby reduces to a sequential discrete
action decision problem, where the action space forms a
finite dimension subspace with a maximum cardinality of
with at most 2D.
Lemma 2.1. Finite and Bounded Action Space for the
SD-MDP: For the SD-MDP, for any action taken in the finite
time horizon, optimal policy lies to the union of 2 subspaces,
that is a∗ ⊂ {a+} ∪ {a−} ⊂ A(t) ⊆ A, for all time steps
t. The cardinality of the dimension of the optimal solution
space is upper bounded by 2D. (Proof in Appendix A.1.)

Let τη ≡ {xtη,xt+1
η ,xt+2

η , . . . ,xTη } denote a sequence of
stochastic outcomes, the expectation of which is denoted as
E[τη] ≡ {E[xtη],E[xt+1

η ],E[xt+2
η ], . . . ,E[xTη ]}. We define

the Topk(E[τη]) for a series of multidimensional vectors be
defined as,

Topk=T (τη) = (E[xk=1
η ],E[xk=2

η ], . . . ,E[xk=Tη ]) (2.25)

where define with shorthand, τ̃ ≡ Topk=T (τ), such that,

ϕ f(τ̃1]) ≻ ϕf(τ̃2]), · · · ≻ ϕ f(τ̃T ]) (2.26)

where we index τ̃ i ≡ E[xiη] ∈ Topk=T (τη).

Sketch of Proof: First we demonstrate the separabil-
ity of E[τη] with respect to any deterministic action se-
quence. The solution is therefore to find a maximizing so-
lution for each E[xtη] ∈ E[τη], which is possible under
full information. Under incremental dynamics, ∆a(t) ≤
||⟨ϕ′g(xtη), a

t⟩||p ≤ ∆̄a(t), only a limited amount of re-
sources can be dedicated to maximizing each E[τη], thus,
the problem reduces to a fractional knapsack problem. We
show that when we majorize over E[τη], the optimal se-
quence, (a∗), to the sequence, E[τη], is an order preserving
union of two sequences, one corresponding to a maximiz-
ing vector a+[xη] and one corresponding to a minimizing
vector a−[xη].
Lemma 2.2. Solving for Optimal Value via Top K Alloca-
tion: For the SD-MDP, the optimal value can be obtained by
solving the dual problem, which involves finding the value of
k in Topk(E[τη]) over k ∈ {1, . . . , T} possibilities. (Proof
in Appendix A.2.)

Sketch of Proof: Given the separability of E[τη] with re-
spect to any deterministic action sequence. We show that
when we majorize over E[τη], to produce an ordered set of
sequences, we simply select the top k vectors in this ordered
list which satisfies the norm maximization constraints for
the resource allocation. For the rest of the E[τη] we allo-
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cate minimum resources within the constraints. The solution
involves therefore simply finding the value of k which maxi-
mizes the value function in Eq. (2.27) subject to constraints
derived from Eq. (2.19).

Vk(x
t) =

k∑
i=1

⟨ϕf
(
τ̃ i
)
,a+[τ̃ i]⟩+

T∑
i=k+1

⟨ϕf
(
τ̃ i
)
,a−[τ̃ i]⟩

(2.27)
As shown by Lemmas 2.1 and 2.2, under perfect information
where E[τη] is known, the problem reduces from a complex
sequential optimization to a fractional knapsack problem
with computational complexity O(T log(T )) for exact so-
lutions. This is a significant improvement over stochastic
programming methods which scale polynomially with T s,
for number of scenarios s > 1 always [DS06; SN05]. In
addition, our approach is independent of the state-action
space size, which potentially be infinite, offering a strong
advantage for many real-world problems over value or pol-
icy iteration, whose complexity scales polynomially with
the state-action space [Win04; Sut18].

Monte Carlo Value Estimation for the SD-MDP: Thm. 1
states that any value function estimate using N MC esti-
mate, will have a best case estimate error on the order of
O(1/

√
N). The key underlying approach is that we com-

pute the expectation over the trajectory,E[τη], via MC simu-
lation. Via this approximation, we solve for an approximate
optimal policy, which constitutes a pure strategy (determin-
istic policy) in a limited action space as a consequence of
Lem. 2.1. This policy only depends on the discrete time
position, allowing MC simulations to take place to estimate
Vk(x

t).
Theorem 1. Upper bound on the Monte Carlo Value Es-
timation for the SD-MDP: For the SD-MDP abstraction
partitionable MDP, the optimal policy, where the value func-
tion is upper bounded by |V̂N − V ∗(x)| ≤ O((δ

√
N)−1),

with probability 1− δ. Where V̂N is the Monte Carlo sim-
ulation estimate of the value function under N iterations.
(Proof in Appendix A.4.)

Sketch of Proof: Any naturally evolving time series has an
expected outcome which can be computed E[τη], and thus
the problem reduces to an allocation problem which can be
solved using the dual formulation, in solving for Topk(·) in
Lem. 2.2. Via Hoeffding’s inequality, we can upper bound
the approximation error from Monte Carlo sampling.

3 MONTE CARLO PLANNING WITH
VALUE FUNCTION APPROXIMATION

To yield improvements to MCTS within the SD-MDP frame-
work, in the Expansion phase, knowledge from Lem. 2.1
is used to restrict the action space away from subopti-
mal actions. In the Rollout phase, drawing from knowl-
edge from Lem. 2.2, a more efficient value function esti-
mator is employed, obviating the need for an uninformed
(typically uniform) rollout policy. Moreover, as shown by

Thm. 1, we guarantee that for any V̂N (x), as the simula-
tion budget increases, N → ∞, the approximation error
|V̂N (x)− V ∗(x)| → 0. We employ two variants of MCTS:
Upper Confidence Tree (UCT) [KS06] and Maximum En-
tropy Monte Carlo Planning (MENTS) [Xia+19].

UCT: Leveraging bandit algorithms like UCB, as discussed
in [CM07] and [KS06], MCTS efficiently approximates
π∗(x, a) by navigating the state-action space via the UCT
metric. Note µ̄(t) is the reward for a trajectory, prior and
after using uniform rollout.

πUCT(x) = max
a∈A

Q̄(x,a) + c

√
logN(x)

N(x,a)
, (3.1)

Q̄(xt,at)← Q̄(xt,at) +
µ̄(t)− Q̄(xt,at)

N(xt,at) + 1
. (3.2)

Softmax Entropy Policies (MENTS): Nevertheless, an
alternative to UCT are softmax style Boltzmann policies,
where the key difference is that a stochastic selection pol-
icy is used for action selection versus a deterministic policy.
This encourages exploration and has been shown to be faster
to converge compared to UCT. [Gri+20] elaborates on the
use of AlphaZero and UCT, offering theoretical bounds such
as π̂ ≤ π̄, where π̂ represents empirical policy, π̄ is a soft-
maxed policy balancing an empirical Q function, and πθ
denotes the supervised learning policy. The effectiveness of
regularized MCTS, particularly in low sample count scenar-
ios, is highlighted by [Gri+20].sample efficiency in bandit-
based regret minimization algorithms. [Haz11] showed its
effectiveness, achieving regret of O(log(T )).

Maximum Entropy Monte Carlo Planning (MENTS):
[Xia+19] proposes the use of a convex regularizer, which
upper-bounds the value function estimate to improve the
sampling efficiency of MCTS. In maximum entropy MCTS
(MENTS), entropy is used to enhance exploration and con-
vergence to the optimal policy for MDP planning. Further-
more, theoretical guarantees are also provided in [Xia+19]
with respect to the suboptimality of the alogrithm over time.
Let us define our approximate Bellman update function,

GP (x,a, V (·)) = µ(x,a) +
∑

S(x′,a)

(
N(x′)

N(x,a)
V (x′)

)
(3.3)

Given a tree with visited states P , and a value function
estimator based on uniform rollout, Vs(·), in MENTS, there
are two modes of updates,

Qsft(x
t,at) =

{
GP (x,a, Vsft(·)) if non-terminal in P

GP (x,a, Vs(·)) else
(3.4)

Where GP (x,a, Vsft(·)) represents the softmax value
Q-update based on the softmax value function, and
GP (x,a, Vs(·)) which is the value function estimate ob-
tained from a uniform rollout policy. The softmax value
function, Vsft(·) is updated by a regularized function of the
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(a) Maritime (b) Hybrid Fuel. (c) Financial Options.

Figure 3: We illustrate the convergence to the optimal value function as a function of the number of MC iterations for the MENTS
algorithm [Xia+19]. We demonstrate that MENTS VC yields stronger value convergence properties compared to vanilla MENTS.

softmax Q function Qsft(·).

Vsft(x
t)← α log

∑
a∈A

exp

(
1

α
Qsft(x,a)

)
(3.5)

πM(a|x) = (1− λs)
1

α
(Qsft(s,a)− Vsft(s)) +

λs
|a|

(3.6)
MENTS uses a soft Bellman update for Q̂sft(·), unlike the
rollout policy via UCT. [Pai+24] suggests that MENTS is
not consistent, meaning it will not always converge, and
there may exist MDP’s where MENTS fails to converge.
Decaying entropy MCTS (DENTS) is an MCTS algorithm
that guarantees convergence as t→∞, but it lacks strong
guarantees regarding the probability of taking suboptimal
actions (P (a∗ ̸= a)), needed for proving Thm. 2.

3.1 VALUE CLIPPING

We study the problem of optimal Monte Carlo planning
under perfect information. From Sec. 2.2 we can leverage
the MC estimation properties of the value function approxi-
mator (VFA) to enhance any MDP solver. As we draw more
samples our estimate of the model parameters increases,
nevertheless the MC VFA still relies on a simulation budget
to estimate the value function. We can further leverage the
theoretical guarantees in Thm. 1 with respect to the MC es-
timation error of the optimal value function. V

∗
represents

the maximum value estimate under perfect information, for
actions in hindsight. V ∗ represents the value estimate under
perfect information for the anticipative solution on expecta-
tion. Let us define,

∆V (x) = V
∗
(x)− V ∗(x), V ∗(x) ∈ [V ∗(x), V

∗
(x)]
(3.7)

Where the true solution V ∗(x) belongs somewhere between
the optimal value in hindsight and the anticipative solution
on expectation. We leverage V (x)∗ and V (x)∗ to improve
the convergence rate of our planning algorithm. Therefore,
given ∆V (x) we can clip the outcome of any rollout policy
in MCTS by ∆V (x). Typically, when a new node is added to
the search tree P , a uniform rollout policy or neural network
is implemented to provide an initial estimate of the V ∗(·).

Guarantees on Simple Regret: We can provide a guarantee
on simple regret based on the structure of the SD-MDP, and
extending the work of [Xia+19] for UCT and [KS06] for
MENTS. Let simple regret be defined as,

reg(T ) = sup
x∈X

(
V ∗(x)− V T (x)

)
(3.8)

Where V T (x) is the value estimate of value function estima-
tor after T samples. We provide high probability bounds on
the simple regret for MCTS-MENTS, regM (T ) and MCTS-
UCT regU (T ), where there exists some constant C ∈ R+

to bound the simple regret.
Theorem 2. Simple Regret: Given a Monte Carlo plan-
ning algorithm, M, where p̃(T ) = P (a∗ ̸= a), where
limT→∞ p̃(T ) = 0 and p̃(T ) is asymptotically bounded
above by O( 1

T ) for T samples, when running M over
the SD-MDP, the the simple regret reg(T ), as defined in
Eq. (3.8), is bounded by CkT p̃(T ), for some value Ck ∈
R

+. (Proof in Appendix A.6.)

Sketch of Proof: The proof of reg(T ) bounds for MENTS
and UCT for the SD-MDP begins with the identification that
the optimal action a∗ belongs to a discrete set. The reg(T )
is then analyzed based on the probability of action swaps,
with the worst-case regret per swap denoted by ∆̃a. By quan-
tifying the expectation over simple regret, we bound it using
binomial probabilities and an upper-bounding polynomial
function. As T → ∞, the expectation over simple regret
is shown to be upper-bounded by O(T 2 exp

(
T/ log3(T )

)
)

for MENTS and O(T 1−ρ) for UCT.

As a consequence of Thm. 2, when running MENTS or UCT
over the SD-MDP, the simple regret, reg(T ), is bounded
by O(T 2 exp

(
T/ log3(T )

)
) for MENTS, and O(T 1−ρ) for

UCT, as expressed in Eq. (3.9) and Eq. (3.10) respectively.
Eq. (3.9) is a consequence of Thm. 5 from [Xia+19] and
Eq. (3.10) is a consequence of Thm. 5 from [KS06].

regMENTS(T ) ≤ CT 2 exp
(
T/ log3(T )

)
(3.9)

regUCT(T ) ≤ CT 1−ρ (3.10)

The upper bound on the simple regret of UCT converges
to zero as T → ∞ for ρ > 1. Likewise, the simple regret
of MENTS also vanishes asymptotically. A detailed outline
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(a) Maritime (Cost Based.) (b) Hybrid Fuel. (c) Financial Options.

Figure 4: We compare empirical results based on cost reduction or reward maximization. The leftmost boxplot presents an instance-
dependent baseline for reference. Evidently, MCTS value clipping within the SD-MDP framework improves expected cost/reward
performance over vanilla MCTS, as shown for both UCT and MENTS variants.

of the value clipping implementation in combination with
MENTS and UCT can be found in Appendix D.

4 EMPIRICAL RESULTS
We provide a series of empirical experiments to justify the ef-
ficacy of our algorithm. We further impose a computational
constraint of the power of MCTS, such that the number of
MCTS iterations N ≤ Kc(2D)T , Kc = 0.1, that is it is
only possible to explore at most Kc percentage of all possi-
ble trajectories using MCTS, before making a decision. This
constraint prevents us from overpowering MCTS in such a
way that would allow it to brute force search all possible
combinations, and must rely on efficient exploration. For
all experiments, we compare our solution with an instance-
dependent baseline solution, traditionally used to solve such
problems. For MCTS we apply the selection strategies of
both UCT, or MENTS, to provide comparative study. We
record empirical results on cumulative reward/cost optimiza-
tion, as well as improvement of the of the optimal value
estimate at the root node. (The details for all experiments
are outlined in Appendices E, F, & G respectively.)

Maritime Bunkering: Maritime bunkering is a logistical
challenge in seaborn transportation aimed at minimizing
fuel costs for fleets like ships by optimizing refuelling poli-
cies at ports or at sea. The planning problem is traditionally
addressed through stochastic programming, which consid-
ers factors like fuel consumption, tank capacity, and price
variability to find cost-effective refuelling strategies under
fixed schedules. The solution via multi-stage stochastic pro-
gramming is often computationally challenging.

Hybrid Fuel Consumption: In hybrid vehicles, a driving
system dynamically switches between power sources based
on driving conditions, with regenerative braking replenish-
ing the battery during deceleration. The challenge lies in
optimizing fuel allocation over a journey under stochasticity.
We model such conditions as a Hidden Markov Process,
where the vehicle must balance immediate efficiency with
future resource availability to maximize overall mileage.
Solutions often involve belief-state MDP’s which is applied
as a benchmark against our SD-MDP MCTS framework.

Financial Options Pricing: In financial trading, Amer-
ican options, which allow holders to exercise at any time
before maturity, present an optimal stopping problem where
the goal is to maximize profit by deciding when to exercise
the option. Serving as a baseline, the Longstaff-Schwartz
algorithm is a standard approach, using Monte Carlo simula-
tions and polynomial regression to estimate the continuation
value of holding the option, comparing it to the immediate
exercise value to determine the optimal strategy. We provide
a comparison of the baseline performance against our our
SD-MDP MCTS framework.

5 CONCLUSION
Certain stochastic decision processes in optimal control and
economics demonstrate remarkable efficacy when coupled
with specific assumptions and advanced approximation tech-
niques, particularly in value approximation. Disentangling
the causal structure of Monte Carlo (MDP’s) not only yields
unique insights but also significantly simplifies problem-
solving. However, traditional methods for addressing re-
source allocation problems often struggle to seamlessly in-
tegrate with Monte Carlo planning techniques. In response,
we propose SD-MDP, an innovative framework for solving
structurally decomposed MDPs, offering a versatile mod-
eling approach alongside robust theoretical guarantees. In-
spired by fundamental energy conservation principles, we
introduce a resource-utility exchange model, which not only
enhances computational efficiency but also reduces planning
problem complexity. Moreover, we showcase the effective
disentanglement of Monte Carlo sampling from the plan-
ning process within the SD-MDP framework, facilitating the
derivation of Monte Carlo value estimates for both upper
and lower bounds of the MDP problem at each state. By
seamlessly integrating this approach into MCTS, we not
only establish theoretical guarantees but also provide em-
pirical evidence of its efficacy in addressing well-known
problems in economic logistics. As future avenues, we en-
vision extending this tool to tackle a broader spectrum of
economic problems while delving deeper into the learning
setting, where the parameters of the MDP must be learned
rather than given.
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Improved Monte Carlo Planning via Causal Disentanglement for
Structurally-Decomposed Markov Decision Processes

(Supplementary Material)

A PROOFS AND THEORY
A.1 PROOF OF LEM. 2.1

Finite and Bounded Action Space for the SD-MDP: Under the SD-MDP framework, when ϕf(·) is a perfect antisymetric
reflection of ϕf(·), the optimal policy belongs to the union of 2 subspaces, that is a∗ ⊂ {a+}∪{a−} ⊂ A, for all time steps
t. The cardinality of the dimension of the optimal solution space is upper bounded by 2D where D is the dimension of a.

Proof. We use proof by induction. Suppose we start at any time t. The reward function,

µ(xt,a) = ⟨ϕf(xtη), a⟩ (A.1)

To remind the reader, we denote {a+} and {a−} as the following,

{a+} = argmax
a∈A(t)

||a||p, {a−} = argmin
a∈A(t)

||a||p (A.2)

Given A(t), at any time t, there exists two sets {a+}, and {a−} which either maximizes allowable reward, or maximally
reduces consumption of xd. Let us denote a+[xη] and a−[xη] as the following,

a+[xη] = argmax
a∈{a+}

⟨ϕf(xη), a⟩, a−[xη] = argmax
a∈{a−}

⟨ϕf(xη), a⟩ (A.3)

We know that the dimension of |a|, |xd|, and |xη| are equal, denoted as D. From the fundamental theorem of linear
programming there can be at most D solutions at the vertices of the convex hulls in Eq. (A.3). Depending on the scaling
property of ϕ(·), the sets a+[xη] and a−[xη] could partially overlap or be disjoint, nevertheless the number of unique
solutions would to the either maximization problem would be at most D.

The solutions of {a+} and {a−} constitute disjoint sets, where a+[xη] is the action which myopically maximize the reward
obtained at time t, and a−[xη] is the action which maximizes the potential for the future (or conserves curretn resources). In
fact, when p = 1 the solution to a+ is unique due when the feasible region is bounded, and the objective function is linear
and convex in the feasible region.

Value function w.r.t. time: Under perfect information, we can naturally compute the expectation over τη, leading to
the expected stochastic outcome at each discrete time step, denoted as E[τη] ≡ {xtη,E[xt+1

η ],E[xt+2
η ], . . . ,E[xTη ]}. This

evolution transitions independently w.r.t. to any action sequence (at, . . . ,aT ), due to the properties of the SD-MDP. Thus,
for any stochastic trajectory τη , constituting a single scenario outcome, there exists a solution which optimizes the cumulative
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rewards from t to T .

Next let us denote the top k elements of E[τη] a set of vectors with size k, as Topk(τη). Should the dimension of xtη be
greater than 1, in order to compare various values of xtη , we majorize over the sequence provided by ϕf ⊙ E[τη] to ensure a
ranking,

Topk=T (E[τη]) = (E[xk=1
η ],E[xk=2

η ],E[xk=3
η ], . . . ,E[xk=Tη ]) (A.4)

Such that,

ϕf(E[xk=1
η ]) ≻ ϕf(E[xk=2

η ]) ≻ ϕf(E[xk=3
η ]) · · · ≻ ϕf(E[xk=Tη ]) (A.5)

Also expressed as,

ϕf(τ̃k=1) ≻ ϕf(τ̃k=2) ≻ ϕf(τ̃k=3) · · · ≻ ϕf(τ̃k=T ) (A.6)

The Topk(τη) operator will truncate over this ordered sequence to only include the top k elements. And should we generalize
for any t ∈ T , the optimal value function can be expressed as,

Vk(x
t) =

k∑
i=1

⟨ϕf
(
τ̃ i
)
,a+[τ̃ i]⟩+

T∑
i=k+1

⟨ϕf
(
τ̃ i
)
,a−[τ̃ i]⟩ (A.7)

Let sequence (a+) ≡ (a+[x1
η], . . . ,a

+[xtη]), and (a−) ≡ (a−[x1
η], . . . ,a

−[xtη]). Let ã ≡ (a+)∪̃(a−), where ∪̃ represents
an order preserving union of sequences. As an aside, we can also express Eq. (A.7) therefore as,

Vk(x
t) = ϕf ⊙ Topk=T (τη)⊙ ã (A.8)

Suppose that the optimal policy consists of the of the expression in Eq. (A.7), we demonstrate that there exists no way of
achieving a higher value should k be optimal.

• Under the norm constraints, suppose a reduction in a vector belonging to (a+) occurs, and is transferred to a vector in
(a−), the maximization of Vk(xt) would yield a lesser result. This is due to the explicit assumption that ϕf is a strict
orthogonal reflection of ϕ′g.

• By definition the sequence ã is majorized, and by extension of the Hardy-Littlewold-Polya Theorem [HLP52] [Day72],
the sum of Hadmard product of any ranked majorized sequence with another ranked majorized sequence is always
maximizing. We can infer that by swapping any element from (a+) with (a−) would result in a sub-optimal value.

We know that the dimension of |a|, |xd|, and |xη| are equal of dimension D, and by Eq. (A.7), the solution over trajectory
E[τη] consists of either a+[xtη] or a−[xtη] at each time interval t. Therefore the structure of the optimal policy posits that the
optimal solution will fall into any of the two sets, a+[xη] ∈ {a+} or a−[xη] ∈ {a−} both with dimension D, and therefore
the maximum number of unique solutions is 2D, when {a+} and {a−} are disjoint.

A.2 PROOF OF LEM. 2.2

Solving for Optimal Value via Top K Allocation: For the SD-MDP, the optimal value can be obtained by solving the dual
problem, which involves finding the value of k in Topk(E[τη]) over k ∈ {1, . . . , T} possibilities.
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Proof. The optimal value problem can be solved, by solving the dual problem, selecting the value of k in Topk(E[τη]) over
k ∈ {1, . . . , T} possibilities. As the Topk(τη) operator truncates over an ordered sequence to only include the top k elements,
we generalize for any t ∈ T , the optimal value function. Let ||a+||p and ||a−||p be shorthand for ||⟨ϕ′g(xtη), a

+⟩||p and
||⟨ϕ′g(xtη), a

−⟩||p respectively, and these are norm equivalent for any value of xη when considering ||a+||p or ||a−||p
specifically. The optimal value function can be expressed as,

V ∗(xt) = max
k∈{1,...,T}

Vk(x
t) (A.9)

where, A ≤
∑
k

∥∥a+[xη]∥∥p + (T − k)
∥∥a−[xη]∥∥p ≤ Ā (A.10)

Next, the application of the Topk(·) constitutes the non-anticipative solution for the planning problem under perfect
information. Under unconstrained incremental dynamics, one could set ∥a+[xη]∥p = Ā, and K = 1, as the trivial solution,
which represents the optimal stopping problem. But suppose incremental dynamics do exist, and ∆a ≤ ∥a[xη]∥p ≤ ∆̄a,
then because f(·) is a strictly monotonic function the optimizing solution to Eq. (A.9) occurs at {a+} ∪ {a−}.
Solving for K: We propose the dual problem from the primal problem in Eq. (A.9). K intuitively controls the maximum
capacity allowable. Let us postulate and we seek to maximize K,

A

T
≤ k

T

(∥∥a+[xη]∥∥p − ∥∥a−[xη]∥∥p)+ T
∥∥a−[xη]∥∥p ≤ Ā

T
(A.11)

Given the fixed span ∥a+[xη]∥p − ∥a
−[xη]∥p, we therefore can compute K from Eq. (A.11), where K and ∥a−[xη]∥p are

free variables subject to certain constraints, and ∥a+[xη]∥p and T are given. Next, the application of the Topk(·) constitutes
the non-anticipative solution for the planning problem under perfect information. We propose the dual problem from the
primal problem in Eq. (A.9),

k∗ = argmax
k∈{1,...,T}

k (A.12)

where, k
(∥∥a+[xη]∥∥p − ∥∥a−[xη]∥∥p)+ T 2

∥∥a−[xη]∥∥p ≤ Ā (A.13)

k
(∥∥a+[xη]∥∥p − ∥∥a−[xη]∥∥p)+ T 2

∥∥a−[xη]∥∥p ≥ A (A.14)

To determines the maximizing k, we simply fix k, and search for a maximizing solution to the linear program represented
in Eq. (A.12). This LP formulation, assuming the constraints produce a feasible set, will generate one unique solution for
∥a+[xη]∥p, and ∥a−[xη]∥p.

A.3 TECHNICAL NOTE ON CONCENTRATION BOUNDS

Given any sub-Gaussian random variable Xi, we can express this inequality,

P

(
n∑
i=1

Xi ≥ t

)
≤ 2 exp

(
− ct2∑n

i=1 ∥Xi∥2ψ2

)
(A.15)

Where ∥Xi∥ψ2
is the sub-Gaussian norm of Xi, defined as, ∥X∥ψ2

:= inf
{
c ≥ 0 : E

(
eX

2/c2
)
≤ 2
}

. The sub-Gaussian

norm of a random variable X is defined as: |X|ψ2
= inf

{
c > 0 : E

[
eX

2/c2
]
≤ 2
}

.

The sub-Gaussian norm is |X|ψ2
= b−a

2 . The variance proxy is σ2 = (b−a)2
4 and

∑n
i=1(bi − ai)

2 = 4
∑n
i=1 σ

2
i .
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Relating Norm and Variance: For a bounded random variable X with a ≤ X ≤ b, the sub-Gaussian norm is related to the
variance proxy σ2 = (b−a)2

4 as 2: |X|ψ2 =
√
σ2 = b−a

2 .

A.4 PROOF OF THM. 1

Upper bound on the Monte Carlo Value Estimation for the SD-MDP: For the SD-MDP abstraction partitionable MDP,
the optimal policy, where the value function is upper bounded by |V̂N − V ∗(x)| ≤ O((δ

√
N)−1), with probability 1− δ.

Where V̂N is the Monte Carlo simulation estimate of the value function under N iterations.

Proof. For each stochastic trajectory τη , we denote as as a sequence (·),

τη ≡ (xt=1
η ,xt=2

η , ...,xTη ) (A.16)

We define a sequence of actions as τa|η ,

τa|η ≡ (at=1,at=2, ...,aT ) (A.17)

There must exists at least one optimal solution that for the optimal policy π∗, which we also denote as a sequence τ∗a|η,
where τ∗a|η is a sequence of deterministic actions, which yield the optimal solution for each trajectory τη . Given a trajectory
runs from 1→ T , and as consequence of Lem. 2.1, there exists at most (2D)T possibly optimal permutations of τ∗a|η , where
D is the dimension of the action space A. Let τ∗a|η denote an optimal solution such that,

τ∗a|η = argmax
a∈A

∑
xt
η∈τη

at · ϕf(xtη), s.t. A ≤
T∑
t=1

||at||p ≤ Ā (A.18)

Where we know xtη is a stochastic variable belonging to a trajectory τη. Based on the recency preference assumption,
illustrated by Eq. (2.11).

xtη = xt+∆
η =⇒ xtη ≻ xt+∆

η , ∆ ∈ Z (A.19)

Under this assumption, for each τη there must be only one unique τ∗a|η , constituting a surjection from τη 7→ τ∗a|η .

τη 7→ τ∗a|η (A.20)

Since by Lem. 2.1 we have a finite ation space per discrete time period, in finite time the cardinality of τ∗a|η is finite.
Nevertheless, the cardinality of τη is infinite. Thus by the pigeonhole principle, we can conclude that a τ∗a|η can inversely
map to potentially more than one τη , we denote this set of corresponding sequences as τ̃η .

τη 7→ τ∗a|η, τ̃η ↔ τ∗a|η (A.21)

Furthermore, let {τ∗a|η} denote all valid sequences of τ∗a|η corresponding to τη , by consequence of Lem. 2.1, the cardinality
of the injective map’s image {τ∗a|η} bounded by,

1 ≤ {τ∗a|η} ≤ (2D)T (A.22)

Most crucially, {τ̃η} denotes a set of sequences, of which are indifferent from each other in terms of their corresponding
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optimal policy τ∗a|η , constituting the optimal solution to the trajectory, for xη ⊂ RD. Although given parameters of stochastic
generator θ, the probability of observing τη is infinitesimal, the probability of τη ∈ {τ̃η} is quantifiable, given the functional
form and parameters of the stochastic generator. That is,

Pθ(τη ∈ {τ̃η}|Ft) > 0 (A.23)

Let the operator {τη} define the set of all sequence of trajectories τη, we define an operator Q(·) : {τη} 7→ {τ̃η} which
partitions {τη} into into indifference sets, τ̃η. In fact, from the relation in Eq. (A.21) and Lem. 2.1 the cardinality of this
partition function can be deduced as,

1 ≤ |Q({τη})| ≤
(
T

k

)
DT ≤ (2D)T (A.24)

Where k ≤ T is the capacity maximizing number governed by solution to the dual problem posed in Eq. (A.9). Let {xt→T
η }

denote the set of all possible trajectories for xη between t to T . The expectation thereof for E[{xt→T
η }] can be calculated

via stochastic calculus, or approximated by simulation. Given two sequences of vectors, xt→T and yt→T , let us define a an
operator ⟨⟨·, ·⟩⟩ as,

⟨⟨xt→T ,yt→T ⟩⟩ =
T∑
i=1

⟨xi,yi⟩ (A.25)

We can now examine the value function,

V ∗(xt) = E
[
⟨⟨ϕf(xt→T

η ), τ∗a|η⟩⟩
]

(A.26)

=

∫
τη

Pθ(τη|Ft) ⟨⟨ϕf(τη), τ∗a|η⟩⟩ dτη, 1 < |Q({τη})| < (2D)T (A.27)

≤
∑

Q({τη})

Pθ(τη ∈ {τ̃η}|Ft) ⟨⟨ τ̄s, ϕf(τ∗a|η) ⟩⟩, 1 < |Q({τη})| < (2D)T (A.28)

Eq. (A.26) represents the optimal value function as the expectation over the reward/cost of the unravelling of the stochastic
partition of the SD-MDP, ϕf(xt→T

η ), assuming an optimal deterministic policy τ∗a|η in adhered to by the agent. Eq. (A.27)
expresses the value function as an integral over the probability of each possible outcome ϕf(τη). In principle, {xt→T

η } can
be partitioned in to indifference sets {τ̃η}, via the Q(·) partition operator, where each indifference maps to a unique τ∗a|η.
And thus we can make the expectation in Eq. (A.26) decomposable. This presents a key advantage as any upper bounding
value function V̄ ∗(xt) ≥ V ∗(xt) can be expressed as the summation of the product of two terms.

V ∗(xt) ≤ V̄ ∗(xt) =
∑

Q({τη})

ḡτη ({τ̃η}) ḡs(τ∗a|η) (A.29)

where, ḡτη (·) ≥ Pθ(τη ∈ {τ̃η}|Ft), ∀τη ∈ {τ̃η} (A.30)
ḡs(·) ≥ ⟨⟨ϕf(τη), τ∗a|η ⟩⟩, ∀τ∗a|η ∈ τa (A.31)

Finding the upper-bound to V̄ ∗(xt) is now decomposed into a problem involving finding an two tight upper bounding
functions ḡτη (·) and ḡs(·). For incremental action dynamics as defined for the SD-MDP framework, there exists a limit on
the capacity of actions as defined in Eq. (2.11).

If we define an operator over {τη} such that,
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Topk(τη) : {τη}×K 7→ R
|X |×T , where, K ∈ Z+ (A.32)

Where the image, Im(Topk(·)) ∈ R|X |×T . We know that the Topk(τη) computation can occur with complexity O(T ), as it
involves sorting over elements. Therefore, we can denote an expression for ⟨⟨ϕf(τη), τ∗a|η⟩⟩ by writing,

⟨⟨ϕf(τη), τ∗a|η⟩⟩ = max
a∈{a+}

⟨⟨ϕf(TopK({τη})),a⟩⟩+ max
a∈{a−}

⟨⟨ϕf(/TopK({τη})),a⟩⟩, where, K =
⌊ Ā
T

⌋
(A.33)

Note that Eq. (A.33) is equivalent to Eq. (A.7) from Lem. 2.2, and τη ∈ {τ̃η}. So now fundamentally, we can express the
computation of the value function as a decomposition,

V ∗(xt) = ⟨⟨E[ϕf(τη)],E[τ∗a|η]⟩⟩ (A.34)

= E[⟨⟨ϕf(τη), τ∗a|η⟩⟩] (A.35)

= max
a∈{a+}

E[⟨⟨ϕf(TopK({τη})),a⟩⟩] + max
a∈{a−}

E[⟨⟨ϕf(/TopK({τη})),a⟩⟩] (A.36)

From Eq. (A.36) we can see that an approximation of V ∗(xt) can be computed by simulating over the stochastic trajectory
τη , then applying a deterministic function, TopK(·), over it.

Bounding the Approximation Error: To bound the expression on Eq. (A.36) we can take advantage of the Q(·) operator.

V ∗(xt) =
∑
Q(τη)

Pθ(τη ∈ τ̃η|Ft)
(

max
a∈{a+}

⟨⟨ϕf(E[TopK(τ̃η)]),a⟩⟩+ max
a∈{a−}

⟨⟨ϕf(E[/TopK(τ̃η)]),a⟩⟩
)

(A.37)

The next major challenge likes in the computation of Pθ(τη ∈ {τ̃η}|Ft) which is the probability that any trajectory τη
belongs to the indifference set {τ̃η}, given parameters of the stochastic generator θ and filtration Ft. Nevertheless, this
formulation allow us to separate the reward outcome, which is deterministically computable from the probability of it
occurring. To compute the conditional expectation of E[TopK(τ̃η)], we can apply Bayes rule to conditional expectations
and obtain a closed from expression for E[TopK(τ̃η)] in Eq. (A.38).

E[TopK(τ̃η)] =
1

P (τη ∈ τ̃η)

∫
τη∈τ̃η

TopK(τ̃η) 1[τη ∈ τ̃η] dτη (A.38)

Therefore, we can then apply a Monte Carlo approach to solve the problem of value estimation. But key advantages are
imposed, first is hindsight optimality. From Eq. (A.37) we can solve an optimal policy using the TopK(·) operator over τη
because there exists no causal relationship between action and state transition, as defined in the SD-MDP dynamic. We
also know, that every trajectory has a unique deterministic optimal value outcome by the relation in Eq. (A.21). The same
argument applies to E[/TopK(τ̃η)]. Moving forward, for convienience, let us define,

H(τ̃η) ≡ max
a∈{a+}

⟨⟨ϕf(E[TopK(τ̃η)]),a⟩⟩+ max
a∈{a−}

⟨⟨ϕf(E[/TopK(τ̃η)]),a⟩⟩ (A.39)

We can see that H(τ̃η) serves as a deterministic function for each input τ̃η. As we know that Q(·) will produce at most
(2D)T partitions of the trajectory space {τη}, we can treat this as the approximation of a multinomial distribution via MC.
Let our estimator simply be,
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P̂Nθ (τη ∈ τ̃η|Ft) =
1

N

N∑
i

1[τη ∼ θ ∈ τ̃η] (A.40)

Secondly, our value approximator would be defined as,

V̂ ∗
N (xt) =

∑
Q({τη})

P̂Nθ (τη ∈ τ̃η|Ft) H(τ̃η), where, K =
⌊ Ā
T

⌋
(A.41)

Convergence: By law of large numbers ||P̂Nθ (·)− P || → 0, and we argue consequently ||V̂ ∗
N (·)− V ∗(·)|| when N →∞.

To demonstrate convergence, we can apply concentration bounds to quantify the approximation error, via Hoeffding’s
inequality. Thus we seek the probability that τη ∈ τ̃η by taking N Monte Carlo samples,

N(τ̃η) =

N∑
1[τη ∈ {τ̃η}] (A.42)

E[N(τ̃η)] = N · pθ(τ̃η) (A.43)

Where pθ(τ̃η) is the finite multinomial probability that the event τη ∈ τ̃η occurs. Thus the total variance of each counts on
each τη ∈ τ̃η is,

Var[N(τ̃η)] = N · pθ(τη ∈ τ̃η) · (1− pθ(τη ∈ τ̃η)) (A.44)
Var[P (τ̃η)] = pθ(τη ∈ τ̃η) · (1− pθ(τη ∈ τ̃η)) (A.45)

We can now apply Hoeffding’s inequality, let shorthand pθ(τη) ≡ pθ(τη ∈ τ̃η|Ft),

P
(∣∣∣E[P̂Nθ (τ̃η)− Pθ(τ̃η)]

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2Nϵ2

pθ(τη) · (1− pθ(τη))

)
(A.46)

P
(∣∣∣E[P̂Nθ (τ̃η)− Pθ(τ̃η)]

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−2Nϵ2

σ2

)
(A.47)

Therefore, with probability 1− δ,

P
(∣∣∣E[P̂Nθ (τ̃η)− Pθ(τ̃η)]

∣∣∣ ≥ ϵ
)
≤ δ (A.48)

2 exp

(
−2Nϵ2

σ2

)
≤ δ (A.49)

log

(
2 exp

(
−2Nϵ2

σ2

))
≤ log δ (A.50)

ϵ ≥ σ

√
1

2N
log

2

δ
(A.51)

Thus we have, with probability 1− δ,

∣∣∣E[P̂Nθ (τ̃η)− Pθ(τ̃η)]
∣∣∣ ≤ σ

√
1

2N
log

2

δ
= ϵ(τ̃η) (A.52)
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Therefore, we can express the value function as,

V ∗(xt) =
∑

Q({τ̃η})

Pθ(τ̃η) H(τ̃η) (A.53)

Where with probability 1− δ,

V ∗(xt) ≤
∑

Q({τ̃η})

(
Pθ(τ̃η) + ϵ(τ̃η)

)
H(τ̃η) (A.54)

=
∑

Q({τ̃η})

Pθ(τ̃η)H(τ̃η) +
∑

Q({τ̃η})

ϵ(τ̃η)H(τ̃η) (A.55)

= V ∗(xt) +
∑

Q({τ̃η})

ϵ(τ̃η)H(τ̃η) (A.56)

Which has the implication that,

V ∗(xt) ≤
∑

Q({τ̃η})

P̂Nθ (τ̃η) H(τ̃η) =⇒ V̄ ∗(xt)− V ∗(xt) ≤
∑

Q({τ̃η})

ϵτηH(τ̃η) (A.57)

We can write this also in vector notation as,

∆+
V = CQ(·) · H(τ̃η) (A.58)

Where, for q ∈ {1, . . . , |Q|} partitions,

CQ(·) = [c1(τη, δ) . . . cQ(τη, δ)]
T (A.59)

cq(τη, δ) =

√
pq(τ̃η)(1− pq(τ̃η))

2
log

(
2

δ

)
, ∀q ∈ Q({τ̃η}) (A.60)

∆+
V constitutes the maximum possible over estimation due to misspecification. This is fixed and determined by the properties

of the stochastic generator θ, and due to misspecification, the upperbound on the value function decreases with rate 1√
N

.
Thus we have an upper bound on the value,

V̄ ∗(xt)− V ∗(xt) ≤
∑

Q({τ̃η})

ϵ(τ̃η)H(τ̃η) =
∆+
V√
N

. (A.61)

Without loss of generality, the opposite can be argued for a lower bound, as ϵ(τ̃η) adheres to a symmetric relation,

V ∗(xt)− V ∗(xt) ≤
∆+
V√
N

. (A.62)
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A.5 LEM. A.1 AND PROOF

Lemma A.1. Binomial Sum Simplification: From Feller (1991) (Pg. 151), the following inequality holds,

P (Σi ≥ k) = P (Σi = k)
k(1− p)

k − Tp
(A.63)

Proof. Let X1, · · · , XT be a sequence of variables with Bernoulli distribution XT ∼ B(T, p), assuming k > Tp,

P (

T∑
i=1

Xi ≥ k) ≤ P (

T∑
i=1

Xi = k)
k(1− p)

k − Tp
(A.64)

We can express,

P (
∑T
i=1 Xi = k + 1)

P (
∑T
i=1 Xi = k)

=

T !
(k+1)!(T−k−1)!p

k+1(1− p)T−k−1

T !
k!(T−k)!p

k(1− p)T−k
=

(T − k)p

(k + 1)(1− p)
(A.65)

For j ≥ k,

P (

T∑
i=1

Xi = j) =
P (
∑T
i=1 Xi = k + 1)

P (
∑T
i=1 Xi = k)

· · ·
P (
∑T
i=1 Xi = j)

P (
∑T
i=1 Xi = j − 1)

P (

T∑
i=1

Xi = k) (A.66)

≤ P (

T∑
i=1

Xi = k)

(
(T − k)p

(k + 1)(1− p)

)j−k
(A.67)

We therefore obtain,

P (

T∑
i=1

Xi ≥ k) =

T∑
j=k

P (

T∑
i=1

Xi = j) ≤ P (

T∑
i=1

Xi = k)

T∑
j=k

(
(T − k)p

(k + 1)(1− p)

)j−k
(A.68)

= P (

T∑
i=1

Xi = k)
1−

(
(T−k)p

(k+1)(1−p)

)T−k+1

1− (T−k)p
(k+1)(1−p)

(A.69)

≤ P (

T∑
i=1

Xi = k)
1

1− (T−k)p
(k+1)(1−p)

= P (

T∑
i=1

Xi = k)
(k + 1)(1− p)

k − Tp+ 1− p
(A.70)

< P (

T∑
i=1

Xi = k)
k(1− p)

k − Tp
(A.71)

A.6 PROOF OF THM. 2

Simple Regret: Given a Monte Carlo planning algorithm,M, where p̃(T ) = P (a∗ ̸= a), where limT→∞ p̃(T ) = 0 and
p̃(T ) is asymptotically bounded above by O( 1

T ) for T samples, when runningM over the SD-MDP framework, the the
simple regret reg(T ), as defined in Eq. 3.8, is bounded by CkT p̃(T ), for some value Ck ∈ R+.

Proof. From Lem. 2.1 we ascertain that as t grows t→ T at each time increment the optimal action a∗ lines in a discrete
set {a+} ∪ {a−}. Let p̃(t) = P (a∗ ̸= a), given a trajectory, where the agent has acted perfectly, we first quantify the regret
accumulated from making k swaps, that is instead of performing at = a∗ ∈ {a−}, the agent instead performs at ∈ {a+}
and (vice-versa). Logically it follows, for k swaps of any given capacity, the agent would play the at ∈ {a+} at another
point in time. When each of these swaps occur, the worst case instantaneous regret (or gap) is defined as ∆̃a,
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∆̃a = max
a∈{a+}

⟨ϕf(xs),a⟩ − max
a∈{a−}

⟨ϕf(xs),a⟩ (A.72)

Let us next determine the consequences of each outcome, should i swaps occur.

reg(T |τη) =

{
k∆̃a, k ≤ i ≤ T

i∆̃a, i < k ≤ T
(A.73)

Assuming k > T p̃, which is possible as we state that p̃ is asymptotically bounded above by O(1/T ), we can therefore
bound the expectation over simple regret as,

E[reg(T )] ≤ ∆̃a

k−1∑
i=1

i

(
T

i

)
p̃i(1− p̃)T−i + k∆̃a

T∑
i=k

(
T

i

)
p̃i(1− p̃)T−i (A.74)

= ∆̃a

k−1∑
i=1

i

(
T

i

)
p̃i(1− p̃)T−i + k∆̃aP (Σi ≥ k) (A.75)

Which we can simplify further as (from Lem. A.1),

E[reg(T )] ≤ ∆̃a

k−1∑
i=1

i

(
T

i

)
p̃i(1− p̃)T−i + k∆̃aP (Σi = k)

(k(1− p̃)

k − T p̃

)
(A.76)

= ∆̃a

k−1∑
i=1

i

(
T

i

)
p̃i(1− p̃)T−i︸ ︷︷ ︸
FT

p̃ (i)

+k∆̃a

(
T

k

)
p̃k(1− p̃)T−k︸ ︷︷ ︸
FT

p̃ (k)

(k(1− p̃)

k − T p̃

)
(A.77)

Taking a close up of the limit on the fractional term, k(1−p̃)k−T p̃ ,

lim
p̃→0

k(1− p̃)

k − T p̃
= 1 (A.78)

Let FTp̃ (x) represent the binomial probability, with respect to x successes, given T attempts, and a success probability p̃.

FTp̃ (x) =

(
T

x

)
p̃x(1− p̃)T−x (A.79)

We can then represent Eq. (A.76) as,

E[reg(T )] ≤ ∆̃a

k−1∑
i=1

iFTp̃ (i) + k∆̃aF
T
p̃ (k) (A.80)

From Eq. (A.80) the right hand side is vanishing as T → ∞, as FTp̃ (k) → 0. What is more important is we find an
upper-bound to the right hand side term, ∆̃a

∑k−1
i=1 iFTp̃ (i). To accomplish this, let us impose an upper-bounding function,

UT (x, p̃) which we define as a polynomial,
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UT (x, p̃) = αx(x− β) + γ ≥ FTp̃ (x), ∀x ∈ Z, 1 ≤ x ≤ k, ∀p̃ ∈ [0, 1] (A.81)

By adjusting the terms α, β, γ ∈ R, we can always construct some upperbounding function which upper-bounds the function
FTp̃ (x) on the interval ∀x ∈ Z, 1 ≤ x ≤ k, ∀p̃ ∈ [0, 1], this is due to the concave nature of FTp̃ (x). That is for any given
T ∈ [1,∞) we can select some combination of α, β, γ to satisfy Eq. (A.81). Once again we remind the reader that p̃(t) is
actually a dynamic feature of time t, as t increments from 1→ T . We can see that α, β are invariant of p̃(t) for t ∈ [1, T ],
should α, β be properly selected. Although we are free to select γ as we desire to form UT (x), it will become evident later
that we must select a γ(T ) which is a function of T , that approaches 0 as T →∞. To accomplish this, we first acknowledge
that for the binomial distribution, FTp̃ (x) for small values of p̃, which is the case when T →∞,

FTp̃ (x = 0) ≥ FTp̃ (x = 1) ≥ FTp̃ (x = 2) ≥ · · · ≥ FTp̃ (x = T ) (A.82)

We solve the inequality for the polynomial UT (x = 0, p̃) ≥ FTp̃ (x = 1), where from Eq. (A.82), γ(T ) serves as an
upper-bound for all FTp̃ (x), ∀x ∈ 1 . . . T by induction.

UT (x = 0, p̃) = αx(x− β) + γ(T ) = γ(T ) ≥ FTp̃ (x = 1) (A.83)

Given any fixed value of k which is determined by the capacity constraint of the SD-MDP framework, for any arbitrarily
large value of T , there exists some α, and β independent of T which, in combination with a properly selected γ(T ) will
serve to upper-bound FTp̃ (x = 1). We enforce the assumption that that p̃(T ) → 0 as T → ∞, we therefore utilize the
inequality γ(T ) ≥ FTp̃ (x = 1),

lim
T→∞

γ(T ) ≥ lim
T→∞

FTp̃ (x = 1) (A.84)

= lim
T→∞

T !

1!(T − 1)!
p̃(T )1(1− p̃(T ))T−1 (A.85)

= lim
T→∞

T p̃(T )(1− p̃(T ))T−1 (A.86)

= lim
T→∞

T p̃(T ) lim
T→∞

(1− p̃(T ))T−1 (A.87)

= lim
T→∞

T p̃(T ) (A.88)

This allows us to select the upper bound on FTp̃ (·), as,

T p̃(T ) ≥ FTp̃ (x), ∀x ∈ 0...T (A.89)

An identical result can also alternatively be obtained by applying Lem. A.2. To study simple regret behaviour as T →∞,
we have a return look at Eq. (A.80).
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lim
T→∞

E[reg(T )] ≤ lim
T→∞

∆̃a

k−1∑
i=1

iFTp̃ (i) + k∆̃aF
T
p̃ (k)

k

T
(A.90)

= lim
T→∞

∆̃a

k−1∑
i=1

iFTp̃ (i) (A.91)

≤ lim
T→∞

∆̃a

k−1∑
i=1

i(αki(i− βk) + γ(T )) (A.92)

Where for any particular value of k, we select αk < 0 and βk > 0 such that for some decreasing value γ(T ), the term
αki(i− βk) + γ(T ) upper bounds FTp̃ (i). We wish to investigate the scenario for large values of T , as T →∞, therefore,
we can assume that the binomial distribution, for any value FTp̃ (x > 1) < FTp̃ (x = 1) for sufficiently large values of T , as
FTp̃ (x) enters a regime of monotonically decreasing tail behaviour for increasing values of x > 1, and small values of p̃.
Therefore, in that regime, we can consider αk = 0, and we can upper bound FTp̃ (x) simply with γ(T ). Therefore, in this
regime, for large values of T , we can say,

lim
T→∞

E[reg(T )] ≤ lim
T→∞

∆̃a

k−1∑
i=1

iγ(T ) (A.93)

Effectively we have k constants independently of T , which in summation can serve to bound the simple regret in the
asymptotic regime. And we can combine the additive terms into some crude upper-bounding additive term Ck.

lim
T→∞

E[reg(T )] ≤ lim
T→∞

k−1∑
i=1

Ciγ(T ) (A.94)

≤ lim
T→∞

Ckγ(T ) (A.95)

In summary, by coming results from Eq. (A.95) with Eq. (A.88) for large values of T → ∞, we have the following
upper-bound on simple regret,

E[reg(T )] ≤ CkT p̃(T ) (A.96)

A.7 BOUND ON THE BINOMIAL DISTRIBUTION FOR LARGE T AND SMALL p

Lemma A.2. For a binomial distribution with large values of T and small values of p, it holds that,

lim
T→∞

T∑
i=1

i

(
T

i

)
pi(1− p)T−i ≤ Tp

Proof. We wish to show the following by observing the equivalence between the binomial and Poisson distributions, for
small values of p̃ and large values of T . We can see that the first part of Eq. (A.77), is understood as the expectation over
binomial distribution, for any integer i. A binomial distribution can be converted to a Poisson distribution as follows,

k−1∑
i=1

e(−Tp)
(Tp)i

i!
(A.97)
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We then further express as,

Tpe−Tp
k−2∑
i=0

(Tp)i

i!
= Tp

Γ(k − 1, Tp)

(k − 2)!
(A.98)

By the property of an incomplete Gamma function,

Tp
Γ(k − 1, Tp)

(k − 2)!
< Tp (A.99)

As we know Γ(k − 1) = (k − 2)! for integer k, and Γ(k, Tp) is the upper incomplete gamma function, let us express,

γ(s, x) = xs
∞∑
i=0

(−x)i

i!(s+ i)
(A.100)

For a better approximation for small Tp, we can use the series,

γ(s, x) =

(
xs

s
− xs+1

s+ 1
+

xs+2

2!(s+ 2)
− xs+3

3!(s+ 3)
+ · · ·

)
(A.101)

We thus obtain,

Γ(s, x) ≈ Γ(s)−
(
xs

s
− xs+1

s+ 1
+

xs+2

2!(s+ 2)
− xs+3

3!(s+ 3)
+ · · ·

)
As Tp approaches 0, then we ignore the second terms onward, we can approximate with decreasing approximation error,

k−1∑
i=1

i

(
T

i

)
p̃i(1− p̃)T−i ≈ Tp− (Tp)k

(k − 1)!
(A.102)

Therefore, we can infer the asymptotic performance, as T →∞ and p→ 0, as,

lim
T→∞

k−1∑
i=1

i

(
T

i

)
p̃i(1− p̃)T−i ≤ Tp
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B TECHNICAL NOTES
C GEOMETRIC BROWNIAN MOTION (GBM)
The Geometric Brownian Motion (GBM) is a stochastic process used in various fields including finance and physics, to
model the random movement of a variable over time. The stochastic differential equation (SDE) is written as ,

dSt = µSt dt+ σSt dWt, (C.1)

Where St as the value of the process at time t, µ as the drift coefficient, σ is the volatility coefficient, and Wt is a standard
Brownian motion. The variable evolves with a mean growth rate µ, and volatility σ determining the magnitude of fluctuations.
The solution for the above SDE is written as,

St = S1 exp

((
µ− 1

2
σ2

)
t+ σWt

)
, (C.2)

where S1 is the initial value of the process at time t = 0. The term
(
µ− 1

2σ
2
)

represents the adjusted drift.

C.1 DERIVATION OF RECURSIVE VALUE FUNCTION FORMULATION

The derivation of the value function V (xT−1) begins by expressing the optimization problem over the action spaceA(T −1)
at time T − 1. The goal is to maximize the sum of an immediate reward term and an expected future reward term. Below is
an outline of the derivation steps:

V (xT−1) = max
a∈A(T−1)

{
⟨ϕf(xT−1

η ),a⟩+
∫
xη

Pθ(x
T
η |xT−1

η ) ⟨(xT−1
d + ⟨ϕ′g(xtη), a

t⟩), ϕf(xTη )⟩ dxTη
}

(C.3)

= max
a∈A(T−1)

{
⟨ϕf(xT−1

η ),a⟩+ ⟨(xT−1
d + ⟨ϕ′g(xtη), a

t⟩),
∫
xη

Pθ(x
T
η |xT−1

η )ϕf(xTη )⟩ dxTη
}

(C.4)

= max
a∈A(T−1)

{
⟨ϕf(xT−1

η ),a⟩+ ⟨(xT−1
d + ⟨ϕ′g(xtη), a

t⟩), E[ϕf(xTη )|xT−1
η ]⟩

}
. (C.5)

The area of integration over xη denotes the set of all possible stochastic states reachable from xT−1
η to xTη via a stochastic

transition, expressed with probability Pθ(x
T
η |xT−1

η ) for the stochastic component. Should the deterministic component of
the xTd not be reachable via the operation xT−1

d + ⟨ϕ′g(xtη), a
t⟩), ϕf(xTη , it is not included in xη .
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D ALGORITHMS
D.1 MCTS UCT BELLMAN VC

Algorithm 1 MCTS Bellman UCT Value Clipping Algorithm

1: Input: Initialize state (chance node) x0.
2: Output: Best action a∗

3: Define: clip(v, v, v̄) = min(max(v, v), v̄),∀v ∈ R
4: while Max iterations not exceeded. do
5: xs −→ Selection(x, πUCT (·))
6: v′ ← 0
7: if αc > Uniform[0, 1] then
8: for each possible state x′ extending from inducing action as and state xs do
9: v ← Simulation(x′, πs(·))

10: v ← V k(x
′) From Eq. (2.27)

11: v̄ ← Hindsight perfect solution.
12: V (x′)← clip(v, v, v̄)
13: v′ ← v′ + P (x′|a,x)V (x′)
14: end for
15: else
16: for each possible state x′ extending from inducing action as and state xs do
17: V (x′)← Simulation(x′, πs(·))
18: v′ ← v′ + P (x′|a,x)V (x′)
19: end for
20: end if
21: Q(x,a)← µ(x,a) + v′

22: Perform Q-Update according to Eq. (3.2).
23: Backpropagation(xs, Q(xs,a))
24: end while
25: a∗ ← argmax

a∈A
Q(x0,a)

26: return a∗
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D.2 MCTS MENTS BELLMAN VALUE CLIPPING

Algorithm 2 MCTS Bellman MENTS Value Clipping Algorithm

1: Input: Initialize state (chance node) x0.
2: Output: Best action a∗

3: Define: clip(v, v, v̄) = min(max(v, v), v̄),∀v ∈ R
4: while Max iterations not exceeded. do
5: xs −→ Selection(x, πM (·))
6: v′ ← 0
7: if αc > Uniform[0, 1] then
8: for each possible state x′ extending from inducing action as and state xs do
9: v ← Simulation(x′, πs(·))

10: v ← V k(x
′) From Eq. (2.27)

11: v̄ ← Hindsight perfect solution.
12: Vs(x

′)← clip(v, v, v̄)
13: v′ ← v′ + P (x′|a,x)Vs(x′)
14: end for
15: else
16: for each possible state x′ extending from inducing action as and state xs do
17: Vs(x

′)← Simulation(x′, πs(·))
18: v′ ← v′ + P (x′|a,x)Vs(x′)
19: end for
20: end if
21: Q(x,a)← µ(x,a) + v′

22: Perform Value and Q-Update according to Eq. (3.4) and Eq. (3.5).
23: Backpropagation(xs, Qsft(xs,a))
24: end while
25: a∗ ← argmax

a∈A
Qsft(x0,a)

26: return a∗

26



E MARITIME BUNKERING

Figure 5: Atlantic Pacific Express (APX) liner route. [YNL12]

Maritime refuelling, also known as bunkering, is a problem in the field of transportation logistics that involves finding the
optimal policy to refuel a fleet of vehicles, such as trucks or ships, while they are in operation. The goal is to minimize the
total cost of refuelling, which includes the cost of the fuel itself. It is a common practice in the shipping industry, as ships
require large amounts of fuel to power their engines and systems during long voyages. Bunkering is typically done at ports,
where the ship can be moored and connected to a fuel supply by hoses or pipelines. Bunkering can also be done at sea, using
smaller vessels known as bunker barges to transfer the fuel to the ship. Solving the bunkering problem can allow companies
in the transportation industry reduce costs and improve the efficiency of their operations by minimizing fuel costs.

A real-world examples is the Atlantic Pacific Express (APX) liner routes (see Fig. 5). In the liner scenario, a schedule of
port visits is prearranged. That is the liner must only determine how much to refuel at each port of call, and at which speed
to travel to the next port. But, for simplicity, we omit the speed component. The liner knows which location they are at,
how much fuel they possess, how much minimum fuel they need, and the prices of the fuel at all ports in the schedule. We
assume that prices follow a known probability distribution. In the normal macroeconomic conditions that is a reasonable
assumption since the prices can be estimated from the historical data, while during the turbulent periods designing stress
price scenarios might be the best we can do.

One way to approach the bunkering problem is to use mathematical optimization techniques, such as mixed integer
programming, to determine the optimal refuelling amounts, given a fixed schedule or flexible schedule1. This may involve
considering factors such as the capacity of the vessel, the distance they need to travel, the availability of fuel at different
locations, and any constraints on when and where the vehicles can be refuelled. A liner is a type of shipping vessel that
operates on a regular schedule between specified ports, carrying cargo and sometimes passengers. Liner shipping refers to
the use of these vessels to transport cargo on a regular basis between predetermined ports of call. Liners are typically owned
and operated by shipping companies, and they follow a set route, stopping at a predetermined list of ports to load and unload
cargo. Liners are an important part of the global shipping industry, as they provide a reliable and efficient way to transport
a wide variety of goods, including consumer goods, raw materials, and manufactured products. They play a vital role in
supporting international trade and the movement of goods around the world.

Ship Route (Schedule): In this experiment, we assume that the ship route (i.e. order of the ports) is fixed, and that the fuel is
available at all ports on the route. The objective is finding the optimal refuelling policy. Upon arrival at each port, the price
is revealed and we need to determine the refuelling amount. In practice, bunkering purchasing problems typically involve
big data (i.e., 500 vessels, 40,000 ports of call, governed by 750 contracts [BKP16]).

Fuel prices: Fuel prices can be governed by various stochastic processes – in this work, we assume that the fuel prices
obey a discrete time geometric Brownian motion, as described in Sec. C. We discretize the GBM over many different
price outcomes, stemming from realizations of the stochastic process. Therefore, the problem in principle can be solved
approximately via stochastic programming, stochastic programming [WML13; YNL12]. Nevertheless, as the scale of the
problem increases, i.e. more price scenarios arise, the problem becomes intractable via an increase in stochastic scenarios.
Each liner is constrained by predetermined schedules and must ensure that there is enough fuel to travel between each

1A ship with a flexible schedule is referred to as a tramper.
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intermediate port of call. The liner can choose the refuel amount and the speed of the ship, which affects fuel consumption.

The maritime bunkering model is subject to the following simplifying model assumptions,

i. Fuel prices are subject to global stochastic variation.

ii. Fuel consumption is deterministic.

iii. Distance, to and from each port, is fixed and deterministic.

iv. No possibility of service disruptions.
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E.1 STOCHASTIC PROGRAMMING

Table 2: Notation and variable descriptions.

Notation Description

N Number of ports of call
S Number of scenarios
K Number of stochastic events at each trip step t
δn,t Fuel price change change in the port n at the trip step t
βs Probability of the scenario s ∈ S occurring
Xs
n,1 Fuel level when arriving at port n in scenario s

Xs
n,2 Fuel level when departing from port n in scenario s

Xn,1 Fuel level when arriving at port n
Xn,2 Fuel level when departing from port n
d(n, n+ 1) Distance function from the port n until the next port n+ 1
fc(n, n+ 1) Fuel consumption function from the port n until the next port n+ 1 given the distance d(n, n+ 1)
N Continuous fuel price percentage change probability distribution
P sn Price of fuel at port n in scenario s
Pn Expected price of fuel at port n
Y s
n ∈ {0, 1} Indicator for bunkering decision at port n in scenario s

Yn ∈ {0, 1} Indicator for bunkering decision at port n
Bs
n Fixed bunkering cost at port n in scenario s

Bn Fixed bunkering cost at port n
M Liner fuel tank capacity

We formulate the liner bunkering problem as a stochastic program. The stochastic factors affect the price of fuel through
the price percentage changes expressed by S scenarios. We optimize the actions to take at each port of call. Concretely,
at each port n the liner must decide on a refueling amount, denoted as the amount of fuel leaving port n in scenario s,
Xs
n,2, subtracted by the amount of fuel arriving at port n in scenario s, Xs

n,1. The fuel consumption, i.e., the difference
Xs
n,2 − Xs

n+1,1, is deterministic given the distance until the next port d(n, n + 1) which affects a deterministic fuel
consumption fc(n, n + 1). In addition, there is also a fixed bunkering cost Bs

n in case we decide to refuel non-negative
amount at port n in scenario s. We indicate the bunkering action by a binary variable Y s

n . We assume that the liner has the
empty fuel tank at the initial port and we constrain its fuel tank capacity by the upper bound M .

Given fuel price percentage change scenarios s ∈ S, which determine the fuel prices P sn we have:

min
X

CSP =
∑
s∈S

βs
∑
n∈N

P sn(X
s
n,2 −Xs

n,1) +Bs
nY

s
n + τ(T kn+1) (E.1a)

subject to Xs
n+1,1 = Xs

n,2 − fc(n, n+ 1, V k
n ), n ∈ N, s ∈ S (E.1b)

Xs
n,2 ≥ Xs

n,1, n ∈ N, s ∈ S (E.1c)

fc(n, n+ 1, V k
n ) ≥ 0, n ∈ N (E.1d)
Y s
n ∈ {0, 1}, n ∈ N, s ∈ S (E.1e)

Xs
n,i ≥ 0, n ∈ N, s ∈ S, i ∈ {1, 2} (E.1f)

Xs
n,i ≤M,n ∈ N, s ∈ S, i ∈ {1, 2} (E.1g)

Xs
1,1 = 0, s ∈ S (E.1h)

We have the stochastic value objective represented by (E.1a), which is the sum of the refuelling costs per port denoted as
P sn(X

s
n,2 −Xs

n,1), the fixed bunkering costs denoted as Bs
nY

s
n , and the time window penalties for arriving late or early

to the destination denoted as τ(T kn+1). (E.1b) is the consumption balance constraint, (E.1c) prevents negative refuelling
amounts, (E.1d) states that the consumption is non-negative, (E.1e) is an indicator variable for the fixed bunkering cost,
(E.1f) and (E.1g) are lower and upper fuel tank capacities, while (E.1h) imposes the empty fuel tank at the initial port. Each
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of these constraints hold for every scenario s ∈ S.

E.1.1 Modelling Fuel Price

We simulated NGBM = 200, 000 price trajectories using the Geometric Brownian Motion (GBM) model as illustrated in
Sec. C, starting with an initial stock price S0. Each trajectory was generated by iterating over T time steps, applying the
GBM formula St = St−1 · exp

(
(µ− 0.5σ2)∆t+ σ∆Wt

)
, where ∆Wt represents the increments of a Wiener process.

This process involved parameters for drift (µ), volatility (σ), under a fixed discrete time increment (∆t), ensuring the
randomness and variability in the simulated price paths. To estimate the probability density function of the simulated prices,
we flattened the simulation results and created a histogram with a specified number of bins, and thereafter calculate the
probability density for any given price value based on the histogram data. We can this assign probabilities to each simulated
price outcome, ensuring a comprehensive probability distribution across the entire range of simulated trajectories.

E.2 TABLE OF PARAMETERS

Table 3: GBM Stochastic price parameters.

Config. Initial Price (S1) Price Volatility (σ) Price Drift (µ)

A 1000 0.9 1.0
B 1000 0.5 1.0
C 100 0.9 1.0
D 1000 0.5 0.5
E 1000 0.9 0.5
F 100 0.9 0.5

Table 4: Shared parameters across all experimental configurations.

Description Value

NGBM GBM simulated trajectories. 200,000
NH Number of histogram bins. 20,000
Nsim MCTS Number of Iterations 1× 105

Ndepth MCTS Depth Limit 500
λs MENTS Decay Rate 2× 109

Number of ports-of-call. 8
Fuel capacity. 50 Units

Table 5: Distance between each port-of-call represented by a distance matrix.

1 2 3 4 5 6 7 8

1 0 12 7 15 12 18 3 4
2 12 0 25 8 10 15 6 14
3 7 25 0 30 20 16 12 10
4 15 8 30 0 19 25 30 8
5 12 10 20 19 0 9 18 13
6 18 15 16 25 9 0 21 10
7 3 6 12 30 18 21 0 17
8 4 14 10 8 13 10 17 0

Fuel consumption rate is simplified to 1 unit of fuel consumed to 1 unit of distance travelled.
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Table 6: MCTS Dynamic Parameters.

Config. Nsim MCTS Exploration Constant (α)

A 1000 0.9
B 1000 0.5
C 100 0.9
D 1000 0.5
E 1000 0.9
F 100 0.9
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E.3 EMPIRICAL RESULTS - COST COMPARISON

Figure 6: Cost performance of the maritime logistics simulation.
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E.4 EMPIRICAL RESULTS - VALUE CONVERGENCE

Figure 7: Value convergence performance of the maritime logistics simulation.
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F HYBRID FUEL EXAMPLE
Hybrid fuel systems are an increasingly common feature in modern transportation, offering a flexible approach to energy
utilization by combining different types of fuel or power sources to optimize efficiency, cost, and environmental impact. In
the context of vehicles, this concept is well-illustrated by hybrid electric cars that use a combination of internal combustion
engines and electric motors to achieve superior fuel economy and lower emissions. Similarly, hybrid systems have found
applications in marine vessels, where multi-fuel engines can switch between liquefied natural gas (LNG), diesel, and even
renewable energy sources such as wind power, depending on operational needs and fuel availability.

Problem statement: At each increment of time, an amount of ∆a(t) ≤ ||xt+1
d − xtd||p ≤ ∆̄a(t) of resources are to be

consumed. This is a function of a linear combination of the consumption rates ⟨ϕ′g(xtη), a
t⟩. We say that some quanta

of interchangeable quantity is expended at each time increment ||xt+1
d − xtd||p = ∆a(t). The controller will decide at

each point in time t the convex combination of resources to expend, given the current stochastic scneario xtη and a model
depicting future scenarios xt

η . To make this problem non-trivial to solve, we impose limitations on each resource.

F.1 DUAL POWER HYBRID VEHICLE

Electric and gasoline use dual power for increased efficiency as some power sources are more beneficial than others in
certain scenarios. For example, lower speeds prefer electric power, and higher speeds prefer gasoline, in terms of resource
efficiency. Also, one can blend power from both sources. So here the concept is that two (or more) capacities are available
(fuel tank, battery), and either of this resource can be converted into some utility.

Problem setting (Hybrid Vehicle): Over the course of a journey a hybrid vehicle has two possible power sources,
electric and gasoline. At each decision period, a well-defined quanta of resource is consumed denoted as ∆a(t) ∈
{∆a(t), ∆̄a(t)}. We set p = 1, such that ∆a(t) = ⟨ϕ′g(xtη), a

t⟩. This implies some convex combination of fuels must
be consumed. To facilitate regenerative braking, ∆a(t) represents the fuel consumption when the vehicle is braking and
regenerating, and ∆̄a(t) represents the fuel consumption when the vehicle is not braking. The path constraints denote the
capacity, Ā, and we set trivially, A =

∑
∆a(t).

Utility Model: We define a utility model, typically we could say this is distance travelled (and alternative definitions
could be environment impact in terms of emissions etc.). Thus we have a stochastic scenario, with mileage f(xtη) evolving
naturally, and resource space of dimension D, if there are D types of fuel which can be consumed by the agent. Given the
rate of conversion to utility, f(xtη), can vary, the rate of consumption ⟨ϕ′g(xtη), a

t⟩ is constrained.

Suppose a D = 2 resource constraint, the agent decides which resource to expend at each turn. In the fuel consumption
example the decision could be made at each unit of time in the journey, which conversely can ϕf(xtη) can represent the pro
rata mileage per fuel. We allow for potentially a combination of resources to be used, and we assume that within ∆a(t)
the rate of resource consumption, based on the environmental parameters are constant. The rates of consumption could be
different per resource, but a specified amount of resources must be consumed per quanta of time.

Regenerative Braking: We also add to the mix regenerative braking. Thus there is an xη which tells us that the vehicle is
braking. In this case regenerative braking can be activated to replenish the battery capacity, consequently limiting and fixing
⟨ϕ′g(xtη), a

t⟩ = i to some negative constant, as we regain resources while automatically replenishing.

Experiment: Let D = 2 types of fuel, gas and electric. In our example a vehicle is traversing a predetermined trajectory,
and in in this trajectory the vehicle can experience distinct stochastic phases which affect the mileage of the vehicle.
Let ⟨ϕf(xtη), at⟩ denote mileage, and ⟨ϕ′g(xtη), a

t⟩ represent fuel consumption, which is subject to a fixed schedule
independent our the agent’s decision process. As each discrete time period, the agent (onboard computer) must decide
how much of, and which type of, fuel to expend for a fixed increment of fuel consumed governed by Dynamic (D3). The
transition of xtη is expressed as a Markovian process.

Transition between modes: Let the modes be M1,M2,M3. The transition between modes is governed by a transition
matrix P , where:

P =

P (M1 →M1) P (M1 →M2) P (M1 →M3)
P (M2 →M1) P (M2 →M2) P (M2 →M3)
P (M3 →M1) P (M3 →M2) P (M3 →M3)

 ,

and
∑3
j=1 P (Mi →Mj) = 1 for all i ∈ {1, 2, 3}.

Sampling from modes: When the system is in mode Mi, a state xtη is sampled from the corresponding distribution pi(xη):
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xtη ∼ pi(xη), if the mode at time t is Mi.

In a Hidden Markov Model (HMM), the probability of transitioning from one latent state to the next is determined by the
transition matrix P , and the observation at each step depends on the current state. The probability of transitioning from state
M t at time t to state mt+1 at time t+ 1 is:

P (M t+1 |M t) = P (M t →M t+1),

where P (M t →M t+1) is the (M t,M t+1) entry of the transition matrix P . The joint probability of the sequence of hidden
states {M1,M2, . . . ,MT } is given by:

P (M1,M2, . . . ,MT ) = P (M1)

T−1∏
t=1

P (M t+1 |M t),

where P (M1) is the initial state probability. The observation sequence {x1, x2, . . . , xT } is conditionally independent given
the hidden states, and the emission probability is:

P (Xt |M t) = pMt(xt),

where pMt(xt) is the distribution of xt given the latent state M t, also known as the emission probability. Combining
transitions and emissions, the full joint probability is:

P (M1, x1, . . . ,MT , xT ) = P (M1)fM1(x1)

T−1∏
t=1

P (M t+1 |M t)pMt+1(xt+1).

For a single step transition, the probability simplifies to:

P (M t+1 |M t) · pMt+1(xt+1).

Joint process: The process alternates between mode transitions and state sampling, resulting in a sequence (M t,xη) where:

• M t ∈ {M1,M2,M3} is the mode at time t, determined by the transition matrix P .

• xη is the observed state, sampled from the distribution associated with M t.

The joint probability of a sequence {M1,x1
η,M

2,x2
η, . . . ,M

T ,xTη } is given by:

P (M1,x1
η, . . . ,M

T ,xTη ) = P (M1)P (x1
η|M1)

T∏
t=2

P (M t|M t−1)P (xtη|M t),

where P (M1) is the initial probability distribution over modes, P (xtη|M t) is the probability density (or mass) of xtη under
the mode M t, and P (M t|M t−1) is the transition probability between modes. In a structure resembling a Hidden Markov
Model (HMM), the observed sequence is {x1

η,x
2
η, . . . ,x

T
η }, while the modes {M1,M2, . . . ,MT } are latent variables.

Objective: We would therefore like to solve the equation that maximizes the mileage (or distance travelled) by the hybrid
vehicle given allocation of the fuel type and mount of fuel over an evolving trajectory, with modes M1,M2,M3, where
the agent observes xtη at time t. Each of the 3 modes represents different regimes, where it is either gas efficient, electric
efficient, or regenerative braking. An example could be,

E[f(xη)|M1] =

[
12
3

]
, E[f(xη)|M2] =

[
2
9

]
, E[f(xη)|M3] =

[
0
0

]
(F.1)

We see from Eq. (F.1) that there could exist multiple modes for E[f(xη)], depending on M , where the first row of f(xη)
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represents the mileage for gasoline, and second row mileage for electricity. Here, the 3 distinct modes, represents a mode
where gasoline is the more efficient power source, and second where electricity is most efficient, and third where regenerative
braking occurs and no fuel should be consumed as a result.

Non-Greedy Optimal Resource Consumption: A stochastic model governs the transition of xtη. We maintain a fixed
incremental fuel consumption, ∆̄a = ∆a, to formulate the assignment problem. When xη is revealed to us, we know which
fuel to use to allow for the best mileage, but we cannot always act myopically, as this exploit is limited. It should be the
case that neither fuel alone, or each individual maximum expenditure of a single fuel, can allow the vehicle to reach its
destination, but a combination of both fuels must be used to complete the journey. Suppose āi represents the use of a single
fuel throughout the journey. We impose that,

T∑
t=1

⟨ϕ′g(xtη), āi⟩ ≤ A, ∃i ∈ D (F.2)

This indicates that there exists at least one resource type, which cannot be exclusively used through the course of the journey,
and the design of the problem should reflect that. This implies that applying the resource that is the most efficient at the
current time, may not be the most optimal solution overall (as the agent may deplete such resources for future use) - in other
words for at least one resource cannot be repeatedly used indefinitely, there exists a limit.

F.2 BASELINE SOLUTION - VALUE ITERATION WITH BELIEF MDP

As a baseline solution method we apply a standard value iteration approach given observed states xη, without considering
the hidden state M . The action space a is discretized into discrete levels, indicating the amount of fuel to consume. Since the
underlying state is not directly observable, the problem can be reformulated as a belief-state Markov Decision Process. The
belief state represents a probability distribution over states and evolves according to Bayesian filtering. The value function is
then defined over the belief space rather than individual states.

The belief-state value function is given by the equation:

V ∗(b) = max
a∈A

∑
M∈M

b(s)
∑

Mt+1∈M

P (M t+1 |M t, a)
∑
xη∈X

P (xt+1
η |M t+1)

[
⟨ϕf(xt+1

η |M t+1),a⟩+ γV ∗(b′)
]
, (F.3)

where the transition probability function, observation probability function, and reward function govern the dynamics of the
system. The updated belief state after taking an action and receiving an observation is computed using Bayes rule:

b′(M t+1) =
P (xt+1

η |M t+1)
∑
M∈M P (M t+1 |M t,a)b(M t)

P (xt+1
η | b,a)

, (F.4)

where the probability of observing a particular outcome given the belief and action is:

P (xt+1
η | b,a) =

∑
Mt+1∈M

P (xt+1
η |M t+1)

∑
M∈M

P (M t+1 |M t,a)b(M t). (F.5)

Value iteration proceeds iteratively by updating the belief-state value function as follows:

Vk+1(b) = max
a∈A

∑
M∈M

b(M t)

R(M t,a) + γ
∑

xt+1
η ∈X

P (xt+1
η | b,a)Vk(bt+1)

 . (F.6)

F.3 EXPERIMENTAL CONFIGURATIONS

The following are two configuration matrices, for the transition of modes, Configurations A, B, and C adheres to T1 and
Configurations D, E, and F adhere to T2.

T1 =

0.3 0.5 0.2
0.1 0.7 0.2
0.3 0.3 0.4

 T2 =

0.4 0.4 0.2
0.4 0.4 0.2
0.4 0.4 0.2


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Config. Mileage Matrices T ∆a ∆d

A [[10, 8]⊤, [8, 9]⊤, [8, 8]⊤] 10 4 -2

B [[5, 2]⊤, [2, 5]⊤, [2, 2]⊤] 10 4 -2

C [[6, 3]⊤, [3, 7]⊤, [3, 3]⊤] 15 5 -3

D [[4, 2]⊤, [2, 6]⊤, [2, 2]⊤] 20 3 -1

E [[8, 3]⊤, [3, 5]⊤, [3, 3]⊤] 12 6 -4

F [[30, 10]⊤, [10, 40]⊤, [10, 10]⊤]16 5 -5

Table 7: Hybrid vehicle mileage and regenerative braking configurations.

Table 8: Shared MCTS parameters across all experimental configurations.

Description Value

No. of Simulations Nsim 1000
Exploration Constant (C) 1.0
Simulation Depth Limit (Ndepth) 10
Discount Factor (γ) 0.9
MENTS Temperature (T ) 0.7
MENTS Epsilon (ϵ) 0.2
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F.4 EMPIRICAL RESULTS - REWARD COMPARISON

Figure 8: Distance travelled on fuel constraints (reward) per policy. Baseline solution constitutes simple value iteration solution over the
MDP.
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F.5 EMPIRICAL RESULTS - VALUE CONVERGENCE

Figure 9: Value convergence performance of the hybrid fuel simulation.
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F.6 HYBRID FUEL EXPERIMENTAL CONFIGURATIONS - HIGHER DIMENSION

As an extension of the 2-energy source (gas, electric) hybrid fuel example, we model a hybrid energy system as an expanded
finite-state Markov process with seven distinct operational modes: three gasoline types which operate efficiently in the
gasoline-efficient states (ge, ge2, ge3), three battery types which operate efficiently in electricity efficient states (ee,
ee2, ee3), and one regenerative braking state (rb). Each state represents an optimal operating regime in which the system
achieves maximum efficiency for its respective energy source. These parameters are specified in Table 9.

Config. Mileage Matrices T ∆a ∆d

A [[10, 8]⊤, [11, 8]⊤, [12, 8]⊤, [8, 9]⊤, [8, 10]⊤, [8, 11]⊤, [8, 8]⊤] 10 4 -2

B [[5, 2]⊤, [6, 2]⊤, [7, 2]⊤, [2, 3]⊤, [2, 4]⊤, [2, 5]⊤, [2, 2]⊤] 10 4 -2

C [[10, 4]⊤, [15, 4]⊤, [20, 4]⊤, [4, 15]⊤, [4, 10]⊤, [4, 5]⊤, [4, 4]⊤] 15 5 -3

D [[22, 4]⊤, [26, 4]⊤, [32, 4]⊤, [4, 15]⊤, [4, 16]⊤, [4, 17]⊤, [4, 4]⊤] 20 3 -1

E [[1, 1]⊤, [3, 1]⊤, [6, 1]⊤, [1, 6]⊤, [1, 9]⊤, [1, 12]⊤, [1, 1]⊤] 12 6 -4

F [[30, 10]⊤, [40, 10]⊤, [50, 10]⊤, [10, 15]⊤, [10, 20]⊤, [10, 30]⊤, [10, 10]⊤] 16 5 -5

Table 9: Hybrid vehicle mileage and regenerative braking configurations: The first three vectors represent mileage values for gasoline-
efficient operating modes (ge, ge2, ge3), the next three vectors correspond to mileage values for electricity-efficient operating modes
(ee, ee2, ee3), and the final vector represents the regenerative braking mode (rb).

State transitions follow a discrete-time Markov chain characterized by the transition matrix T ∈ R7×7, where Tij denotes
the transition probability from state i to state j. The system uses two distinct configuration matrices: Configurations A, B,
and C follow T1, while Configurations D, E, and F follow T2.

T1 =



ge ge2 ge3 ee ee2 ee3 rb

ge 0.45 0.20 0.10 0.10 0.05 0.05 0.05
ge2 0.20 0.45 0.10 0.05 0.10 0.05 0.05
ge3 0.10 0.20 0.45 0.05 0.05 0.10 0.05
ee 0.10 0.05 0.05 0.45 0.20 0.10 0.05
ee2 0.05 0.10 0.05 0.20 0.45 0.10 0.05
ee3 0.05 0.05 0.10 0.10 0.20 0.45 0.05
rb 0.20 0.20 0.10 0.20 0.20 0.10 0.00



T2 =



ge ge2 ge3 ee ee2 ee3 rb

ge 0.45 0.20 0.10 0.10 0.05 0.05 0.05
ge2 0.20 0.45 0.10 0.05 0.10 0.05 0.05
ge3 0.10 0.20 0.45 0.05 0.05 0.10 0.05
ee 0.10 0.05 0.05 0.45 0.20 0.10 0.05
ee2 0.05 0.10 0.05 0.20 0.45 0.10 0.05
ee3 0.05 0.05 0.10 0.10 0.20 0.45 0.05
rb 0.20 0.20 0.10 0.20 0.20 0.10 0.00


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F.7 EMPIRICAL RESULTS - REWARD COMPARISON (EXPANDED FUEL SELECTION)

Figure 10: Distance travelled on fuel constraints (reward) per policy. Baseline solution constitutes simple value iteration solution over the
MDP.
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F.8 EMPIRICAL RESULTS - VALUE CONVERGENCE (EXPANDED FUEL SELECTION)

Figure 11: Value convergence performance of the hybrid fuel simulation.
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G FINANCIAL OPTIONS TRADING
G.1 INTRODUCTION

Options are derivative financial instruments that grant the holder the right, but not the obligation, to buy or sell an underlying
asset at a predetermined price within a specified time frame [Jam03]. American options differ from their European
counterparts in that they can be exercised at any point prior to expiration, whereas European options may only be exercised
at maturity. The pricing of American options presents a significant computational challenge due to the need to determine the
optimal exercise strategy. This flexibility makes American options a canonical example of an optimal stopping problem. A
systematic decision criterion is required to assess, at each timestep, whether immediate exercise maximizes the expected
payoff [CLP01]. To address this, we propose a novel approach leveraging Monte Carlo planning to optimize the exercise
policy.

Problem Statement: The objective is to optimize the decision-making process for American option holders by learning
an optimal policy under realistic stock price dynamics. Specifically, the goal is to determine, at each timestep, whether
to continue holding or to exercise the option in order to maximize the expected return. As a baseline, we employ the
Longstaff-Schwartz algorithm, comparing its performance against our proposed Monte Carlo planning approach.

G.2 AMERICAN OPTION

Table 10: Notation and variable descriptions for American option pricing.

Notation Description

S0 Initial stock price at the beginning of the option period.
K Strike price, the fixed price at which the option holder can buy or sell the underlying asset.
T Time to maturity, the total duration of the option in years.
r Risk-free interest rate, representing the theoretical return on a risk-free investment.
σ Volatility of the underlying asset, indicating the asset’s price fluctuations.
∆t Time step, representing the interval used in the simulation (e.g., 1/10 means 10 intervals within the

option duration).
q Dividend yield, the annual dividend expressed as a percentage of the stock price.
option_type Type of option, either "call" for a call option or "put" for a put option.

G.2.1 Modelling option price

Two commonly used models to simulate the stock price dynamics are the Binomial Model and the Geometric Brownian
Motion (GBM).

Binomial Model:The binomial model approximates stock price movements over time using a discrete-time framework:

St+∆t =

{
St · u, with probability p,

St · d, with probability 1− p,

where u = eσ
√
∆t represents the upward movement factor, d = 1

u denotes the downward movement factor, and p = er∆t−d
u−d

is the risk-neutral probability.

Geometric Brownian Motion: The GBM model for american option is written as:

St+∆t = St exp
[(
r − 0.5σ2

)
∆t+ σ

√
∆tZ

]
,

where St represents the stock price at time t, r is the risk-free interest rate, σ denotes the stock’s volatility, and Z is a
standard normal random variable distributed as N (0, 1).

In the setup, we consider a finite time horizon, where a stochastic price is calculated at each predetermined time step using
one of the aforementioned methods. Both methods have been tested in practice and demonstrate great performance in
accurately estimating stock prices.
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G.2.2 Markov Decision Process

The action space in an Markov Decision Process (MDP) consists of two actions: hold and execute. The state of the MDP is
defined by the time step t, which is a discrete representation of the time to maturity incremented by ∆t at each step, the asset
price St, which represents the price of the underlying asset at time t, and the terminal status, a boolean variable indicating
whether the option has reached maturity or has been exercised. The state is represented as:

st = {t, St,is_terminal},

where t ∈ [0, T ] and St ≥ 0.

G.3 TABLE OF PARAMETERS

Table 11: American Option Parameters.

Config. S0 K T r σ ∆t q Type

A 40 36 1 0.1 0.2 0.1 0 Call
B 12 10 1.5 0.08 0.25 0.1 0.03 Call
C 36 40 0.5 0.05 0.3 0.05 0.05 Put
D 10 14 1 0.12 0.35 0.05 0.05 Put
E 8 5 1.5 0.07 0.2 0.1 0 Call
F 5 8 1 0.1 0.4 0.1 0.05 Put

G.4 LONGSTAFF-SCHWARTZ ALGORITHM

The Longstaff-Schwartz algorithm [LS01] is a widely recognized and industry-standard for pricing American options.

The mathematical problem of American option is an optimal stopping problem. The Longstaff-Schwartz algorithm addresses
this by working backward from the option’s expiration date, determining at each step whether to exercise the option or
continue holding it. Using regression, it estimates the continuation value, which is the expected future payoff of holding the
option and compares it to the immediate exercise value to determine the optimal strategy. The continuation value is written
as,

C(ti) = EQ
[
V (ti+1)

B(ti+1)

∣∣∣∣ Fti]B(ti). (G.1)

It can also be expressed as,

F (ω; tk) = EQ
[

L∑
j=k+1

exp
(
−
∫ tj

tk

r(ω, s) ds
)
C
(
ω, tj ; tk, T

) ∣∣∣∣∣ Ftk
]
. (G.2)

To estimate the continuation value, N possible paths of the underlying asset are simulated using Monte Carlo methods
based on geometric Brownian motion (GBM). At each time step, only in-the-money paths are considered, as these represent
scenarios where early exercise might be optimal. Second-degree polynomial regression is then applied to model the
continuation value as a function of the asset’s price, using the discounted future cash flows as the dependent variable. The
polynomial regression can be expressed as,

y(i, j) = β(0) + β(1) · S(i, j) + β(2) · S(i, j)2. (G.3)

By comparing this estimated continuation value with the immediate exercise value, the algorithm determines the optimal
strategy for each path, and the option price is obtained by averaging the discounted cash flows across all simulated paths.

G.4.1 Empirical Results - Reward Comparison

Longstaff–Schwartz (LS) has a lower variance because it applies a regression-based method, fitting a model across many
simulated paths at each time step to approximate the option’s continuation value. This aggregated regression smooths out
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randomness and yields relatively stable estimates. In contrast, Monte Carlo planning explores one path at a time, making
the outcome heavily dependent on whether sampled paths are especially favorable or unfavorable, which leads to higher
variance across multiple runs.

G.4.2 Empirical Results - Value Convergence

Table 12: Shared parameters across all experimental configurations.

Description Value

No. of Simulations Nsim 1000
Exploration Constant (C) 1.0
Simulation Depth Limit (Ndepth) 100
Discount Factor (γ) 0.9
MENTS Temperature (T ) 0.7
MENTS Epsilon (ϵ) 0.2

45



Figure 12: Reward comparison of different American option configurations.
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Figure 13: Value convergence performance of different American option configurations.
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G.5 FINANCIAL OPTIONS TRADING - EXPANDED

We extend American option pricing to a multivariate setting in which multiple correlated options must be managed
simultaneously. The combinatorial complexity arises from asset correlations and constraints on simultaneous exercises
(e.g., at most ∆̄a options exercisable per period). This framework addresses practical needs in portfolio optimization and
algorithmic trading. Asset prices follow a Multivariate Brownian Motion (MVBM) with covariance matrix:

Σ =


σ2
1 σ1σ2ρ1,2 · · · σ1σcρ1,c

σ2σ1ρ1,2 σ2
2 · · · σ1σcρ2,c

...
...

. . .
...

σcσ1ρ1,c
...

. . . σ2
c


where σi is volatility asset i and ρi,j is the correlation between assets i and j.

Basket of Options: The agent manages a portfolio of financial options consisting of call options (the right to buy an
asset at a fixed strike price) and put options (the right to sell at a strike price). For call options, the payoff upon exercise
is max(St −K, 0), where St is the asset price and K is the strike price; for put options, it is max(K − St, 0). The agent
must determine an exercise policy that maximizes the cumulative discounted payoff over the time horizon. Exercises are
performed individually per option, subject to constraints (e.g., expiration dates and American-style exercise rules). The total
reward is the sum of payoffs from all exercised options.

Dimensionality Increase: For a basket of B options, the action space expands significantly compared to the single-option
case. Specifically, a binary vector x ∈ {0, 1}B represents hold/exercise decisions, with 0 ≤ ∥xt+1

d − xtd∥p ≤ ∆̄a. From
dynamic constraint (D3), ∆̄a denotes the maximum number of options exercisable at each time step. This effectively
increases the action space dimensionality from 2 to 2B .

G.6 FINANCIAL OPTIONS EXPERIMENTAL CONFIGURATIONS - HIGHER DIMENSION

Config (S0, K, σ, q, Type) T r dt ∆̄a

A (40, 36, 0.20, 0.00, Call), (12, 10, 0.25, 0.03, Call), (8, 5, 0.20, 0.00, Call) 1.0 0.08 0.02 3
B (25, 20, 0.30, 0.02, Call), (30, 28, 0.35, 0.01, Put), (15, 16, 0.25, 0.04, Call), (20,

18, 0.40, 0.03, Put)
1.5 0.06 0.05 3

C (26, 24, 0.27, 0.02, Call), (15, 16, 0.30, 0.03, Put), (38, 35, 0.25, 0.015, Call) 1.3 0.06 0.05 2
D (40, 42, 0.25, 0.01, Call), (35, 36, 0.30, 0.015, Put), (50, 48, 0.28, 0.02, Call),

(45, 47, 0.26, 0.01, Put), (60, 58, 0.27, 0.015, Call)
1.5 0.05 0.025 3

E (18, 20, 0.26, 0.015, Put), (27, 25, 0.32, 0.02, Call), (22, 24, 0.29, 0.025, Put),
(31, 30, 0.33, 0.01, Call)

1.4 0.065 0.04 2

F (40, 35, 0.20, 0.01, Call), (25, 28, 0.25, 0.02, Put), (30, 25, 0.30, 0.01, Call), (20,
22, 0.22, 0.015, Put)

1.0 0.05 0.05 2

Table 13: Multi-option configurations.
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G.7 EMPIRICAL RESULTS - REWARD COMPARISON

Figure 14: Reward comparison of expanded financial option simulations.
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G.8 EMPIRICAL RESULTS - VALUE CONVERGENCE

Figure 15: Value convergence performance of the expanded financial option simulation.
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