
Learning to Guide Search in Long-Horizon Task and
Motion Planning

Christopher Bradley and Nicholas Roy
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology United States
{cbrad, nickroy}@csail.mit.edu

Abstract: Recent work in Task and Motion Planning (TAMP) has enabled a new
class of algorithms to better take advantage of off-the-shelf black-box samplers
and solvers to find plans. However, many approaches to solving TAMP prob-
lems must balance the need to explore new regions of the search space with the
computational cost of querying solvers for sub-problems that may be unlikely to
succeed. In this work, we present a novel approach for solving TAMP problems,
utilizing learned models trained from experience to inform when to attempt to
solve potentially expensive sub-problems. We take advantage of highly optimized
classical planners by learning representations that can be integrated with existing
abstractions to guide search in long-horizon TAMP domains.

Keywords: Task and Motion Planning, Learning

1 Introduction

We aim to enable an autonomous agent to efficiently find low-cost plans for high-dimensional, long-
horizon TAMP problems using learned models to guide planning. Consider, for example, a 20
degree-of-freedom (DOF) mobile robot attempting to ‘cook’ multiple objects in a kitchen environ-
ment. Solving this problem involves considering both the discrete sequence of actions (e.g., ‘pick up
object ‘A’, navigate within the room, then place ‘A’ on a new platform’) and the constrained contin-
uous and discrete parameters of those actions (a reachable grasp on A, a collision-free trajectory to
move between configurations, a platform to place on). Problems of this nature can quickly become
computationally challenging as task complexity increases. The more objects the robot is assigned
to ‘cook’, the longer the task horizon grows, the more complex the discrete search becomes, and the
more action parameters must be solved [1].

One common approach for solving TAMP tasks like the one described above involves using external
samplers/solvers to find satisfying values for individual or sets of parameters (i.e. a grasp sampler for
finding stable grasps or a motion planner for solving for trajectories between robot configurations)
and then combining the solutions such that all constraints are satisfied. Often times these solvers
may need to be queried several times before a solution is found. One major challenge is determining
when to query a particular (potentially expensive) solver, and when to search for a more promising
option. In [2], the authors propose an algorithm which intermittently searches through a discrete
domain defined in Planning Domain Definition Language (PDDL), and queries pre-defined black-
box solvers to bind new facts to the domain as needed.

Even with clever approaches such as [2] or [3] however, due to the combinatorial nature of task
planning, coupled with the complexity of motion planning, problems can become computation-
ally intractable very quickly as state and action spaces grow [1]. Particularly in problem settings
where the chosen black-box samplers/solvers fail frequently (e.g., attempting to place an object on
a cluttered platform), repeated failed queries to these solvers can cause planning times to balloon.
Moreover, given the fact that simply finding a satisfying solution is so difficult, often times optimiz-

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



ing for metrics like execution time is an afterthought. Unfortunately, knowing ahead of time which
subproblems have feasible (or optimal) solutions is as hard as the original planning problem itself.
There is no practical way to avoid periodically querying for solutions to subproblems that do not
actually have feasible solutions, but we would like to be able to identify ahead of time the likelihood
of a solution existing, and subsequently minimize the likelihood of wasting computational effort.

To address these problems, we propose two contributions. The first is a general modification to
sampling based strategies for TAMP. Specifically, for each external black-box solver (like a grasp
sampler or IK solver) used by the planner, we train a model to predict outcomes (either success
or failure) and costs (in both planning and execution time) for different inputs. These models can
then be evaluated by a planner to help guide selection of which parameters to use as inputs when
querying potentially expensive external solvers. We also propose a modified planning algorithm
based on Monte-Carlo Tree-Search (MCTS) to better take advantage of our ability to estimate these
outcomes and costs to accelerate planning. Our planner uses the learned model’s estimates to guide
search in an effort to minimize total planning and execution time. We implement this approach using
the PDDLStream framework defined in [2], and demonstrate an improvement in both planning and
execution time in a single, simulated environment over a heuristic driven baseline [3].

2 Background

The combined TAMP problem often jointly considers elements of high-level task planning [4, 5]
and low-level motion planning [6] in an attempt to solve hybrid discrete/continuous, multi-modal
planning problems [1]. Solutions for TAMP problems take the form of a sequence of parameterized
actions π = [a1, a2, ..., an] that define a plan, where assigned parameters satisfy each action’s con-
straints [1]. One approach for representing a TAMP problem —which we use in this work— is with
an extension of PDDL called PDDLStream [2]. PDDLStream represents the discrete search portion
of a TAMP problem in PDDL, augmented by conditional generators called streams, which model
black-box samplers/solvers.

A PDDLStream problem (P,A, S,O, I,G) is specified as sets of predicates P , actions A, streams
S, objects O, an initial state I , and a goal state set G. The initial and goal states of a PDDLStream
problem are sets of facts: instances of boolean functions called predicates p(x) ∈ P , which are
parameterized by tuples of objects x ∈ O. For example, the fact that certifies if the robot is at a
given pose is an instantiation of the predicate AtPose ?p, and is either true of false for different
pose objects ?p. Actions a ∈ A are defined by two sets of predicates: pre and post conditions, and
are parameterized by object tuples x. For a given input x, if the pre-conditions evaluate to true, the
action is legal, and the post-conditions specify which facts will change value (either True or False)
in the next state.

For certain actions, preconditions may include facts that are either cumbersome or impossible to
add to P . For example, it is unclear how one would enumerate all possible Pose objects, which
are continuous, without creating a potentially intractably large problem. To account for this, PDDL-
Stream problems include conditional generators called streams s ∈ S. Streams consist of: sets of
(1) input and (2) output objects, (3) domain predicates which must be true in the input, (4) certified
predicates which are deemed true if the queried stream is successful, and (5) an external function
that is called when the stream is queried. When an action has a precondition which can only be
certified by a stream, that stream can be queried in an attempt to determine if said precondition can
be certified. Note that a stream may need to be queried many times before generating an output that
jointly satisfies all constraints in a TAMP problem. We refer the reader to [2] for a more detailed
description.

There are several TAMP solvers that have been developed over the past few years which use PDDL-
Stream to define a TAMP problem. One general approach is to optimistically assume that any time
a stream is needed to certify a fact, it can be queried successfully, then generate abstract plans π,
which contain actions that have unbound parameters as a result of this assumption. Using the ap-
proach outlined in [2], for a given abstract action plan, we can generate the sequence of streams s

2



that must be queried to bind the unbound objects in π: the stream-plan ψ. If each s ∈ ψ is able to
be successfully queried for satisfying output objects, then we can return a fully bound action plan,
and therefore solve the original TAMP problem. Unsurprisingly however, as the size of the plan-
ning domain increases, and as the planning horizon lengthens, PDDLStream problems can become
exorbitantly computationally expensive.

3 Our Approach

Our objective is to find plans which solve TAMP problems efficiently, both in terms of wall-clock
time spent searching for the plan, and with respect to the time it takes to execute the plan on a
robot. To do this we propose an approach for learning to predict the outcome and cost of black-box
samplers/solvers (from this point onward referred to as a stream) used by existing TAMP algorithms,
then use these models to accelerate planning. We first present how we construct and train a simple
model to predict the outcome and costs of individual streams. Next, we demonstrate how to estimate
the expected cost of a stream plan using these predictions. Finally, we show how this cost estimate
is incorporated into a novel planner to more efficiently guide search.

3.1 Learning to Model External Functions

We train separate models for each black-box sampler/solver, mapping an individual stream’s inputs
to estimates of the outcome and costs of querying and executing the given stream. Each model has
two types of input: local information that is defined in the domain of the stream, and global informa-
tion (e.g., the poses of various other objects in the scene). In our model, both types of information
are given as input to a simple Multi-Layered Perceptron (MLP). We apply a fully connected net-
work to produce four outputs: PS ; the probability the stream successfully finds a satisfying output,
RS ; the expected cost of querying the stream successfully in wallclock-time, RF ; the expected cost
of querying the stream unsuccessfully, and RM ; the expected time it would take to execute any
trajectory produced by the stream (if a stream does not generate a trajectory, we set this value to 0).

With these four properties PS , RS , RF , and RM , we have the ability to compute the expected cost
of querying, then executing any trajectory generated by a single stream s:

Q(s) = PS(RS +RM ) + (1− PS)RF (1)

Eq. 1 represents the intuition that we only accrue certain costs (like time to query a stream success-
fully or time to execute a trajectory) when a stream succeeds, and similarly only suffer the cost of
querying a failed stream when it actually fails. The labels for our four outputs can be generated
while running a baseline planner [3], simply by tracking the outcome and costs each time a stream
is queried. In this way, we can generate training data by running any PDDLStream based planner.

3.2 Evaluating Stream Plans using Learned Models

Eq. 1 defines the expected cost of querying and executing any trajectory generated by a single stream.
In order to evaluate the expected cost of a sequence of streams ψ, we must consider the subsequent
costs both in the case when a stream succeeds (we attempt to query the next stream in ψ), and when
it fails and we are forced to try again.

In [7] and [8], the authors derived from the Bellman equation a method to estimate the cost of a
sequence of stochastic actions with binary outcomes. We make a small modification to incorporate
the expected cost of execution RM , and represent the expected cost of stream plan ψ, beginning at
stream st as:

Qψ(st) = PSt
(RSt

+RMt
+Qψ(st+1)) + (1− PSt

)(RFt
+Qψ(st)), (2)

3



Figure 1: A) An illustration of our planning approach. The root node represents a set of stream
plans Ψ, and each of its children are a sample ψ from that set. For all subsequent nodes, the available
actions consist of querying one of four external samplers/solvers: G: sample grasp, Pl: sample stable
placement, IK: solve for kinematically feasible configuration, and M: solve for collision free motion
plan. Nodes corresponding to the same ψ share the same color. The subscript for parameters x also
corresponds to the stream-plan, while the superscript denotes the node number within a given ψ. We
are able to estimate the value of any branch in this tree with our learned models using eq. (4). B) An
initial configuration from our simulated experiment. As in [3] the goal is for the robot to move each
block first to the sink (blue platform), then the stove (red platform). C) Here we highlight a potential
failure mode in this domain, if the third block is placed poorly on the stove, it may be impossible to
safely place all four blocks there without risking collision. Our approach allows us to predict when
a block placement will lead to failure later in a plan, allowing us to spend computation elsewhere.

where Qψ(st) represents the total cost (in seconds) it would take to successfully query each stream
st ∈ ψ and execute any trajectories therein, beginning at stream st in the plan. Manipulating eq. 2
algebraically, we can re-write the expected cost as:

Qψ(st) = RSt +RMt +Qψ(st+1) +
1− PSt

PSt

RFt . (3)

Due to the nature of stochastic external solvers, any stream can be queried infinitely many times,
and may eventually yield a successful output. Eq. 3 represents this intuition, as the expected cost for
a particular step in the recursion is simply the cost of successfully querying a stream and executing
any generated trajectory, plus the number of times we expect querying st to fail, times the expected
cost of that failure. The ratio 1−PSt

PSt
represents one less than the expected number of queries before

success in the geometric distribution parameterized by PSt
.

By rolling out the recursive steps, we can write the expected cost analytically:

Qψ(st) =
∑
st∈ψ

(
RSt +RMt +

1− PSt

PSt

RFt

)
. (4)

As a result, we are able to estimate the expected cost of planning and execution from any point in a
given ψ, simply by utilizing each remaining stream’s four estimated values according to Eq. 4.

3.3 Planning with our Models

To take advantage of our ability to estimate the expected cost of finding the unbound parameters in
a stream plan, we formulate the TAMP problem as a stochastic search problem. In [3], the authors
propose using Progressive Widening for Upper Confidence Bounded Trees (PW-UCT) [9, 10] to
search for parameters that satisfy the constraints of an action plan. We build upon this approach for
our planning algorithm, and so outline it briefly here.

4



3.3.1 Searching for Abstract Stream Plans

The first step in our approach is to generate several abstract action plans π ∈ Π — sequences of
actions which would represent a successful plan if all preconditions are met — from a PDDLStream
problem using an off-the-shelf top-k planner [11]. As mentioned in Sec. 2, some or all of an action’s
preconditions may be facts certifiable only by a stream. However, during the search for abstract
action plans, we do not explicitly query those streams (execute the functions associated with them),
as this would be prohibitively expensive. Instead we solve for abstract plans π, and compute the
associated stream-plan ψ: the sequence of streams that must be successfully queried to solve for the
unbound parameters in π. Once we have a set of k stream plans ψ ∈ Ψ, we can begin to attempt to
search for the unbound parameters.

3.3.2 Searching within Stream Plans using PW-UCT

There are four distinct steps in a PW-UCT search problem. First is selection, where the existing tree
is navigated according to the UCT heuristic (5) to find a node to expand. Next, in the expansion
phase, a child from the selected node is generated and appended to the tree. Then, in the simulation
step, we consider continually adding nodes from the newly expanded child node until either an
expansion fails, or we successfully reach our goal. Finally, upon the conclusion of the roll-out,
we update the statistics (total node visits and total accrued reward) of all visited nodes via back-
propagation. This process is repeated until a solution is found.

Our tree is built as follows. At the root node (level 0), the available actions correspond to selecting
one of the stream plans returned by the top-k planner. After this choice, each level-1 subtree is
associated with different evaluations for that stream plan. Each level in a sub-tree corresponds to
a specific stream and each node in a level to a different query to that stream in an attempt to bind
parameters. Because streams can be queried infinitely many times and potentially produce novel
results, there are infinitely many actions from each node (although a tree will only get as deep as the
length of a stream plan). Refer to figure 1 for a depiction of a growing search tree.

During tree traversal from the root to a leaf in the selection phase of search, at each node, we must
decide if we are going to query the stream for a new set of groundings for its output, or if we are
going to select a child node with an existing assignment. In [3], this decision is governed by the
progressive-widening inequality [10]: N(v)α > (N(v) − 1)α, where N(v) represents the number
of visits to a node v, and α is an exploration constant. If the condition is true, then a new child node
is created from node v by querying the associated stream. If not, and multiple children exist from a
particular node, we consider the UCT equation (5) to select the next node:

argmaxvi
Q(vi)

N(vi)
+ c

√
2ln(N(v))

N(vi)
, (5)

where vi represents a child of node v,N(v) denotes the number of times a node has been visited, and
Q(vi) gives the estimated value of a particular child node. Once a node is selected for expansion,
the associated stream is queried, and, if the query is successful, the parameters of that stream are
bound to the output. From there, the simulation and back-propagation steps are taken, and selection
begins again. By growing the tree in this way, we only evaluate streams that are determined by UCT
to best balance exploiting high value branches, and exploring new bindings. Once a full sequence
of actions has been successfully bound, we have solved the original TAMP problem, and can return
the full plan.

3.3.3 Guiding Search

The UCT equation (5) relies on an estimate ofQ in order to guide search. In [3], the authors propose
a heuristic based on the depth of the search tree, and accrued reward. Such heuristics, while useful,
require domain knowledge, may necessitate tuning, and cannot adapt to different streams within
a plan. To more efficiently guide search, we use our learned models, applied recursively to each

5



Figure 2: A comparison between the cost-to-go of baseline planner [3] and our Learned TAMP
Planner for 1,600 simulated trials in the kitchen domain. Each point in the scatter-plot represents the
outcome of a single trial, where density highlights the overlapping results. Our agent outperforms
the baseline across all metrics, with a 45% improvement in expected total planning time.

component of the remaining stream plan, to estimate Q. Specifically, we evaluate eq. (4) for any
node visited in search in order to get an estimate for remaining expected cost. If, in the application
of eq. (4), we encounter an stream input that has not yet been bound to a real parameter, we pass the
model a zero-vector of the same shape in its place to make a predictions without that information.
For each node, we use the negative of the final output from (4) as an estimate for Q in (5). By
using our trained model’s predictions in this way, we are able to make decisions on which external
functions to query using past experience, taking the into account all information that may influence
the likelihood of success and costs of pursuing a particular branch in the search space.

We also propose one further alteration to PW-UCT, which involves taking advantage of our ability
to estimate the value of querying a stream to avoid depending on the progressive-widening heuristic.
Instead of relying on the inequality defined earlier as in [3], we simply consider the act of sampling
a new node as another action in eq. (5). If the UCT heuristic for querying the current stream again
—according to the estimated cost from (4)— is higher than that of any the available children, we do
so, and add a new child to the current node. This allows us to completely forgo the need to rely on
the hand-tuned progressive-widening heuristic, and guide our search purely through the predictions
of our learned models. Because the exploration factor in (5) guarantees we will eventually re-
sample every node, we retain the guarantee that we will eventually expand our search breadth with
this method. In the next section, we demonstrate the benefits of using our approach in a simulated
kitchen environment.

4 Experimental Results

To highlight the capabilities of our learned planner, we implement our approach in a simulated
scenario. In an effort to make comparison straight-forward, we use an environment tested in [3];
specifically, their ‘kitchen’ domain. In this task, the robot is a simulated PR2[12] with five available
actions: pick up an object, place an object on a platform, move between configurations, cook an
object, and clean an object. Picking up an object requires sampling a grasp and computing a collision
free robot configuration. Placing an object requires sampling a safe position on a platform and
another collision free configuration. Moving the robot requires solving for a collision free trajectory
between two robot configurations. Finally, an object is cleaned when placed on the sink and cooked
when placed on the stove. The task specification is to first ‘clean’, then ‘cook’ all four blocks initially
placed on the table platform. We once again refer the reader to [3] for a more detailed description of
the problem domain.

In this domain, we ran over 1600 trials for both the uninformed baseline planner[3] and our learned
planner (trained on 100 trials worth of data from the baseline planner), initializing each trial with
new random seed. Over those trials, we recorded both the planning and execution time, and plotted
these values for the individual trials (along with their sum) in fig. 2. As shown in the plots, we

6



demonstrate a mean improvement in total time of approximately 63 seconds. Considering the per
trial improvement, nearly 59 seconds of that decrease comes from the planning cost, and around
4 seconds of improvement from execution cost. This notable difference —an approximate 45%
reduction in expected total time per trial— indicates that our solution can find plans of similar
execution time to a baseline planner but with significantly less planning time. This signals the
importance of carefully reasoning about which streams are actually evaluated in TAMP solvers, and
is an highlights the potential of our approach.

5 Related Works

5.1 Task and Motion Planning

Viewing TAMP as a hybrid constraint satisfaction problem [1], most TAMP approaches can be cate-
gorized as solving the constraints jointly or individually. In the first approach, the problem is written
as one large constrained optimization problem (typically a Mixed Integer Program), where discrete
components such as which block to pick up are represented by integers, and the trajectory optimiza-
tion is real-valued [1, 13, 14]. These joint optimization strategies can be appealing, as satisfying a
single optimization solves the entire problem. However, such approaches are often limited in that
certain aspects of the problem may not be easily differentiable, efficiently re-using computation can
be difficult, and it might not always be straight-forward to incorporate off-the-shelf samplers/solvers
[1]. The primary alternative approach is to consider solving for sets of parameters that satisfy small
groups of constraints, and combine the solutions into actions and plans. For example, we can sample
a block placement on a platform that is free of collisions, then confirm it is positioned so that there
exists a kinematically feasible configuration for the robot to execute such a placement. Approaches
that break up the problem in this way can take advantage of external samplers and solvers that are
optimized for specific sub-problems (e.g, Fast Downward for the discrete task problem, efficient
inverse-kinematics solvers, or neural networks for grasp sampling) [1, 2, 3]. In this work, we build
upon this second approach.

5.2 Planning with Learned Models

There has been significant recent progress in improving planning for TAMP problems using learned
models. Most relevant to this work are those contributions which attempt to accelerate search from
experience [15, 16, 17, 18, 19, 20, 21, 22]. [18] and [19] learn explicitly which components of a
given domain (objects and actions respectively) are relevant for a particular TAMP problem spec-
ification, though do not further guide search within their reduced domain. [20] learns an action
sampling distribution for geometric motion planning problems, but does not take advantage of off-
the-shelf samplers/solvers. [17] learns a Q-function as a heuristic to use in search for a geometric
TAMP problems, however does not learn to bind the continuous parameters of its actions. Closely
related, [22] specifically scores the relevance of streams within the PDDLStream [2] framework,
though does not consider the search for an action’s parameters. Finally, [16] attempts to learn a
feasibility predictor from images to accelerate the work in [3]. However, they do not predict costs,
and simply threshold their predicted feasibility to bound branches in search.

Outside of TAMP, there has been further work in planning with learned outcomes. Specifically, [7, 8]
learn models to predict the success/failure and costs of actions for planning in long-horizon, partially
observable domains, however are limited to navigation tasks. We build upon the intuition of this
work in sec. 3.2. In [23], the authors propose simultaneously learning outcome prediction and action
dynamics, and plan purely in a learned latent space. Due to the nature of their learned representation
however, they cannot utilize optimized off-the-shelf planners to solve TAMP problems.

6 Conclusion

In this work, we propose a novel approach for planning in long-horizon TAMP problems. Our
contributions include a method for learning to predict the outcome and associated costs of querying

7



potentially expensive black-box samplers/solvers, and using the predictions to guide search in our
planner. We demonstrate an approximately 45% reduction in planning and execution time compared
to an uninformed baseline [3].

In future work, we plan to expand our experimental results from a single simulated domain to both
more simulated environments, as well as to a real-world robot. We also hope to augment our models
to, in addition to learning to predict the estimates of outcome and costs, also predict a latent represen-
tation of the objects produced by querying a stream (e.g., a learned representation of a pose object).
This representation could then be used as input to subsequent streams —replacing any zero-vector
inputs as demonstrated in [22]— and enable us to better model expected costs for longer-horizon
tasks. Perhaps such a model would enable greater performance in improving execution time.

This work demonstrates that we can vastly decrease the costs of planning and execution in TAMP
problem by learning where to best spend computational resources. Our learned representation is able
augment the hand-written abstraction of a PDDLStream problem, allowing us to take advantage of
classical search techniques like [11] along with optimized trajectory planners, while still learning
from past experience to improve overall efficiency.

8



References
[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.

Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners
and blackbox samplers via optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.

[3] T. Ren, G. Chalvatzaki, and J. Peters. Extended tree search for robot task and motion planning.
arXiv preprint arXiv:2103.05456, 2021.

[4] M. Ghallab, D. Nau, and P. Traverso. Automated planning and acting. Cambridge University
Press, 2016.

[5] E. Karpas and D. Magazzeni. Automated planning for robotics. Annual Review of Control,
Robotics, and Autonomous Systems, 3:417–439, 2020.

[6] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[7] G. J. Stein, C. Bradley, and N. Roy. Learning over subgoals for efficient navigation of struc-
tured, unknown environments. In Conference on robot learning, pages 213–222. PMLR, 2018.

[8] C. Bradley, A. Pacheck, G. J. Stein, S. Castro, H. Kress-Gazit, and N. Roy. Learning and
planning for temporally extended tasks in unknown environments. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 4830–4836. IEEE, 2021.

[9] G. M. J. Chaslot, M. H. Winands, H. J. v. d. Herik, J. W. Uiterwijk, and B. Bouzy. Progressive
strategies for monte-carlo tree search. New Mathematics and Natural Computation, 4(03):
343–357, 2008.

[10] R. Coulom. Computing “elo ratings” of move patterns in the game of go. ICGA journal, 30
(4):198–208, 2007.

[11] D. Speck, R. Mattmüller, and B. Nebel. Symbolic top-k planning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 9967–9974, 2020.

[12] Pr2 - robots: Your guide to the world of robotics. https://robots.ieee.org/robots/

pr2/. (Accessed on 11/01/2022).

[13] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. 2018.

[14] E. Fernandez-Gonzalez, E. Karpas, and B. Williams. Mixed discrete-continuous planning
with convex optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[15] D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint. Learning geometric reasoning and control
for long-horizon tasks from visual input. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 14298–14305. IEEE, 2021.

[16] L. Xu, T. Ren, G. Chalvatzaki, and J. Peters. Accelerating integrated task and motion planning
with neural feasibility checking. arXiv preprint arXiv:2203.10568, 2022.

[17] B. Kim and L. Shimanuki. Learning value functions with relational state representations for
guiding task-and-motion planning. In Conference on Robot Learning, pages 955–968. PMLR,
2020.

9

https://robots.ieee.org/robots/pr2/
https://robots.ieee.org/robots/pr2/


[18] T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kaelbling. Plan-
ning with learned object importance in large problem instances using graph neural networks. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11962–11971,
2021.

[19] C. Agia, K. M. Jatavallabhula, M. Khodeir, O. Miksik, V. Vineet, M. Mukadam, L. Paull,
and F. Shkurti. Taskography: Evaluating robot task planning over large 3d scene graphs. In
Conference on Robot Learning, pages 46–58. PMLR, 2022.

[20] B. Kim, L. Kaelbling, and T. Lozano-Pérez. Guiding search in continuous state-action spaces
by learning an action sampler from off-target search experience. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[21] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki. Failure is an option: Task and motion plan-
ning with failing executions. In 2022 International Conference on Robotics and Automation
(ICRA), pages 1947–1953. IEEE, 2022.

[22] M. Khodeir, B. Agro, and F. Shkurti. Learning to search in task and motion planning with
streams. arXiv preprint arXiv:2111.13144, 2021.

[23] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affor-
dance foresight: Planning through what can be done in the future. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6206–6213. IEEE, 2021.

10


	Introduction
	Background
	Our Approach
	Learning to Model External Functions
	Evaluating Stream Plans using Learned Models
	Planning with our Models
	Searching for Abstract Stream Plans
	Searching within Stream Plans using PW-UCT
	Guiding Search


	Experimental Results
	Related Works
	Task and Motion Planning
	Planning with Learned Models

	Conclusion

