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Abstract

Although deep learning (DL) models have shown great success in many medical image
analysis tasks, deployment of the resulting models into real clinical contexts requires: (1)
that they exhibit robustness and fairness across different sub-populations, and (2) that the
confidence in DL model predictions be accurately expressed in the form of uncertainties.
Unfortunately, recent studies have indeed shown significant biases in DL models across
demographic subgroups (e.g., race, sex, age) in the context of medical image analysis, in-
dicating a lack of fairness in the models. Although several methods have been proposed
in the ML literature to mitigate a lack of fairness in DL models, they focus entirely on
the absolute performance between groups without considering their effect on uncertainty
estimation. In this work, we present the first exploration of the effect of popular fair-
ness models on overcoming biases across subgroups in medical image analysis in terms of
bottom-line performance, and their effects on uncertainty quantification. We perform ex-
tensive experiments on three different clinically relevant tasks: (i) skin lesion classification,
(ii) brain tumour segmentation, and (iii) Alzheimer’s disease clinical score regression. Our
results indicate that popular ML methods, such as data-balancing and distributionally ro-
bust optimization, succeed in mitigating fairness issues in terms of the model performances
for some of the tasks. However, this can come at the cost of poor uncertainty estimates
associated with the model predictions. This tradeoff must be mitigated if fairness models
are to be adopted in medical image analysis.

Keywords: Uncertainty, Fairness, Classification, Segmentation, Regression, Brain Tu-
mour, Skin Lesion, Alzheimer’s Disease

1. Introduction

Deep Learning (DL) models have shown great potential in many clinically relevant appli-
cations (e.g. diabetic retinopathy (DR) diagnosis (Gulshan et al., 2016)). Deployment of
the resulting models into real-world clinical contexts, and in particular maintaining clini-
cians’ trust, requires that robustness and fairness across different sub-populations are main-
tained1. Unfortunately, several studies have indeed exposed significant biases in DL models
across sub-populations (e.g. according to race, sex, age) in the context of medical image
analysis (Zong et al., 2022). For example, in Larrazabal et al. (2020), it is shown that a
Computer-Assisted Diagnosis system trained on a predominantly male dataset for diagnos-
ing thoracic diseases gives lower performance when tested on female patient images (here,

1. Ricci Lara et al. (2022) provides a really good overview of the necessity to address the issue of fairness,
potential sources of biases, and the remaining challenges, for machine learning models in medical imaging.
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the underrepresented sex). In Burlina et al. (2021), the authors show how data imbalance
in the training dataset leads to a disparity in accuracies across sub-populations (dark vs.
light skinned individuals) in the diagnosis of DR. Similar issue of racial bias for groups
under-represented in the training data is reported for various medical image analysis tasks
such as X-ray pathology classification (Seyyed-Kalantari et al., 2021), cardiac MR image
segmentation (Puyol-Antón et al., 2021), and brain MR segmentation (Ioannou et al., 2022).

Several methods have been proposed in the machine learning literature to mitigate the
lack of fairness (Mehrabi et al., 2021) in the models. This includes data balancing (Japkowicz
and Stephen, 2002; Idrissi et al., 2022), which was shown to be successful for some medical
imaging contexts (Puyol-Antón et al., 2021; Ioannou et al., 2022). In the machine learning
and computer vision fairness literature, the objective is to bridge the performance gap
across subgroups with different attributes. It is well established in the literature (Du et al.,
2020; Zietlow et al., 2022), however, that fairness across different subgroups can come at
the cost of poor overall performance. In those fields, they do not consider the effect of
the bias mitigation methods on the uncertainties associated with the model output. In
medical image analysis, however, it has been shown that real clinical contexts would benefit
from knowledge about the confidence in the model predictions, when made explicit in the
form of uncertainties (Band et al., 2021). Specifically, trust would be established should
uncertainties associated with the predictions be higher when the model is incorrect, and
low where model outputs are correct. Various successful frameworks for quantifying models
uncertainties in the context of medical image analysis have been presented for tasks such
as image segmentation (Nair et al., 2020; Jungo and Reyes, 2019), image synthesis (Tanno
et al., 2021; Mehta and Arbel, 2018), and image classification (Molle et al., 2019; Ghesu
et al., 2019). However, these methods only analyze the output uncertainties for the entire
population, without consideration of the results for population subgroups.

In this work, we conjecture that uncertainty quantification can help mitigate some po-
tential risks in clinical deployment related to a lack of robustness and fairness for under-
represented populations. However, the uncertainties will only help clinicians make more
informed decisions if they are accurate. Specifically, a machine learning model that under-
performs for an under-represented subgroup should indicate high uncertainties associated
with its output for that subgroup. Conversely, a machine learning model that achieves
fairness in terms of performance across different subgroups, but produces low uncertainties
for predictions where it makes mistakes, would become less trustworthy to clinicians.

In this paper, we present the first analysis of the effect of popular fairness models
at overcoming biases of DL models across subgroups for various medical image analysis
tasks, and investigate and quantify their effects on the estimated output uncertainties.
Specifically, we perform extensive experiments on three different clinically relevant tasks:
(i) multi-class skin lesion classification (Codella et al., 2019), (ii) multi-class brain tumour
segmentation (Bakas et al., 2018), and (iii) Alzheimer’s disease clinical score (Jack Jr et al.,
2008) regression. Our results indicate a lack of fairness in model performance for under-
represented groups. The uncertainties associated with the outputs behave differently across
different groups. We show that popular methods designed to mitigate the lack of fairness,
specifically data balancing (Puyol-Antón et al., 2021; Ioannou et al., 2022; Idrissi et al.,
2022; Zong et al., 2022) and robust optimization (Sagawa et al., 2019; Zong et al., 2022)
do indeed improve fairness for some tasks. However, this comes at the expense of poor
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performance of the estimated uncertainties in some cases. This tradeoff must be mitigated
if fairness models are to be adopted in medical image analysis.

2. Methodology: Fairness in Uncertainty Estimation

This paper aims to evaluate the effectiveness of various popular machine learning fairness
models at mitigating biases across subgroups in various medical image analysis contexts
in terms of (a) the absolute performance of the models and (b) the uncertainty estimates
across the subgroups. Although general, the framework and associated notations focus on
binary sensitive attributes (e.g., sex, binarized ages, disease stages).

Consider a dataset D = {X,Y,A} = {(xi, yi, ai)}Ni=1 with N total samples. Here, xi ∈
RP×Q or xi ∈ RP×Q×S represents 2D or 3D input image, yi represents corresponding ground
truth labels, and ai = {0, 1} represents the sensitive binary group-attribute. yi depends
on the task at hand: yi ∈ {0, 1, .., C} for image-level classification, yi ∈ R for image-
level regression, and yi ∈ {0, 1, ..C}P×Q or yi ∈ {0, 1, ..C}P×Q×S for 2D/3D voxel-level
segmentation. The dataset can be further divided into subgroups, A = {0, 1}, based on the
value of the sensitive attribute: (i) D0 = {X0, Y 0, A = 0} = {(x0i , y0i , ai = 0)}Mi=1 and (ii)
D1 = {X1, Y 1, A = 1} = {(x1i , y1i , ai = 0)}Li=1, where M + L = N .

Let us consider a deep learning model f(., θ) that produces a set of outputs Ŷ = f(X, θ)
for a set of input images, X. The goal here is to define a global fairness metric that is
applicable and consistent across a wide variety of tasks (e.g. classification, segmentation,
regression). The majority of the fairness metrics (Hinnefeld et al., 2018) are only defined
for the classification task. There has been some recent work related to the fairness of
segmentation models (Puyol-Antón et al., 2021; Ioannou et al., 2022), where fairness gap
metrics are aligned with the one presented in this work. To our knowledge, fairness in
medical imaging regression has not yet been explored. Fairness can be defined as follows:
A machine learning model is considered to be fair if the difference in the task-specific
performance metric between different subgroups is low. To that end, a general fairness gap
(FG) metric calculates the differences in the task-specific evaluation metric (EM) values
between Ŷ and Y conditioned on a binary sensitive attribute A.

FG(A = 0, A = 1) = |EM(Y 0, Ŷ 0)− EM(Y 1, Ŷ 1)|. (1)

A machine learning model is fair for the sensitive attribute A if FG(A = 0, A = 1) = 0.
EM differs depending on the task at hand. Accuracy for image classification, Dice value for
segmentation, and mean squared error for image-level regression. EM is calculated for each
image separately and then averaged across the dataset for a voxel-level segmentation task.
For image classification or regression tasks, EM is calculated directly at a dataset level.

In this work, we focus on Bayesian deep learning (BDL) models (Neal, 2012; Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2017; Smith and Gal, 2018), which are widely
adopted within the medical image analysis community given their ability to produce uncer-
tainty estimates, ûi, associated with the model output ŷi. Popular uncertainty estimates
include sample variance, predicted variance, entropy, and mutual information (Kendall and
Gal, 2017; Gal et al., 2017). Uncertainties ûi are typically normalized between 0 (low un-
certainty) and 100 (high uncertainty) across the dataset. In the medical image analysis
literature, the quality of the estimated uncertainties is evaluated based on the objective
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of being correct when confident and highly uncertain when incorrect (Mehta et al., 2022;
Nair et al., 2020; Lakshminarayanan et al., 2017). To this end, all predictions whose output
uncertainties (ûi) are above a threshold (τ) are filtered (labeled as uncertain). The EM is
calculated on the remaining certain predictions (Ŷτ and Yτ ) (below the threshold):

FGτ (A = 0, A = 1) = |EMτ (Y
0
τ , Ŷ

0
τ )− EMτ (Y

1
τ , Ŷ

1
τ )|. (2)

At τ = 100, equations 1 and 2 become equivalent. A higher degree of fairness in uncer-
tainty estimation is established through a reduced fairness gap (FGτ1 ≤ FGτ2) when the
number of filtered uncertain predictions increases. In other words, when the uncertainty
threshold is reduced (τ1 < τ2), thereby increasing the number of filtered uncertain pre-
dictions, the differences in the performances on the remaining confident predictions across
the subgroups should be reduced. However, this decrease should not lead to a reduction
in overall performance. In other words, it is desirable that EMτ1 ≥ EMτ2. Conversely,
an increase in the fairness gap (FGτ1 > FGτ2) indicates the undesirable effect of having a
higher degree of confidence in incorrect predictions for one of the subgroups.

3. Experiments and Results

Extensive experimentation involves comparisons of two established fairness models against
a baseline: (i) A Baseline-Model: trained on a dataset without consideration of any sub-
group information; (ii) A Balanced-Model: trained on a dataset where each subgroup
contains an equal number of samples during the training, an established baseline fairness
model that focuses on mitigating biases due to data imbalance (Puyol-Antón et al., 2021;
Ioannou et al., 2022; Idrissi et al., 2022); (iii) A GroupDRO-Model: trained with Group-
DRO loss (Sagawa et al., 2019) to re-weigh the loss for each subgroup, thereby mitigating
lack of fairness through the optimization procedure. The number of images in the test set
is the same across all subgroups for fair comparisons.

3.1. Multi-class skin lesion classification

Skin cancer is the most prevalent type of cancer in the United States (Guy Jr et al., 2015),
which can be diagnosed by classifying skin lesions into different classes.

Dataset and Sensitive Attribute Rationale: We use the publicly available Interna-
tional Skin Imaging Collaboration (ISIC) 2019 dataset (Codella et al., 2019) for multi-class
skin lesion classification. A dataset of 24947 dermoscopic images is provided, with 8 associ-
ated disease scale labels, and with high class imbalance. Demographic patient information
(e.g. age, gender) is also provided. We consider age as the sensitive attribute (ai). Following
(Zong et al., 2022), the entire dataset is divided into two subsets: patient images with age
≥ 60 in subgroup D0 with a total of 10805 images, and patients with age < 60 in subgroup
D1 with a total of 14045 images2. The Baseline-Model and the GroupDRO-Model are
trained on a training dataset where subgroup D0 contains 8260 images, while subgroup D1

contains 10892 images. While it appears that subgroup D1 contains approximately 32%
more images, it is not strictly the case for all eight classes. A Balanced-Model is trained

2. We ran experiments with sex as a sensitive attribute, which showed similar results (see Appendix-A.1)
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Figure 1: Overall and class-level accuracy (for three classes) against (100 - uncertainty
threshold) for (a) Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-Model
on the ISIC dataset. Results are shown overall and for each subgroup (D0: age >= 60, D1:
age < 60). For Fairness Gap (FG) refer axis labels on the right.

on a training dataset where both subgroup D0 and subgroup D1 contain 7251 images. Both
subgroups are balanced for each of the eight classes of the dataset (but not the same across
the eight classes).

Implementation Details: An ImageNet pre-trained ResNet-18 (He et al., 2016) model
is trained on this dataset. The evaluation metrics (EM) are overall accuracy, overall macro-
averaged AUC-ROC, and class-level accuracy. The predictions’ uncertainty is measured
through the entropy of an Ensemble Dropout model (Smith and Gal, 2018).

Results: For the Baseline-Model, all four plots in Figure-1(a) show a high fairness
gap between the two subgroups when fewer predictions are filtered based on uncertainties
(left side of the graph). When filtering more predictions (moving towards the right side
of the curve), an increase in the accuracy for each subgroup and a reduction in the fair-
ness gap can be observed. This demonstrates that the model might be incorrect for more
images in one of the subgroups, but it usually has higher uncertainty in those predictions
compared to the other subgroup. Overall Accuracy (Column 1) in Figure-1(b) shows that
compared to the Baseline-Model, the Balanced-Model produces a reduced fairness gap
between two subgroups at a low number of filtered predictions (left side of the graph), but
at the cost of reduced overall accuracy for each subgroup. The overall accuracy for each
subgroup increases with higher uncertainty filtering (towards the right side of the graph).
Still, it comes at the expense of a higher fairness gap. For classes with a lower number
of total images, such as Dermatofibroma in Column 3, filtering out more predictions de-

5



Mehta Shui Arbel

creases overall performance for one of the subgroups. This shows that while data balancing
could enable better fair models at absolute prediction performance level, it comes at the
cost of poor uncertainty estimates. Figure-1(c) shows that the GroupDRO-Model gives
better overall accuracy and better class-wise accuracy compared to the Baseline-Model
for classes with a high number of total samples (e.g., Melanoma - Column 2, Basal cell
carcinoma - Column 4). But it also shows a high fairness gap when a low number of pre-
dictions are filtered (left side of the graph). The fairness gap reduces by filtering more
predictions. However, it is not completely mitigated for all of the classes. Overall accuracy
and classwise-accuracy for classes with a lower number of samples (ex. Dermatofibroma
in Column 3) see a marginal increase in the fairness gap with uncertainty-based filtering.
Results indicate that the GroupDRO-Model might give marginally better absolute per-
formance than the Baseline-Model, but it does not produce fair uncertainty estimates
across subgroups. Similarly, it can be concluded that different models do not behave con-
sistently across different classes, both in terms of fairness gap and uncertainty evaluation. It
indicates that a single model cannot reduce fairness gap and also provide good uncertainty
estimation. More results for all eight classes and three models are given in the Appendix-A.

3.2. Brain Tumour Segmentation

Automatic segmentation of brain tumours can assist in better and faster diagnosis proce-
dures and surgical planning.

Dataset and Sensitive Attribute Rationale: We use the 260 High-Grade Glioma im-
ages from the publicly available Brain Tumour Segmentation (BraTS) 2019 challenge dataset
(Bakas et al., 2018). The choice for how to split the dataset is based on finding a subgroup
where a performance gap is clearly present based on the provided metrics. There can be
a number of such subgroups. We initially ran experiments whereby the dataset was split
based on imaging centers (i.e. binary subgroups: TCIA vs non-TCIA). Our results, included
in the Appendix-B.1, indicated that there is no bias across the resulting groups. It is well
established that there is a significant bias in the BraTS dataset, whereby the performance of
small tumour segmentation is significantly worse than that of large tumour segmentation.
This is an important bias to overcome. The image dataset is therefore divided into two
subsets based on the volume of the enhancing tumour: 206 images with volumes > 7000ml3

in subgroup D0 and 54 images with volumes ≤ 7000ml3 in subgroup D1. Baseline-Model
and GroupDRO-Model are trained on a dataset of 168 samples from D0 and 30 samples
from D1. While a Balanced-Model is trained on a balanced training set with 30 samples
from each subgroup.

Implementation Details: A 3D U-Net (Çiçek et al., 2016; Nair et al., 2020) is trained
for tumour segmentation. Following the BraTS dataset convention, tumour segmentation
performance is evaluated by calculating Dice scores for three different tumour sub-types:
enhancing tumor, whole tumor, and tumour core. The predictions’ uncertainty is measured
through the entropy of an Ensemble Dropout model (Smith and Gal, 2018).

Results: Figure 2 shows that both the Baseline-Model and the GroupDRO-Model
perform similarly for whole tumour (WT) across both subgroups, as an increase in Dice
and decrease in the fairness gap is observed with filtering of more voxels in the images (go-
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(a)

(b)

(c)

Figure 2: Averaged sample Dice as a function of (100 - uncertainty threshold) for (a)
Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-Model on the BraTS
dataset. Dice results for whole tumour (WT), tumour core (TC), and enhancing tumour
(ET), for both the D0 and D1, set are shown in each column. For Fairness Gap (FG) refer
axis labels on the right.

ing from left to right in the graph). For the Balanced-Model though initially (left most
at an uncertainty threshold of 100) the fairness gap is lower compared to the other two
models, it increases with the filtering of more voxels in the images. Tumour core (TC) and
enhancing tumour (ET) follow a similar trend, where both the Baseline-Model and the
GroupDRO-Model perform similarly. Although for both TC and ET, the Balanced-
Model doesn’t show an increase in the fairness gap between the two subgroups with a de-
crease in uncertainty threshold (moving from left to right), a decrease in overall performance
for both subgroups is observed. This shows that mitigating the fairness gap by filtering out
more voxels is insufficient and may lead to a drop in performance in both subgroups. It
can be concluded that for a challenging dataset like BraTS, the Balanced-Model or the
GroupDRO-Model do not produce fair uncertainty estimates across different subgroups.
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Figure 3: Root Mean Squared Error (RMSE) of ADAS-13 (Top) and MMSE (Bottom)
scores as a function of (100-uncertainty threshold) for (a) Baseline-Model, (b) Balanced-
Model, and (c) GroupDRO-Model on the ADNI dataset. Specifically, we plot RMSE
for each subgroup (D0 with age < 70 and D1 with age ≥ 70). For Fairness Gap (FG) refer
axis labels on the right.

3.3. Alzheimer’s Disease Clinical Score Regression

Alzheimer’s disease (AD) is the most common neurodegenerative disorder in elderly people
(Goedert and Spillantini, 2006). For AD, clinicians treat symptoms based on structured
clinical assessments (e.g., Alzheimer’s Disease Assessment Scale – ADAS-13 (Rosen et al.,
1984), Mini-Mental State Examination – MMSE (Folstein et al., 1975)).

Dataset and and Sensitive Attribute Rationale: Experiments are based on the MRIs
of a subset (865 patients) of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (Jack Jr et al., 2008) at different stages of diagnosis: Alzheimer’s Disease (145),
Mild Cognitive Impairment (498), and Cognitive Normal (222). The dataset also provides
demographic patient information such as age and gender. Here, we consider age as a sensi-
tive attribute (ai). The dataset is divided such that patients with age < 70 are grouped into
D0 (259 patient images), and patients with age ≥ 70 are grouped into D1 (606 patient im-
ages). The threshold for the sensitive attribute was chosen due to the clear performance gap
between these subgroups. A Baseline-Model and a GroupDRO-Model are trained on a
dataset that contains 163 samples from D0 and 440 samples from D1. A Balanced-Model
is trained with 163 samples from each subgroup.

Implementation Details: Amulti-task 3D ResNet-18 model (Hara et al., 2018) is trained
on this dataset to regress ADAS-13 and MMSE scores. Root Mean Squared Error (RMSE)
is used as an evaluation metric (EM), where a lower value of RMSE represents better per-
formance. Bayesian Deep Learning model with Ensemble Dropout (Smith and Gal, 2018) is
used. A combination of Sample Variance and Predicted Variance, known as total variance
(Kendall and Gal, 2017), is used to measure uncertainty associated with the model output.
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Results: Figure 3 shows that compared to the Baseline-Model, the Balanced-Model
only marginally decreases the fairness gap in the initial performance between two subgroups,
that too at the cost of poor (higher RMSE) absolute performance for each subgroups. The
GroupDRO-Model shows better absolute performance (lower RMSE) and also a lower
fairness gap between each subgroup compared to the other two models. The Baseline-
Model shows a decrease in the fairness gap between subgroups with a decrease in uncer-
tainty threshold (moving from left to right) for MMSE, but it is not true for ADAS-13. On
the contrary, the Balanced-Model shows an increase in the fairness gap with a decreased
uncertainty threshold for both ADAS-13 and MMSE. The GroupDRO-Model gives the
best performance as the fairness gap decreases with a decrease in uncertainty threshold.

4. Conclusions

In medical image analysis, accurate uncertainty estimates associated with deep learning
predictions are necessary for their safe clinical deployment. This paper presented the first
exploration of fairness models that mitigate biases across subgroups, and their subsequent
effects on uncertainty quantification accuracy. Results on a wide range of experiments for
three different tasks indicate that popular fairness methods, such as data balancing and
robust optimization, do not work well for all tasks. Furthermore, mitigating fairness in
terms of performance can come at the cost of poor uncertainty estimates associated with
the outputs. Future work is required to overcome these additional fairness issues prior to
clinical deployment of these models. Additional experiments are required to generalize the
conclusions presented here, including the exploration of different uncertainty measures (e.g.
conformal prediction (Angelopoulos and Bates, 2021)), additional sensitive attributes and
associated thresholds, and consideration of multi-class (non binary) attributes.
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Appendix A. Multi-Class Skin Lesion Classification
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Figure 4: (a) A 2D ResNet-18 architecture consists of a 7x7 convolutional unit, followed
by 16 3x3 convolutional units, one dropout layer (p=0.2), and one fully connected layers.
The dotted shortcuts increase dimensions. (b) Each convolutional unit consists of one CxC
convolutional layer with stride S, followed by Batch Normalization layer (Ioffe and Szegedy,
2015), and a ReLU layer.

Implementation Details: An ImageNet pre-trained 2D ResNet18 (He et al., 2016) ar-
chitecture was used for the ISIC multi-class disease scale classification task. The network
architecture is depicted in Figure-4. A Dropout layer (Srivastava et al., 2014) with p=0.2
is introduced before the fully connected (fc) layer. The network was trained to reduce the
categorical cross entropy loss. An Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0005 and a weight decay of 0.00001 was used to train the network for a total of 100
epochs, and batch size of 64. The learning rate was decayed with a factor of 0.995 after each
epoch. All ISIC images were resized to 600x450 size and normalized with mean subtraction
and divide by std. Random Horizontal Flip, Random Vertical Flip, and Random rotation in
the range of 0-30, was applied as data augmentation on each image. The code was written
in PyTorch (Paszke et al., 2019) and ran on Nvidia GeForce RTX 3090 GPU with 24GB
memory. For generating EnsembleDropout (Smith and Gal, 2018), we train three different
networks with different random initialization of network weights and take 20 MC-Dropout
samples (Gal and Ghahramani, 2016) from each. This results in a total of 60 Monte-Carlo
samples for each image.

ISIC Dataset

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 2593 2600 2387 707 1785 79 108 546 10805
D1 1844 9958 930 157 813 160 145 82 14045

Overall 4437 12558 3317 864 2598 239 253 628 24850

Table 1: Number of images for each class and each subgroup for the whole ISIC dataset.
From this, we can see a high-class imbalance across different classes. Similarly, distribu-
tion across both subgroups for a particular class is also different. For example, while for
Melanoma, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, and Squamous Cell
Carcinoma, D0 has a higher number of samples compared to D1, for the rest of the classes
(Melanocytic Nevus, Dermatofibroma, and Vascular Lesion) D1 has a higher number of
samples compared to D0.
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Training Dataset (Baseline-Model and GroupDRO-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 1835 1638 1895 594 1388 50 68 470 7938
D1 1161 8280 585 99 513 122 100 52 10912

Overall 2996 9918 2480 693 1901 172 168 522 18850

Table 2: Number of images for each class and each subgroup for the training dataset used to
train theBaseline-Model and theGroupDRO-Model. Similar to the whole ISIC dataset
(Table-1), we see high-class imbalance across different classes, and different distributions
across both subgroups for a particular class.

Training Dataset (Balanced-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 1161 1638 585 99 513 50 68 52 4166
D1 1161 1638 585 99 513 50 68 52 4166

Overall 2322 3276 1170 198 1026 100 136 104 8332

Table 3: Number of images for each class and each subgroup for the training dataset used
to train the Balanced-Model. Compared to the training dataset used for the Baseline-
Model and the GroupDRO-Model (Table-2), we balance the number of samples across
both subgroups, but we do not balance across different classes.

Validation Dataset (Baseline-Model, GroupDRO-Model, and Balanced-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 204 182 212 66 154 5 7 52 882
D1 129 918 65 11 57 14 12 6 1212

Overall 333 1100 277 77 211 19 19 58 2094

Table 4: Number of images for each class and each subgroup in the Validation dataset for
all three models (the Baseline-Model and the GroupDRO-Model, and the Balanced-
Model). The distribution of samples across both subgroups and across different classes is
similar to the Table-1.

Testing Dataset (Baseline-Model, GroupDRO-Model, and Balanced-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 554 780 280 47 243 24 33 24 1985
D1 554 780 280 47 243 24 33 24 1985

Overall 1108 1560 560 94 486 48 66 48 3970

Table 5: Number of images for each class and each subgroup in the Testing dataset used
to test all three models (the Baseline-Model and the GroupDRO-Model, and the
Balanced-Model). The distribution of samples across both subgroups is kept similar,
but it is not similar across different classes. We kept similar distribution across both sub-
groups for a fair comparison of their performance, while the distribution across different
classes was not kept similar to reflect real-world scenarios where some classes can be more
frequent compared to others.
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Baseline-Model AUC Accuracy Balanced-Accuracy
D0 96.46 78.74 72.64
D1 95.71 76.83 66.76
Fairness Gap 0.75 1.91 5.88

Table 6: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a Baseline-Model
trained on the ISIC dataset at τ = 100.

Balanced-Model AUC Accuracy Balanced-Accuracy
D0 93.91 77.28 63.70
D1 95.09 76.68 66.87
Fairness Gap 1.18 0.60 3.17

Table 7: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a Balanced-Model
trained on the ISIC dataset at τ = 100.

GroupDRO-Model AUC Accuracy Balanced-Accuracy
D0 96.20 79.55 71.95
D1 95.95 78.38 71.33
Fairness Gap 0.25 1.17 0.62

Table 8: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a GroupDRO-
Model trained on the ISIC dataset at τ = 100.

Baseline-Model
Class-level Accuracy

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

D0 75.09 86.03 81.43 61.70 66.67 54.17 72.73 83.33
D1 64.62 91.41 77.86 65.96 64.20 25.00 90.91 54.17

Fairness Gap 10.47 5.38 3.57 4.26 2.47 29.17 18.18 29.16

Table 9: Per class accuracy for a Baseline-Model trained on the ISIC dataset at τ = 100.

Balanced-Model
Class-level Accuracy

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

D0 75.09 83.33 86.78 38.30 66.26 58.33 84.85 16.67
D1 74.37 79.87 87.50 57.45 68.72 58.33 87.88 20.83

Fairness Gap 0.72 3.46 0.72 19.15 2.46 0.00 3.03 4.16

Table 10: Per class accuracy for aBalanced-Model trained on the ISIC dataset at τ = 100.

GroupDRO-Model
Class-level Accuracy

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

D0 79.96 81.02 88.93 57.45 71.61 45.83 75.76 75.00
D1 68.23 87.69 86.43 85.11 66.67 29.17 84.85 62.50

Fairness Gap 11.73 6.67 2.50 27.66 4.94 16.66 9.09 12.50

Table 11: Per class accuracy for a GroupDRO-Model trained on the ISIC dataset at
τ = 100.
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Figure 5: ISIC: Overall AUC, accuracy, and Balanced Accuracy as a function of uncertainty
threshold for (a) Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-Model
on the ISIC dataset. In addition to metrics, the total number of testing images for each
subgroup (D0 - age >= 60 and D1 - age < 60) are shown as light colours.
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Figure 6: ISIC: Class-level accuracy as a function of uncertainty threshold for (a)Baseline-
Model, (b) Balanced-Model, and (c) GroupDRO-Model on the ISIC dataset. In
addition to the accuracy, the total number of testing images for each subgroup (D0 - age
>= 60 and D1 - age < 60) are shown as light colours.
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A.1. ISIC - Sex as a sensitive attribute

We use sex as a sensitive attribute for experiments in this section. Specifically, we divide
the ISIC dataset into two subsets based on the sex associated with each image (male vs fe-
male). The entire dataset is divided into two subsets: patient images from female patients
in subgroup D0 with a total of 11661 images, and patient images from male patients in
subgroup D1 with a total of 13286 images.

ISIC Dataset

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 1980 6379 1317 406 1134 117 125 203 11661
D1 2461 6225 2000 458 1467 122 128 425 13286

Overall 4441 12604 3317 864 2601 239 253 628 24947

Table 12: Number of images for each class and each subgroup for the whole ISIC dataset.
From this, we can see a high-class imbalance across different classes. Similarly, distribu-
tion across both subgroups for a particular class is also different. For example, while for
Melanoma, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, and Squamous Cell
Carcinoma, D0 has a higher number of samples compared to D1, for the rest of the classes
(Melanocytic Nevus, Dermatofibroma, and Vascular Lesion) D1 has a higher number of
samples compared to D0.

Training Dataset (Baseline-Model and GroupDRO-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 1248 4061 830 257 715 73 78 128 7390
D1 1680 3922 1445 303 1015 78 81 328 8852

Overall 2928 7983 2275 560 1730 151 159 456 16242

Table 13: Number of images for each class and each subgroup for the training dataset
used to train the Baseline-Model and the GroupDRO-Model. Similar to the whole
ISIC dataset (Table-12), we see high-class imbalance across different classes, and different
distributions across both subgroups for a particular class.

Training Dataset (Balanced-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 1248 3922 830 257 715 73 78 128 7251
D1 1248 3922 830 257 715 73 78 128 7251

Overall 2496 7844 1660 514 1430 146 156 256 14502

Table 14: Number of images for each class and each subgroup for the training dataset used
to train the Balanced-Model. Compared to the training dataset used for the Baseline-
Model and the GroupDRO-Model (Table-13), we balance the number of samples across
both subgroups, but we do not balance across different classes.
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Validation Dataset (Baseline-Model, GroupDRO-Model, and Balanced-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 138 451 92 28 79 8 9 14 819
D1 187 436 160 34 112 8 9 36 982

Overall 325 887 252 62 191 16 18 50 1801

Table 15: Number of images for each class and each subgroup in the Validation dataset for
all three models (the Baseline-Model and the GroupDRO-Model, and the Balanced-
Model). The distribution of samples across both subgroups and across different classes is
similar to the Table-12.

Testing Dataset (Baseline-Model, GroupDRO-Model, and Balanced-Model)

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

Total

D0 594 1867 395 121 340 36 38 61 3452
D1 594 1867 395 121 340 36 38 61 3452

Overall 1188 3734 790 242 680 72 76 122 6904

Table 16: Number of images for each class and each subgroup in the Testing dataset
used to test all three models (the Baseline-Model and the GroupDRO-Model, and the
Balanced-Model). The distribution of samples across both subgroups is kept similar, but
it is not similar across different classes. We kept similar distribution across both subgroups
for a fair comparison of their performance, while the distribution across different classes
was not kept similar to reflect real-world scenarios where some classes can be more frequent
compared to others.

Baseline-Model AUC Accuracy Balanced-Accuracy
D0 96.24 83.02 71.77
D1 96.83 83.02 70.23
Fairness Gap 0.59 0.00 1.54

Table 17: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for aBaseline-Model
trained on the ISIC dataset at τ = 100.

Balanced-Model AUC Accuracy Balanced-Accuracy
D0 96.26 82.24 70.26
D1 95.92 81.66 69.42
Fairness Gap 0.34 0.58 0.74

Table 18: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a Balanced-
Model trained on the ISIC dataset at τ = 100.

GroupDRO-Model AUC Accuracy Balanced-Accuracy
D0 95.76 80.56 70.25
D1 96.31 80.59 69.90
Fairness Gap 0.55 0.03 0.35

Table 19: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a GroupDRO-
Model trained on the ISIC dataset at τ = 100.
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Baseline-Model
Class-level Accuracy

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

D0 65.32 91.64 85.06 61.16 80.29 63.88 71.05 55.74
D1 73.91 91.27 87.09 52.07 68.53 44.44 92.11 52.46

Fairness Gap 8.59 0.37 2.03 9.09 11.76 19.44 21.06 3.28

Table 20: Per class accuracy for a Baseline-Model trained on the ISIC dataset at τ = 100.

Balanced-Model
Class-level Accuracy

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

D0 62.79 92.34 88.35 59.50 70.88 66.67 78.95 42.62
D1 68.52 90.95 87.59 54.55 65.88 61.11 94.74 32.79

Fairness Gap 5.73 1.39 0.76 4.95 5.00 5.56 15.79 9.83

Table 21: Per class accuracy for a Balanced-Model trained on the ISIC dataset at
τ = 100.

GroupDRO-Model
Class-level Accuracy

Melanoma
Melanocytic

Nevus
Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis

Dermatofibroma
Vascular
Lesion

Squamous Cell
Carcinoma

D0 55.05 92.07 83.29 66.12 70.29 55.56 78.95 60.66
D1 63.13 90.52 82.28 59.50 68.24 50.00 81.58 63.93

Fairness Gap 8.08 1.55 1.01 6.62 2.05 5.56 2.63 3.27

Table 22: Per class accuracy for a GroupDRO-Model trained on the ISIC dataset at
τ = 100.
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Figure 7: ISIC-Sex: Overall AUC, accuracy, and Balanced Accuracy as a function of un-
certainty threshold for (a) Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-
Model on the ISIC dataset. In addition to metrics, the total number of testing images for
each subgroup (D0 - Female and D1 - Male) are shown as light colours.
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Figure 8: ISIC-Sex: Class-level accuracy as a function of uncertainty threshold for
(a) Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-Model on the ISIC
dataset. In addition to the accuracy, the total number of testing images for each subgroup
(D0 - Female and D1 - Male) are shown as light colours.
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Appendix B. Brain Tumour Segmentation

Figure 9: Network architecture diagram of the modified 3D-BU-Net (Nair et al., 2020), used
for the multi-class brain tumour segmentation. It takes multi-modal MR images as input
and produces multi brain tumour segmentation on the BraTS dataset.

Implementation Details: We use a BU-Net (Nair et al., 2020) architecture for brain tu-
mour segmentation on the BraTS dataset. Similar to the original 3D BU-Net, the network
consists of encoder and decoder paths that embed convolution and deconvolution opera-
tions. High-resolution features from the encoder path were combined with the up-sampled
output of the decoder to preserve high-resolution features. Each convolution was followed
by rectified linear unit activation (ReLU). Instead of using the batch-normalization layer
used in the original U-Net, we used instance normalization (Ulyanov et al., 2016). In-
stance normalization typically improves performance for small batch sizes. The network
was trained using Adam (Kingma and Ba, 2014) optimizer with a learning rate of 0.0002
and weight decay of 0.00001 for a total of 240 epochs to minimize weighted cross-entropy
loss. Here, the weights are defined such that the weight increases whenever there are fewer
voxels in a particular class. After every epoch, class weights were decayed with a factor of
0.95, which results in equally weighted binary cross-entropy after around 50 epochs. The
code was written in PyTorch (Paszke et al., 2019) and ran on Nvidia GeForce RTX 3090
GPU with 24GB memory. For generating EnsembleDropout (Smith and Gal, 2018), we
train three different networks with different random initialization of network weights and
take 20 MC-Dropout samples (Gal and Ghahramani, 2016) from each. This results in a
total of 60 Monte-Carlo samples for each image.
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Training
Set

Validation
Set

Testing
Set

BraTS
Dataset

Baseline-Model and
GroupDRO-Model

Balanced Model

D0 168 30 18 20 206
D1 30 30 4 20 54

Overall 198 60 22 40 260

Table 23: Number of samples in both D0 and D1 subgroups for five different datasets: (i)
Training Dataset used to train the Baseline-Model and the GroupDRO-Model, (ii)
Training Dataset used to the train the Balanced-Model, (iii) Validation set for all three
models, (iv) Testing set for all three models, and (v) for the whole BraTS dataset. We can
observe that for the BraTS dataset, there is a high disparity between the number of samples
for both subgroups.

Baseline-Model
Dice QU-BraTS Metric

Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 90.34 85.14 81.80 92.50 88.81 82.90
D1 86.99 70.33 56.13 89.37 76.11 75.05

Fairness Gap 3.35 14.81 25.67 3.13 12.70 7.85

Table 24: Dice (at τ = 100) and QU-BraTS metric (Mehta et al., 2022) values for Whole Tu-
mour, Tumour Core, and Enhancing Tumour of a Baseline-Model on the BraTS dataset.

Balanced-Model
Dice QU-BraTS Metric

Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 82.33 74.94 73.92 86.67 77.68 71.08
D1 83.45 68.19 48.96 86.24 74.44 71.93

Fairness Gap 1.12 6.75 24.96 0.43 3.24 0.85

Table 25: Dice (at τ = 100) and QU-BraTS metric (Mehta et al., 2022) values for Whole
Tumour, Tumour Core, and Enhancing Tumour of a Balanced-Model on the BraTS
dataset.

GroupDRO-Model
Dice QU-BraTS Metric

Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 90.02 86.80 83.16 92.07 89.84 89.33
D1 86.47 62.64 60.14 90.30 77.42 73.17

Fairness Gap 3.55 24.16 23.02 1.77 12.42 16.16

Table 26: Dice (at τ = 100) and QU-BraTS metric (Mehta et al., 2022) values for Whole
Tumour, Tumour Core, and Enhancing Tumour of a GroupDRO-Model on the BraTS
dataset.

25



Mehta Shui Arbel

Figure 10: BraTS: Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative
Ratio (FTN) as a function of uncertainty threshold for Baseline-Model on the BraTS
dataset. Specifically, we plot Whole Tumour (WT), Tumour Core (TC), and Enhancing
Tumour (ET) QU-BraTS (Mehta et al., 2022) metrics for both the D0 and D1 set.
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Figure 11: BraTS: Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative
Ratio (FTN) as a function of uncertainty threshold for Balanced-Model on the BraTS
dataset. Specifically, we plot Whole Tumour (WT), Tumour Core (TC), and Enhancing
Tumour (ET) QU-BraTS (Mehta et al., 2022) metrics for both the D0 and D1 set..
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Figure 12: BraTS: We plot Dice, Filtered True Positive Ratio (FTP), and Filtered True
Negative Ratio (FTN) as a function of uncertainty threshold for GroupDRO-Model on
the BraTS dataset. Specifically, we plot Whole Tumour (WT), Tumour Core (TC), and
Enhancing Tumour (ET) QU-BraTS (Mehta et al., 2022) metrics for both the D0 and D1

set.
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B.1. Brain Tumour Segmentation - Experiment and Results for imaging
centers based fairness and uncertainty evaluation

In this section, We use the 260 High-Grade Glioma (HGG) images from the publicly avail-
able Brain Tumour Segmentation (BraTS) 2019 challenge dataset. The image dataset is
divided into two subsets based on the imaging center. Specifically, images coming from
TCIA subset were considered in subgroup D0, while images from the rest of the imaging
center were considered in subgroup D1. A Baseline-Model and a GroupDRO-Model are
trained on a dataset of 74 samples from D0 and 124 samples from D1. While a Balanced-
Model is trained on a balanced training set with 74 samples from each subgroup.

Training
Set

Validation
Set

Testing
Set

BraTS
Dataset

Baseline-Model and
GroupDRO-Model

Balanced Model

D0 74 74 8 20 102
D1 124 74 14 20 158

Overall 198 148 22 40 260

Table 27: Number of samples in both D0 and D1 subgroups for five different datasets:
(i) Training Dataset used to train the Baseline-Model and the GroupDRO-Model, (ii)
Training Dataset used to the train the Balanced-Model, (iii) Validation set for all three
models, (iv) Testing set for all three models, and (v) for the whole BraTS dataset. We can
observe that for the BraTS dataset, there is a high disparity between the number of samples
for both subgroups.

Baseline-Model
Dice QU-BraTS Metric

Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 91.11 88.42 84.26 93.38 91.79 84.85
D1 91.34 86.35 83.84 92.92 90.18 85.16

Fairness Gap 0.23 2.07 0.42 0.46 1.61 0.31

Table 28: Dice (at τ = 100) and QU-BraTS metric (Mehta et al., 2022) values for Whole Tu-
mour, Tumour Core, and Enhancing Tumour of a Baseline-Model on the BraTS dataset.

Balanced-Model
Dice QU-BraTS Metric

Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 90.49 88.28 83.73 92.96 91.18 86.16
D1 91.23 83.78 81.79 92.95 89.08 85.64

Fairness Gap 0.74 4.50 1.94 0.01 2.10 0.52

Table 29: Dice (at τ = 100) and QU-BraTS metric (Mehta et al., 2022) values for Whole
Tumour, Tumour Core, and Enhancing Tumour of a Balanced-Model on the BraTS
dataset.

29



Mehta Shui Arbel

GroupDRO-Model
Dice QU-BraTS Metric

Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 90.45 87.63 83.84 92.35 91.03 84.38
D1 91.79 85.35 83.39 93.13 90.21 85.97

Fairness Gap 1.34 2.28 0.45 0.78 0.72 1.59

Table 30: Dice (at τ = 100) and QU-BraTS metric (Mehta et al., 2022) values for Whole
Tumour, Tumour Core, and Enhancing Tumour of a GroupDRO-Model on the BraTS
dataset.

Figure 13: BraTS-Imaging-Centre: Dice, Filtered True Positive Ratio (FTP), and
Filtered True Negative Ratio (FTN) as a function of uncertainty threshold for Baseline-
Model on the BraTS dataset. Specifically, we plot Whole Tumour (WT), Tumour Core
(TC), and Enhancing Tumour (ET) QU-BraTS (Mehta et al., 2022) metrics for both the
D0 and D1 set.
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Figure 14: BraTS-Imaging-Centre: Dice, Filtered True Positive Ratio (FTP), and
Filtered True Negative Ratio (FTN) as a function of uncertainty threshold for Balanced-
Model on the BraTS dataset. Specifically, we plot Whole Tumour (WT), Tumour Core
(TC), and Enhancing Tumour (ET) QU-BraTS (Mehta et al., 2022) metrics for both the
D0 and D1 set.
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Figure 15: BraTS-Imaging-Centre: We plot Dice, Filtered True Positive Ratio
(FTP), and Filtered True Negative Ratio (FTN) as a function of uncertainty threshold
for GroupDRO-Model on the BraTS dataset. Specifically, we plot Whole Tumour (WT),
Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS (Mehta et al., 2022) metrics
for both the D0 and D1 set.

32



Uncertainty Fairness

Appendix C. Alzheimer’s Disease Clinical Score Regression
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Figure 16: Network architecture diagram of modified 3D-ResNet-18 (Hara et al., 2018) for
the Alzheimer’s Disease clinical regression pipeline for predicting both ADAS-13 and MMSE
scores. The network takes 3D T1-weighted MR image as input.

Implementation Details: A 3D ResNet34 (Hara et al., 2018) architecture was designed
for the task of clinical score prediction 3. The network was modified to be a multi-task
network, such that it predicts both ADAS-13 and MMSE scores simultaneously. The net-
work was trained to reduce the combined mean squared error losses for both ADAS-13 and
MMSE. An Adam optimizer with a learning rate of 0.0002 and a weight decay of 0.00001
was used to train the network for a total of 200 epochs. The learning rate was decayed with
a factor of 0.995 after each epoch. The code was written in PyTorch (Paszke et al., 2019)
and ran on Nvidia GeForce RTX 3090 GPU with 24GB memory. For generating Ensem-
bleDropout (Smith and Gal, 2018), we train three different networks with different random
initialization of network weights and take 20 MC-Dropout samples (Gal and Ghahramani,
2016) from each. This results in a total of 60 Monte-Carlo samples for each image. As the
total number of images is low in this dataset, we run the same experiments on five different
folds and aggregate their results.

ADNI Dataset
AD MCI CN Total

D0 33 187 39 259
D1 112 311 183 606
Overall 145 498 222 865

Table 31: Number of images for each disease stage (AD, MCI, and CN) and each subgroup
for the whole ADNI dataset. From this, we can see a high disparity between the total
number of samples in each disease stage. Similarly, distribution across subgroups for a
particular disease stage is also different.

3. https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/models/resnet.py

33

https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/models/resnet.py


Mehta Shui Arbel

Training Dataset
(Baseline-Model and GroupDRO-Model)
AD MCI CN Total

D0 15 130 18 163

D1 80 220 140 440
Overall 95 350 158 603

Table 32: Number of images for each disease stage (AD, MCI, and CN) and each subgroup
for the training dataset used to train the Baseline-Model and the GroupDRO-Model.
Similar to the whole ADNI dataset (Table-31), a high disparity between the total number
of samples in each disease stage. Similarly, distribution across subgroups for a particular
disease stage is also different.

Training Dataset
(Balanced-Model)

AD MCI CN Total

D0 15 130 18 163

D1 15 130 18 163
Overall 30 260 36 326

Table 33: Number of images for each disease stage (AD, MCI, and CN) and each subgroup
for the training dataset used to train the Balanced-Model. Compared to the training
dataset used for the Baseline-Model and the GroupDRO-Model (Table-32), we balance
the number of samples across both subgroups for each disease stage, but not across disease
stages.

Validation Dataset
AD MCI CN Total

D0 5 7 19 31

D1 19 29 53 101
Overall 24 36 72 132

Table 34: Number of images for each disease stage (AD, MCI, and CN) and each subgroup
in the Validation dataset for all three models (Baseline-Model,GroupDRO-Model, and
Balanced-Model). The distribution of samples across both subgroups and across different
disease stages is similar to the Table-31.

Testing Dataset
AD MCI CN Total

D0 13 14 38 65

D1 13 14 38 65
Overall 26 28 76 130

Table 35: Number of images for each disease stage (AD, MCI, and CN) and each subgroup in
the Testing dataset used to test all three models ( Baseline-Model, GroupDRO-Model,
and Balanced-Model). The distribution of samples across both subgroups is kept similar,
but it is not similar across different disease stages. We kept similar distribution across both
subgroups for a fair comparison of their performance, while the distribution across different
disease stages was not kept similar to reflect real-world scenarios where some disease stage
can occur more frequently compared to others.
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Baseline-Model
ADAS-13

RMSE MAE
All AD MCI CN All AD MCI CN

D0 9.68 16.25 6.88 8.93 7.60 13.61 5.66 7.92
D1 8.18 12.82 6.01 7.98 6.33 10.84 4.71 6.67
Fairness Gap 1.50 3.43 0.87 0.94 1.27 2.77 0.95 1.25

Table 36: Root Mean Squared Error - RMSE and Mean Absolute Error - MAE (at τ = 100)
for ADAS-13 score for All , Alzheimer’s (AD), Mild-Cognitive Impairment (MCI), and
Cognitive Normal (CN) samples of a Baseline-Model trained on the ADNI dataset.

Balanced-Model
ADAS-13

RMSE MAE
All AD MCI CN All AD MCI CN

D0 10.57 17.25 7.13 10.20 8.54 14.86 6.01 9.54
D1 8.84 13.49 6.86 8.33 6.94 11.44 5.31 7.34
Fairness Gap 1.73 3.76 0.26 1.87 1.59 3.42 0.70 2.19

Table 37: Root Mean Squared Error - RMSE and Mean Absolute Error - MAE (at τ = 100)
for ADAS-13 score for All , Alzheimer’s (AD), Mild-Cognitive Impairment (MCI), and
Cognitive Normal (CN) samples of a Balanced-Model trained on the ADNI dataset.

Balanced-Model
ADAS-13

RMSE MAE
All AD MCI CN All AD MCI CN

D0 9.12 15.47 6.63 7.73 7.11 12.96 5.39 7.73
D1 8.10 12.08 6.25 8.10 6.26 9.56 5.07 8.10
Fairness Gap 1.02 3.39 0.38 0.37 0.85 3.40 0.32 0.37

Table 38: Root Mean Squared Error - RMSE and Mean Absolute Error - MAE (at τ = 100)
for ADAS-13 score for All , Alzheimer’s (AD), Mild-Cognitive Impairment (MCI), and
Cognitive Normal (CN) samples of a GroupDRO-Model trained on the ADNI dataset.
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Baseline-Model
MMSE

RMSE MAE
All AD MCI CN All AD MCI CN

D0 2.37 4.43 1.57 1.69 1.79 3.89 1.26 1.52
D1 2.21 3.45 1.72 2.00 1.75 2.86 1.40 1.72
Fairness Gap 0.16 0.99 0.15 0.31 0.03 1.03 0.14 0.20

Table 39: Root Mean Squared Error - RMSE and Mean Absolute Error - MAE (at τ =
100) for MMSE score for All , Alzheimer’s (AD), Mild-Cognitive Impairment (MCI), and
Cognitive Normal (CN) samples of a Baseline-Model trained on the ADNI dataset.

Balanced-Model
MMSE

RMSE MAE
All AD MCI CN All AD MCI CN

D0 2.57 4.10 1.87 2.44 2.11 3.56 1.58 2.44
D1 2.41 3.14 1.96 2.73 2.00 2.52 1.64 2.48
Fairness Gap 0.16 0.96 0.09 0.29 0.12 1.04 0.06 0.04

Table 40: Root Mean Squared Error - RMSE and Mean Absolute Error - MAE (at τ =
100) for MMSE score for All , Alzheimer’s (AD), Mild-Cognitive Impairment (MCI), and
Cognitive Normal (CN) samples of a Balanced-Model trained on the ADNI dataset.

GroupDRO-Model
MMSE

RMSE MAE
All AD MCI CN All AD MCI CN

D0 2.19 3.88 1.68 1.52 1.63 3.07 1.33 1.34
D1 2.23 3.09 1.91 2.15 1.73 2.43 1.51 1.73
Fairness Gap 0.05 0.79 0.23 0.63 0.10 0.64 0.18 0.39

Table 41: Root Mean Squared Error - RMSE and Mean Absolute Error - MAE (at τ =
100) for MMSE score for All , Alzheimer’s (AD), Mild-Cognitive Impairment (MCI), and
Cognitive Normal (CN) samples of a GroupDRO-Model trained on the ADNI dataset.
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Figure 17: ADNI: Root Mean Squared Error (RMSE) of ADAS-13 (Top) and MMSE (Bot-
tom) score prediction tasks as a function of uncertainty threshold for (a) Baseline-Model,
(b) Balanced-Model, and (c) GroupDRO-Model on the ADNI dataset. Specifically, we
plot RMSE for all samples as well as samples for each of the disease stages (AD, MCI, and
CN) in each subgroup (D0 - age < 70 and D1 - age ≥ 70). The total number of samples as
a function of uncertainty thresholds in are depicted with light colours in these plots.
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Figure 18: ADNI: Mean Absolute Error (MAE) of ADAS-13 (Top) and MMSE (Bottom)
score prediction tasks as a function of uncertainty threshold for (a) Baseline-Model, (b)
Balanced-Model, and (c) GroupDRO-Model on the ADNI dataset. Specifically, we
plot RMSE for all samples as well as samples for each of the disease stages (AD, MCI, and
CN) in each subgroup (D0 - age < 70 and D1 - age ≥ 70). The total number of samples as
a function of uncertainty thresholds in are depicted with light colours in these plots.
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Appendix D. Definition and Calculation of Uncertainty

Ensemble dropout (Smith and Gal, 2018): An ensemble of N networks is (ex. 3
independent networks) trained using the same dataset split but different network weight
initialization. During test time, the same input is passed through this ensemble with dropout
at test time to collect M different samples (ex. 20 samples) for each network. This results
in a total of T=M*N sample (ex. 60 samples) outputs across these networks.

Entropy: It is a measure of the informativeness of the model’s predictive density function
for each model output ŷi. It is defined as:

H[ŷi|xi] = −
C∑
c=1

p(ŷi = c|xi) log
(
p(ŷi = c|xi)

)
≈ −

C∑
c=1

( 1
T

T∑
t=1

p(ŷi(t) = c|xi)
)
log
( 1
T

T∑
t=1

p(ŷi(t) = c|xi)
)
.

(3)

where C is the total number of class labels, and p(ŷi(t) = c|xi) denotes output softmax
probability for class c for sample t (Gal and Ghahramani, 2016; Lakshminarayanan et al.,
2017; Smith and Gal, 2018). High entropy implies a flatter probability distribution across
classes, while low entropy implies a more peaky probability distribution. Lower entropy
shows that model is more confident in its prediction of the output class. Predictive entropy
measures both epistemic and aleatoric uncertainties (which will be high whenever either
epistemic is high or aleatoric is high) (Gal, 2016; Gal et al., 2017). Here we only consider
entropy for the classification and the segmentation task. The calculation of entropy for
a regression task requires calculating a normalized histogram, a computationally intensive
process.

Sample Variance: The simplest uncertainty measure, sample variance, is estimated by
computing the variance across the T samples collected Ensemble Dropout (Smith and Gal,
2018). For a regression task the variance in the output ŷi for any input xi, is defined as
follows:

Var(ŷi) =
1

T

T∑
t=1

ŷi
2
(t) −

(
1

T

T∑
t=1

ŷi(t)

)2

. (4)

where ŷi(t) is a prediction for sample t. Sample variance can be more simply interpreted as
a measure of model output consistency across different samples.

Predicted Variance: For Predicted Variance, during training, in addition to the labels,
the weights of the network are also trained to produce the prediction variance V̂ at the
output. Please refer to (Kendall and Gal, 2017; Nair et al., 2020) for more details about
predicted variance.

Total Variance: Sample variance measures epistemic (model) uncertainty, while predicted
variance measures aleatoric (data) uncertainty. The summation of both sample variance and
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predicted variance can give us the total variance (Gal, 2016; Kendall and Gal, 2017). We
choose total variance for the regression task as it is computationally more feasible compared
to the entropy for the regression task, and similar to the entropy, it also measures both
aleatoric and epistemic uncertainties.
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