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ABSTRACT

Vision-Language Pre-training (VLP) models have exhibited unprecedented capa-
bility in many applications by taking full advantage of the multimodal alignment.
However, previous studies have shown they are vulnerable to maliciously crafted
adversarial samples. Despite recent success, these methods are generally instance-
specific and require generating perturbations for each input sample. In this paper,
we reveal that VLP models are also vulnerable to the instance-agnostic univer-
sal adversarial perturbation (UAP). Specifically, we design a novel Contrastive-
training Perturbation Generator with Cross-modal conditions (C-PGC) to achieve
the attack. In light that the pivotal multimodal alignment is achieved through the
advanced contrastive learning technique, we devise to turn this powerful weapon
against themselves, i.e., employ a malicious version of contrastive learning to train
the C-PGC based on our carefully crafted positive and negative image-text pairs
for essentially destroying the alignment relationship learned by VLP models. Be-
sides, C-PGC fully utilizes the characteristics of Vision-and-Language (V+L) sce-
narios by incorporating both unimodal and cross-modal information as effective
guidance. Extensive experiments show that C-PGC successfully forces adversarial
samples to move away from their original area in the VLP model’s feature space,
thus essentially enhancing attacks across various victim models and V+L tasks.

1 INTRODUCTION

Vision-Language Pre-training (VLP) models, including ALBEF (Li et al., 2021), TCL (Yang et al.,
2022), and BLIP (Li et al., 2022), have recently demonstrated remarkable efficacy in a wide range of
Vision-and-Language (V+L) tasks. By self-supervised pre-training on large-scale image-text pairs,
VLP models efficiently align cross-modal features and capture rich information from the aligned
multimodal embeddings, thereby providing expressive representations for various applications.

Adversarial attacks (Carlini & Wagner, 2017), which aim to deceive models during inference time,
have attracted extensive attention due to their significant threat to security-critical scenarios (Eykholt
et al., 2018). Recent studies have shown that VLP models are also vulnerable to adversarial samples.
The pioneering work Co-Attack (Zhang et al., 2022) proposes the first multimodal attack that simul-
taneously perturbs both image and text modalities and displays excellent performance. However,
Co-Attack only considers relatively easier white-box attacks where victim models are completely
accessible. To handle more practical black-box settings, subsequent studies propose various transfer-
able adversarial samples generated on an available surrogate model to fool other inaccessible mod-
els. Specifically, SGA (Lu et al., 2023) significantly improves the adversarial transferability through
the set-level cross-modal guidance obtained from data augmentations. Subsequently, TMM (Wang
et al., 2024) proposes to jointly destroy the modality-consistency features within the clean image-
text pairs and include more modality-discrepancy features in the perturbations to further enhance
transferability. While existing methods have achieved great success, they are all instance-specific
and need to generate a perturbation for each input pair, which results in substantial computational
overhead. Meanwhile, universal adversarial attacks, as an efficient instance-agnostic approach that
uses only one Universal Adversarial Perturbation (UAP) to conduct attacks, have not been fully in-
vestigated for VLP models. This naturally leads to a question, is it possible to design a universal
adversarial perturbation that can effectively deceive VLP models across various image-text pairs?
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Figure 1: Performance of existing UAP
on text retrieval with ALBEF and BLIP
as surrogates. UAPPGD indicates the
PGD-learned version of UAP.
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Figure 2: Illustration of the universal adversarial attacks
against VLP models. With only a pair of image-text pertur-
bations, the proposed attack can effectively mislead differ-
ent models on diverse V+L tasks.

Motivation. To this end, we make an intuitive attempt to transplant existing renowned approaches
UAP (Moosavi-Dezfooli et al., 2017) and GAP (Poursaeed et al., 2018) to launch attacks on several
VLP models by maximizing the distance between the embeddings of the adversarial image and its
matched texts. Unfortunately, Figure 1 demonstrates that these methods yield unsatisfactory attack
success rates (ASR), especially for black-box attacks. Empirically, this failure stems from their
narrow focus on the image modal, disregarding the other modality and the multimodal information
that plays a pivotal role in VLP models. To overcome this challenge, we revisit the VLP models’
basic training paradigm and emphasize that regardless of the downstream V+L tasks, their achieved
outstanding performance is heavily reliant on the well-established multimodal alignment, which
draws the embedding of matched image-text pairs closer while distancing those of non-matched
pairs. In light of this consideration, we argue that the key core of an effective universal adversarial
attack is to obtain a UAP that can fundamentally destroy this learned alignment relationship to
mislead VLP models into making incorrect decisions. Besides, Fig. 1 also shows that the generator-
based GAP consistently outperforms UAP methods, confirming the superiority of the generative
paradigm, which is also corroborated by numerous studies (Gao et al., 2024; Feng et al., 2023).

Based on these insights, we propose a novel generative framework that learns a Contrastive-training
Perturbation Generator with Cross-modal conditions (C-PGC) to launch universal attacks on VLP
models (see Fig. 2). To essentially destroy the multimodal alignment, we devise to utilize VLP mod-
els’ most powerful weapons to attack against themselves, i.e., use the contrastive learning mecha-
nism to train the generator using our maliciously constructed image-text pairs that completely vi-
olate the correct VL matching relationship, to produce perturbation that pushes the embedding of
matched pairs apart while pulling those of non-matched ones together. Inspired by the multimodal
characteristics of V+L scenarios, we modify the generator’s architecture to incorporate cross-modal
knowledge through the advanced cross-attention mechanism for better guidance. In addition, we
also consider the intra-modal influence and introduce an unimodal distance loss to further enhance
the attacks. Since previous studies (Zhang et al., 2022; Lu et al., 2023) achieve impressive improve-
ments via multimodal perturbation, we are motivated to generate UAP for both images and texts to
utilize the synergy between different modalities. Our contributions can be summarized as follows:

• We design a novel cross-modal conditional perturbation generator, which produces effective UAP
for both image and text modalities to achieve universal adversarial attacks on VLP models.

• We propose the first malicious contrastive paradigm tailored for multimodal adversarial attacks,
which incorporates both unimodal and multimodal guidance to contrastively train the generator
using our meticulously constructed positive and negative pairs for enhanced attack effects.

• Extensive experiments on 6 various VLP models across different V+L tasks reveal that our method
achieves outstanding white-box performance and black-box transferability in different scenarios.
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2 RELATED WORK

2.1 VISION-LANGUAGE PRE-TRAINING MODELS

VLP models are pre-trained on massive image-text pairs to learn the semantic correlations across
modalities and serve diverse multimodal user demands (Chen et al., 2023; Du et al., 2022). We next
illustrate the basis of VLP models from multiple perspectives.

Architectures. Based on the ways of multimodal fusion, the architectures of VLP models can be
classified into two types: single-stream and dual-stream architectures. Single-stream architectures
(Li et al., 2019; Chen et al., 2020) directly concatenate the text and image features, and calculate
the attention in the same Transformer block for multimodal fusion. On the contrary, dual-stream
architectures (Radford et al., 2021; Li et al., 2022) separately feed the text and image features to
different Transformer blocks and leverage the cross-attention mechanism for multimodal fusion.

Pre-training Objectives. The pre-training objectives for VLP models mainly include masked fea-
tures completion, multimodal features matching, and specific downstream objectives. Masked fea-
tures completion (Chen et al., 2020) encourages VLP models to predict the deliberately masked
tokens using the remaining unmasked tokens during pre-training. Multimodal features matching (Li
et al., 2021) pre-trains VLP models by learning to precisely predict whether the given image-text
pairs are matched. Specific downstream objectives (Anderson et al., 2018) directly utilize the train-
ing objectives of downstream tasks (e.g., visual question answering) for pre-training VLP models.

Downstream Tasks. In this paper, we mainly consider the following multimodal downstream tasks:
(1) Image-text retrieval (ITR) (Wang et al., 2016): finding the most matched image for the given text
and vice versa, including image-to-text retrieval (TR) and text-to-image retrieval (IR). (2) Image
caption (IC) (Bai & An, 2018): generating the most suitable descriptions for the given image. (3)
Visual grounding (VG) (Hong et al., 2019): locating specific regions in the image that correspond
with the given textual descriptions. (4) Visual entailment (VE) (Xie et al., 2019): analyzing the input
image and text and predicting whether their relationship is entailment, neutral, or contradiction.

2.2 ADVERSARIAL ATTACKS

Instance-specific Attacks on VLP Models. The adversarial robustness of VLP Models has already
become a research focus. Early works (Kim & Ghosh, 2019; Yang et al., 2021) impose perturbations
only on single modality and lack cross-modal interactions when attacking multimodal models. To
address this issue, Co-Attack (Zhang et al., 2022) conducts the first multimodal white-box attacks on
VLP models. On the basis of Co-Attack, Lu et al. (2023) extend the attacks to more rigorous black-
box settings and propose SGA, which utilizes set-level alignment-preserving argumentations with
carefully designed cross-modal guidance. However, Wang et al. (2024) points out that SGA fails to
fully exploit modality correlation, and proposes TMM to better leverage cross-modal interactions
by tailoring both the modality-consistency and modality-discrepancy features. Nonetheless, these
methods are all instance-specific and need to craft perturbations for each input pair.

Universal Adversarial Examples. Universal adversarial attacks (Moosavi-Dezfooli et al., 2017;
Mopuri et al., 2018) aim to deceive the victim model by exerting a uniform adversarial modification
to all the benign samples. These attacks save the redundant procedures of redesigning perturbations
for each input sample and are consequently more efficient than traditional attack strategies. Gen-
erally, universal adversarial attacks can be categorized into optimization-based methods (Moosavi-
Dezfooli et al., 2017; Wang et al., 2023; Liu et al., 2023) and generation-based methods (Hayes &
Danezis, 2018; Gao et al., 2024; Anil et al., 2024). Benefiting from the powerful modeling abilities
of generative models, generation-based methods are more versatile and can produce more natural
samples than optimization-based ones. In this paper, we explore universal adversarial attacks on
VLP models and manage to generate UAP with excellent attack effects and high transferability.

3 UNIVERSAL MULTIMODAL ATTACKS

In this section, we first present the problem statement of universal adversarial attacks on VLP mod-
els. Next, we introduce the overview of our framework. Finally, we illustrate the detailed design of
each proposed technique and summarize the training objective and paradigm of C-PGC.
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Figure 3: An overview of our proposed universal adversarial attack. Benefiting from the well-
designed unimodal distance loss LDis and multimodal contrastive loss LCL, the conditional gen-
erator learns rich knowledge from features of different modalities and thus produces δv and δt of
superior generalization ability across diverse models and downstream tasks.

3.1 PROBLEM STATEMENT

We define an input image-text pair as (v, t) and denote ev and et as the image and text embedding
encoded by the image encoder fI(·) and text encoder fT (·) of the targeted VLP model f(·). Let Ds

be an available dataset consisting of image-text pairs collected by a malicious adversary. The attack
objective is to utilize Ds to train a generator Gw(·) that is capable of producing a powerful pair of
universal image-text perturbations (δv, δt) that can affect the vast majority of test dataset Dt to fool
models into making incorrect decisions. Formally, the attack goal can be formulated as:

T (f(v + δv, t⊕ δt)) ̸= y, s.t. ∥δv∥∞ ≤ ϵv, ∥δt∥0 ≤ ϵt, (1)

where T (·) denotes the operation that uses the output V+L features to obtain the final predictions,
⊕ indicates the text perturbation strategy (Zhang et al., 2022; Lu et al., 2023) that replaces certain
important tokens of the original sentence with crafted adversarial words, and y is the correct pre-
diction of the considered V+L task. To ensure the perturbation’s imperceptibility, we constrain the
pixel-level image perturbation with l∞ norm of a given budget ϵv . The textual perturbation is token-
level and the stealthiness is accordingly constrained by the number of modified words ϵt. Since
altering words in a natural sentence can be easily noticed or detected, we apply a rigorous restriction
that permits only a single word to be substituted (ϵt = 1). On the premise of imperceptibility, the
attacker attempts to generalize the crafted UAP to a wider range of test data and victim models.

3.2 OVERVIEW OF THE PROPOSED FRAMEWORK

As depicted in Fig. 3, we adopt the multimodal perturbation strategy and generate perturbations on
both image and text modalities for enhanced attacks. Given the similarity between the workflows for
image and text, we then take the image attacks as an example to illustrate the proposed framework.

Firstly, a fixed noise zv is randomly initialized and subsequently fed into the conditional generator.
For each image v and its descriptions t, the generator Gw(·) then translates the input noise zv into the
adversarial perturbation δv that is of the same size as the image v. During the generation, the network
Gw additionally benefits from cross-modal information by integrating the textual embedding, i.e.,
δv = Gw(zv; fT (t)). Next, the generated adversarial noise δv is injected into the clean image to
obtain the adversarial image via vadv = v + δv . To better guide the training process, we design
two efficient unimodal and multimodal losses as our optimization objectives. Unimodal loss is
straightforward and aims to push the adversarial images away from the clean images in the latent
embedding space, while multimodal loss is based on contrastive learning and uses our manually
constructed positive and negative samples to effectively destroy the image-text matching relationship
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obtained from feature alignment. Once we finish training the C-PGC using the proposed losses, the
input fixed noise is transformed into a UAP that is of great generalization and transferability.

3.3 DETAILED DESIGN OF C-PGC

Next, we provide a detailed introduction to each of the proposed designs. Note that we primar-
ily discuss the image attack as an example, given that the design of the text attack is completely
symmetrical. The pseudocode of the training procedure is provided in Appendix A.

Perturbation Generator with Cross-modal conditions. Previous generative universal attacks (Gao
et al., 2024; Anil et al., 2024) have shown excellent efficacy in fooling the discriminative models.
Nevertheless, since existing generative attacks are limited to a single modality, directly utilizing
the off-the-shelf generators might fail to leverage the multimodal interactions in these special V+L
scenarios. To address this limitation, we additionally introduce cross-modal embeddings as auxiliary
information to further facilitate the process of perturbation generation. Specifically, we modify the
existing generator’s architecture by adding several cross-attention modules that have been proven
effective in tasks with variable input modalities. The obtained textual embeddings et encoded by
fT (·) are then incorporated into our generator through:

Q = htWq,K = etWk, V = etWv,

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
· V,

(2)

where ht ∈ RB×dα is the flattened intermediate features within the generator, Wq ∈ Rdα×d, Wk ∈
R512×d, Wv ∈ R512×d are optimized parameters in the attention modules.

Multimodal Contrastive Loss. The preceding analysis regarding the failures of existing UAP at-
tacks encourages us to design a loss function that can guide the generated UAP to break the learned
multimodal feature alignment. Motivated by the fact that contrastive learning underpins the cross-
modal alignment, we advocate leveraging this mechanism to attack VLP models themselves by con-
trastively training our C-PGC to essentially disrupt the benign alignment relationship. Concretely,
we adopt the widely recognized InfoNCE (He et al., 2020) as our basic contrastive loss.

To establish the contrastive paradigm, we first define the adversarial image vadv as the anchor sam-
ple. Besides, it is also necessary to construct an appropriate set of positive and negative samples.
Based on the fundamental objective of our attacks, it is natural that the originally matched text
descriptions set t = {t1, t2 . . . , tM} can be employed as negative samples tneg to increase the dis-
crepancy of matched image-text in the feature space of VLP models. To further push the adversarial
image vadv away from its correct text descriptions t, we propose a farthest selection strategy which
utilizes multiple texts whose embeddings differ significantly from that of the original clean image
v as positive samples. Specifically, we randomly sample a batch of text sets from Ds and select
the text set with the largest feature distances from the current image v as positive samples, i.e.,
tpos = {t′1, t′2 . . . , t′K}. Moreover, we utilize data augmentations that resize the clean v into diverse
scales and apply random Gaussian noise to acquire a more diverse image set v = {v1, v2 . . . , vS} for
set-level guidance Lu et al. (2023). With the augmented images and these well-constructed positive
and negative samples, the multimodal contrastive loss LCL can be formulated as:

LCL = log

( S∑
i=1

M∑
j=1

ed(vi+δv,tj)/τ

S∑
i=1

M∑
j=1

ed(vi+δv,tj)/τ +
S∑

i=1

K∑
j=1

ed(vi+δv,t′j)/τ

)
, (3)

where δv is the universal image perturbation, τ denotes the temperature parameter and d(v, t) =
Sim(fI(v), fT (t)), where Sim(·, ·) represents the cosine similarity measurement.

Unimodal Distance Loss. Apart from the multimodal guidance, we also consider the unimodal in-
fluence by directly pushing adversarial images away from their initial visual semantic area to further
enhance attack effects. Similarly, to acquire set-level guidance, the input image v is initially resized
to different scales and then added with Gaussian noise to generate the augmented image set v =
{v1, v2 . . . , vS}. Then, we craft the adversarial image through vadv = v+ δv and process vadv with
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the same augmentation operation to obtain the adversarial image set vadv = {vadv1 , vadv2 . . . , vadvS }.
Finally, we minimize the negative Euclidean distance between the embeddings of adversarial images
and clean images to optimize the UAP generator. Formally, the loss LDis is formulated as:

LDis = −
S∑

i=1

S∑
j=1

∥fI(vadvi )− fI(vj)∥2. (4)

Taking advantage of the unimodal set-level guidance, LDis ensures an effective optimization direc-
tion during the generator training and further improves the attack effectiveness of our UAP.

Training Objective. With the two well-designed loss terms LDis and LCL, the overall optimization
objective of our conditional generator concerning image attacks can be formulated as:

min
w

E(v,t)∼Ds,tpos∼Ds
(LCL + λLDis), s.t. ∥Gw(zv; fT (t))∥∞ ≤ ϵv, (5)

where λ is the pre-defined hyperparameter to balance the contributions of LCL and LDis. By train-
ing the network using the proposed loss function based on the data distribution of the multimodal
training dataset Ds, the generator is optimized to produce UAP that can push the features of mis-
matched image-text pairs together while pulling the embeddings of the matched ones apart, thereby
learning a UAP with excellent generalization ability and adversarial transferability.

Text Modality Attacks. In textual attacks, the UAP generator’s architecture and training loss are
completely symmetrical with those of image attacks. Correspondingly, embeddings of the matched
image v are used as the cross-modal conditions for the generator. Given an adversarial text tadv as
the anchor sample, we use the set v = {v1, v2 . . . , vS} scaled from the originally matched image v
as negative samples while the v′ = {v′1, v′2 . . . , v′S} augmented from the farthest image v′ within the
randomly sampled image set as positive samples to formulate the LCL loss. LDis is consequently
calculated as the negative Euclidean distance between the embeddings of tadv and the clean input t.

A notable distinction between the image and text attacks is the approach to inject adversarial pertur-
bations. Due to the discreteness of text data, we apply the token-wise substitute strategy (Lu et al.,
2023; Wang et al., 2024) that replaces certain important words in the original sentence with crafted
adversarial words. Accordingly, the conditional generator is utilized to output the adversarial textual
embeddings, which are subsequently mapped back to the vocabulary space to obtain a universally
applicable word-level perturbation. Prior to implementing the word replacement, a meticulous pro-
cess is undertaken to identify the most optimal position within the sentence to insert the perturbation.
Our strategy intends to identify and replace the words that are more likely to have a greater influence
during the decision-making. Concretely, for each word wi within a given sentence, we compute the
distance between the embeddings of the original sentence and the wi-masked version encoded by
the VLP models to determine its contribution. As aforementioned, we set ϵt = 1 and choose the
single word exerting the highest feature distance as the target for replacement.

4 EVALUATION

We first present the experimental setup in Sec. 4.1 and then comprehensively evaluate C-PGC across
multiple VLP models in Sec. 4.2. Sec. 4.3 presents results on more downstream V+L tasks to further
validate the effectiveness. Besides, sufficient ablation studies in Sec. 4.4 validate the contribution of
each proposed technique and explore the impact of several crucial factors. More experiment results
such as the cross-domain attacks from Flickr30k to MSCOCO are provided in Appendix E.

4.1 EXPERIMENTAL SETUP

Downstream tasks and datasets. We conduct a comprehensive study of C-PGC on four down-
stream V+L tasks, including image-text retrieval (ITR), image captioning (IC), visual grounding
(VG), and visual entailment (VE). For ITR tasks, we employ the Flickr30K (Plummer et al., 2015)
and MSCOCO (Lin et al., 2014) datasets which are commonly used in previous works (Zhang et al.,
2022; Lu et al., 2023). The MSCOCO is also adopted for evaluating the IC task and we test VG and
VE tasks on SNLI-VE (Xie et al., 2019) and RefCOCO+ (Yu et al., 2016) respectively.

Surrogate models and victim models. We conduct experiments on a wide range of VLP models
including ALBEF (Li et al., 2021), TCL (Yang et al., 2022), X-VLM (Zeng et al., 2022), CLIPViT
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Table 1: ASR (%) of our C-PGC and GAP for image-text retrieval tasks on Flickr30k and MSCOCO.
TR indicates text retrieval based on the input image, while IR is image retrieval using input text.

Dataset Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Flickr30k

ALBEF GAP 69.78 81.59 22.15 29.97 6.61 18.37 23.4 37.54 29.92 44.29 16.09 28.12
Ours 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

TCL GAP 33.5 40.61 82.41 80.67 6.61 17.79 21.55 38.56 30.57 45.48 21.45 31.82
Ours 50.26 56.29 94.93 90.64 14.94 33.96 46.92 66.41 52.98 70.66 35.75 52.52

X-VLM GAP 16.14 24.43 17.08 26.2 90.24 85.98 24.51 41.15 42.62 53.08 16.19 25.74
Ours 24.46 47.77 29.19 50.15 93.29 91.9 43.47 66.03 59.2 72.79 32.39 52.24

CLIPViT
GAP 11.72 23.34 15.32 26.39 8.54 20.48 85.73 90.45 48.83 60.78 14.83 26.46
Ours 23.23 38.67 25.05 41.79 15.85 35.59 88.92 93.05 66.06 75.42 26.71 45.7

CLIPCNN
GAP 13.57 25.21 19.05 28.87 11.59 23.13 27.46 43.16 73.18 81.6 15.25 27.94
Ours 15.31 38.93 19.77 43.72 17.17 41.65 39.9 64.82 81.74 88.9 22.19 46.11

BLIP GAP 12.23 23.94 14.49 25.44 6.91 17.81 20.32 37 26.81 43.59 47.21 73.33
Ours 32.17 44.4 33.44 44.51 18.6 35.53 43.35 60.26 48.96 66.95 71.82 82.82

MSCOCO

ALBEF GAP 82.65 84.35 53.6 45.46 15.09 15.64 25.18 29.94 28.06 35.28 37.44 33.61
Ours 96.18 95.09 82.49 76.24 39.97 48.58 59.71 67.05 61.27 70.8 59.18 63.89

TCL GAP 55.92 48.22 95.16 92.29 17.34 17.01 28.73 31.19 32.27 39.81 43.59 39.64
Ours 76.62 71.17 96.72 93.88 42.99 48.4 70.32 79.08 74.1 82.97 62.35 66.97

X-VLM GAP 26.35 23.72 27.8 22.91 95.1 88.84 32.39 38.16 52 55.4 24.67 22.65
Ours 51.46 65.71 52.8 64.99 98.89 95.79 67.42 75.45 75.49 82.58 55.74 66.7

CLIPViT
GAP 35.96 31.91 37.33 32.56 33.42 29.25 97.71 96.04 74.63 74.67 33.47 31.99
Ours 46.92 53.89 46.03 50.87 41.49 48.6 98.74 98.01 81.58 86.5 47.35 57.55

CLIPCNN
GAP 28.67 27.51 29.84 27.69 26.4 24.81 39.64 40.53 90.34 91.56 24.99 26.18
Ours 33.38 46.68 40.61 50.76 35.34 46.95 63.83 70.15 94.89 94.42 37.38 53.06

BLIP GAP 35.55 38.75 35.62 33.79 22.7 21.25 32.05 35.8 40.93 45.58 73.46 72.37
Ours 61.95 60.92 60.95 59.57 51.81 52.53 62.23 72.51 69.61 78.44 91.67 90.42

(Radford et al., 2021), CLIPCNN (Radford et al., 2021), and BLIP (Li et al., 2022). Note that for
different V+L tasks, we correspondingly select different VLP models for evaluation based on their
capability (Wang et al., 2024). For instance, among the six considered VLP models, only ALBEF,
TCL, and X-VLM can handle VG tasks, while only ALBEF and TCL can deal with VE tasks.

Baselines. To better reveal the superiority of our proposed method in attacking VLP models, we
transplant a representative and powerful algorithm GAP (Poursaeed et al., 2018) to the multimodal
attack scenarios by appropriately modifying its original loss function (Lu et al., 2023).

Implementation details. Following (Lu et al., 2023), we adopt Karpathy split (Karpathy & Fei-
Fei, 2015) to preprocess the dataset and build the test set for evaluation. The test set is disjoint
with the generator’s training data for rigorous assessment. To ensure the perturbation invisibility,
we follow (Wang et al., 2024) and limit the perturbation budgets ϵv to 12/255 and ϵt to 1. During
the augmentation, we resize the original images into five scales {0.5, 0.75, 1, 1.25, 1.5}, and apply
Gaussian noise with a mean of 0 and a standard deviation of 0.5. See Appendix G for more details.

4.2 UNIVERSAL ATTACK EFFECTIVENESS

To align with previous studies (Zhang et al., 2022; Lu et al., 2023), we first consider the typical V+L
task image-text retrieval and calculate the ASR as the proportion of successful adversarial samples
within the originally correctly predicted pairs based on R@1 retrieval results. Appendix E provides
results of R@5 and R@10. Experimental results across six 4.2 VLP models are presented in Table
1. We also provide the visualization of the image retrieval on the MSCOCO dataset in Figure 4.

White-box attack performance. By observing the white-box ASR in the gray-shaded area, we
demonstrate that the proposed algorithm stably achieves excellent ASR on all the evaluated VLP
models, validating the outstanding capability of the produced UAP. With only a single pair of per-
turbations, we reach a noteworthy average white-box ASR of over 90% on two large datasets in
terms of both TR and IR tasks. Especially on the MSCOCO dataset, our method achieves over
95% average ASR on ITR tasks across six surrogate models. Compared with the GAP, the proposed
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Mountain climber 
luckily safely lands 
in the water.

A person in blue is 
the only person 
luckily currently
throwing their ball 
at a bowling alley.

Race car flies by, in 
the lead of the 
pack, luckily closely
followed by second 
and third places!

ALBEF TCL CLIPViT CLIPCNN BLIPX-VLM

Figure 4: Illustration of image retrieval. The red indicates the universal adversarial word and the
crossed-out word is the replaced one. We generate the UAP on ALBEF and test it on 6 target models.
All retrieved images do not accurately correspond to the query text, validating the design of C-PGC.

method significantly improves the average fooling rates by nearly 10%, confirming the great validity
of our suggested multimodal contrastive-learning mechanism. Essentially, the exceptional perfor-
mance stems from the efficacy of our generated UAP in destroying the alignment between the image
and text modalities, thereby misleading the VLP model during inference.

Black-box attack performance. We also conduct thorough experiments regarding the adversarial
transferability of the generated UAP by transferring from surrogate models to other inaccessible
models. As demonstrated in Table 1, the proposed C-PGC displays great attack performance in the
more realistic black-box scenarios, e.g., 82.97% from TCL to CLIPCNN on MSCOCO for IR tasks.
We highlight that the advantage of C-PGC over GAP (Poursaeed et al., 2018) is greatly amplified
in the more challenging black-box scenarios, which achieves a significant average improvement of
18.36% and 26.32% for Flickr30K and MSCOCO respectively. These experimental results indicate
that our generative contrastive learning framework does not overly rely on the encoded feature space
tailored to the surrogate model. Conversely, it is well capable of transferring to breaking the multi-
modal alignment of other unseen target models, thus attaining superior adversarial transferability.

Table 2: ASR (%) of ITR tasks under defense strategies. Surrogate model is ALBEF and the dataset
is Flick30K. LT denotes the LanguageTool that corrects adversarial words within the sentence.

Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Gaussian 37.92 49.49 32.4 47.04 19.31 37.79 42.49 65.61 50 72.23 29.65 48.77
Medium 53.13 61.6 39.54 51.96 20.43 39.69 46.31 66.92 57.9 74.51 33.75 52.68
Average 29.09 44.91 29.61 44.72 17.89 36.07 42.98 65.42 49.74 72.48 27.55 46.9

JPEG 59.3 63.7 42.34 52.52 21.65 41.58 41.26 65.77 53.5 72.62 37.01 55.04
DiffPure 64.34 74.63 65.22 74.8 66.06 75.19 78.08 86.7 82.25 88.03 70.45 79.09

NRP 32.33 40.63 20.19 39.23 14.63 32.62 48.4 69 59.72 74.09 30.28 52.2
NRP+LT 29.05 35.23 21.33 37.41 15.55 29.63 47.19 67.35 56.82 73.47 28.23 50.59

Defense Strategies. We next analyze several defense strategies to mitigate the potential harm
brought by the proposed C-PGC. Specifically, we totally align with TMM (Wang et al., 2024) and
consider several input preprocessing-based schemes, including image smoothing (Ding et al., 2019)
(Gaussian, medium, average smoothing), JPEG compression (Dziugaite et al., 2016), NRP (Naseer
et al., 2020), and the prevalent DiffPure (Nie et al., 2022), a powerful purification defense using
diffusion models. For adversarial text correction, we choose the LanguageTool (LT) (Wang et al.,
2024), which has been widely adopted in various scenarios due to its universality and effectiveness.

The attack results in Table 2 demonstrate that the proposed attack still attains great ASR against
different powerful defenses. It also indicates that NRP+LT would be a decent choice to alleviate the
threat brought by C-PGC. Another noteworthy finding is that, although DiffPure (Nie et al., 2022)
exhibits remarkable performance in defending attacks in classification tasks, its ability is greatly
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reduced in V+L scenarios since the denoise process could also diminish some texture or semantic
information that is critical for VLP models, thereby acquiring unsatisfactory defense effects.

4.3 EVALUATION ON MORE DOWNSTREAM TASKS

We further demonstrate C-PGC’s ability to destroy the multimodal alignment by presenting more
results on diverse V+L tasks. Specifically, we consider Image Captioning (IC), Visual Grounding
(VG), and Visual Entailment (VE). The results of VE are shown in Appendix E due to space limit.

Table 3: Attacks results of image captioning. The
Baseline represents the performance of the target
model on clean data. The used dataset is MSCOCO.

Source B@4 METEOR ROUBE L CIDEr SPICE

Baseline 39.7 31.0 60.0 133.3 23.8
ALBEF 30.1 23.7 51.2 92.5 17.5

TCL 29.5 23.5 51.0 88.9 17.3
BLIP 21.2 19.1 45.5 62.5 13.7

Image captioning. The objective of IC is
to generate text descriptions relevant to the
semantic content based on the given image.
We use ALBEF, TCL, and BLIP as source
models and attack the commonly used cap-
tioning model BLIP. Similar to SGA (Lu
et al., 2023), several typical evaluation met-
rics of IC are calculated to measure the qual-
ity of generated captions, including BLEU
(Papineni et al., 2002), METEOR (Banerjee
& Lavie, 2005), ROUGE (Lin, 2004), CIDEr

(Vedantam et al., 2015), and SPICE (Anderson et al., 2016). The results in Table 3 demonstrate that
our algorithm again displays prominent attack effects, e.g., the crated UAP induces notable drops of
10.2% and 9% in the B@4 and ROUGE L respectively when transferred from TCL to BLIP.

Table 4: Attack results of visual grounding. The first row displays the source models, where the
Baseline indicates the clean performance of the target model on clean data.

Target Baseline ALBEF TCL X-VLM

Val TestA TestB Val TestA TestB Val TestA TestB Val TestA TestB

ALBEF 58.4 65.9 46.2 37.1 39.8 32.0 42.2 46.9 35.2 37.6 40.2 33.0
TCL 59.6 66.8 48.1 43.6 47.8 36.9 39.0 41.4 33.6 39.5 41.7 34.1

X-VLM 70.8 67.8 61.8 51.8 54.7 47.7 52.7 55.9 47.8 33.1 34.7 28.8

Visual grounding. This is another common V+L task, which aims to locate the correct position
in an image based on a given textual description. We conduct experiments on RefCOCO+ using
ALBEF, TCL, and X-VLM as source and target models. Table 4 indicates that C-PGC brings a
notable negative impact on the localization accuracy in both white-box and black-box settings, again
verifying that the produced UAP strongly breaks the cross-modal interaction and alignment.

4.4 ABLATION STUDY

This subsection employs the representative ALBEF (Li et al., 2021) model as the surrogate model to
provide sufficient ablation studies on Flickr30K. We begin our analysis on the contribution of each
proposed technique. Subsequently, we examine the sensitivity of certain hyperparameters.

The effect of LCL and LDis. To investigate the impact of the proposed loss terms, we introduce two
variants C-PGCCL and C-PGCDis that remove LCL and LDis from the training loss respectively.
As shown in Table 5, the removal of LCL leads to significant degradation, particularly for black-box
transferable attacks. e.g., a 27.12% ASR drop in TR tasks from ALBEF to TCL. This validates the
considerable contribution of LCL to guarantee a successful attack. Regarding the influence of LDis,
we demonstrate that this unimodal guidance can further enhance attacks on the basis of LCL, e.g.,
a 10.59% increase in the ASR of TR tasks for white-box attacks on ALBEF. The proposed two loss
terms complement each other and jointly underpin the generalizability of the generated UAP.

The effect of positive sample selection. To validate the farthest selection strategy when construct-
ing positive samples, we design another variant C-PGCRand that adopts randomly sampled data
points as positive samples. Results in Table 5 reveal the necessity of the proposed farthest selection
strategy as it brings an average improvement of 25.96% in white-box ASR and 4.95% in black-box
ASR. Moreover, we can also conclude that if the positive samples are not adequately defined, adding
LCL would even severely harm the white-box performance (see C-PGCCL and C-PGCRand).

9
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Table 5: ASR (%) of C-PGC and its variants averaged across six target models on retrieval tasks.

Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

C-PGC 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36
C-PGCCL 76.46 77.58 34.99 47.55 14.33 33.61 42.98 62.81 46.11 65.58 27.13 46.44
C-PGCDis 79.54 82.46 56.52 62.21 20.24 38.26 39.78 65.1 52.2 71.01 42.43 55.52
C-PGCRand 61.87 65.17 43.69 52.54 19.51 35.47 40.33 65.77 54.15 70.62 39.43 52.59
C-PGCCA 85.18 83.07 45.76 53.73 15.24 34.02 39.29 60.61 47.15 40.64 32.39 48.29
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ALBEF TCL X-VLM CLIPViT BLIP

Figure 5: ASR of five target mod-
els on TR tasks under various λ.

Figure 6: ASR of five target models on the TR task under differ-
ent values of perturbation budgets ϵv and ϵt respectively.

The effect of cross-modal conditions. As aforementioned, cross-attention (CA) modules are intro-
duced into the generator to exploit cross-modal information. We then design C-PGCCA that cancels
these CA layers to explore their influence. As expected, it causes a notable 9.78% average decrease
across six target models, confirming the vital role of cross-modal knowledge. An interesting find-
ing is that C-PGCCA induces a more pronounced drop in black-box attacks than white-box ones,
indicating that cross-modal conditions exert a greater contribution to the adversarial transferability.

Different regulatory factor λ. The value of λ is a critical factor as it adjusts the scales of the two
loss terms LCL and LDis. We explore the attack performance under various values of λ to confirm
the optimal value. Figure 5 indicates that λ = 0.1 achieves superior performance.

Different perturbation budgets ϵv and ϵt. As shown in Figure 6, we analyze varying perturbation
budgets for ϵv and ϵt. Generally, the ASR increases with the larger perturbation magnitudes. Note
that when ϵv = 4/255, C-PGC’s performance is severely compromised since the budget 4/255 is
too small to allow the UAP to carry enough information required to generalize to diverse data sam-
ples. We also find that the improvement slows down as ϵv increases from 12/255 to 16/255. Thus,
we select the moderate value of 12/255 to reach a balance between attack utility and impercepti-
bility. For text perturbation, ϵt exhibits a more profound influence on the black-box attacks. In our
experiments, we strictly set ϵt = 1 for invisibility. However, attackers can adjust the value of ϵt in
accordance with their demands to trade off the attack efficacy and the perturbation stealthiness.

5 CONCLUSION

This paper delves into the challenging task of launching universal adversarial attacks against VLP
models and proposes an effective solution that achieves superior performance using only one uni-
versal pair of image-text perturbations. We begin by revealing the unsatisfactory results of existing
UAP methods and empirically explaining the underlying reasons. Based on our analysis, we pro-
pose to break the crucial cross-modal alignment in VLP models by designing a contrastive-learning
generative UAP framework that leverages both unimodal and multimodal information to enhance
the attacks. Extensive experiments validate the efficacy of the proposed algorithm on diverse VLP
models and V+L tasks. We highlight that the proposed framework makes a significant step in ex-
ploring the classic universal adversarial attacks in VLP models and deepens our understanding of the
mechanism of VLP models. We also hope that this paper can promote future research that explores
more sophisticated defenses to strengthen the resilience of VLP models against adversarial attacks.
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A PSEUDOCODE OF THE PROPOSED ALGORITHM

We present the pseudocode of our proposed attack algorithm for image modality in Alg. 1. Note
that the text attacks are completely symmetrical as illustrated in Sec. 3.3.

Algorithm 1 Pseudocode of universal image attacks

Require: Gw(·): the perturbation generator; Ds: the multimodal training set; fI , fT : image en-
coder and text encoder of the surrogate VLP model; N : the max iteration; ϵv: the perturbation
budget; S: the scaling times;

Ensure: Universal image perturbation δv;
1: Initialize the fixed noise zv with Gaussian distribution;
2: for i← 0 to N do
3: Randomly sample an image-text pair (v, t) ∼ Ds;
4: δv = Clipϵv (Gw(zv; fT (t))), vadv = v + δv;
5: Augment v and vadv into different scales and apply random Gaussian noises to obtain v =
{v1 . . . , vS} and vadv = {vadv1 . . . , vadvS };

6: Randomly sample a batch of text sets from Ds and obtain tpos = {t′1 . . . , t′K} by selecting
the one with the farthest feature distance from the clean image v;

7: Compute LCL with vadv , t and tpos by Eq. (3);
8: Compute LDis with v and vadv by Eq. (4);
9: Optimize the generator Gw based on Eq. (5);

10: Backward pass and update Gw;
11: end for
12: Return δv

B RATIONAL BEHIND OUR DESIGN OF LOSS FUNCTION

It is widely acknowledged that contrastive learning serves as a powerful and foundational tool for
modality alignment in VLP models, establishing a nearly point-to-point relationship between image
and text features. Our core idea stems from the general principle:“It’s easier to tear down than to
build up.” Since contrastive learning can establish robust and precise alignment, leveraging the same
technique to disrupt the established alignments is expected to yield effective performance.

Taking image attack as an example, the principle behind our contrastive learning-based attack can
be understood from two perspectives:

• Leverage the originally matched texts as negative samples to push the aligned image-text pair
apart. This broadly corresponds to the common objective of untargeted attacks.

• Additionally, our contrastive paradigm introduces dissimilar texts as positive samples to pull the
adversarial image out of its original subspace and relocate it to an incorrect feature area.

By simultaneously harnessing the collaborative effects of push (negative samples) and pull (positive
samples), the proposed contrastive framework achieves exceptional attack performance, which has
been validated by comprehensive experimental results.

Table 6: ASR results of the proposed method with different loss functions on Flickr30 when the
surrogate model is ALBEF.

Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

LMSE 12.02 30.75 14.39 35.08 11.41 30.79 37.32 56.05 40.17 56.39 19.66 37.33
LCos 57.55 67.4 37.06 49.45 10.7 28.48 37.49 58.3 40.87 58.39 23.33 39.44
LCL 76.46 82.46 56.52 62.61 14.33 33.61 42.98 62.81 46.11 65.58 27.13 46.44

LMSE+LDis 81.09 83.71 48.76 56.54 17.58 35.72 41.5 64.72 47.41 70.34 35.96 51.76
LCos+LDis 65.20 72.71 36.13 50.06 18.63 36.74 42.23 65.17 50.91 69.78 36.91 50.69
LCL+LDis 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36
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Besides, we also explore several potential alternative loss functions that more directly align with
the common untargeted attack Table 6, including maximizing the negative cosine similarity LCos or
MSE distance LMSE between the features of matched image-text pairs.

Recall that LCL and LDis denote the proposed contrastive loss and the unimodal loss term respec-
tively. As observed, the use of LCL consistently brings significant ASR improvements, verifying
the rationality and superiority of contrastive loss.

C COMPARISON WITH A CONCURRENT STUDY

We notice a concurrent study (Zhang et al., 2024) on UAP attacks for VLP models, which also shows
promising attack performance. To make a fair comparison, we faithfully reproduce this algorithm
using their publicly released code under the same experimental settings as ours. Note that Zhang
et al. (2024) implement several versions of their method and we report their best results in Table 7.

Table 7: Comparison of C-PGC with a recent attack (Zhang et al., 2024) on Flicke30K

Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

ALBEF ETU 78.01 84.56 29.92 35.91 14.33 22.03 23.77 39.2 33.55 47.69 22.61 32.28
C-PGC 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

CLIPViT
ETU 14.8 25.23 21.22 30.87 10.87 24.96 84.14 90.45 57.51 65.51 16.4 27.22

C-PGC 23.23 38.67 25.05 41.79 15.85 35.59 88.92 93.05 66.06 75.42 26.71 45.7

By contrastively training the conditional generator, the proposed C-PGC greatly enhances the attack
by achieving significant improvements in ASR. Particularly in the more realistic and challenging
transferable scenarios, the proposed method achieves considerably better performance, e.g., 32.19%
and 28.57% increase in ASR of TR and IR tasks when transferring from ALBEF to TCL. These
results strongly confirm the superiority of our contrastive learning-based generative paradigm.

D SEMANTIC SIMILARITY ANALYSIS

The basic objective of untargeted adversarial attacks is to fool the victim model to output incor-
rect predictions (Dong et al., 2018), while the attacker is supposed to preserve semantic similarity
between the original and the adversarial sample to ensure attack imperceptibility. In our implemen-
tation, we follow the rigorous setup in prior works (Zhang et al., 2022; Lu et al., 2023; Wang et al.,
2024) that modify only one single word to preserve semantic similarity and attack stealthiness. To
quantitatively analyze the semantic similarity, we provide the BERT scores (Zhang et al.), which
calculate the P (precision), R (recall), and F1 (F1 score) as results for the semantic distance between
5,000 clean and adversarial sentences in Table 8.

Table 8: Comparison of BERTScore between clean and adversarial texts.

Method ALBEF TCL CLIPViT CLIPCNN

P R F1 P R F1 P R F1 P R F1

Co-Attack 0.8328 0.8589 0.8455 0.8325 0.8588 0.8453 0.8269 0.8526 0.8394 0.8271 0.853 0.8397
SGA 0.8389 0.8654 0.8518 0.8376 0.8646 0.8509 0.8416 0.8697 0.8553 0.8378 0.865 0.8511
Ours 0.8891 0.8613 0.8748 0.8924 0.8687 0.8802 0.8746 0.8684 0.8713 0.8948 0.8842 0.8893

Note that we provide previous sample-specific algorithms Co-Attack (Zhang et al., 2022) and SGA
(Lu et al., 2023) as references. Notably, our method achieves better similarity scores to these wide-
acknowledged sample-specific methods across different surrogate VLP models, demonstrating the
outstanding attack stealthiness of our C-PGC. The lower semantic similarity of sample-specific
methods essentially stems from their word-selection mechanism, which maximizes the semantic
distance tailored to every input sentence for attack enhancement. Specifically, to achieve better per-
formance, these methods select the adversarial word that maximizes the distance between the origi-
nal and perturbed text for every input sentence, which inherently leads to relatively larger semantic
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deviations. This highlights that our universal attack achieves a better balance between efficacy and
stealthiness. Besides, we also provide BLEU metrics when the surrogate model is ALBEF in Table
9. These results again validate the better stealthiness of our C-PGC.

Table 9: Comparison of BLEU metrics between clean and adversarial texts.

Method B@4 METEOR ROUBE L CIDEr SPICE

Co-Attack 0.79 0.52 0.895 7.03 0.661
SGA 0.798 0.527 0.898 7.159 0.668
Ours 0.889 0.552 0.905 8.036 0.671

E MORE EXPERIMENTAL RESULTS

In this section, we provide more experimental results of our method in various tasks and scenarios.

Table 10: ASR results of C-PGC and C-PGCSin with a single text as the positive sample.

Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

ALBEF C-PGCSin 82.99 86.14 49 56.98 18.19 35.79 40.52 65.9 51.09 69.68 38.54 52.86
C-PGC 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

CLIPViT
C-PGCSin 20.55 37.46 24.43 41.39 13.52 32.6 79.93 88.64 55.44 69.43 24.4 43.06

C-PGC 23.23 38.67 25.05 41.79 15.85 35.59 88.92 93.05 66.06 75.42 26.71 45.7

Diverse target texts as positive samples. We first investigate the effects of using multiple targets
for contrastive training in maximizing the distance between adversarial and original images. We
implement a variant C-PGCSin, which uses only a single target text with the farthest distance as the
positive sample. The results in Table 10 illustrate that the use of multiple target texts can enhance
attack effectiveness, validating the efficacy of set-level diverse guidance.

ALBEF TCL
Target model

40

50

60

70

80

A
cc

(%
)

Baseline ALBEF TCL

Figure 7: Accuracy of VE tasks for
different source and target models.

Visual entailment tasks. Given an image and a textual de-
scription, visual entailment involves determining whether
the textual description can be inferred from the semantic
information of the image. We align with previous VLP at-
tacks (Zhang et al., 2022; Wang et al., 2024) and conduct
experiments on the SNLI-VE (Xie et al., 2019) dataset us-
ing the ALBEF and TCL models. Note that the Baseline
represents the clean performance of the target model on the
clean data and the orange and green indicate ALBEF and
TCL as source models respectively. The results presented
in Figure 7 reveal that C-PGC obtains impressive attack ef-
fects by decreasing the average accuracy by nearly 20%.
Notably, (Do et al., 2020) has reported a large number of
annotation errors in the labels of the SNLI-VE corpus used
for VE tasks. Therefore, the presented results are only for
experimental integrity and reference purposes.

Ablation study of the data augmentation. As in the main text, we are motivated by the significant
gains introduced by SGA’s augmentation Lu et al. (2023) and hence integrate it into the proposed
framework to enhance the universal perturbation. The underlying mechanism is to leverage the
many-to-many relationships between images and texts by introducing multiple augmented images
to provide diverse guidance and improve the optimization direction.

To reveal its effectiveness and explore alternative augmentation techniques, we devise three variants,
including C-PGCNoAug without any augmentation, C-PGCScMix and C-PGCAdmix with the ScMix
Zhang et al. (2024) and Admix Wang et al. (2021) respectively. The results are shown in Table 11.

It can be observed that the set-level augmentation brings significant improvements over the no
augmentation baseline and C-PGC with the current augmentation strategy outperforms the ScMix
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Table 11: Attack performance under different data augmentation strategies using Flickr30K.

Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

ALBEF

C-PGCScMix 66.08 76.26 39.03 51.24 20.73 37.47 40.02 65.58 50.13 71.85 34.6 51.9
C-PGCAdmix 62.8 72.23 34.47 47.78 19 36.67 42 64.88 48.19 69.68 32.28 50.05
C-PGCNoAug 69.78 74.79 47 57.26 20.43 37.55 42.36 65.17 53.63 71.6 41.22 55.34

C-PGC 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

CLIPViT

C-PGCScMix 20.55 37.46 24.43 41.39 13.52 32.6 79.93 88.64 55.44 69.43 24.4 43.06
C-PGCAdmix 19.53 37.04 24.02 41.5 14.74 34.26 85.34 91.8 59.07 71.78 23.66 43.22
C-PGCNoAug 18.5 37.8 22.19 39.86 13.47 34.17 86.46 87.11 61.53 71.36 25.03 44.73

C-PGC 23.23 38.67 25.05 41.79 15.85 35.59 88.92 93.05 66.06 75.42 26.71 45.7

(Zhang et al., 2024) and Admix (Wang et al., 2021), revealing that the set-level guidance is more
suitable for our contrastive training. This is achieved by SGA’s alignment-preserving augmentation,
which enriches image-text pairs while maintaining their inherent alignments intact Lu et al. (2023).

Cross-domain scenarios. We proceed to discuss the attack performance of the proposed algorithm
in a more challenging scenario where there is an obvious distribution shift between the training
dataset and the test samples. Specifically, we generate universal adversarial perturbations based
on MSCOCO or Flickr30K and evaluate them accordingly on the other dataset. We present the
attack success rates on the retrieval tasks across six models in Table 12. It can be observed that the
domain gap indeed has a negative effect on attack performance. However, our method still maintains
excellent ASR in most cases, unveiling its outstanding cross-domain transferability.

Table 12: ASR (%) of Cross-domain attacks on six models from Flickr30k to MSCOCO and vice
versa. The gray shading indicates white-box attacks.

Setting Source ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Flickr30K
↓

MSCOCO

ALBEF 96.83 94.69 81.46 74.87 44.79 51.64 63.68 73.06 69.77 78.09 68.88 70.61
TCL 78.27 73.17 97.83 95.03 40.46 47.34 64.98 73.27 70.96 78.18 63.71 67.1

X-VLM 50.63 65.91 53.23 65.65 95.91 93.32 65.51 74.72 75.69 81.93 57.69 67.28
CLIPViT 49.88 53.39 49.47 52.21 47.77 48.52 95.5 97.01 83.05 85.38 50.97 57.93
CLIPCNN 34.78 50.42 37.17 51.24 36.81 50.87 63.07 70.92 92.48 93.66 41.81 55.12

BLIP 54.45 55.51 55.63 53.02 41.07 46.93 61.69 69.24 65.52 75.23 83.19 82.17

MSCOCO
↓

Flickr30K

ALBEF 88.08 87.28 58.9 61.53 17.58 36.07 39.78 61.08 47.28 64.95 35.02 49.4
TCL 47.58 53.7 87.27 83.55 18.6 34.45 51.85 72.22 59.46 76.09 37.75 53.08

X-VLM 25.39 46.74 27.33 49.13 79.98 81.72 42.73 66.48 59.46 73.07 31.65 51.48
CLIPViT 21.07 39.47 24.53 42.44 15.45 36.52 93.97 95.53 62.95 77.21 25.55 45.91
CLIPCNN 14.29 36.57 20.5 41.7 15.55 37.06 41.63 62.87 86.53 88.73 17.98 44.31

BLIP 33.2 46.07 36.02 47.97 23.58 38.48 43.97 65.3 56.35 71.08 71.91 73.62

Ablation study of the text perturbation. We introduce another variant C-PGCt that cancels the
perturbation from the text side to investigate the contribution of image perturbation, text perturba-
tion, and their synergy. The comparison results of C-PGC, C-PGCt, and GAP using ALBEF as the
surrogate model are shown in Table 13.

Table 13: ASR (%) of C-PGC, C-PGCt, and GAP on ITR tasks using Flickr30K. Note that C-PGCt

only considers attacking images and thus doesn’t apply textual perturbations.

Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

GAP 69.78 81.59 22.15 29.97 6.61 18.37 23.4 37.54 29.92 44.29 16.09 28.12
C-PGCt 86.74 86.3 50.1 50.2 10.87 21.53 26.28 39.3 33.42 48.32 31.55 36.77
C-PGC 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

We find that when merely applying image perturbations (C-PGCt), our design still outperforms GAP
with notable improvements, validating the proposed techniques’ effectiveness in enhancing the im-
age perturbation. Moreover, the superiority of C-PGC over C-PGCt indicates that the incorporation
of textual perturbations can further boost the universal attacks on the basis of C-PGCt since the text
perturbation facilitates the deconstruction of the learned cross-modal alignment.
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Results of R@5 and R@10. As aforementioned, we supplement the ASR of the ITR tasks based on
R@5 and R@10 metrics and provide the attack success rates in Table 14. Obviously, our proposed
C-PGC still consistently attains better performance than the baseline method GAP, regardless of the
evaluation measurements for retrieval results.

Table 14: Attack success rates (%) regarding R@5 and R@10 metrics of our C-PGC and GAP for
image-text retrieval tasks.

Dataset Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Flickr30K
(R@5)

ALBEF GAP 55.71 73.86 8.01 10.54 1.2 4.84 4.46 15.24 8.28 20.27 5.33 10.77
Ours 83.67 80.02 41.84 42.18 6.9 17.19 18.34 41.03 26.22 49.42 24.25 34.59

TCL GAP 17.64 20.09 77.89 74.53 0.9 4.2 4.25 15.48 8.6 20.25 8.65 13.16
Ours 29.76 35.62 90.89 84.18 3.2 13.65 20.93 42.06 25.27 49.1 16.5 30.32

X-VLM GAP 6.21 7.45 4.9 7.96 81.6 77.23 6.11 18.33 17.41 28.35 5.03 8.61
Ours 7.62 25.1 8.71 26.63 89.2 85.84 19.38 42.48 30.89 50.7 13.68 29

CLIPViT
GAP 2.81 6.86 4.2 8 1.7 6.1 75.64 82.56 24.2 37.68 4.33 9.97
Ours 6.31 17.51 8.01 19.65 4.3 15.1 76.89 85.2 39.6 54.68 9.15 23.23

CLIPCNN
GAP 2.81 7.41 5.81 9.27 2.4 7.01 9.33 19.64 57.63 69.33 4.02 9.76
Ours 3.01 19.09 5.11 22.7 3.3 23.07 17.41 41.17 61.57 74.32 6.74 25.16

BLIP GAP 3.41 7.01 3.7 7.45 1 4.4 4.46 14.43 6.79 18.67 39.13 68.02
Ours 14.43 21.67 13.91 21.59 5.4 14.54 18.03 36.26 23.89 44.79 59.26 74.82

MSCOCO
(R@5)

ALBEF GAP 74.43 78.62 37.99 30.08 5.56 7.19 14.26 17.11 15.58 21.62 23.73 23.26
Ours 93.36 91.56 70.76 62.31 19.97 30.46 41.58 51.23 44.14 55.98 41.08 49.22

TCL GAP 41.48 32.59 92.54 87.81 6.46 8.08 16.09 18.47 17.98 24.3 29.9 28.64
Ours 60.62 56.21 94.89 90.33 22.08 30.38 53.14 64.98 58.85 70.77 45.28 53.55

X-VLM GAP 12.29 11.64 13.43 10.99 90.8 83.05 20.02 23.4 37.72 40.09 12.64 12.04
Ours 31.59 48.69 32.1 48.11 96.7 91.66 49.53 60.82 59.83 69.59 37.4 52.5

CLIPViT
GAP 18.78 17.46 20.38 17.37 16.81 15.15 95.21 93.04 62.77 62.62 18.48 19.48
Ours 25.69 35.95 24.69 33.14 21.37 31.38 96.7 96.49 70.76 77.86 28.72 42.01

CLIPCNN
GAP 13.54 14.09 14.42 14.14 11.02 12.03 25.27 24.98 88.67 88.83 12.8 14.98
Ours 16.25 30.07 20.96 34.15 16.58 30.23 48.04 56.66 91.54 88.96 21.37 38.85

BLIP GAP 23.62 24.22 22.96 18.43 9.93 9.75 19.2 22.24 24.99 30.19 62.75 66.88
Ours 42.56 43.73 41.72 41.8 31.05 35.63 44.37 57.9 54.47 66.01 81.71 81.91

Flickr30K
(R@10)

ALBEF GAP 51.6 71.17 5.8 6.65 0.6 2.7 1.42 9.82 4.19 13.81 3.71 7.01
Ours 80.5 75.17 34.8 34.28 4.2 11.72 9.83 31.14 16.87 39.40 18.76 27.08

TCL GAP 14.9 14.29 73.26 70.49 0.6 2.22 2.13 9.73 4.29 13.45 5.92 9.51
Ours 24.2 27.32 89.2 80.73 2.1 9.33 12.77 32.4 16.97 38.63 12.54 24.1

X-VLM GAP 4.1 4.81 2.7 4.51 76.5 72.58 3.65 11.63 10.84 18.91 3.01 5.29
Ours 4.1 17.79 4.6 19.27 86.3 82.94 11.14 31.49 21.06 40.3 7.32 21.81

CLIPViT
GAP 2.1 4.04 2.6 4.81 1 3.79 63.29 77.83 17.89 28.11 2.31 6.12
Ours 4.2 11.45 4.6 13.08 2.8 10.15 67.98 79.46 29.75 45.56 5.52 17.23

CLIPCNN
GAP 2.3 4.23 3.3 5.56 1.4 4.41 4.56 12.35 49.86 62.17 2.21 6.63
Ours 2.5 13.56 3.7 16.87 1.7 17.38 9.93 32.4 53.27 66.34 3.91 19.62

BLIP GAP 2 3.98 1.5 4.17 0.2 2.24 1.93 8.38 3.68 12.48 36.81 67.22
Ours 11.2 15.49 9.1 14.14 2.8 10.19 9.83 27.46 14.83 34.43 53.46 72

MSCOCO
(R@10)

ALBEF GAP 69.78 76.24 32.04 23.7 3.16 4.91 10.07 13.16 12.55 16.6 19.1 19.96
Ours 91.58 89.62 64.5 55.3 13.81 23.34 33.3 43.75 35.82 48.38 33.77 43.11

TCL GAP 34.36 25.76 90.65 85.27 4.01 5.44 11.77 14.88 13.66 18.89 24.91 24.67
Ours 52.59 49.09 93.63 88.53 15.04 23.25 44.22 58.02 50.16 63.95 37.77 47.26

X-VLM GAP 7.66 7.65 8.07 7.27 88.3 79.85 15.63 18.77 31.79 33.54 8.24 9.37
Ours 23.01 40.39 23.15 40.07 94.97 88.95 40.24 53.74 52 62.7 30.43 45.67

CLIPViT
GAP 13.13 12.39 14.05 12.13 10.68 10.89 93.72 91.51 57.39 56.47 13.35 15.64
Ours 17.87 28.52 17.48 26.09 14 24.67 95.55 95.31 64.04 72.75 22.05 35.65

CLIPCNN
GAP 9.02 10.08 9.06 9.89 6.97 8.25 18.78 20.11 87.6 83.92 8.53 11.91
Ours 10.68 22.98 14.19 27.21 10.62 23.96 39.89 49.62 88.74 85.18 15.97 33.25

BLIP GAP 17.76 18.98 16.32 13.13 6.21 6.44 13.97 17.39 19.73 24.37 57.99 65.49
Ours 33.64 36.14 32.15 33.8 22.64 28.52 36.07 50.3 47 59.07 78.39 78.98

F MULTIMODAL ALIGNMENT DESTRUCTION

To provide more intuitive evidence that our C-PGC successfully destroys the image-text alignment
relationship, we compute the distance between the encoded image and text embeddings before and
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after applying the UAP. Concretely, for an input pair (v, t), we calculate the relative distance drel by:

drel =
||(fI(v + δv)− fT (t⊕ δt)||2 − ||fI(v)− fT (t)||2

||fI(v)− fT (t)||2
. (6)

We provide the distances averaged on 5000 image-text pairs from Flickr30K in Table 15. Benefiting
from our delicate designs, C-PGC achieves better disruption of the aligned multimodal relationship,
thereby boosting the generalization ability and transferability of the produced UAP.

Table 15: Relative cross-modal feature distances to the clean image-text pairs.

Source Method ALBEF TCL BLIP X-VLM CLIPViT CLIPCNN

ALBEF GAP 7.18 6.54 0.91 1.74 0.31 0.98
C-PGC 8.83 14.95 2.73 6.09 3.42 3.92

TCL GAP 4.02 24.27 0.91 0.87 0.12 0.07
C-PGC 6.43 27.11 3.64 4.35 2.56 2.94

BLIP GAP 3.17 4.67 11.82 1.74 -1.71 -0.98
C-PGC 6.41 12.15 13.64 4.35 1.71 1.96

G MORE TRAINING DETAILS

For Flickr30K and MSCOCO, we randomly sample 30,000 images and their captions from the
training set to train our perturbation generator. For SNLI-VE and RefCOCO+, we learn the C-
PGC directly using their training set with 29,783 and 16,992 images respectively. Since an image
corresponds to multiple text descriptions in these datasets, we calculate the average of their textual
embedding as the multimodal condition for the cross-attention modules.

We initialize the noise variable zv as a 3× 3 matrix. Meanwhile, the initial noise zt’s dimensions in
the text modality depend on the size of the hidden layer within the specific VLP model. Concretely,
we set its dimension to 1× 3 for ALBEF, TCL, BLIP, and X-VLM, while 1× 2 for the CLIP model.
When computing the multimodal contrastive lossLCL, the temperature τ is set as 0.1. The generator
is trained over 40 epochs with the Adam optimizer, utilizing a learning rate of 2−4. Following
previous works Lu et al. (2023); Wang et al. (2024), we employ the attack success rate (ASR) as
our quantitative measurement of our attack in ITR tasks by computing the extent the adversarial
perturbations result in victim models’ performance deviations from the clean performance.

H DETAILED INTRODUCTIONS TO DATASETS

• Flickr30K (Plummer et al., 2015). Collected from the Flickr website, this dataset describes
different items and activities, which becomes a standard benchmark for various V+L tasks. It
contains 31,783 images, each of which has five associated captions. We use it for ITR tasks.

• MSCOCO (Lin et al., 2014). The MSCOCO dataset is a rich and diverse dataset consisting of
123,287 images, each of which is annotated with approximately five sentences. We use this dataset
to test the attack performance of ITR and IC tasks.

• SNLI-VE (Xie et al., 2019). Originally proposed for natural language reasoning tasks, this dataset
provides large-scale images and descriptions, where each image is annotated with several sen-
tences and their logical relationship labels, including entailment, neutral, and contradiction. This
dataset is used for VE tasks.

• RefCOCO+ (Yu et al., 2016). An image dataset was selected from MSCOCO, which contains
19,992 images and 141,564 annotations. It is specially used for visual grounding (VG) tasks.

I DISCUSSIONS AND FUTURE DIRECTIONS

Overlook of interactions between perturbations δv and δt. The proposed framework generates
universal perturbations for image and text respectively based on the designed multimodal and uni-
modal losses. Despite the remarkable attack performance, it does not consider the interactions and
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synergy between the perturbations δv and δt during optimization, which has been leveraged in sev-
eral previous attacks (Lu et al., 2023; Wang et al., 2024) to improve performance. In future research,
this limitation can be explored as a potential mechanism to further strengthen the attacks.

Textual Semantic consistency. To ensure the stealthiness of text attacks, we set the perturbation
budget ϵt = 1, i.e., only one word is modified. Despite the superior semantic similarity to previous
sample-specific methods, there is still room to improve from the proposed C-PGC. Moreover, future
studies can consider similarity preservation strategies by applying more effective constraints during
the generator training or post-processing adversarial sentences to facilitate a more stealthy attack.

Leveraging Task-level Characteristics. In contrast to the unimodal scenarios, we fully leverage the
unique characteristics of multimodal scenarios to enhance the modeling of a universal perturbation
that can effectively generalize to diverse downstream V+L tasks. While this work lies in leveraging
the shared and joint characteristics of Vision-Language scenarios to present a universal and versatile
UAP, it is a promising direction for future studies to investigate task-level V+L characteristics to
further enhance attacks for specific downstream tasks.

Synthetic positive samples. Introducing synthetic samples that are maximally distant from the
anchor as positive samples is a promising direction. A reasonable implementation might involve
adversarial learning to generate such maximally distant samples. However, this strategy necessi-
tates synthesizing samples for each input pair, leading to a significant increase in the computational
overhead. Future works can explore more efficient and effective positive sample strategies.

J SPECIAL TOKENS AS TEXT PERTURBATION

We also explore the potential of special tokens to serve as adversarial perturbations. Specifically, we
directly adopt two typical # and * as adversarial tokens to evaluate their attack results.

Table 16: ASR of C-PGC and its variants using special characters as the adversarial word.

Source Adv. word ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

ALBEF
# 87.81 85.74 60.84 62.05 18.28 35.87 38.67 61.4 50.91 68.21 41.71 54.11
* 87.21 84.87 60.24 62.19 18.01 35.4 38.79 61.91 51.27 68.1 41.92 54.69

C-PGC 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

CLIPViT

# 21.25 37.41 24.27 41.04 14.71 34.38 87.07 92.39 63.2 75.14 25.46 44.19
* 22.07 37.54 24.58 41.32 14.81 34.77 87.57 92.41 63.78 74.86 25.76 44.87

C-PGC 23.23 38.67 25.05 41.79 15.85 35.59 88.92 93.05 66.06 75.42 26.71 45.7

Table 17: Comparison of C-PGC and its variants using special characters as the adversarial word
regarding the BERT score between clean and adversarial texts.

Adv. word ALBEF TCL CLIP VIT CLIP CNN

P R F1 P R F1 P R F1 P R F1

# 0.8213 0.8419 0.8313 0.8171 0.8389 0.8277 0.8137 0.8339 0.8235 0.8156 0.8364 0.8257
* 0.8149 0.8251 0.8197 0.8098 0.8206 0.8149 0.8095 0.8206 0.8148 0.8097 0.8203 0.8147

C-PGC 0.8891 0.8613 0.8748 0.8924 0.8687 0.8802 0.8746 0.8684 0.8713 0.8948 0.8842 0.8893

Table 16 and Table 17 display that our optimization-based strategy exhibits both superior attack
performance and higher semantic similarity. Future studies can investigate more special tokens to
increase the likelihood of bypassing human observers or automated filtering systems.

K MORE VISUALIZATION RESULTS

This section presents a rich visual analysis of the proposed attack on a series of downstream tasks.
Specifically, we generate the UAP and conduct attacks on the ALBEF model in the visual grounding
(VG) task. As illustrated in Figure 8, the prediction bounding boxes exhibit a notable deviation
from the clean predictions, verifying that our generated adversarial samples significantly interfere
with the multimodal alignment. In the visual entailment (VE) task, we employ BLIP as the victim
model and present the results in Figure 9. These qualitative visualizations again demonstrate the
remarkable attack effects of our proposed method on various downstream tasks.
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guy with hat object with hat

suitcase with 
nothing on it

suitcase with 
object on it

plain hot dog object hot dogman seated object seated

blue shirt 
hands on hips

blue object
 hands on hips

bowl of rice object of rice

man not jumping object not jumping

blue plaid thingy 
under red suitcase

blue plaid object 
under red suitcase

orange next 
to banana

orange next 
to object

table under laptop object under laptop

cow staring 
at you

cow staring 
at object

dark colored lamb dark colored object

Figure 8: Illustration of visual grounding. Predictions of clean image-text pairs are on the left while
the adversarial samples are on the right. The red indicates the universal adversarial word.
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The guys are walking 
in the park.

Two surfers out surfing
 in the early morning.

Neutral Contradiction

A semi-trailer is unloaded
 by a group of people.

The toddler gave their 
friend a red cape.
Contradiction

A father and a son are 
playing baseball.

Neutral

Neutral Entailment

A dog is sprinting across
 the ground.

Entailment Contradiction

A street vendor is 
selling toys.

Entailment

A superhero is riding
 a horse.

Neutral

A man holds a large
 bass drum.

Contradiction Entailment

The staturte is on 
the water.

Five men are dressed
 as pumpkins.

Neutral Contradiction

The guys are getting 
in the park.

Two surfers out getting
 in the early morning.

Contradiction Neutral

Neutral Entailment

A superhero is getting
 a horse.

A semi-trailer is getting
 by a group of people.

The men are cooking
 in the kitchen.

A dog is getting across
 the ground.

Entailment Contradiction

The men are getting
 in the kitchen.

A street vendor is 
getting toys.

Entailment Neutral

A man getting a large
 bass drum.

The toddler getting their 
friend a red cape.

A father and a son are 
getting baseball.

The staturte is getting
the water.

Contradiction Entailment

Five men are getting
 as pumpkins.

Figure 9: Illustration of the visual entailment task. The red indicates the universal adversarial word.
It can be observed that all predictions do not match with the ground truth.
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