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Abstract
Text-to-image (T2I) diffusion models have raised
concerns about generating inappropriate content,
such as “nudity”. Despite efforts to erase unde-
sirable concepts through unlearning techniques,
these unlearned models remain vulnerable to ad-
versarial inputs that can potentially regenerate
such content. To safeguard unlearned models, we
propose a novel inference-time defense strategy
that mitigates the impact of adversarial inputs.
Specifically, we first reformulate the challenge of
ensuring robustness in unlearned diffusion models
as a robust regression problem. Building upon the
naive median smoothing for regression robustness,
which employs isotropic Gaussian noise, we de-
velop a generalized median smoothing framework
that incorporates anisotropic noise. Based on this
framework, we introduce a token-wise Adaptive
Median Smoothing method that dynamically ad-
justs noise intensity according to each token’s rele-
vance to target concepts. Furthermore, to improve
inference efficiency, we explore implementations
of this adaptive method at the text-encoding stage.
Extensive experiments demonstrate that our ap-
proach enhances adversarial robustness while pre-
serving model utility and inference efficiency, out-
performing baseline defense techniques.

1. Introduction
Text-to-image (T2I) diffusion models (Rombach et al., 2022;
Saharia et al., 2022; Ramesh et al., 2022; Nichol et al.,
2022; Gu et al., 2022) have achieved remarkable progress
in generating diverse, high-quality images based on user
input prompts. But these models can generate inappropriate
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Figure 1. Introduction to task setting: concept unlearning and ad-
versarial vulnerability in unlearned text-to-image diffusion models.

images since the training datasets contain unfiltered unsafe
images, which enables the model to learn and reproduce
such content. For example, they can generate Not Safe For
Work (NSFW) content, such as nudity and violence. The
ease of generating and disseminating such unsafe images
via the Internet poses societal concerns.

To eliminate harmful content, a straightforward approach is
to retrain the model from scratch using filtered data. How-
ever, this is impractical due to the substantial computational
resources required. As an alternative, machine unlearning
techniques (Gandikota et al., 2023; Kumari et al., 2023) have
emerged as a promising way to erase target concepts from
model parameters without retraining. The unlearned model
can hardly generate the target concepts (as illustrated in the
left part of Figure 1). However, recent works (Chin et al.,
2024; Tsai et al., 2024; Zhang et al., 2024c) have shown that
these unlearned models remain vulnerable to adversarial
inputs (as shown in the right part of Figure 1). Therefore,
enhancing the adversarial robustness of unlearned models is
important for advancing their reliability.

To enhance unlearning robustness, a mainstream approach
is to apply adversarial erasing (Kim et al., 2024; Gong et al.,
2024) during the unlearning process, akin to adversarial
training (Madry et al., 2018) in image classification tasks.
This method involves iteratively searching for and erasing
adversarial inputs, which increases computational costs and
can degrade the model’s utility for generating non-target
concepts. While adversarial erasing aims to identify and
erase inputs that restore the target concept, it cannot cover
all potential cases that may arise during inference, leaving a
possibility that some inputs could still recover the target con-
cept. These limitations motivate us to explore an alternative
approach: incorporating defense mechanisms at inference
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time to strengthen the adversarial robustness of unlearned
models.

Although previous inference-time defense meth-
ods (Schramowski et al., 2023; Wu et al., 2024) can
be applied to unlearned diffusion models, they fail to
account for the trade-off between enhancing adversarial
robustness and preserving the generative ability of T2I
models. In this paper, we aim to develop an inference-
time strategy to enhance the adversarial robustness of
unlearned diffusion models while preserving model’s
original generation capabilities and inference efficiency.
Specifically, we reformulate the robust unlearned model as
a robust regression problem. We then extend naive median
smoothing, which employs isotropic Gaussian noise for
regression robustness, to a generalized median smoothing
framework incorporating anisotropic noise. This framework
preserves model utility. Based on this, we introduce a
token-wise Adaptive Median Smoothing strategy that
determines the noise intensity for each token based on
its relevance to the target concept, thereby enhancing
robustness against adversarial inputs. To further improve
inference efficiency, we explore implementations of this
adaptive method at the text-encoding stage.

Our contributions can be summarized as follows:

• We propose a novel inference-time defense method to
enhance the adversarial robustness of unlearned T2I
diffusion models.

• We derive the robust guarantee of generalized me-
dian smoothing with anisotropic noise, and propose an
Adaptive Median Smoothing strategy with its efficient
implementations for adversarial robustness enhance-
ment, model utility, and inference efficiency.

• Extensive experiments show that our method efficiently
boosts the robustness of unlearned models and main-
tains their original generative capabilities, outperform-
ing baseline defense approaches.

2. Related Work
2.1. Text-to-Image Diffusion Models

Text-to-image (T2I) diffusion models are based on the foun-
dational work of diffusion models (Ho et al., 2020; Song
et al., 2021). The training of these models involves two pro-
cesses: forward and reverse. In the forward process, noise
is gradually added to a clean image x0, creating a series of
increasingly noisy images: x1, x2, . . . , xT , where T repre-
sents the total number of timesteps. The reverse process
trains the model to predict the added noise given a noisy
image xt at timestep t. During inference, random noise is
sampled as xT , and multiple denoising steps are performed
to generate the image. T2I diffusion models (Rombach et al.,

2022; Saharia et al., 2022; Ramesh et al., 2022; Nichol et al.,
2022; Gu et al., 2022) incorporate textual conditions into
diffusion models to achieve controllable image generation.
While advanced T2I diffusion models enable the generation
of diverse content based on user-input prompts, they also
raise safety concerns. These models, trained on large-scale
datasets that may include unsafe images, can inadvertently
learn to generate such content.

2.2. Machine Unlearning for T2I Diffusion Models

Existing Unlearning Methods. Unlearning methods for
T2I diffusion models aim to erase specific target concepts,
such as “nudity”, from model parameters. These methods
typically modify model parameters through fine-tuning or
model editing. Fine-tuning approaches focus on redirecting
the noise predicted under the target concept. For instance,
Erase Stable Diffusion (ESD) (Gandikota et al., 2023) redi-
rects the predicted noise under the target condition to its
opposite direction. Similarly, Concept Ablation (CA) (Ku-
mari et al., 2023) guides the noise predicted under target
concepts towards noise predicted under manually selected
anchor concepts. In contrast to most noise redirection meth-
ods, Forget-Me-Not (FMN) (Zhang et al., 2024a) minimizes
attention maps related to target concepts. UCE (Gandikota
et al., 2024), on the other hand, performs parameter edit-
ing by targeting the keys and values within cross-attention
layers.

Vulnerabilities of Unlearned Models. Although un-
learned models demonstrate effectiveness in preventing
target content generation under benign inputs, studies
have revealed their vulnerabilities to adversarial inputs.
Prompting4Debugging (P4D) (Chin et al., 2024) mini-
mizes the noise discrepancy between unlearned and original
models to generate adversarial prompts. UnlearnDiffAtk
(UDA) (Zhang et al., 2024c) enhances P4D’s efficiency by
operating solely on unlearned models without requiring the
original model. Unlike previous white-box attack methods,
Ring-A-Bell (RAB) (Tsai et al., 2024) leverages the text en-
coder to generate adversarial prompts. These attacks show
that adversarial prompts can successfully restore seemingly
erased concepts from unlearned models.

Enhancing Adversarial Robustness of Unlearned Mod-
els. Adversarial erasing has emerged as a common method
to enhance the adversarial robustness of unlearned mod-
els. Notable examples include Robust Adversarial Concept
Erase (RACE) (Kim et al., 2024), which builds upon ESD,
and Reliable and Efficient Concept Erasure (RECE) (Gong
et al., 2024), based on UCE. However, adversarial erasing
necessitates searching for adversarial inputs, prolonging the
unlearning process and potentially compromising model
utility. We aim to utilize inference-time defense to enhance
unlearned model robustness. Several inference-time safety
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mechanisms already exist for diffusion models. The ba-
sic approach involves removing unsafe words from input
prompts using predefined blacklists (George, 2020). More
advanced methods include the universal prompt optimizer
for safe T2I (POSI) (Wu et al., 2024), which employs large
language models (LLMs) to rewrite input prompts. Safe
Latent Diffusion (SLD) (Schramowski et al., 2023) offers
another solution by modifying noise prediction during infer-
ence to diverge from unsafe concept predictions.

3. Method
In this section, we present our Adaptive Median Smoothing
for enhancing the adversarial robustness of unlearned text-
to-image (T2I) diffusion models. We first formulate the ad-
versarial robustness of T2I generation as a regression prob-
lem (Section 3.1), and then introduce median smoothing for
robust regression (Section 3.2). Our analysis identifies two
limitations of naive median smoothing: compromised model
utility and low computational efficiency. To address these,
we extend the requirement of naive median smoothing from
isotropic Gaussian noise to anisotropy (Section 3.3) and
propose Adaptive Median Smoothing (Section 3.4). Key
notations are summarized in Appendix A.

3.1. Formulating Adversarial Robustness of Unlearned
Diffusion Models: A Regression Perspective

To ensure the adversarial robustness of unlearned models, it
is crucial to maintain similar outputs between benign and
adversarial inputs. Let y denote the benign input token
embedding, and δ represent the adversarial perturbation,
where δ ∈ B for a given constraint set B. Without defense,
the adversarial input y + δ may cause the unlearned diffu-
sion model to regenerate erased concepts. Our goal is to
control the discrepancy between the output distribution con-
ditioned on the adversarial input y + δ and that conditioned
on the benign input y. This can be formulated using the
Kullback–Leibler (KL) divergence:

DKL

(
p∗
(
x(0...T )|T (y)

)
|| p∗

(
x(0...T )|T (y + δ)

))
,

where p∗ denotes the output distribution of the adversarially
robust diffusion model, x(0...T ) denotes the output across
different time steps (typically restricted to a reduced sub-
sequence in practical samplers; see Appendix B), and T
represents the text encoder. Previous work (Kumari et al.,
2023) has shown that minimizing this KL divergence is
equivalent to minimizing the following mean squared er-
ror:

Ext,t

[
wt∥ϵ∗

(
xt, T (y), t

)
− ϵ∗

(
xt, T (y + δ), t

)
∥22
]
,

where wt is the weight of loss at timestep t, ϵ∗ is the robust
noise prediction, xt is the noisy sample at timestep t. To

simplify the notations, we omit wt (typically set to 1 to
improve sample quality (Ho et al., 2020)), xt, T and t in
the mean squared error as: Ext,t

[
∥ϵ∗(y)− ϵ∗(y + δ)∥22

]
.

The robust model aims to bound the mean squared error
as:

Ext,t

[
∥ϵ∗(y)− ϵ∗(y + δ)∥22

]
≤ C(B) ∀δ ∈ B,

where C(B) denotes an upper bound that depends on the
perturbation constraint set B. This problem can be conceptu-
alized as developing a robust regression model wherein the
predicted noise remains proximal to the original prediction,
even when the input embedding is perturbed by adversarial
noise. Next, we will introduce median smoothing (Chiang
et al., 2020)—an adversarial defense strategy for regression
models—to augment the robustness of noise prediction.

3.2. Naive Median Smoothing for Robust Regression

The native noise prediction (i.e., without defense) contains
m dimensions: ϵ(y) =

(
ϵ(y)1, ϵ(y)2, . . . , ϵ(y)m

)
, and we

take the i-th (1 ≤ i ≤ m) dimension as an example to
show how median smoothing works. Let sup denote the
supremum (least upper bound), and inf denote the infimum
(greatest lower bound) of a set. The percentile smoothing of
the i-th dimension in ϵ can be defined as:

Ep(y)i = sup{v ∈ R | P[ϵ(y +G)i ≤ v] ≤ p},
Ep(y)i = inf{v ∈ R | P[ϵ(y +G)i ≤ v] ≥ p},

where G ∼ N (0, σ2I) denotes Gaussian noise. Follow-
ing (Chiang et al., 2020), we use Ep(y)i to denote the
percentile-smoothed function when either definition can
be applied. Utilizing median smoothing, the adversar-
ially robust noise prediction ϵ∗(·) is instantiated as the
median-smoothed (p = 0.5) noise prediction E0.5(·) =(
E0.5(·)i

)m
i=1

. Then we have the following lemma adapted
from Lemma 1 in (Chiang et al., 2020):

Lemma 3.1. The median-smoothed prediction with adver-
sarial perturbation δ can be bounded as:

Ep(y)i ≤ E0.5(y + δ)i ≤ Ep(y)i ∀∥δ∥2 < ρ, (1)

where p := Φ
(
− ρ

σ

)
and p := Φ

(
ρ
σ

)
define the lower

and upper probability bounds, and Φ denotes the standard
Gaussian cumulative distribution function.

The mean squared error we aim to bound now becomes:

∥E0.5(y)− E0.5(y + δ)∥22 =
∑m

i=1

(
E0.5(y)i − E0.5(y + δ)i

)2
According to Lemma 3.1, for any δ that satisfies ∥δ∥2 < ρ,
we have:

E0.5(y)i − Ep(y)i ≤ E0.5(y)i − E0.5(y + δ)i ≤ E0.5(y)i − Ep(y)i.
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Figure 2. Pipeline of Adaptive Median Smoothing. (a) The input prompt is tokenized and converted into embeddings. (b) Relevance
scores are computed to determine the token-level noise intensity. (c) Noise is added to token embeddings, which are then processed by
the text encoder. The smoothed text embeddings are aggregated via a median operation and used as conditional inputs to the diffusion
model’s U-Net, mitigating adversarial effects and enhancing robustness.

Based on this two-sided bound, we introduce ζρ,σ(y)
i to

represent the maximum of squared differences:

ζρ,σ(y)
i := max

{(
E0.5(y)i − Ep(y)i

)2
,
(
E0.5(y)i − Ep(y)i

)2}
.

Then we can bound the mean squared error as:

∥E0.5(y)−E0.5(y+δ)∥22 ≤
∑m

i=1

(
ζρ,σ(y)

i
)2 ∀∥δ∥2 < ρ.

(2)

The aforementioned derivation demonstrates that median
smoothing can bound the mean squared error, implying
that the model can defend against adversarial inputs pro-
cessed by median smoothing.

Problem Analysis. However, directly implementing me-
dian smoothing in practice presents two challenges for T2I
diffusion models. (1) The model’s utility would be com-
promised. Median smoothing requires adding isotropic
Gaussian noise G ∼ N (0, σ2I) to the input token embed-
ding. Empirically, we observe that while a large σ can
help mitigate adversarial inputs, it simultaneously corrupts
benign text embeddings, leading to degraded generation
quality for benign inputs. (2) The computational over-
head is substantial. To approximate E0.5(·) through Monte
Carlo sampling, each timestep necessitates predicting noise
n times, thereby multiplying the inference time by approx-
imately n. Subsequently, we delineate our approach to
address two research questions:

[RQ1] How can we maintain model utility while enhancing
adversarial robustness?

[RQ2] How can we improve inference efficiency?

3.3. Generalized Median Smoothing with Anisotropic
Noise

To address [RQ1], we propose to explore anisotropic noise
for median smoothing. Instead of using isotropic Gaus-
sian noise G ∼ N (0, σ2I), we consider a more general
form of anisotropic Gaussian noise: G′ ∼ N (0,Σ), where
Σ = diag(σ2

1 , σ
2
2 , . . . , σ

2
d) is a positive diagonal matrix, and

d represents the total dimensionality of the input token em-
beddings. We generalize the naive smoothing operator E to
its anisotropic version E , defined as:

E p(y)
i = sup{v ∈ R | P[ϵ(y +G′)i ≤ v] ≤ p}, (3)

E p(y)
i = inf{v ∈ R | P[ϵ(y +G′)i ≤ v] ≥ p}. (4)

We use Ep(y)
i to represent the anisotropic percentile-

smoothed function when either definition is applicable. Sub-
sequently, we derive the bounds of the median-smoothed
output in the anisotropic case.

Theorem 3.2. (Proof in Appendix C) The median-smoothed
prediction with adversarial perturbation δ under anisotropic
Gaussian noise G′ ∼ N (0,Σ) is bounded as follows:

E p′(y)i ≤ E0.5(y + δ)i ≤ E p′(y)i ∀∥δ∥Σ,2 < ρ′, (5)

where p′ := Φ (−ρ′) and p′ := Φ (ρ′) define the lower and
upper probability bounds, respectively. ∥δ∥Σ,2 denotes the
ℓΣ2 norm of δ, defined as ∥δ∥Σ,2 =

√
δ⊤Σ−1δ.

Note that when Σ degenerates to σ2I, Theorem 3.2 reduces
to Lemma 3.1. Based on Theorem 3.2 and following the
derivation approach of Inequality (2), we derive the upper
bound of the mean squared error for the anisotropic case:

∥E0.5(y)−E0.5(y+δ)∥22 ≤
∑m

i=1

(
ξρ′(y)i

)2 ∀∥δ∥Σ,2 < ρ′.
(6)
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where ξρ′(y)i :=max
{(

E0.5(y)
i− E p′(y)i

)2
,
(
E0.5(y)

i−
E p′(y)i

)2}
. The primary distinction in the anisotropic case

is that the guaranteed region manifests as an ellipsoid rather
than an isotropic ball. The covariance matrix Σ determines
the shape of this ellipsoid, with larger noise magnitudes
corresponding to longer axes in the respective dimensions.

3.4. Adaptive Median Smoothing

Motivation. The findings in Theorem 3.2 suggest an ap-
proach: injecting larger noise into specific dimensions can
expand the guaranteed region along those axes while main-
taining lower noise levels in others. For enhancing the
adversarial robustness of unlearned T2I models, this insight
leads to a token-wise adaptive noise injection strategy that
preferentially increases noise in dimensions related to the
target concept, thereby achieving targeted suppression while
preserving utility in other aspects. The overall process is
illustrated in Figure 2. We introduce a Relevance Score
Computation method to quantify each token’s relevance
to the target concept for determining noise magnitude, ad-
dressing the model utility issue in [RQ1]. Additionally, we
propose an Efficiency Improvement solution to the low
computational efficiency in [RQ2].

Relevance Score Computation. We start by calculating the
representation of the target concept. This involves collect-
ing positive prompts related to the target concept and their
corresponding negative prompts, which lack such content.
These prompts are then tokenized and embedded. We define
Y+ = {y(1)+ , y

(2)
+ , . . . , y

(k)
+ } as the set of token embeddings

for the positive prompts, where k is the total number of
prompt pairs, and y

(i)
+ is the token embedding of the i-th

positive prompt. Similarly, Y− = {y(1)− , y
(2)
− , . . . , y

(k)
− }

represents the token embeddings for the negative prompts.
The token embeddings are encoded by T , and the target
concept direction is determined by the mean difference of
the encoded embeddings.

∆tgt =
1

k

k∑
i=1

(
T (y(i)+ )− T (y(i)− )

)
.

Next, we calculate the representation of each token within
the input prompt y = (y1, y2, . . . , yl), where l denotes the
length of the prompt. We utilize differential text embedding,
defined as the difference between encoded text embeddings
with and without a specific token, to capture the token’s
semantics. The context window size for calculating dif-
ferential text embedding needs to be carefully determined.
A straightforward approach is to use the entire prompt as
the context window (global context). Specifically, when
representing the semantics of the i-th token yi using the
global difference, we remove the i-th token from y to obtain

Algorithm 1: Computing Token-Level Concept
Relevance Scores

Function DiffEmbed(y, i):
▷ calculate differential embedding for token i;
l← |y|;
y\i ← (y1, · · · , yi−1, yi+1, · · · , yl);
∆← T (y)− T (y\i);
return ∆;

Input: input token embeddings y, target concept
representation ∆tgt, global flag ϕ

Output: relevance scores S
Initialize S as empty list;
s← 1; ▷ current word start index
for i← 1 to |y| do

if yi is end of word then
yloc ← (ys, ys+1, . . . , yi);▷ current word
for j ← s to i do

∆j
loc ← DiffEmbed (yloc, j − s+ 1);

simj ← cos(∆j
loc,∆tgt);

if ϕ is true then
∆j

glb ← DiffEmbed (y, j);
simj

glb ← cos(∆j
glb,∆tgt);

simj ← max
(
simj ,

simj+simj
glb

2

)
;

end
Append simj to S;

end
s← i+ 1;

end
end
return S

y\i = (y1, . . . , yi−1, yi+1, . . . , yl), and then calculate:

∆i
glb = T (y)− T (y\i).

Subsequently, we calculate the cosine similarity between
∆i

glb and ∆tgt, denoting it as the relevance of the i-th token to
the target concept: simi

glb = cos(∆i
glb,∆tgt). Nevertheless,

the complex contextual environment of the full prompt may
lead to inaccuracies in the calculated relevance. Therefore,
we reduce the window size and perform a local relevance
calculation based on individual words. For each complete
word (identified by the ‘</w>’ suffix), we determine the
text embedding difference ∆i

loc by removing each individual
token from the word. We then compute the cosine similarity
as: simi = cos(∆i

loc,∆tgt).

When greater robustness is required or when dealing with
more vulnerable unlearned models, we incorporate the
global difference. To mitigate the potential underestimation
of relevant tokens due to complex contextual environments
in the global calculation, we combine the scores only when
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Figure 3. Qualitative results of different defense methods against the restoration of “nudity”. ESD and UCE are unlearned models without
defense. RACE and RECE apply pre-inference defenses, while SLD, Blacklist, POSI, and our method operate at inference time.

the global relevance exceeds the local relevance. In such
cases, the relevance of the i-th token to the target concept

can be expressed as: simi = max
(
simi,

simi+simi
glb

2

)
. The

overall process is detailed in Algorithm 1.

The noise magnitude for the i-th token embedding is then
calculated as: σ0 · exp(k · simi), where σ0 is the base noise
magnitude and k is the scaling factor. This noise magnitude
for each token is subsequently used to construct the noise
covariance matrix Σ.

Efficiency Improvement. The significant computational
overhead arises from the necessity of multiple noise pre-
dictions for median calculation. To mitigate this issue, we
shift the median calculation earlier in the generation process,
performing it on the encoded text embeddings. Specifically,
given the input token embeddings y, we repeat the calcu-
lation of encoded text embeddings n times. For the i-th
repetition, we sample Gaussian noise G′ ∼ N (0,Σ) and
calculate h(i) = T (y + G′). It is important to note that
these n encoded text embeddings can be computed in paral-
lel, thereby improving inference efficiency. After obtaining
n text embeddings, we compute their element-wise median
value:

h0.5 = median([h(i), · · · , h(n)]).

Then h0.5 serves as the conditional input for the U-Net in
diffusion models (Rombach et al., 2022) to guide text-to-
image generation.

ESD RACE
SLD-

Medium
SLD-Max Ours

UCE RECE
SLD-

Medium
SLD-Max Ours

Figure 4. Qualitative results of different defense methods against
the restoration of “violence”.

4. Experiments
4.1. Experimental Setup

Implementation Details. In alignment with previous stud-
ies on unlearning (Gandikota et al., 2023; 2024), we employ
Stable Diffusion (SD) v1.4 (Rombach et al., 2022) as the
T2I model, incorporating ViT-L/14 (Radford et al., 2021) as
the text encoder. We apply two representative unlearning
techniques: ESD (Gandikota et al., 2023) (fine-tuning) and
UCE (Gandikota et al., 2024) (model editing), to derive
unlearned models. To execute our adaptive median smooth-
ing, we gather positive and negative prompts from the ViSU
dataset (Poppi et al., 2024) for unsafe concepts, specifically
nudity and violence. Additional hyperparameters, including
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Table 1. Quantitative results comparing different defense methods for unlearned models with the “nudity” concept erased.
Adversarial Robustness (Evaluated by ASR ↓) Model UtilityUnlearned

Model
Defense
Method I2P P4D UDA RAB MMA QF-PGD Average FID ↓ CLIP ↑

w/o defense 6.34 29.89 42.37 53.68 7.50 12.71 25.42 7.161 30.18
RACE 3.76 17.62 16.95 31.58 5.70 9.32 14.16 7.843 30.08

SLD-Weak 5.37 28.74 27.97 48.07 8.20 15.25 22.27 7.806 30.02
SLD-Medium 4.19 25.29 12.71 34.39 7.60 10.17 15.73 10.435 29.48
SLD-Strong 3.76 18.01 7.63 18.25 7.60 6.78 10.34 15.627 29.08
SLD-Max 3.76 6.90 3.39 10.18 4.30 6.78 5.89 25.544 28.54
Blacklist 6.02 13.79 26.27 17.54 6.20 15.25 14.18 7.298 30.06

POSI 5.16 18.39 16.10 30.88 3.80 13.56 14.65 7.774 29.75

ESD

Ours 3.19 10.98 11.02 2.92 4.23 8.47 6.80 7.365 30.10
w/o defense 11.49 44.06 73.73 37.89 39.30 35.59 40.34 4.379 31.02

RECE 4.94 22.99 14.41 11.23 19.90 12.71 14.36 6.001 30.78
SLD-Weak 12.57 50.57 67.80 42.11 45.00 36.44 42.42 5.635 30.87

SLD-Medium 13.53 52.87 55.93 43.16 44.60 28.81 39.82 8.084 30.64
SLD-Strong 13.10 44.83 45.76 38.95 42.70 27.12 35.41 12.412 30.31
SLD-Max 12.03 37.93 33.90 26.67 35.50 20.34 27.73 18.445 29.90
Blacklist 9.88 29.12 55.93 28.77 27.00 33.05 30.63 4.576 30.92

POSI 9.13 27.20 30.51 22.81 10.60 26.27 21.09 5.270 30.56

UCE

Ours 4.33 19.16 11.02 5.03 17.53 9.04 11.02 5.343 30.48

Table 2. Inference time of training-free defense methods.
Defense Inference Time (s)

w/o defense 9.435
Blacklist 9.462

SLD 11.779
Ours 10.317

σ0 and k, are detailed in Appendix D. The experiments are
conducted using NVIDIA Tesla V100 GPUs.

Baselines. We compare our method’s performance with var-
ious baselines. For pre-inference defense, we include com-
monly used adversarial erasing, RACE (Kim et al., 2024) for
enhancing the robustness of ESD, and RECE (Gong et al.,
2024) for UCE. Additionally, we consider inference-time
safety mechanisms. These include input prompt modifi-
cation methods, such as blacklist-based unsafe word re-
moval (George, 2020) and input rewriting (POSI (Wu et al.,
2024)). We also incorporate SLD (Schramowski et al., 2023)
as a baseline representing approaches that alter the predicted
noise direction during inference.

Evaluation Metrics. We concentrate on assessing ro-
bustness against adversarial prompts and the impact on
the model’s normal generation capabilities. For robust-
ness evaluation, we consider adversarial prompts generated
by various methods, including I2P (Schramowski et al.,
2023), P4D (Chin et al., 2024), UDA (Zhang et al., 2024c),
RAB (Tsai et al., 2024), MMA (Yang et al., 2024), and
QF-PGD (Zhuang et al., 2023). Specific detectors (details
in Appendix D) are used to identify the target concept in

the generated images. A lower detection rate indicates a
lower attack success rate (ASR), thus demonstrating greater
robustness. For evaluating model utility, we use the Fréchet
Inception Distance (FID) (Heusel et al., 2017) for image
quality and CLIP score (Hessel et al., 2021) for image-
prompt alignment. The prompts for utility evaluation are
sampled from the COCO validation set (Lin et al., 2014).

4.2. Comparisons with Baseline Methods

In this subsection, we employ various defenses to enhance
the adversarial robustness of the unlearned models that have
removed the concept of nudity. We compare our method
with baseline approaches, emphasizing the trade-off be-
tween robustness and model utility, while also considering
efficiency.

Trade-Off Between Robustness and Utility. The qual-
itative results demonstrating robustness are illustrated in
Figure 3, while quantitative results are presented in Table 1.
It is evident that, in the absence of defense mechanisms,
the unlearned model is susceptible to various adversarial at-
tacks. For the unlearned model processed by ESD, the SLD
defense with maximum hyperparameters achieved the most
robust performance, resulting in an average attack success
rate (ASR) of 5.89%. However, this robustness comes at
a significant cost to model utility, as indicated by the FID
metric, which increased from 7.161 to 25.544. In contrast,
our method achieves comparable robustness, with an aver-
age ASR of 6.80%, while effectively preserving the model’s
generative capabilities, reflected in an FID of 7.365. For
the unlearned model processed by UCE, we observe that
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Table 3. Ablation study of σ0 and k.
Unlearned

Model
σ0 k ASR ↓ FID ↓ CLIP ↑

ESD

0.003
9

12.54 7.252 30.16
0.006 6.80 7.365 30.10
0.009 2.78 7.530 29.98

0.006
5 11.28 7.366 30.14
9 6.80 7.365 30.10
13 4.98 7.370 30.02

UCE

0.006
9

18.69 4.477 30.91
0.009 14.46 4.766 30.77
0.012 11.02 5.343 30.48

0.012
5 17.71 5.237 30.54
9 11.02 5.343 30.48
13 9.14 5.600 30.32

the SLD defense is less effective in enhancing adversarial
robustness. In contrast, our method demonstrates superior
defense performance, surpassing the adversarial erasing
method (RECE), while also yielding better image quality,
as indicated by the FID metric.

Efficiency. The adversarial erasing strategy necessitates
additional training due to the iterative process of identify-
ing adversarial inputs and erasing them by adjusting the
parameters of the unlearned model. In contrast, the infer-
ence baselines do not require additional training, with the
exception of POSI, which necessitates fine-tuning the LLM
for prompt rewriting. To evaluate the efficiency of these
training-free defense methods, we compare their inference
time per image, and the results are presented in Table 2.
Our method demonstrates superior inference efficiency com-
pared to SLD. Although the simple blacklist-based defense
is more efficient than ours, it is less effective in enhancing
the robustness of unlearned models.

4.3. Ablation Study

In this subsection, we perform ablation studies to evaluate
how various hyperparameters and components—including
base noise level, noise scaling factor, global relevance incor-
poration, and prompt pair selection—affect the performance
of our method.

Base Noise σ0 and Scaling Factor k. The parameters σ0

and k are instrumental in controlling noise intensity. We
apply different values of σ0 and k to both the ESD and UCE
unlearned models and present the performance results in
Table 3. While increasing σ0 and k enhances robustness,
excessively large values may compromise model utility.

Global Relevance. We examine how performance differs
when global context is incorporated into relevance computa-
tion, using the UCE unlearned model. The results are shown
in Table 4. For vulnerable unlearned models, incorporating

Table 4. Ablation study of global relevance.
Relevance ASR ↓ FID ↓ CLIP ↑

Local 15.03 4.800 30.72
Local & Global 11.02 5.343 30.48

Table 5. Ablation study of ViSU prompt pairs.
Unlearned

Model
Defense
Method

ASR ↓ FID ↓ CLIP ↑

ESD
w/o defense 25.42 7.161 30.18
Ours (ViSU) 6.80 7.365 30.10

Ours (Self-Gen) 5.33 7.436 30.09

UCE
w/o defense 40.34 4.379 31.02
Ours (ViSU) 11.02 5.343 30.48

Ours (Self-Gen) 15.93 5.526 30.54

global relevance further enhances robustness.

ViSU Prompt Pairs. In previous experiments, we used
7, 863 prompt pairs from the ViSU dataset (Poppi et al.,
2024) to calculate the concept vector for the target con-
cept (“nudity”), which is then utilized to compute the rel-
evance score. To further demonstrate the effectiveness of
our method, we implement nudity unlearning without using
prompt pairs from ViSU. Specifically, we first use an un-
censored LLM interface on Hugging Face to generate 100
nudity-related prompts (positive prompts) and then use an-
other LLM interface (e.g., Kimi) to transform them into safe
versions (i.e., negative prompts). These 100 self-generated
prompt pairs (denoted as Self-Gen) are used in our experi-
ments, with results shown in Table 5. Overall, our method
remains effective even with only 100 collected prompt pairs.

4.4. Generalization Analysis

In this subsection, we evaluate the generalization ability of
our method across different types of concepts and various
T2I model variants.

Generalization Across Concepts. Previous experiments
have demonstrated the effectiveness of our method in en-
hancing the robustness of unlearned models with the “nudity”
concept erased. To further validate the generalizability of
our approach, we evaluate it on additional concepts, includ-
ing “violence” (NSFW), “gun” (object), and “Van Gogh”
(style). Qualitative and quantitative results for “violence”
are displayed in Figure 4 and Table 6, while results for “gun”
and “Van Gogh” are provided in Appendix E.1. These re-
sults demonstrate that our method consistently achieves a
superior trade-off between adversarial robustness and utility.

Generalization Across T2I Model Variants. While previ-
ous experiments were conducted on Stable Diffusion (SD)
v1.4, we further evaluate our method on other widely used
T2I models, SD v1.5 and SD v2.1, to assess its generaliz-
ability. The detailed results are presented in Appendix E.2.
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Table 6. Quantitative results comparing different defense methods for unlearned models with the “violence” concept erased.
Adversarial Robustness (Evaluated by ASR ↓) Model UtilityUnlearned

Model
Defense
Method I2P UDA RAB QF-PGD Average FID ↓ CLIP ↑

w/o defense 17.59 38.33 50.00 28.33 33.56 7.656 29.75
RACE 19.97 35.00 55.60 35.00 36.39 8.509 29.71

SLD-Weak 16.01 32.50 42.27 29.17 29.98 8.392 29.67
SLD-Medium 15.48 30.83 32.13 25.83 26.07 10.759 29.58
SLD-Strong 12.57 27.50 21.07 20.83 20.49 14.477 29.43
SLD-Max 9.39 16.67 9.47 17.50 13.26 19.274 29.23

ESD

Ours 15.61 28.06 11.87 25.28 20.20 7.942 29.68
w/o defense 22.22 48.33 74.13 40.00 46.17 5.531 31.05

RECE 18.92 39.17 60.40 31.67 37.54 6.743 30.90
SLD-Weak 18.65 37.50 66.40 36.67 39.80 6.872 30.94

SLD-Medium 18.78 35.00 55.07 30.83 34.92 9.327 30.49
SLD-Strong 15.61 30.83 41.07 29.17 29.17 14.223 30.42
SLD-Max 15.34 26.67 27.87 26.67 24.14 22.306 29.78

UCE

Ours 18.21 30.00 11.29 29.72 22.31 6.063 30.56

5. Discussion
Multiple Concept Unlearning. Our method naturally ex-
tends to multi-concept unlearning scenarios. For instance,
we conduct a preliminary exploration on the UCE unlearned
model with “nudity” and “violence” concepts erased simul-
taneously. By computing token relevance scores as the
maximum similarity value across multiple target concepts,
our method effectively mitigates adversarial attacks while
preserving model utility. Quantitative results are provided in
Appendix F.1. These findings demonstrate the adaptability
of our approach, though efficiency challenges may emerge
when scaling to a large number of concepts.

Comparison with Text Encoder Fine-tuning Methods.
Our method operates within a similar defense space as adver-
sarial text encoder fine-tuning approaches, such as AdvUn-
learn (Zhang et al., 2024b). However, key differences exist:
AdvUnlearn requires computationally intensive fine-tuning
and achieves empirical robustness, whereas our approach is
training-free, applied at inference time, and provides both
theoretical guarantees and empirical validation. A detailed
discussion is presented in Appendix F.2.

Failure Cases. While our method generally demonstrates
robust performance, we identify specific failure scenarios
where certain adversarial prompts can circumvent our de-
fense under the default hyperparameter σ0. Increasing σ0

can mitigate these cases but may also impair the model’s
performance on benign inputs. Future work should explore
mechanisms to dynamically adjust σ0 based on input char-
acteristics, aiming to maintain robustness without compro-
mising model utility. Detailed failure case analyses and
qualitative examples are provided in Appendix F.3.

6. Conclusion
Improving the adversarial robustness of unlearned T2I mod-
els is important for content security. In this study, we de-
rive the robust guarantee of generalized median smoothing
with anisotropic noise, and propose an Adaptive Median
Smoothing strategy with its efficient implementations for
adversarial robustness enhancement of unlearned T2I diffu-
sion models. Our inference-time defense method achieves a
superior trade-off between adversarial robustness and model
utility compared to previous methods.
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A. Notation Summary
We present the key notations used throughout this paper in Table 7.

Table 7. Summary of key notations used in this paper.
Notation Description
y Benign input token embedding
B Norm-bounded set defining allowed perturbations
δ Adversarial perturbation constrained within B
xt Noisy sample at timestep t
ϵ∗(·) Robust noise prediction function
ϵ(·) Native (undefended) noise prediction function
G Isotropic Gaussian noise
Ep(·)i Percentile-smoothed function for the i-th dimension under noise G
Φ Standard Gaussian cumulative distribution function
G′ Anisotropic Gaussian noise
Σ Covariance matrix of anisotropic Gaussian noise (positive diagonal matrix)
Ep(·)i Generalized percentile-smoothed function for the i-th dimension under noise G′

∥δ∥Σ,2 ℓΣ2 -norm of δ, defined as
√
δ⊤Σ−1δ

∆tgt Target concept representation
∆i

glb Global differential embedding for the i-th token
∆i

loc Local differential embedding for the i-th token
simi Relevance of the i-th token to the target concept
σ0 Base noise magnitude
k Scaling factor controlling exponential growth of noise intensity
h0.5 Median text embedding served as the conditional input for the U-Net in diffusion models

B. Formulation Generalization for Subsequence Sampling
In practice, many text-to-image pipelines use DDIM (Song et al., 2021) or other fast samplers with S ≪ T steps (e.g.,
S ≈ 50). Our original formulation covers the full DDPM (Ho et al., 2020) chain (x0, x1, . . . , xT ), which may be unnecessary
for practical applications. To better align our theoretical framework with practical sampling efficiency, we generalize our
formulation by considering a subsequence {xτ0 , xτ1 , . . . , xτS} used in practical sampling. These timesteps satisfy:

0 = τ0 < τ1 < τ2 < · · · < τS = T.

We then bound the KL divergence over this subsequence for any perturbation δ within the norm-bounded set B:

DKL

(
p∗
(
x(τ0...τS)|T (y)

)
|| p∗

(
x(τ0...τS)|T (y + δ)

))
,

which translates to constraining the mean squared error (MSE) at each sampled step τi:

Exτi
,τi

[
∥ϵ∗

(
xτi , T (y), τi

)
− ϵ∗

(
xτi , T (y + δ), τi

)
∥22
]
≤ C(B) ∀δ ∈ B.

C. Proof of Theorem 3.2
Lemma C.1. (Eiras et al., 2022) Let f : Rn → [0, 1] be a function, and define its smoothed version g as follows:

g(x) = EG′∼N (0,Σ)[f(x+G′)],

where Σ is a positive diagonal matrix. Then, the function Φ−1(g(x)) is 1-Lipschitz with respect to the ℓΣ2 norm.
Theorem 3.2. The median-smoothed prediction with adversarial perturbation δ under anisotropic Gaussian noise G′ ∼
N (0,Σ) is bounded as follows:

E p′(y)i ≤ E0.5(y + δ)i ≤ E p′(y)i ∀∥δ∥Σ,2 < ρ′, (7)

12



Adaptive Median Smoothing

where p′ := Φ (−ρ′) and p′ := Φ (ρ′) define the lower and upper probability bounds, respectively. ∥δ∥Σ,2 denotes the ℓΣ2
norm of δ, defined as ∥δ∥Σ,2 =

√
δ⊤Σ−1δ.

Proof. For clarity, we omit the superscript i in our notation. Consider the event ϵ(y + δ + G′) ≤ E p′(y) and let
1ϵ(y+δ+G′)≤E p′ (y)

denote the corresponding indicator function. We define g(δ) as the expectation of this indicator function:

g(δ) = E[1ϵ(y+δ+G′)≤E p′ (y)
] = P[ϵ(y + δ +G′) ≤ E p′(y)].

Next, we consider the mapping defined by

δ 7→ Φ−1(g(δ)).

According to the Lemma C.1, this mapping is 1-Lipschitz with respect to the ℓΣ2 norm. Therefore, we have:

Φ−1
(
P[ϵ(y + δ +G) ≤ E p′(y)]

)
− Φ−1

(
P[ϵ(y +G) ≤ E p′(y)]

)
≥ −∥δ∥Σ,2.

Rearranging the above inequality yields:

Φ−1
(
P[ϵ(y + δ +G) ≤ E p′(y)]

)
≥ Φ−1

(
P[ϵ(y +G) ≤ E p′(y)]

)
− ∥δ∥Σ,2

≥ Φ−1
(
P[ϵ(y +G) ≤ E p′(y)]

)
− ρ′

≥ Φ−1(p′)− ρ′

= Φ−1(Φ(ρ′))− ρ′

= 0.

Since Φ−1(0.5) = 0 and the function Φ−1(·) is monotonically increasing, it follows that:

P[ϵ(y + δ +G) ≤ E p′(y)] ≥ 0.5.

According to the definition of E 0.5(·), we have:

E 0.5(y + δ) = inf{v ∈ R | P[ϵ(y + δ +G) ≤ v] ≥ 0.5}.

Thus, we can conclude that:

E 0.5(y + δ) ≤ E p′(y).

Similarly, we can derive the inequality on the other side:

E 0.5(y + δ) ≥ E p′(y).

Recall that we denote E0.5 as the percentile-smoothed function applicable to either definition. This notation allows us
to represent both E 0.5 and E 0.5 simultaneously. With established bounds for both functions, we can express our result
concisely:

E p′(y) ≤ E0.5(y + δ) ≤ E p′(y) ∀∥δ∥Σ,2 < ρ′.

This completes the proof.
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D. Implementation Details
Hyperparameters. The number of Monte Carlo samples, denoted as n, is set to 13. For the ESD unlearned model following
the erasure of the nudity concept, we set σ0 to 0.006 and k to 9, utilizing only local relevance scores. In the case of the UCE
unlearned model after erasing the nudity concept, σ0 is set to 0.012 and k to 9, incorporating both local and global relevance
scores. For the ESD unlearned model after erasing the violence concept, σ0 remains at 0.006 and k at 9, again using only
local relevance scores. Finally, for the UCE unlearned model after erasing the violence concept, σ0 is set to 0.012 and k to 9,
utilizing only local relevance scores.

Unsafe Content Detectors. We employ Nudenet (Bedapudi, 2019) for nudity content detection, identifying nine specific
exposed body areas: buttocks, female breasts, female genitalia, anus, male genitalia, male breasts, belly, feet, and armpits.
The detection uses a confidence threshold of 0.6. For violence content detection, we utilize the fine-tuned Q16 model
provided by (Qu et al., 2023).

E. Additional Generalization Analysis
This section presents additional generalization results across various concepts and text-to-image (T2I) model variants.

E.1. Generalization Across Concepts

For the object concept, we target “gun” and use three attack methods (UDA, RAB, QF-PGD) to assess adversarial robustness,
reporting the mean attack success rate (ASR). We compare our approach with SLD baselines. The results, presented in
Table 8, show that our method achieves a superior balance between robustness and utility. For the style concept, we target
“Van Gogh” using the same three attack methods, with results shown in Table 9. These results demonstrate our method’s
effectiveness in addressing both object and style concepts.

Table 8. Quantitative results comparing different defense methods for unlearned models with the “gun” concept erased.
Unlearned

Model
Defense
Method

ASR ↓ FID ↓ CLIP ↑

ESD

w/o defense 56.11 6.595 30.06
SLD-Weak 46.78 7.521 29.90

SLD-Medium 28.44 9.624 29.45
SLD-Strong 22.33 12.510 28.88
SLD-Max 18.11 16.630 28.26

Ours 26.07 7.959 29.66

UCE

w/o defense 58.56 5.281 31.03
SLD-Weak 45.44 6.133 31.02

SLD-Medium 40.11 8.201 30.65
SLD-Strong 32.11 10.582 30.12
SLD-Max 21.00 14.223 29.25

Ours 29.85 7.142 30.29

Table 9. Quantitative results comparing different defense methods for unlearned models with the “Van Gogh” concept erased.
Unlearned

Model
Defense
Method

ASR ↓ FID ↓ CLIP ↑

ESD

w/o defense 11.33 5.612 30.38
SLD-Weak 6.00 6.133 30.37

SLD-Medium 1.33 7.929 30.03
SLD-Strong 0.00 10.971 29.46
SLD-Max 0.00 15.364 28.70

Ours 0.00 6.181 30.16

UCE

w/o defense 39.83 2.024 31.11
SLD-Weak 24.50 4.035 30.98

SLD-Medium 1.67 6.569 30.55
SLD-Strong 0.00 10.692 29.56
SLD-Max 0.00 17.322 28.30

Ours 0.00 3.843 30.94
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E.2. Generalization Across T2I Model Variants

We use the UCE unlearned model with“nudity” removed, keeping σ0 and k consistent with version 1.4. Table 10 shows
results using four attack methods: I2P, P4D, RAB, and QF-PGD, with average attack success rate (ASR) for robustness and
FID and CLIP scores for utility. Our findings indicate that our method remains effective across different T2I model variants,
enhancing the adversarial robustness of unlearned models without significantly affecting their generation capabilities.

Table 10. Comparison of our method and baselines on UCE-unlearned models across different SD versions.
SD

Version
Defense
Method

ASR ↓ FID ↓ CLIP ↑

1.5

w/o defense 28.05 4.354 31.05
RECE 9.02 7.589 30.52

Blacklist 24.49 4.557 30.94
POSI 20.13 5.243 30.23
Ours 10.65 5.460 30.56

2.1

w/o defense 21.52 5.303 31.00
RECE 2.08 11.856 29.33

Blacklist 14.04 5.511 30.91
POSI 17.77 6.175 30.15
Ours 7.01 6.575 30.66

F. Detailed Discussion
In this section, we provide a detailed discussion from three perspectives: multiple concept unlearning, comparative analysis
with text encoder fine-tuning methods (AdvUnlearn), and failure cases.

F.1. Multiple Concept Unlearning

For this multi-concept setting, we compute each token’s relevance score by taking the maximum of its similarity with
both the nudity concept direction and the violence concept direction. The results are presented in Table 11, where for
each concept, the average attack success rate (ASR) is computed across three attack methods (I2P, RAB, and QF-PGD).
Our method is effective in concurrently handling multiple concepts. Compared to the single-concept case, the additional
computation involves calculating similarities with more concepts and performing a subsequent max operation. However,
when the number of concepts is large, the efficiency of our method may be impacted.

Table 11. Performance of our defense method on a multi-concept unlearned model.
Defense ASR (Nudity) ↓ ASR (Violence) ↓ FID ↓ CLIP ↑

w/o defense 24.22 36.30 6.181 30.92
Ours 5.26 9.18 6.752 30.31

F.2. Comparative Analysis with AdvUnlearn

We provide an extended comparative analysis between our approach and AdvUnlearn (Zhang et al., 2024b), focusing on the
following three aspects.

Methodological Differences. AdvUnlearn is a pre-inference method that fine-tunes the text encoder. It falls into the
category of adversarial erasing-based defenses, similar to the RACE (Kim et al., 2024) and RECE (Gong et al., 2024)
baselines evaluated in our paper. While AdvUnlearn operates in the text-embedding space as our method does, several key
differences exist:

• Efficiency: AdvUnlearn requires relatively large computational resources for the fine-tuning process, as acknowledged
by the authors (Zhang et al., 2024b). In contrast, our approach is training-free and operates at inference time, offering
greater efficiency.

• Theoretical Guarantees: Unlike AdvUnlearn’s empirical defense, we provide theoretical guarantees through general-
ized median smoothing (Theorem 3.2), which could potentially offer new insights to this field.
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Comparative Performance Evaluation. We implement AdvUnlearn using its official codebase to compare it with our
method, targeting the concept of “nudity”. For our approach, we integrate our method with ESD, setting σ0 to 0.012 and k
to 9. We evaluate adversarial robustness through four attacks (i.e., I2P, RAB, MMA, and QF-PGD) and calculate the average
attack success rate (ASR), while assessing model utility through FID and CLIP scores. The results, presented in Table 12,
show that our method achieves adversarial robustness comparable to AdvUnlearn. In terms of model utility, AdvUnlearn
maintains superior FID metrics (image quality) because it preserves the U-Net weights. However, its CLIP score (image-text
alignment) is lower due to modifications in the text encoder. Our defense employs adaptive median smoothing without
altering text encoder parameters, better preserving image-text alignment capabilities.

Compatibility and Future Work. We find that directly applying our method to an unlearned text encoder presents
challenges. Our approach requires calculating each token’s relevance to target concepts, but AdvUnlearn’s fine-tuning
process maps target token representations to benign ones, making it difficult to distinguish between them based on textual
representations. This results in inaccurate relevance scores. Currently, our proposed method serves as an effective
complement to unlearning approaches that modify U-Net parameters, which constitute the majority of diffusion model
unlearning techniques (Gandikota et al., 2023; Kumari et al., 2023; Gandikota et al., 2024). In future work, we plan to
explore adaptations to our method to enhance compatibility with unlearned text encoders.

Table 12. Comparison of AdvUnlearn and our defense on the “nudity” concept.
Defense ASR ↓ FID ↓ CLIP ↑

AdvUnlearn 1.39 6.973 29.03
Ours 1.62 7.783 29.80

F.3. Failure Cases

We provide some qualitative results of failure cases in Figure 5. These results show that with the default hyperparameter
value of σ0 (as seen in the second and fifth columns), certain adversarial prompts can still restore the nudity concept. In our
implementation, σ0 is fixed for each unlearned model, but there are challenging cases that require a larger σ0 to address
effectively. While increasing σ0 can help defend against these prompts, it may also degrade model performance with benign
inputs. Therefore, it is worthwhile to explore how to dynamically adjust σ0 based on the input prompt in future work.

Unlearned Model: ESD

No
Defense

Ours Ours No
Defense

Ours Ours

No
Defense

OursOurs No
Defense

OursOurs

Unlearned Model: UCE

Figure 5. Qualitative results of failure cases. The images illustrate scenarios where adversarial prompts can bypass the default defense
settings, partially restoring the unlearned concept (columns 2 & 5). Increasing σ0 (columns 3 & 6) improves robustness but may impact
benign-generation quality, highlighting a trade-off between robustness and utility.
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