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ABSTRACT

Recent research initiatives such as ChatGPT and Sora highlight the important role
of large-scale data in advancing generative and comprehension tasks. However, the
scarcity of comprehensive and large-scale audio-visual correspondence datasets
poses a significant challenge to research in the audio-visual field. To address
this gap, we introduce AVSET-10M, a high-correspondence audio-visual dataset
comprising 10 million samples, featuring the following key attributes: (1) High
Audio-Visual Correspondence: Through meticulous sample filtering, we ensure a
strong correspondence between the audio and visual components of each entry. (2)
Comprehensive Categories: Encompassing 527 unique audio categories, AVSET-
10M provides a wide range of audio categories for diverse research needs. (3)
Large Scale: With 10 million samples, AVSET-10M is one of the largest publicly
available audio-visual correspondence datasets. We have benchmarked two critical
tasks on AVSET-10M: audio-video retrieval and vision-queried sound separation.
These tasks underscore the importance of precise audio-visual correspondence in
advancing audio-visual research. For more information, please visit our demo page
athttps://avset-10m.github.io/.

1 INTRODUCTION

Scaling up significantly enhances performance in understanding (Touvron et al.| |2023; |Bai et al.,
2023} [Liu et al.,[2024) and generation (Kondratyuk et al.| 2023} [Kang et al., 2023}; |Xiang et al.| [2024)
tasks across visual and language modalities. Inspired by the success of ImageNet (Deng et al.,[2009)
in visual research, some introduce the pioneering large-scale audio dataset, AudioSet (Gemmeke
et al.,2017), which comprises 2.1 million audio samples each manually annotated with fine-grained
audio categories to advance automatic audio understanding. However, the annotation process in
AudioSet primarily focuses on only audio labels, neglecting the audio-visual correspondence. To
address the need for exploring temporal consistency between audio and video, researchers develop the
VGGSound (Chen et al.,[2020), which includes 200,000 samples with audio-visual correspondence.
Leveraging this dataset, significant breakthroughs have been achieved in the audio-visual domain, in-
cluding vision-queried sound separation (Dong et al., [2022) and vision-based audio synthesis (Huang
et al.,[2023; | Xing et al., 2024).

Meanwhile, the scale of vision-language datasets (Thomee et al.| 20165 Miech et al., 2019; Xue
et al.}2022; |Schuhmann et al., 2022; [Wang et al.| [2023)) has expanded dramatically, encompassing
up to 100 million or even 1 billion samples. This expansion has facilitated a qualitative leap in
understanding (Touvron et al., 2023} [Liu et al., |2024) and generation (Kondratyuk et al.| [2023)
tasks within the vision and language fields, enabling the development of intelligent large language
models (Touvron et al.| 2023) and video generation technologies (Brooks et al., |2024) that simulate
real-world scenarios. In contrast, the scale of datasets that ensure audio-visual correspondence
remains markedly limited, posing a constraint on advancements in audio-visual field.

To further expand the audio-visual corresponding dataset and promote research on audio-visual
temporal consistency, we propose AVSET-10M, the first 10 million scale audio-visual corresponding
dataset, along with AVSET-700K, a subset containing fine-grained audio annotations. In Table|l| we
present a comparison among various existing audio and audio-visual datasets. Our dataset construction
process includes four stages: (1) Data collection, (2) Audio-visual correspondence filtering, (3) Voice-
over filtering, and (4) Sample recycling with sound separation. AudioSet (Gemmeke et al.,[2017),
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Table 1: Comparison of different audio-video datasets. AV-C denotes the audio-visual correspondence.
# Class: Number of audio categories. ACAV-100MT does not filter out the voiceover.

Datasets Video AV-C #Class #Clips #Dur.(hrs) #Avg Dur.(s)
DCASE2017 (Mesaros et al., 2019) X X 17 57K 89 3.9
FSD (Fonseca et al.,[2017) X X 398 24K 119 17.4
AudioSet (Gemmeke et al.,[2017) v X 527 2.1M 5.8K 10
AudioScope-V2 (Tzinis et al.,[2022) v X - 4.9M 1.6K 5
ACAV100M(Lee et al.|[2021)1 v X - 100M 277.7K 10
HD-VILA-100M (Xue et al.,2022) v X - 103M 371.5K 13.4
Panda-70M (Chen et al.,|2024) v X - 70.8M 166.8K 8.5
AVE (Tian et al.,[2018) v v 28 4K 11 10
VGGSound (Chen et al., [2020) v v 309 200K 550 10
AVSET-700K (ours) v v 527 728K 2.0K 10
AVSET-10M (ours) v v 527  10.9M 30.4K 10.3

known for its fine-grained manual labeling of audio categories, is selected as our initial data source
and develop AVSET-700K with accurate audio labels. To increase the number of samples per audio
category, we choose Panda-70M (Chen et al.| [2024) as an additional data source, expanding AVSET-
700K to 10 million audio-visual corresponding samples. Panda-70M processes long videos into
multiple semantically coherent sub-segments, effectively preventing the mixing of sounds from
different events. Previous filtering method (Chen et al., 2020) using visual classification models
struggles to distinguish audio events that cannot be identified by unique visual content, such as
silence, thereby limiting the diversity of audio categories. To address this issue, we introduce a new
filtering method based on audio-visual similarity (Girdhar et al.,2023)), which significantly broadens
the diversity of audio types. We employ an audio classification model (Kong et al., [2020) to filter
out samples containing narration or background music that does not align with the visual content.
As speech is commonly found in wild video data, which often results in the inadvertent filtering
out of a substantial amount of audio samples containing voice-overs. This leads to the loss of many
potentially useful and valuable samples across various audio categories. Thus, we further attempt to
employ sound separation models (Solovyev et al.| 2023) to recycle as many of these wasted samples
as possible. From the initial 41 million samples, we filter 10 million audio-visual samples with
high correspondence. Verification experiments demonstrate that our AVSET-700K provides more
robust audio-visual correspondence than the previously used audio-visual corresponding dataset
(VGGSound). Additionally, benchmarks of audio-video retrieval and vision-queried sound separation
on AVSET-10M demonstrate it offers more research opportunities in the field of audiovisual studies.

2 RELATED WORKS

2.1 AuUDIO-VISUAL MODELS

As multi-modal research progresses, the investigation (Li et al.,[2022; |Rahman et al., 2019} Tbrahimi
et al., 2023) into the correlations between audio and visual modalities has advanced. Initially,
researchers employ both audio and video data to provide semantically richer information, thereby im-
proving video understanding and significantly enhancing performance in various video understanding
tasks such as video question answering (VQA) (Li et al.} 2022;|Akbari et al.,|2021])), video caption-
ing (Rahman et al., [2019} [lashin & Rahtu, [2020ajb; Lin et al., 2023), and video retrieval (Lew et al.,
2006; Ibrahimi et al., [2023f |Arora et al., [2024)). Following these developments, ImageBind (Gird-
har et al., [2023)) emerges as a pioneering project that successfully aligns audio and visual content,
marking a significant step in exploring semantic alignment between these modalities. Building
on this foundation, subsequent research has delved into more intricate interactions between audio
and video, achieving milestones in vision-queried sound separation (Dong et al.,[2022)) and video
dubbing (Huang et al.| 2023). However, while these methods have managed to align audio and
visual content semantically, they often falter in maintaining temporal consistency. Some of the recent
innovations (Luo et al.| 2024) have introduced audio-visual temporal consistency supervision loss to
enhance the temporal alignment in video dubbing.
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Despite these advancements, the limited availability of training data continues to pose a significant
challenge, keeping the development of audio-visual temporal consistency at a rudimentary level. As
a result, the understanding of visual content remains largely confined to the semantic level, which
hampers the ability of models to accurately capture the audio-visual temporal consistency.

2.2 AUDIO-VIDEO DATASET

Inspired by ImageNet (Deng et al., 2009), researchers (Gemmeke et al.,[2017) annotate a substantial
audio dataset, consisting of 2.1 million audio samples, aimed at enhancing automatic audio compre-
hension. Although annotators are encouraged to consult video content to refine the accuracy of audio
annotations, the dataset primarily focuses on precise audio annotations without additional measures
to filter out audio-visual non-corresponding samples. This limits the exploration of audio-video
consistency.

To investigate audio-visual consistency, researchers (Chen et al., |2020) employed a visual model
to identify sound-producing objects in videos, leading to the creation of VGGSound, a dataset
comprising 200,000 audio-visual corresponding samples. However, this visual model is effective
only in scenes characterized by definite actions or visible objects. It struggles to handle audio
events that lack distinctive visual content, such as silence and ambient sounds in urban outdoor
environments, even though there is a significant correlation between these audio events and the visual
elements in these scenes (e.g., silence audio in aquariums video). This limitation constrains the
diversity of audio categories represented in VGGSound. To further scale up audio-visual datasets,
ACAV100M (Lee et al.l 2021) employs a clustering-based approach for data filtering. However,
it does not filter out voice-overs, resulting in the audio-visual correspondence of the final dataset
being even worse than that of AudioSet. AudioScope V1/2 (Tzinis et al.| [2020; 2022) utilizes an
unsupervised audio-video consistency prediction model to evaluate audio-video matching scores,
screening 2,500 hours of video samples from YFCC100M (Thomee et al.,[2016). Nevertheless, due
to limitations in prediction accuracy, the consistency between audio and video cannot be guaranteed,
and there remains a significant amount of inconsistent audio-visual content in the dataset.

Although subsequent research introduces larger video datasets (Xue et al., |2022; |Wang et al., [2023};
Chen et al.| 2023;2024), the primary focus remains on exploring the relationship between video and
text, overlooking the audio-visual correspondence. To the best of our knowledge, our AVSET-10M
represents the largest open audio-visual high-correspondence dataset currently available, contain-
ing 10 million data samples across 527 different audio categories. This dataset opens up more
opportunities for research in the audio-video field.

3 AVSET-10M

3.1 DATASET CONSTRUCTION PIPELINE

Stage 1: Data Collection. We select two different open-source datasets, AudioSet (Gemmeke et al.,
2017) and Panda-70M (Chen et al.,|2024), as data sources. All videos are sourced from open-domain
YouTube content. Since these datasets do not focus on audio-visual correspondence, they contain
a substantial number of mismatched audio-visual samples. We propose a filtering process to select
samples with high audio-visual correspondence, thereby constructing AVSET-10M.

AudioSet (Gemmeke et al.,|2017) is a pioneering large-scale audio dataset where all audio category
labels are carefully annotated by human annotators. During the annotation process, annotators are
allowed to view the accompanying videos, which aids in accurate audio category identification. This
dataset includes 2.1 million audio samples across 527 unique audio categories. From AudioSet,
we select 727,530 samples that demonstrate high audio-visual correspondence with reliable audio
category labels to form AVSET-700K.

Additionally, to further expand the number of samples in each audio class, we select Panda-70M (Chen
et al.| [2024), a large-scale video-text dataset containing 70 million semantically consistent segments.
It employs shot boundary detection technology (pyd) to divide the original videos into smaller
semantically consistent segments. This segmentation ensures that each clip contains only a single
event, preventing sound category conversion due to event switching and facilitating the subsequent
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Figure 1: The distribution of audio-visual similarity among audio-visual corresponding samples,
audio-visual non-corresponding samples and randomly selected wild samples. The similarity of
non-corresponding data follows the distribution Nnon,cowespondmg(0.015, 0.0812). Approximately
65% of the randomly selected wild samples and 18% of the audio-visual corresponding samples
exhibit similarities below the p+ 30 (0.2564) threshold of Ny,on—corresponding, Suggesting a potential
for these samples to be classified as audio-visual non-corresponding.

filtering process. Leveraging Panda-70M, we expand AVSET-700K to a total of 10 million audio-
visual corresponding samples, thus forming AVSET-10M.

Stage 2: Audio-Visual Correspondence Filtering. Previous researchers (Chen et al.| [2020)
compute the cosine similarity between textual class label and visual content to gauge alignment
confidence between vision and language. They subsequently filter video samples for each class label
using a manually selected threshold. However, this method is effective only in scenes featuring
definite actions or visual objects. It struggles to handle audio events that lack distinctive visual content,
such as silence and urban outdoor environments, even though there is a significant correlation between
these audio events and the visual elements in these scenes (e.g., video of aquariums and the silence
audio). This consequently restricts the diversity of audio categories available in the dataset. We
propose determining the confidence of audio-visual correspondence based on audio-visual similarity.
This approach enables the screening of audio samples that lack distinctive visual content, thereby
enhancing the diversity of samples in the dataset. Specifically, we randomly select 7,500 audio-visual
corresponding samples D orresponding from the VGGSound dataset, and 7,500 wild data samples
Dandom from the Panda-70M dataset. Additionally, we randomly construct 70,000 audio-visual non-
corresponding samples D, on—corresponding based on VGGSound. We employ Imagebind
to extract and calculate the cosine similarity between the average representation of 8
random video frames and the audio representation. The similarity distribution curves of different
sample sets are depicted in Figure[I} The audio-visual non-corresponding samples exhibit a normal
distribution Ny on—corresponding (0.015, 0.0812), while random wild samples follow the distribution
Nyandom (0.211, 0.1162). In contrast, the audio-visual corresponding samples exhibit a left-skewed
distribution with a higher concentration of similar instances. When the similarity of samples exceeds
the threshold i + 30 (0.2564) of the audio-visual non-corresponding distribution Nyon-corresponding
only 0.135% of the samples remain; thus, exceeding this threshold can be considered indicative of
audio-visual correspondence. Notably, only 35% of the randomly selected wild data samples exhibit
similarities exceeding the ;1 + 30 (0.2564) threshold of the distribution Ny,on—corresponding-

Stage 3: Voice-Over Filtering. While the aforementioned filtering method effectively identifies
non-corresponding samples based on audio-visual similarities, it fails to account for samples con-
taining background music and voice-overs. These off-screen sounds, largely irrelevant to the visual
content, can disrupt the intended audio-visual correspondence. To address this issue, we utilize
the audio classification network PANNs (Kong et al.} [2020) to label each audio clip, specifically
targeting and filtering out these voice-overs. Following the classification scheme used in AudioSet,
we annotate each audio clip with seven primary audio categories and their respective sub-categories.
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Figure 2: Comparison of the sample numbers for each audio category across AVSET-10M, AVSET-
700K, and VGGSound datasets. Classification is carried out based on the secondary audio labels in
AudioSetH We pseudo-label each sample from Panda-70M using PANNs (Kong et al.| [2020), while
labels on VGGSound are manually aligned with AudioSet.

Since speech and music are likely added during post-production, we specifically filter out samples
that contain these elements along with other types of sounds. Other audio categories, such as the
sounds of waterfalls and dog barking, typically originate from the original video. When these original
video sounds co-occur with speech or music, it often indicates a high likelihood of off-screen voice
interference. It is crucial to note that various instrumental sounds fall under the music category; thus,
videos featuring instrumental performances are not excluded but are instead appropriately retained.
Mirroring the approach in VGGSound (Chen et al.l[2020), our filtering process aims to eliminate false
positive samples—those with inappropriate sounds for each category. We refrain from using an audio
classifier to select positive samples, as this may overlook some hard-to-classify yet criteria-meeting
hard-positive audio samples.

Stage 4: Sample Recycling with Sound Separation. Speech is frequently encountered in wild
video data, often leading to the inadvertent filtering out of a substantial amount of non-speech audio
that includes voice-overs. This results in the loss of many potentially useful and valuable samples
across various audio categories. Inspired by recent advancements in audio research (Jiang et al.
2023), we have implemented a sound separation modeﬂ (Solovyev et al.,|2023) that is specifically
designed to isolate sounds that are neither speech nor music from audio mixes contaminated with
voice-over noise. The outputs from this sound separation process are subsequently returned to Stage
2 to verify the correspondence between the newly isolated audio and the video.

3.2 DATA ANALYSIS

We perform comprehensive statistical analyses on the AVSET-10M and AVSET-700K datasets to
gain detailed insights. For further information about these datasets, please refer to Appendix

Diverse Categories, Abundant Samples. Figure [2] presents a comparative analysis of the number of
audio categories in AVSET-10M, AVSET-700K, and VGGSound. To ensure consistency in audio
category labels across different datasets, we employ the PANNs (Kong et al.,|2020) audio classification
network trained on AudioSet to label all samples in AVSET-10M. Subsequently, we manually align
the labels in VGGSound with those in AudioSet and standardized the audio labels across all three
datasets as secondary labels. It is evident that AVSET-10M and AVSET-700K encompass a broader
range of audio types compared to VGGSound, including categories such as silence, liquid, and
glass. Furthermore, AVSET-10M significantly outperforms AVSET-700K and VGGSound in most
categories, offering a greater number of audio samples for each audio category.

"nttps://research.google.com/audioset /ontology/index.html
https://github.com/ZFTurbo/MVSEP-CDX23-Cinematic-Sound-Demixing
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Table 2: Comparison of sample numbers after each stage. Due to partial video corruption, we could
only download part of the original dataset. T The numbers here represent the video clips we collected.
AVSET-10M (w/o. AVSET-700K) represents samples filtered from Panda-70M.

St AVSET-700K AVSET-10M (w/o. AVSET-700K)
age Goal
#Num of Clips Proportion #Num of Clips Proportion
S1  Candidate Videos® 1,445,360 100.0% 39,295,551 100.0%
S2  AV-C Filtering 898,366 62.2% 13,824,726 35.2%
S3  Voiceover Filtering 608,062 42.1% 7,124,923 18.1%
S4  Sample Recycling 727,530 50.3% 9,877,475 25.1%
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Figure 3: Histogram of Clip Length Distribution in AVSET-10M (w/o. AVSET-700K).

Duration Statistics. The samples filtered from Panda-70M include clips of varying lengths. As
illustrated in Figure [3] we present the statistics for different clip lengths in AVSET-10M (excluding
AVSET-700K). The total duration of AVSET-10M amounts to 30,418.6 hours, with an average clip
length of 10.32 seconds. The longest clip spans 49 seconds, while the shortest measures 2 seconds.
Notably, clips exceeding 10 seconds constitute 19,142.66 hours, representing 62.9% of total duration.

The Number of Video Samples after Each Filtering Stage. In Table[2] we detail the quantity of
samples retained at each filtering stage for AVSET-700K and AVSET-10M (excluding AVSET-700K).
Initially, in stage S2 for AVSET-10M (excluding AVSET-700K), we filter out 64.8% of video samples
due to lack of audio-visual correspondence. In the subsequent S3 stage, 17.1% of the data containing
voice-overs is removed. Further, in stage S4, an additional 8.0% of samples with voice-overs is
refined through sound separation and subsequently recycled into the final audio-visual corresponding
dataset. It is noteworthy that AudioSet undergoes a meticulous screening process by researchers,
which results in a higher retention rate of data in the initial stage. AVSET-700K eliminates only
37.8% of data in its S2 stage.

3.3 PRIVACY PROTECTION

All data in AVSET-10M was obtained through further screening of publicly available datasets (Gem+{
meke et al.,|2017; /Chen et al.| 2024)), with user permission obtained where necessary. In our work,
we will only open-source the corresponding YouTube IDs and our annotations for these data samples,
excluding any original data content. To further safeguard user privacy, we will implement a method
that allows users to apply for the deletion of their corresponding samples. We will regularly syn-
chronize user deletion requests with upstream datasets such as AudioSet and PANDA-70M to ensure
compliance with privacy concerns.

3.4 DATASET VERIFICATION

We employ a distinct audio-visual representation learning model (Wang et al., [2024) different from
the one used during the sample filtering phase to assess the reliability of our proposed sample
filtering process. Specifically, we randomly sample data from four different audio-visual sources for
validation: (1) audio-visual corresponding data from VGGSound, (2) audio-visual non-corresponding
data created by randomly combining audio and video within VGGSound, (3) wild data randomly
sampled from AudioSet, and (4) data from AVSET-700K obtained after the comprehensive filtering
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Figure 4: The distribution of audio-video cosine similarity of pre-trained model InternVL{,++(Ver.)
Wang et al.| (2024) was evaluated on different sample sets: (1) the audio-visual ccorresponding
samples from VGGSound, (2) the randomly combined audio-visual non- corresponding samples
from VGGSound, (3) the wild samples from AudioSet, and (4) the AVSET-700K sample set filtered
with complete dataset processing. Notably, only 11% of the samples in AVSET-700K fall below the
1+ 3o threshold of non-corresponding distribution Ny,on—corresponding-

process. As depicted in Figure [} we present the distributions of audio-visual similarity for these four
sources. The mean and standard deviation of these similarities for each data source are detailed in
Table 3

AVSET-700K vs. AudioSet. It is evident

that after data filtering, the audio-visual corre-  Table 3: The mean and standard deviation (Std.) of

spondence within the dataset is significantly  aydjo-visual similarity among different sample sets.
enhanced compared to the wild data. The av-

erage cosine similarity of the AVSET-700K
data increases from 0.258 to 0.303, while the
standard deviation decreases from 0.086 to Non-Corresponding (Random) 0.015 0.072

Sample Sets Mean  Std.

0.058. Within the range (1 — 30, + 30) of ~ Wild Data (AudioSet) 0.258 0.086
the normal distribution N/, on-corresponding Corresponding (VGGSound) 0.302 0.083
of non-corresponding data, the proportion of AVSET-700K (ours) 0.303 0.058

potential non-corresponding samples is re-
duced from 35% to 11%. This improvement demonstrates that our sample filtering method effectively
enhances the audio-visual correspondence in the dataset.

AVSET-700K vs. VGGSound. As an audio-visual corresponding dataset, VGGSound contains a
large number of samples with high audio-visual similarity. However, a substantial portion of the
data exhibits low similarity, with 19% of VGGSound samples falling below the p + 30 = 0.231
threshold of the distribution N{wmcoweswndm . In contrast, only about 11% of the samples in
AVSET-700K have an audio-visual similarity below 0.231, indicating that AVSET-700K contains
more samples with high audio-visual correspondence. Additionally, AVSET-700K features a smaller
standard deviation and fewer samples exhibiting extremely low similarity, demonstrating that our

sample filtering process effectively enhances the robustness of audio-visual correspondence.

4 BENCHMARKS

We benchmark two audio-visual tasks to explore the audio-visual correspondence: (1) Audio-Video
Retrieval and (2) Vision-Queried Sound. In audio-video retrieval task, we experiment with AVSET-
10M and focus on the data scale and the audio-visual temporally consistency. As for Vision-Queried
Sound Separation, we mainly focus on the impact of each filtering stage, and work on the AVSET-
700K which is of a similar scale to AudioSet. Specifically, we employ Imagebind
to extract the average features of 1 frame per second in the video as image features I and
InternVid (Wang et al., to extract the features of the entire video as video features V. Please
refer to Appendix [C|for additional details regarding the experiments.

4.1 AUDIO-VIDEO RETRIEVAL

For the audio-video retrieval task, we validate on two audio-visual corresponding datasets, AVE

and VGGSound 2020), and compare the Recall@1 (R@1) and Recall@5

(R@5) from vision to audio. For the image+video (I+V) modality, we apply feature weighting similar
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Table 4: Comparison between the image-based method and the image+video based method on the
task of visual to audio retrieval. The similarity on the diagonal should be the highest in each column.
The correct results are highlighted in green, and the incorrect results are highlighted in red.

(a) Samplel = {I,V1,A1} (b) Sample3 = {I3,V3,A3}

(e) Similarity between Samplel and Sample2. (f) Similarity between Sample3 and Sample4.

I/'Vto A ‘ I ‘ I ‘ I,+V, ‘ I,+V;5 I/'Vto A ‘ I5 ‘ 1 ‘ I5+V; ‘ 1,+V,

A, 0.349 | 0.446 | 0.351 | 0.399 Aj 0.373 | 0.416 | 0.388 | 0.304
Ag 0.300 | 0.409 | 0.332 | 0.407 Ay 0.402 | 0.457 | 0.357 | 0.359

Table 5: Comparison of vision to audio retrieval performance using different methods on ASE and
VGGSound. M denotes the visual features used during retrieval.

AVE VGGSound
#ID M  Training Schedule R@l R@5 R@l1 R@5
R1 I AudioSet 18.00 40.11 11.74 28.52
R2 I AVSET-700K 19.10 4292 1390 31.68
R3 I AVSET-10M — AVSET-700K  19.11 43.05 1391 31.94
R4 I+V  AVSET-700K 20.55 4421 1447 33.62

R5 I+V  AVSET-10M — AVSET-700K  20.78 44.47 1493 34.03

to (Wang et al|[2024), with the mixed feature f;,y calculated as f;1y = 0.9f7 + 0.1 fy. In all the
audio-video retrieval experiments conducted for this paper, we train a separate linear layer for each

modality to align representations across different modalities, using a batch size of 1024.

AudioSet vs. AVSET-10M. AudioSet contains a significant number of audio-visual samples that
do not correspond, adversely affecting audio-video alignment. By employing our filtered dataset,
AVSET-700, we enhance cross-modal alignment capabilities, achieving a 3.16% improvement in
VGGSound R@5 performance from R1 to R3 in Table[5] Furthermore, expanding the dataset to 10
million (R5) entries boosts the model performance on AVE R@35 by an additional 0.26%.

Based on Image vs. Based on Image+Video. Previous models, which rely solely on image features
to retrieve audio clips that semantically match the image, lake the capability to evaluate audio-visual
temporal consistency. As shown in Table[5] by leveraging both image and video features, the R@5
performance on VGGSound improved by 2.09% from R3 to RS, emphasizing the importance of
audio-visual temporal consistency.

Qualitative Analysis. Table [4] presents several qualitative results of audio-video retrieval, under-
scoring the importance of temporal consistency for effective audio-video retrieval. For example, the
image-based method could only deduce that engine roar should be present in the audio based on the
image of a sports car, but it fails to determine when the sound should cease, leading to unsuccessful
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Table 6: Comparison of sound separation performance among various methods on VGGSound. M

stands for the query modality of sound separation.

VGGSound
#ID M Training Schedule SDR{ SIR!
Baseline
E1 1T VGGSound 5.606+£0.102 8.074+£0.161
E2 'V VGGSound 6.211+£0.105 8.584-+0.160
Zero-Shot
E3 'V  AudioSet 5.004+0.103 6.781+0.164
E4 'V AudioSet (w. AV-Correspondence Filtering) 5.646+£0.101 7.682+0.162
E5 'V AVSET-700K 5.774£0.103 7.802+0.161
E6 'V  AVSET-200K 5.152+0.103 6.928+0.168
Pretraining + Finetune
E7 'V AudioSet (w. AV-Correspondence Filtering)—+VGGSound 6.548+0.103 9.25140.158
E8 V  AVSET-700K—VGGSound 6.666+0.102 9.377+0.158

audio-video pairing. In contrast, when both image and video features are considered, the similarity
between mismatched sample pairs 1 and 2 is reduced from 0.446 to 0.399, thereby achieving correct
audio-video pairing.

4.2 VISION-QUERIED SOUND SEPARATION

As shown in Table [6] we present the performance of vision-queried sound separation based on
different modalities across various datasets. We utilize the framework of CLIPSep (Dong et al.| [2022)
to implement sound separation models across various modalities.

Image-Queried vs. Video-Queried. Compared to the sound separation model based on image
queries (E'1), the model utilizing video queries (£2) demonstrates superior performance, with the
Signal-to-Distortion Ratio (SDR) improving by 0.605. This enhancement highlights the importance
of audio-visual temporal consistency within the audio-visual research.

Corresponding vs. Non-Corresponding. Audio-visual correspondence is critical for effective
sound separation. Models trained on the non-corresponding AudioSet (£3) encounter difficulties in
achieving accurate separation and fail to capture proper audio-visual alignment. After implementing
audio-visual correspondence filtering (££4), the dataset shows a marked improvement in audio-visual
correspondence, as evidenced by a 0.642 increase in the Signal-to-Distortion Ratio (SDR). Despite
this advancement, the presence of voice-over content continues to challenge the alignment between
audio and visual modalities. Following a comprehensive filtering process, the model (£5) trained
on AVSET-700K exhibits exceptional zero-shot sound separation capabilities, achieving an SDR of
5.774. This significant enhancement underscores the effectiveness of our proposed filtering process.

AVSET-200K vs. AVSET-700K. To further assess the impact of data scale on model performance, we
randomly sampled 200K samples from AVSET-700K for experiments (£6). The performance dropped
significantly, which demonstrates the importance of data scale. However, E6 still outperformed E'3,
proving that audio-visual consistency is more critical than data scale.

5 CONCLUSION

Audio-visual correspondence datasets are pivotal for research in the audio-video domain. By applying
a sample filtering process to AudioSet and Panda-70M, we have developed AVSET-10M—the first
open, large-scale dataset with high audio-visual correspondence, comprising ten million audio-
visual samples across 527 audio categories. Verification experiments demonstrate that AVSET-10M
surpasses previous datasets in terms of audio-visual correspondence. Additionally, we benchmarked
audio-video retrieval and vision-guided sound separation tasks, underscoring the critical role of audio-
video temporal consistency in this field. Our AVSET-10M dataset opens up greater opportunities for
advancement in audio-video research.
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REPRODUCIBILITY STATEMENT

Our code has been open-sourced at https://avset—10m.github. 1o/} and the dataset will
also be made publicly available upon acceptance. In Section [3.1] we provide a detailed explanation
of the process for constructing the AVSET-10M dataset. Sectionsdand Appendix [C|outline the task
definitions and specific implementation details, with the corresponding model training code also
open-sourced.
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A  LIMITATION

Since all upstream datasets of AVSET-10M rely on YouTube as the main data source, our dataset
may be more closely aligned with the video styles prevalent on YouTube and may not fully represent
video content from other platforms. However, to the best of our knowledge, our dataset is currently
the largest audio-visual correspondence dataset available. In the future, we plan to verify the
generalization ability of our AVSET-10M on data from other platforms. Additionally, we intend to
collect data from a broader range of platforms to build a more diverse dataset.

B ETHICAL IMPACT

B.1 PRIVACY CONCERNS

AVSET-10M is built on existing open-source datasets and contains only video links, not the actual
content. To address privacy concerns, we have implemented a deletion request mechanism that allows
individuals to request the removal of links to privacy-sensitive content. Recognizing the limitations
of users initiating such requests, we plan to periodically update our repository from upstream datasets
(such as AudioSet and PANDA-70M) to proactively identify and remove any videos that may raise
privacy concerns. This ensures continued adherence to privacy standards, as discussed in section [3.3]

B.2 POPULATION REPRESENTATIVENESS

Although privacy protection makes it challenging to determine the precise geographic location of
videos, which complicates deep demographic analysis, we believe that the data samples offer a
reasonable degree of population representativeness. Given that YouTube videos are uploaded by users
all over the world, our dataset inherently captures a diverse range of demographics.

B.3 POTENTIAL APPLICATIONS

This paper primarily focuses on proposing a large-scale audio-visual correspondence dataset, aimed
at expanding research possibilities in the audio-visual sector. This field includes technologies like
video dubbing, which can lead to audio forgery. However, it’s crucial to note that such dubbing does
not result in severe identity forgery issues, unlike those caused by voice cloning technologies.

C IMPLEMENTATION DETAILS

C.1 SOUND SEPARATION

Same as the experimental setting of (Dong et al.,[2022), for all audio samples, we conduct experiments
on samples of length 65535 (approximately 4 seconds) at a sampling rate of 16 kHz. For spectrum
computation, we employ a short-time Fourier transform (STFT) with a filter length of 1024, a hop
length of 256, and a window size of 1024. All images are resized to 224 x 224 pixels. All models are
trained with a batch size of 128, using the Adam optimizer with parameters 5, = 0.9, 82 = 0.999,
and e = 10~8, for 200,000 steps. Additionally, we employ warm-up and gradient clipping strategies,
following |Dong et al.[(2022). We compute the signal-to-distortion ratio (SDR) using museval (Stoter
et al.,[2018)). All experiments are conducted on a single A800 GPU.

C.2 AUDIO-VIDEO RETRIEVAL

Same as the experimental setting of [Wang et al.[(2024), for all experiments, the softmax temperature
is set to 0.01, and the temperature for the InfoNCE loss is set to 0.02. We utilize the Adam optimizer
with a learning rate of 1 x 102 and a batch size of 2048, running the training process for 20 epochs.
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(d) Audio-Vision Cosine Similarity 8 = 0.404.
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(f) Audio-Vision Cosine Similarity = 0.335.

Figure 5: Audio-video consistency samples in AVSET.
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D AVSET-10M

D.1 SAMPLES OF AVSET-10M

We present some audio-video consistency samples from the AVSET-10M in Figure 5] For additional
samples, please visit the demo page at https://avset-10M.github.io.

D.2 DATASET COMPOSITION
We release AVSET-10M as the following two subsets:

* AVSET-700K: This subset comprises 727,530 audio-visual corresponding samples filtered from
AudioSet. Each video segment in this subset is accompanied by a manually labeled audio category,
ensuring accurate categorization and relevance.

* AVSET-10M (w/o. AVSET-700K): This subset comprises 10,234,280 audio-visual corresponding
samples, filtered from the Panda-70M dataset. Each video segment is semantically coherent,
focusing on a single event, and includes a text description originally from the Panda70M dataset.
Additionally, we provide pseudo-labels for the audio categories, derived with PANNs (Kong et al.}
2020), along with their corresponding confidence scores. Researchers can use these pseudo-labels
to freely partition the dataset.

We provide comprehensive meta-information for each video clip, including the YoutubelD of the
video, timestamps for each clip, audio-visual cosine similarity, a flag indicating whether sound
separation is required, and relevant text labels. For AVSET-10M (w/o. AVSET-700K), captions and
pseudo-labels are included, while AVSET-700K features manual audio labels.

D.3 LICENSE

AVSET-10M is released under the [CC BY 4.0] license. Before using this dataset, please ensure that
you have read and understood the terms of the license.

E DATASHEET OF AVSET-10M

We present a datasheet (Gebru et al.,|2021) for documentation and responsible usage of LeanDojo
Benchmark.

E.1 MOTIVATION

1. For what purpose was the dataset created? We have developed the AVSET-10M dataset,
a tailored audio-video corresponding dataset, designed to advance audio-visual research by
facilitating the exploration of semantic and temporal alignment between audio and video
components.

2. Who created the dataset and on behalf of which entity? The AVSET-10M was developed
by researchers listed in the author list.

E.2 COMPOSITION

1. What do the instance that comprise the dataset represent (e.g., documents, photos,
people, countries?) Each instance consists of a pair of corresponding audio and video
samples, along with several associated labels.

2. How many instances are there in total (of each type, if appropriate)? The AVSET-10M
dataset contains 10,605,005 samples, of which the AVSET700K subset includes 727,530
samples.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? The dataset contains all possible instances.

4. What data does each instance consist of?
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. Is there a label or target associated with each instance? We provide the cosine similarity

between audio and visual content as well as the audio labels for each sample.

. Is any information missing from individual instances? For some instances filtered from

Panda-70M, although the audio and video correspond, it is not able to identify the specific
audio pseudo-labels. Note that this does not affect the audio-visual correspondence in our
dataset.

. Are relationships between individual instances made explicit (e.g., users’ movie ratings,

social network links)? N/A

. Are there recommended data splits (e.g., training, development/validation, testing)? In

the AVSET-10M dataset, there are a large number of audio labels, allowing researchers to
perform appropriate splits based on these labels. We do not have a recommended data splits.

9. Are there any errors, sources of noise, or redundancies in the dataset? N/A

11.

12.

13.
14.

15.

. Is the dataset self-contained, or does it link to or otherwise rely on external resources

(e.g., websites, tweets, other datasets)? We only provide the download links for the videos,
the raw videos need to be downloaded from the YouTube platform.

Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor—patient confidentiality, data that includes
the content of individuals’ non-public communications)? The AudioSet and Panda-70M
used as the source contains facial videos that may pose a risk of infringement, we will delete
the corresponding samples if necessary to avoid potential legal issues.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? Our data all come from the YouTube
platform, which has a detailed data review process to ensure that it does not contain videos
that are offensive, insulting, threatening, or might otherwise cause anxiety.

Does the dataset identify any subpopulations (e.g., by age, gender)? N/A

Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? Individual identities
may be identifiable through the video uploader.

Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? N/A

E.3 COLLECTION PROCESS

1.

How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses),
or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based
guesses for age or language)? The audio-video similarity is calculated using Image-
bind (Girdhar et al., |2023), and the audio tags are obtained using PANNs (Kong et al.,
2020).

. What mechanisms or procedures were used to collect the data (e.g., hardware appara-

tuses or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated? All raw video data is sourced from
established open-source datasets, and we employ an advanced filtering process to refine
these data. The integrity and efficacy of the filtering process for the entire dataset have been
thoroughly verified in Section [3.4]

. If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,

deterministic, probabilistic with specific sampling probabilities)? Based on the audio-
video similarity.

. Who was involved in the data collection process (e.g., students, crowdworkers, con-

tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
N/A.
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E.4

E.5

E.6

E.7

. Were any ethical review processes conducted (e.g., by an institutional review board)?

Our data all come from the YouTube platform, which has a detailed data review process
to ensure that it does not contain videos that are offensive, insulting, threatening, or might
otherwise cause anxiety.

PREPROCESSING/CLEANING/LABELING

1.

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? We employ Imagebind (Girdhar et al., [2023) to determine
the similarity between audio and video, PANNs (Kong et al., [2020) to classify audio into dif-
ferent categories, and a sound separation model (Solovyev et al.,|2023)) to extract non-speech
tracks from the audio.

. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,

to support unanticipated future uses)? We provide URLSs for all raw videos, allowing
researchers to download the videos directly from the YouTube platform.

. Is the software that was used to preprocess/clean/label the data avail-

able? ImageBind (https://github.com/facebookresearch/ImageBind). PANNS
(https://github.com/qiugiangkong/audioset_tagging_cnn). Sound Separation model
(https://github.com/ZFTurbo/MVSEP-CDX23-Cinematic-Sound-Demixing).

USES

1.

Has the dataset been used for any tasks already? Yes, we have benchmarked the tasks of
visual guided sound separation and audio-video retrieval using the AVSET-10M dataset.

. Is there a repository that links to any or all papers or systems that use the dataset? Yes.

Please visit the web page of AVSET-10M (https://avset-10M.github.io).

. What (other) tasks could the dataset be used for? Our dataset is designed to facilitate

research in video-to-audio generation, text-to-audio generation, and various other audio-
video generation tasks. Additionally, it supports studies in audio-video classification,
audio-video captioning, and other related audio-video understanding tasks.

. Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a dataset consumer might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues)
or other risks or harms (e.g., legal risks, financial harms)? To enlarge the sample size of
non-speech categories, we utilize a sound separation model to process the data. This method
may introduce a certain degree of audio distortion. Users can create a distortion-free sample
set by using the identifiers provided in the dataset.

. Are there tasks for which the dataset should not be used? N/A.

DISTRIBUTION

1.

Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset is
open to the public.

. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The

dataset will be distributed through platforms such as github and hugging face, and the code
will be placed on github.

. Have any third parties imposed IP-based or other restrictions on the data associated

with the instances? No.

. Do any export controls or other regulatory restrictions apply to the dataset or to

individual instances? No.

MAINTENANCE

1.

Who will be supporting/hosting/maintaining the dataset? The first author of this paper.
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2. Is there an erratum? No. If errors are found in the future, we will release errata on the
main web page for the dataset (https://avset-10m.github.io/).

3. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the datasets will be updated whenever necessary to ensure accuracy, and
announcements will be made accordingly. These updates will be posted on the main web
page for the dataset (https://avset-10m.github.io/).

4. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted?) The samples in the
dataset are sourced from the YouTube platform. We have stated that if any specific fragments
are found to infringe on individual rights, we will promptly remove them.

5. Will older version of the dataset continue to be supported/hosted/maintained? Yes,
older versions of the dataset will continue to be maintained and hosted.

6. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nisms for them to do so? Our dataset will be published on the GitHub platform. If other
researchers wish to further expand the dataset, they are welcome to contact us.
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